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We consider the problem of extracting tribological information from experimental observations of con-
tact with soft-wet materials. Particular attention is placed on simulating the response of two rotating cyl-
inders of soft specimens placed in frictional contact, with a variable coefficient of friction dependent on
the relative sliding velocity. The bulk behavior is modeled by means of a finite deformation viscoelasticity
formulation, with constitutive parameters taken to be representative of hydrogels. We focus on the mod-
eling of the surface behavior and employ a mortar-finite element contact formulation. Through a series of
numerical studies, we demonstrate the strong sensitivity of the results to the choice of interfacial consti-
tutive parameters. The difficulties of extracting such parameters using only experimental data and
approximate analytical expressions are also examined.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Biological tissues and stimulus-responsive hydrogels fall under
the broad class of ‘‘soft-wet” materials (Osada and Gong, 1999),
possessing relatively small elastic moduli (�100 kPa) and being
hydrated or functioning in solution. From a mechanical perspec-
tive, these materials are characterized by an ability to sustain large,
finite strains, and typically exhibit a viscoelastic response to ap-
plied loads. In many applications of interest to engineers and mate-
rial scientists, load transmission occurs through frictional contact.
Unfortunately, a number of factors can make it difficult to accu-
rately characterize the surface behavior of soft-wet materials using
experimental measurements alone. In this paper, we discuss the
salient issues in detail and demonstrate the utility of mortar-finite
element methods for investigating tribological complexity in soft-
wet materials.

Stimulus-responsive hydrogels and other soft, active materials
exhibit large displacements in response to small changes in envi-
ronmental stimuli. They have been used for a wide range of appli-
cations, including optical switches (Pardo-Yissar et al., 2001), drug
carriers (Eichenbaum et al., 1999), and microfluidic control (Beebe
et al., 2000). As new applications continue to emerge, so do theo-
retical models for their behavior. A review of much of the early the-
oretical work is provided by Onuki (1993). More recent models
account for finite strains and explicit phase transitions (see, e.g.
Dolbow et al., 2004), various chemo-electro-mechanical couplings
ll rights reserved.

).
(Bassetti et al., 2005; Li et al., 2007; Hong et al., 2008), and visco-
elasticity (Korchagin et al., 2007).

Although most of the attention has been focused on the bulk re-
sponse of these materials, researchers are beginning to examine
the interesting tribological behavior of polymer gels. A few groups
have studied frictional contact between gels and various surfaces
(Baumberger et al., 2002; Gong et al., 1999; Chang et al., 2007). Tri-
bological response in these materials can depend on a number of
factors, including charge, surface pressure, and relative sliding
velocity. Some have followed the work of Gong et al. (1999) and
adapted rheometers for studying gel-on-gel contact, in part due
to the ease with which the specimens can be placed in solution.
For example, Chang et al. (2007) used a similar experiment to show
dramatic, reversible changes in tribological response with gel
phase state. The rheometer configuration allows for steady-state
conditions to be reached, eliminating the role of time dependence
in the bulk response while rotational sliding occurs on the surface.
Such a decoupling can be difficult to secure with configurations
that employ a cyclic translational motion of the two surfaces.

While the rheometer setup is very useful for tribological studies
of soft-wet materials, it mostly provides a means for qualitative
investigations of surface response. The configuration allows for
the measurement of net torque and normal loads produced by
the contact during rotational sliding. Because the relative sliding
velocity is non-uniform over the surface, some hypothesis regard-
ing the relationship between frictional force and sliding velocity is
required to extract tribological information. For example, Gong
et al. (1999) assumed a linear relationship with zero asymptote
to extract the apparent coefficient of friction. These considerations
help motivate the need for accompanying numerical studies to
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Fig. 1. Experimental setup for tribological measurements of gels.
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investigate the validity of such assumptions and isolate quantita-
tive aspects that are necessary for design.

Robust simulation of frictional contact between two deform-
able, viscoelastic materials with complex tribological response is
not trivial. This is particularly true when the rheometer configura-
tion is modeled and the goal is to obtain sufficient accuracy to dis-
cern between various constitutive laws on the surface. With finite
element based discretizations, for example, the simulation of rota-
tional sliding in three dimensions practically rules out classical
node-to-surface constraint strategies. By comparison, the mortar-
finite element strategies for frictional contact developed by Laur-
sen and colleagues (McDevitt and Laursen, 2000; Yang et al.,
2005) are much better suited for this situation. In this work, we
adapt these strategies to handle frictional sliding with a rate
dependent constitutive law for the surface. For the bulk response,
many different choices of material models are available, as out-
lined above. We employ the finite-strain viscoelastic model of Re-
ese and Govindjee, 1998, which contains most of the salient
features that enable the modeling of the transmission of loads from
surface contact to the bulk in soft-wet materials.

This paper is organized as follows. In the next section, we de-
scribe the rheometer configuration in detail and discuss the usual
assumptions employed to extract apparent frictional coefficients.
Section 3 then provides the problem formulation used to model
the configuration, including the governing equations and bulk
and interfacial constitutive models. In Section 4, we briefly de-
scribe the numerical discretization with finite element and mortar
methods. Results from various numerical experiments are then
presented and discussed in Section 5. Finally, we provide a sum-
mary and concluding remarks in the last section.

2. Rheometer experiments on hydrogels

In this section, we describe a simple experimental setup (Fig. 1)
that has been used to investigate the surface response of gels and
discuss the assumptions that can be employed to extract tribolog-
ical information.

Two cylindrical gel samples are glued to the upper and lower
plates of a rheometer and an axial load is applied that brings the
two samples in contact. The diameter d ¼ 2Rmin of the uppermost
gel specimen is typically chosen to be slightly smaller than the
diameter D ¼ 2Rmax of the bottom specimen. This choice ensures
full contact and minimizes edge effects.1

The setup is placed in solution such that both gel samples and
plates are fully submerged. After the total vertical load is applied,
the gap between the two plates is held fixed until the normal con-
tact force N reaches steady state. Then the angular velocity x of the
bottom plate is increased in steps, using time intervals that are suf-
ficiently long to allow for full relaxation. Torque and normal force
data are recorded as a function of time.

The assumption is that the steady-state data at each value of x
can be used to isolate the relationship between surface friction and
sliding velocity, since the time dependence of bulk terms has been
eliminated. The extraction of useful information from a modeling
perspective, however, typically involves the use of a number of
simplifying assumptions. For example, Gong et al. (1999) assume
that the friction per unit area at a distance r from the axis of rota-
tion is linearly proportional to the sliding velocity. Further, assum-
ing infinitesimal deformations, the frictional force f at any point on
the gel surface is then given by f ¼ cxr. The total frictional force F
can then be approximated as
1 We note that annular geometries are often impractical to use with soft materials
due to the propensity for tearing.
F ¼
Z R

0
2prf dr ¼ 2p

3
cxR3; ð2:1Þ

where R is the radius of the contact surface, which under the above
assumptions is the radius of the top specimen, Rmin. The correspond-
ing torque is

T ¼
Z R

0
2prfr dr ¼ p

2
cxR4: ð2:2Þ

This allows one to express the frictional force in terms of the torque,
as F ¼ 4T=3R. An ‘‘apparent” coefficient of friction can then be cal-
culated by dividing the frictional force by the axial load

l ¼ F
N
¼ 4T

3RN
: ð2:3Þ

Fig. 2 presents the evolution of the apparent coefficient of fric-
tion – estimated based on the relation (2.3) – during a set of exper-
iments on hydrogels (for various initial axial loads Ni) that spanned
four levels of angular velocity: 0.01, 0.1, 1 and 10 rad/s. A detailed
description of the experimental data that was used in this study is
presented in Chang et al. (2007). Clearly, an increase in the angular
rotation x gives rise to an increase in friction, which is at least self-
consistent with the assumption that f ¼ cxr. In the Sections that
follow we will demonstrate, however, how drawing such infer-
ences can be problematic.

3. Problem formulation

In this section, we describe a problem formulation suitable for
modeling the experiment described in Section 2 and idealized in
Fig. 1. In particular, we describe appropriate choices for the bulk
and interfacial constitutive laws.

3.1. Finite deformation two body contact

Recognizing the potentially important role of large deformation
with contact between two soft materials, we formulate the prob-
lem using finite-strain kinematics. Consider two bodies (as shown
in Fig. 3), which in the reference configuration occupy the domains
Xð1Þ and Xð2Þ and have boundaries Cð1Þ and Cð2Þ. We consider only
mechanical effects (i.e., force balance) and assume that inertial ef-
fects can be neglected. Subscripts u, r and c indicate the segments
on the boundary where displacements, tractions and contact con-
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Fig. 3. Two body contact problem: Lagrangian description of the kinematics.

1336 I. Stanciulescu et al. / International Journal of Solids and Structures 46 (2009) 1334–1344
straints are prescribed. Denoting by uðiÞ a solution and by u
� ðiÞ its

variation, the spatial counterparts of the boundaries and domains
are designated by cðiÞ and uðiÞðXðiÞÞ, respectively. With these nota-
tions, one can express the virtual work

Gðu;u� Þ :¼
X2

i¼1

GðiÞðuðiÞ;u� ðiÞÞ

¼
X2

i¼1

Z
XðiÞ

GRADu
� ðiÞ : PðiÞ dX�

Z
XðiÞ

u
� ðiÞ � f ðiÞ dX

�

�
Z

CðiÞr

u
� ðiÞ � T ðiÞ dC�

Z
CðiÞc

u
� ðiÞ � tðiÞ dC

)
; ð3:1Þ
where f denotes the body force, P is the first Piola–Kirchhoff stress
tensor, T are the prescribed tractions, t the contact tractions, and
superscript (i) indicates body (i) (i = 1 or 2). The virtual work equa-
tion for the system can then be written as

Gintðu;u� Þ þ Gextðu;u� Þ þ Gcðu;u� Þ ¼ 0; ð3:2Þ

in terms of the contributions from internal and external forces and
the work associated with contact tractions

Gcðu;u� Þ ¼ �
X2

i¼1

Z
CðiÞc

u
� ðiÞ � tðiÞ dC: ð3:3Þ

Consistent with the contact literature, we will refer to cð1Þc as the
slave contact surface and to cð2Þc as the master contact surface.

3.2. Bulk constitutive model

To describe the bulk behavior, we adopt a model formulated in
finite deformation kinematics that accounts for both elastic and
viscous phenomena. This model relies upon the theory first devel-
oped and presented by Reese and Govindjee Reese and Govindjee
(1998). The free energy is decomposed additively into a equilib-
rium (long-time) strain energy and a non-equilibrium (relaxing)
part

W ¼ WEQ ðCÞ þWNEQ ðCeÞ; ð3:4Þ

where C ¼ FT F is the right Cauchy–Green tensor based upon the full
deformation gradient F. In analogy with a classical rheological mod-
el, the equilibrium part corresponds to the strain energy in the
spring and the viscous part to the energy in the Maxwell element.

The elastic right Cauchy–Green tensor Ce is based on the elastic
part Fe of the deformation gradient, stemming from the multiplica-
tive decomposition

F ¼ FeF i; ð3:5Þ

where F i is the viscous counterpart. As a result, we can write
Ce ¼ FT

e Fe ¼ F�T
i CF�1

i .
In our implementation, the strain energy function considered

for both the equilibrium and the non-equilibrium part is based
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on an Ogden model (Ogden, 1972a,b). This model is known to be
polyconvex and to agree well with experimental data for rubber-
like materials. The Ogden strain energy function has a volumetric
part

WVOL ¼ K
4
ðJ2 � 2lnJ � 1Þ; ð3:6Þ

expressed in terms of the Jacobian of the deformation gradient, and
a deviatoric part

WDEV ¼
XN

r¼1

Gr

ar
ðb1

ar=2 þ b2
ar=2 þ b3

ar=2Þ; ð3:7Þ

expressed in terms of the modified principal values of the left Cau-
chy–Green tensor (b ¼ J�2=3b). Currently our formulation includes
three terms (N = 3) in the deviatoric strain energy (3.7) for a total
of seven constitutive parameters (Gr and ar; r ¼ 1;3 and the bulk
modulus, K). Note (Ogden, 1972a) that the bulk shear modulus is
G ¼

PN
r¼1

1
2 Grar .

The resulting evolution equation is similar in structure to
the one used in finite deformation elastoplasticity, where the
state determined based on the elastic predictor step is called
the ‘‘trial” state. This equation introduces two more constitu-
tive parameters, the deviatoric and volumetric viscosities (gD

and gV ).
The assumption of the existence of a free energy for the non-

equilibrium stress does not generally hold for any viscoelastic
material but seems to be reasonable in the case of rubber-like
materials. Our work investigated the accuracy of this assumption
for hydrogel materials and confirmed the ability of this model to
offer sufficiently good correlation with experimental data when
the constitutive parameters are properly calibrated. These param-
eters can be classified in two groups: (1) strain energy parameters
including the bulk modulus describing the volumetric behavior
and the 2N parameters for the description of the deviatoric behav-
ior, and (2) viscosities (two parameters, the deviatoric and volumet-
ric viscosity).
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3.3. Interfacial constitutive model

To characterize the interfacial behavior, we define the gap vec-
tor function, g:

gðX; tÞ ¼ uð1ÞðX; tÞ � uð2ÞðY ; tÞ; ð3:8Þ

where Y is the closest point projection of point X onto the master
surface, and v the relative velocity between the two surfaces in con-
tact, which can be decomposed into its normal and tangential parts

v ¼ _uð2ÞðY ; tÞ � _uð1ÞðX; tÞ ¼ vN þ vT : ð3:9Þ

The contact boundary condition in the normal direction n can
be represented as an impenetrability condition in the form
n � gðX; tÞ 6 0. The norm of the tangential component of v – here-
after referred to as sliding velocity v s ¼ kvTk – is an important
parameter for the characterization of the tribological properties
of the interface. Kagata et al. (2002) reported from their experi-
mental studies that at constant sliding velocity the frictional force
per unit area (s) is proportional to ðrnÞa, where rn is the normal
contact stress and a 2 ½0;1� is a constant. In the limit, the solid
(dry) friction law is then obtained for a ¼ 1. They have also re-
ported that the frictional force increases with an increase in the
sliding velocity but the profile does not correspond to typical forces
that would arise from a viscous flow model (i.e., / v s). It is in fact
dependent on the applied compressive load: at small normal
strains it is almost constant at low velocities and has a clear grad-
ual increase in the range of the higher velocities whereas at larger
normal strains it has a moderate increase in the range of the low
velocities but increases significantly for larger velocities. The
dependence on velocity is then less important at small normal
strains and velocities but becomes significant at larger normal
strains and velocities. The assumption of a dependence of the fric-
tional forces on both rn and on the sliding velocity s ¼ sðv s;rnÞ is
therefore suggested by experimental observation. Fig. 4 presents a
typical plot of the total torque during an experiment (using the set-
up shown in Fig. 1) on hydrogels where the angular velocity (x)
was increased from zero to 10 rad/s over four different steps.
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Unfortunately, the direct extraction of the total frictional force is
not possible without hypothesizing the form of this dependence,
and hence we have no direct indication of what the explicit form
of s should be. In this paper, we have adopted an interface model
that decouples this dependence, i.e., s ¼ lrn with l ¼ hðv sÞ. In
Section 5, we will show how strongly the computationally pre-
dicted torque signal depends on the hypothesis for h.

In the examples presented in Section 5, second-order polyno-
mial functions were considered for h, with a maximum of three
independent parameters to define the local coefficient of friction
in terms of the sliding velocity

l ¼ hðv sÞ ¼ b0 þ b1vs þ b2v2
s ¼ b � p½v s�; ð3:10Þ

where b ¼ ðb0;b1; b2Þ
T and p½vs� ¼ ð1;vs;v2

s Þ
T .

Following the procedure outlined in Section 2, we can use (3.10)
and the measured torque and normal force signals to estimate a
global apparent coefficient of friction. While such an approach re-
quires many simplifying assumptions, we find it useful to explore
here as a means to demonstrate the usefulness/limitations of a
purely analytical approach to identifying details of the interfacial
constitutive law.

The approach neglects the deformation produced during con-
tact of the two gel cylinders. In this case, the radius of the contact
patch can be assumed to be Rmin (i.e., the minimum radius of the
two cylinders in contact), v s � xr with r the distance from the
rotation axis and x the angular velocity, and the surface is as-
sumed to remain planar. Analogous to the analysis presented in
Section 2, an estimate of the apparent coefficient of friction can
be obtained

lapparent ¼
b0

1
2þ b1

Rx
3 þ b2

R2x2

4

b0
1
3þ b1

R2x
4 þ b2

R3x2

5

 !
T
N
: ð3:11Þ

where T is the torque, N the axial force, and R the radius of the con-
tact surface (under the hypothesis of small deformations R ¼ Rmin).
The quadratic polynomial can be generalized to an arbitrary polyno-
mial function of vs:

h ¼
Xn

i¼0

bivmi
s : ð3:12Þ

The apparent coefficient of friction in this case can be estimated as

lapparent ¼
P

ibix
mi
i

R
miþ2
min

miþ2P
ibix

mi
i

R
miþ3
min

miþ3

0
B@

1
CA T

N
: ð3:13Þ

The estimates (3.11) and (3.13) have a limited range of validity
due to many factors: the contact surface does not remain planar,
the radius of the contact patch Rcontact–Rmin and the normal trac-
tions are not uniformly distributed. These expressions can be used
in practice to obtain estimates of b0; b1, and b2 based on the ratios
T=N for a given set of x. Indeed, we explore the use of least-squares
fitting techniques to obtain the coefficients b in the numerical
studies provided in Section 5.
4. Numerical implementation

4.1. Bulk behavior

The nonlinear viscoelastic constitutive model proposed by
Reese and Govindjee (1998) and described in Section 3.2 was
implemented in the finite-element program FEAP (Taylor, 2003).
The general theory for finite viscoelasticity presented in Reese
and Govindjee (1998) reduces in the case of small deformations
to the standard theory of infinitesimal viscoelasticity. The split of
the strain energy (3.4) into a long time ‘‘spring” energy (corre-
sponding to thermodynamic equilibrium) and strain energy in
the Maxwell element (non-equilibrium) is closely associated to
the multiplicative split of the total deformation gradient (3.5).

The evolution equation based on this operator split is similar in
structure to that used in large deformation elastoplasticity. In close
analogy, the state predicted by the elastic part is considered a trial
state and is followed in the algorithm by an inelastic corrector step.
Consequently, following well established techniques in elastoplas-
ticity (Simo, 1992), the viscous update, which consists of integrat-
ing the evolution equation, is performed in principal directions by
means of the exponential mapping algorithm. The approximate
expression used in the implementation is first order accurate.
The viscoelastic update of the stresses is calculated at the quadra-
ture points by means of a local Newton iteration and the tangent
operator is symmetric. Large loading steps can be robustly handled
even though the equations are highly nonlinear. To avoid volumet-
ric locking effects, reduced integration is used for the volumetric
stresses for both the equilibrium and non-equilibrium parts. The
implementation of this constitutive model in this work includes
the non-equilibrium strain energy corresponding to a single Max-
well element.
4.2. Mortar contact formulation with variable friction coefficient

The key idea of a mortar formulation is to project the contact
variables on the slave contact surface cð1Þc (Fig. 3) thus obtaining
a consistent representation of all variables over a single discretiza-
tion. These methods enforce the contact constraints in integral
form rather than as local constraints (i.e., at the nodes).

The contact virtual work (3.3) is represented in the mortar ele-
ment formulation as

Gmðu;u� Þ ¼ �
X2

i¼1

Z
cðiÞc

u
� ðiÞ � kðiÞ dc; ð4:1Þ

where cðiÞc is the contact surface in the current configuration of body
(i) and kðiÞ, further referred as mortar multipliers, are the Cauchy
tractions on the contact surface.

Using the balance of contact forces across the interface
kð1Þ dcð1Þc ¼ �kð2Þ dcð2Þc , Eq. (4.1) can be recast as

Gmðu;u� Þ ¼ �
Z

cð1Þc

kð1ÞðXÞ � ðu� ð1ÞðXÞ � u
� ð2ÞðYÞÞdc: ð4:2Þ

In this framework, the normal contact constraints are expressed via
the Kuhn–Tucker conditions:

gNðX; tÞ 6 0; ð4:3Þ
kNðX; tÞP 0; ð4:4Þ
kNðX; tÞgNðX; tÞ ¼ 0; ð4:5Þ

where gNðx; tÞ ¼ n � ðu� ð1ÞðXÞ � u
� ð2ÞðYÞÞ is the normal component of

the gap vector. Frictional contact conditions using Coulomb’s law
can be added

vT �
kT

kkTk
; ð4:6Þ

kkTk � lkkNk 6 0; ð4:7Þ

enforcing the tangential tractions to be parallel to the direction of
the tangent velocity and enforcing Coulomb’s law. The mortar (dis-
cretized) version of these constraints can then be obtained and inte-
gration of all terms is performed on the slave surface. It is apparent
that in the context of discretized (faceted) geometry of the contact
surface, the discontinuities of the normal and tangent vectors across
neighboring facets can impair the robustness of the algorithm. A
continuous normal is thus defined using weighted averages. The
interested reader is referred to Yang et al. (Yang and Laursen,



Table 1
Baseline material properties and parameters used in the numerical studies. Quantities
are given using N, m, s units.

Elastic moduli
Property G1 a1 G2 a2 G3 a3 K
Value 7.5e5 1.3 0.45 2 0.18 5 2.0e5

Viscous moduli
Property G1v a1v G2v a2v G3v a3v gd gv
Value 2.5e5 1.3 0.45 2 0.18 5 4.5 200
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2006; Yang et al., 2005) for details on the application of mortar
methods to frictional contact problems in the context of large
deformations.

We now introduce the use of a mortar contact formulation with
velocity-dependent coefficient of friction for the analysis of the sur-
face behavior of soft wet materials. Eq. (3.12) makes the coefficient
of friction local, and dependent on the current solution. In the con-
text of the Newton–Raphson solution method used to solve the
nonlinear system, the coefficient of friction is evaluated at each
node on the contact patch and updated in each Newton–Raphson
iteration. The frictional contact conditions are now expressed as

vT �
kT

kkTk
; ð4:8Þ

v s ¼ kvTk; ð4:9Þ
kkTk � lðv sÞkkNk 6 0: ð4:10Þ

To evaluate the contribution of the frictional force to the total
force vector, numerical integration is utilized. At each quadrature
point on the contact patch, we first determine the relative sliding
velocity using the element shape functions and nodal velocities.
The coefficient of friction is then evaluated using (3.12). We note
that in order to keep the optimal (quadratic) convergence rate in
the Newton–Raphson iteration, linearization of the coefficient of
friction is necessary since it depends on the current configuration
through the sliding velocity.

5. Numerical experiments

Due to the nature of the experiments from which data were
available, the examples presented in this section are all numerical
simulations of axisymetric problems. However, the finite element
formulations for the viscoelastic bulk behavior and for the fric-
tional contact were implemented using three-dimensional do-
mains partitioned into eight-node linear brick elements. All
results provided represent spatially-converged numerical approxi-
mations to the solution of the associated boundary-value problem.

5.1. Bulk behavior

We select constitutive parameters for the model described in
Section 3.2 that yield a bulk response in uniaxial compression, tor-
sion, and relaxation representative of gel-like materials. The
parameters are listed in Table 1. These parameters were found to
provide an excellent match to data for the uniaxial compression/
stress relaxation of the hydrogels studied in Chang et al. (2007).
For the purpose of this investigation, the important point is that
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the surface deformation is expected to compare favorably to that
present in the tribological studies of Chang et al. (2007).

The viscoelastic relaxation behavior of the bulk can be captured
through simulations where the load is first applied and then held
fixed during the subsequent relaxation. We show here typical re-
sults from such a simulation, where both the normal force relaxa-
tion and the torque relaxation are accounted for. The simulation
proceeds as follows. A cylindrical body is first compressed axially,
then undergoes a relaxation of the normal force, then torque is ap-
plied at t ¼ 3600 s followed by the corresponding torque relaxa-
tion step. Fig. 5 presents the relaxation of the normal force and
torque during the four-step simulation (initial compression and
relaxation followed by subsequent application of the torque and
the corresponding relaxation). The time axis is normalized by
s ¼ 3600 s (the total time of the normal loading plus the normal
relaxation), the normal force is normalized by the long-time value
at the end of the simulation (hereafter referred to as Nref ), and the
torque is normalized by Tref ¼ Nref R, where R is the radius of the
smallest cylinder. We note that the normal force increases when
the torque is applied due to nonlinear Poisson effects.
5.2. Hydrogel to hydrogel friction. Estimate of the apparent coefficient
of friction

We provide results from simulations based on the setup and
geometry shown in Fig. 1, using dimensions based on the experi-
mental work of Chang et al. (2007). Specifically, a cylinder with ra-
dius Rmin ¼ 10 mm is fixed at the upper base and placed above a
cylinder with radius Rmax ¼ 12:5 mm, which is fixed at the lower
base.

All simulations described in the remainder of this section are
based on the following load sequence: a compressive load is ap-
plied incrementally in the time interval t 2 ½0;27 s� as the two cyl-
inders are brought into contact. The compression is then held fixed
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Fig. 6. Resultant normal force (left) and torque (right) predicted by mortar-finite element simulation of rotational contact between two cylindrical hydrogel specimens. The
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over an interval t ¼ 3600 s for the material to reach the long-term
behavior after relaxation. Rotation of the top surface is then ap-
plied, in three successive steps of 900 s each:

x1 ¼ 0:01 rad=s; t 2 ½3600;4500�s;
x2 ¼ 0:10 rad=s; t 2 ½4500;5400�s;
x3 ¼ 1:00 rad=s; t 2 ½5400;6300�s:

Frictional slip at the contact surface gives rise to a resultant tor-
sion T.

Typical results for the axial force and the torque are presented
in Fig. 6. The time axis is normalized by s ¼ 900 s (the duration
of an interval at a given rotation speed). Nref is the long time value
of the axial force and Tref ¼ Nref Rmin. The results correspond to a
coefficient of friction that is linearly proportional to the relative
sliding velocity through l ¼ 8 � 10�4v s, or b ¼ ð0;8 � 10�4;0Þ. Qual-
itatively the plots present the same behavior observed in the
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Fig. 7. Estimate of the global coefficient of frictio
experimental data: the axial force is approximatively constant
when rotation is applied, and the torque presents step jumps at
the variation of x. Quantitatively, we will show that the values
are strongly dependent on the choice one makes for the function
describing the friction law.

Based on (3.11) and using the normal force and torque results
that are predicted numerically, an estimate of the global apparent
coefficient of friction is computed and presented in Fig. 7. For com-
parison we also show the mean value and a weighted average va-
lue (using quadrature weights) of the converged coefficient of
friction calculated over the numerical contact patch. It can be seen
that (3.11) slightly overestimates the converged weighted values.
Recall (Section 3.3) that the analytical estimate Eq. (3.11) is ob-
tained under the simplifying assumption of small deformations:
the contact patch surface is assumed to remain planar and of con-
stant radius Rmin. The deformed configuration obtained under the
described loading, however, places the system outside the range
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n as a function of time, using l ¼ 8 � 10�4v s .



0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

r / R
min

u z / 
R

m
in

deformed vs undeformed surface

deformed surface (polynomial fit)
deformed surface (nodal values)
undeformed surface

Fig. 8. Undeformed and deformed configurations along a radial line in the contact patch.

Table 2
Parameters describing the interfacial laws.

Case b0 b1 b2

1 0 2 � 10�4 0
2 2:6 � 10�4 0 1 � 10�5

3 2:2 � 10�4 3:26 � 10�5 0
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where these assumptions are reasonable. We show in Fig. 8 the de-
formed configuration of the contact patch. As it can be seen, the
surface does not remain planar, in fact the vertical displacement
of the outer nodes on the contact patch is 0.12338 mm while the
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Fig. 9. Interfacial laws u
displacement of the center nodes is 0.31151 mm. The radius of
the horizontal projection of the contact patch also increases signif-
icantly, from Rmin ¼ 10 mm to Rcontact � 10:9 mm.

In order to extract the coefficients of the interfacial constitutive
law from experimental data, one has first to make a hypothesis on
the terms that are present in the friction law. For example, one as-
sumes that the law is linear in the sliding velocity, i.e., l ¼ b1v s.
Then a least squares technique is used that allows for calculation
of the best b1. Similarly, one can assume another form of the law,
say quadratic, and obtain a ‘‘best fit” for b2. In what follows, we
present the results of several simulations performed with various
b ¼ ðb0; b1; b2Þ (values for all cases are listed in Table 2 and the cor-
5 6 7 8 9 10

 Friction (Local)

v
s

sed for comparison.



0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Normal Force

t /τ

N
/N

re
f compression and relaxation ω

1
 = 0.01 ω

2
 = 0.10 ω

3
 = 1.00

case 1
case 2
case 3

4 4.5 5 5.5 6 6.5
0

0.5

1

1.5

2

2.5 x 10
-3 Torque

t /τ

T
/T

re
f

ω
1
 = 0.01 rad/s ω

2
 = 0.10 rad/s ω

3
 = 1.00 rad/s

case 1
case 2
case 3

Fig. 10. Total normal force (left) and torque (right) predicted by mortar-finite element simulations for various choices of the frictional parameters b.
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responding plots of the local l variation are shown in Fig. 9). These
simply represent different polynomial expansions that are meant
to roughly represent the same trends. Unfortunately, as it is shown
in Figs. 10 and 11, that initial assumption on the form of the inde-
pendent terms one introduces in the law has a strong influence on
the results obtained.

The computational model has a good level of fidelity in cap-
turing the jumps corresponding to changes in x but at the same
time it is very sensitive to the choice of the interfacial constitu-
tive law. Identification of the friction law based on experimental
data is not a trivial task for this application. This is due to the
fact that the typical rheometer experiment offers access to infor-
mation about global quantities (like the normal force and total
torque) whereas the friction law we look for is local in nature.
Fig. 10 shows (as expected) that the variation of the axial load
is not dependent upon the change in the friction coefficient,
while the torque is strongly dependent on b. Consequently, this
influence is also observed in the estimate of the apparent coeffi-
cient of friction shown in Fig. 11. Note that, for normalization,
we have used the long time values of N corresponding to each
individual simulation.

A comparison with the behavior of the system neglecting the
viscous terms in the bulk in either the top or bottom specimen
(or both) was also performed and the results (normal force, torque,
apparent coefficient of friction) are shown in Fig. 12 and 13. The
friction law considered in this case was l ¼ 0:0015 � v sþ
10�5 � v2

s . Contact was considered for the following cases: visco-
elastic to viscoelastic, hyperelastic to viscoelastic and hyperelastic
to hyperelastic. It can be seen that, as expected, the steady state
(long term) values of the torque, normal force and apparent coeffi-
cient of friction are independent of the model.

However, the relaxation behavior of the material itself cannot
be captured if a hyperelastic model is used. Depending on the pur-
pose of the simulation, if only long term friction properties need to
be extracted one can conclude that a simple hyperelastic material
model may be more efficient computationally. If the bulk behavior
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needs to be captured, the computational price has to be paid and a
viscoelastic model should be used.

6. Conclusions

In this paper, a finite element formulation for the analysis of
surface phenomena in soft-wet materials has been presented.
Based upon experimental observations, the frictional phenomena
on the contact surface was modeled under the assumption of a
coefficient of friction dependent on the relative sliding velocity.
To this end, a mortar contact method with variable coefficient of
friction was formulated and implemented. The computational ap-
proach we propose has been shown to have a good level of fidelity
in capturing the surface behavior, and the numerical results are
strongly dependent on the chosen frictional law. In fact, the reli-
ance of the solution on the hypothesized interfacial constitutive
model is a key aspect here as we have shown that several choices
with constitutive parameters calculated to fit the same experimen-
tal data set lead to substantially different numerical predictions.
This is due to the fact that the fitting technique requires an as-
sumed shape for the dependence and is therefore biased by this
choice. The recovery of the interfacial constitutive model from
experimental data is beyond the scope of this paper and is the sub-
ject of future work.
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