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a b s t r a c t

In this paper, an enhanced variational constitutive update suitable for a class of non-associative plasticity
theories at finite strain is proposed. In line with classical numerical formulations for plasticity models,
such as the by now established return-mapping algorithm, variational constitutive updates represent a
numerical method for computing the unknown state variables. However, in contrast to conventional
algorithms, variational constitutive updates are fully variational, i.e., all unknown variables follow jointly
from minimizing a certain potential. In addition to the physical and mathematical elegance of these var-
iational schemes, they show several practical advantages as well. For instance, numerically efficient and
robust optimization schemes can be directly employed for solving the resulting minimization problem.
Since mathematically, plasticity is a non-smooth problem and often, it leads to highly singular systems
of equations as known from single crystal plasticity, a robust implementation is of utmost importance.
So far, variational constitutive updates have been developed for different classes of standard dissipative
solids, i.e., solids characterized by associative evolution equations and flow rules. In the present paper,
this framework is extended to a certain class of non-associative plasticity models at finite strain. All mod-
els falling into this class show a volumetric-deviatoric split of the Helmholtz energy and the yield func-
tion. Typical prototypes are Drucker-Prager or Mohr-Coulomb models playing an important role in soil
mechanics. The efficiency and robustness of the resulting algorithmic formulation is demonstrated by
means of selected numerical examples.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Variational principles such as the minimum of the potential en-
ergy or Hamilton’s principle have been playing an important role in
classical mechanics for several centuries. These methods continue
to be widely used in modern (i.e., computational) mechanics. More
precisely, since almost every numerical scheme is based on varia-
tional principles, the importance of such approaches is continu-
ously increasing. The probably best known development is given
by the finite element method (of Bubnov-Galerkin-type).

In the present paper, focus is on a certain subset of variational
methods, also known as variational constitutive updates. Conceptu-
ally in line with the pioneering work by von Mises to whom the
postulate of maximum dissipation is usually credited (see Hill,
1950), variational constitutive updates allow to recast plasticity
theories into equivalent minimization problems (cf. Comi et al.,
1991; Comi et al., 1992; Ortiz and Stainier, 1999; Radovitzky and
Ortiz, 1999; Carstensen et al., 2002; Miehe, 2002). More specifi-
cally, every constitutive model falling into the range of so-called
ll rights reserved.
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standard dissipative solids in the sense of Halphen and Nguyen
(1975) (see also Hackl, 1997) can be implemented by applying
the aforementioned concept. The advantages resulting from such
a variational constitutive update are manifold. On the one hand,
the existence of solutions can be analyzed by using the same tools
originally designed for hyperelastic material models (cf. Ball, 1978;
Ortiz and Repetto, 1999; Carstensen et al., 2002). On the other
hand, a minimum principle can be taken as a canonical basis for er-
ror estimation and thus, for adaptive finite element methods (cf.
Radovitzky and Ortiz, 1999; Thoutireddy and Ortiz, 2004; Mosler
and Ortiz, 2006; Mosler, 2007).

Variational constitutive updates date back, at least, to the pio-
neering works by Comi and co-workers (cf. Comi et al., 1991; Comi
et al., 1992). By recourse to time discretization, these authors, de-
rived a Hu-Washizu functional whose minimum corresponds to
the solution of the discretized algebraic differential equations defin-
ing the constitutive model. In contrast to by now classical computa-
tional plasticity (Simo, 1998; Simo and Hughes, 1998), the
underlying constitutive model was enforced in a weak sense. The
ideas proposed by Comi and co-workers were further elaborated
by Ortiz and co-workers (cf. Ortiz and Stainier, 1999; Radovitzky
and Ortiz, 1999). In line with the standard one-field description
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(the deformation mapping) usually applied in computational plas-
ticity, Ortiz considered the constitutive model in a pointwise man-
ner (at the integration points). By doing so, the minimization
problem associated with variational constitutive updates can be
decomposed into two subproblems. The first of those is purely local
and its solution gives the updated state variables together with a re-
duced incremental potential. The second minimization problem
depending on the aforementioned potential is global in nature and
yields the unknown deformation mapping. Clearly, this structure
coincides with standard computational plasticity see (Simo, 1998;
Simo and Hughes, 1998) and allows to separate the constitutive
model from the governing equations. Evidently, this is very conve-
nient from an implementational point of view.

Since the works by Comi and co-workers (Comi et al., 1991;
Comi et al., 1992) and the contributions by Ortiz and co-workers
(Ortiz and Stainier, 1999; Radovitzky and Ortiz, 1999), variational
constitutive updates represent an active and ongoing research area
(cf. Miehe et al., 2001; Carstensen et al., 2002; Miehe, 2002; Ortiz
and Pandolfi, 2004; Fancello et al., 2006; Noels et al., 2006; Pan-
dolfi et al., 2006; Mosler, 2007), and they are continuously further
elaborated. For instance, the extensions necessary to include tem-
perature effects were discussed in Yang et al. (2005) and Yang
(2004). A novel numerical implementation covering isotropic and
kinematic hardening as well as isotropic and anisotropic elasticity
and yield functions was advocated in Mosler and Bruhns (submit-
ted for publication).

Although the algorithmic framework proposed in Mosler and
Bruhns (submitted for publication) can be applied to a broad range
of different constitutive models, it still relies on the assumptions
associated with standard dissipative solids in the sense of Halphen
and Nguyen (1975). More precisely, all material models belonging
to the class of standard dissipative solids are defined by means of
only two potentials being the Helmholtz energy and the yield func-
tion. Consequently, the plastic flow and hardening mechanisms are
assumed to be governed by associative laws (normality rule). In
other words and focusing on plasticity theory for now, the plastic
potential and the hardening potential are identical to the yield
function.

The present paper represents a first step towards generalizing
variational constitutive updates to non-associative plasticity mod-
els at finite strain. For that purpose, three potentials are utilized:
the Helmholtz energy, the yield function and a plastic potential.
Roughly speaking, the idea is to minimize the integrated stress
power subjected to the constraints imposed by the yield function.
For a prototype model based on a volumetric-deviatoric split of all
potentials, it is shown that this constrained model can be recast
into an equivalent unconstrained minimization problem. For that
purpose, additional assumptions are necessary: the yield function
and the plastic potential are represented by positively homoge-
neous functions of degree one and the plastic flow is either purely
volumetric or purely deviatoric. While the first assumption is not
very restrictive, the latter is indeed more drastic. However, it is
noteworthy that both assumptions are fulfilled for many constitu-
tive models frequently applied in soil mechanics. For instance,
non-associative Drucker-Prager- or Mohr-Coulomb-type models
with a deviatoric flow rule comply with the aforementioned
restrictions.

The paper is organized as follows: in Section 2, a concise state-
of-the-art review on variational constitutive updates is given. First,
the fundamentals associated with finite strain plasticity theory
based on a multiplicative decomposition of the deformation gradi-
ent are briefly presented for the sake of notation, cf. Subsection 2.1.
Subsequently, standard dissipative solids, together with their
defining variational framework, are discussed in Subsection 2.2.
Section 2 is completed by an efficient numericalimplementation
for the aforementioned models (Subsection 2.3). The main contri-
bution of the present paper dealing with a novel numerical imple-
mentation suitable for a class of non-associative plasticity theories
is addressed in Section 3. Starting with the assumptions concern-
ing the hyperelastic response (Subsection 3.1) and the plastic
behavior (Subsection 3.2), a class of non-associative elastoplastic
models is defined. Finally, the numerical implementation of this
class is presented in Subsection 3.3. The efficiency and perfor-
mance of the resulting constitutive update is demonstrated by
means of selected numerical examples (Section 4).
2. Standard dissipative solids – variational constitutive updates

This section is concerned with a concise review and some fur-
ther elaborations associated with variational constitutive updates
for standard dissipative solids, i.e., solids governed by normality
rules.

2.1. Finite strain plasticity theory – fundamentals

For the sake of concreteness, focus is on finite strain plasticity
theory based on a multiplicative decomposition of the deformation
gradient F:¼ GRADu into an elastic part Fe and a plastic part Fp of
the type

F ¼ Fe � Fp; with det Fe > 0; det Fp > 0; ð1Þ

(cf. Lee, 1969). Applying the split (1), the Helmholtz energy of the
considered solid can be written as

W ¼ WðFe; aÞ ð2Þ
(see Lubliner, 1997; Miehe, 1993; Simo, 1998; Simo and Hughes,
1998). Here and henceforth, a 2 Rn denotes a collection of some
suitable strain-like internal variables corresponding to hardening
or softening. In line with plasticity theory, the elastic response char-
acterized by the elastic free energy We depends only on the elastic
part of the deformation gradient Fe and thus, the resulting Helm-
holtz energy decomposes additively, i.e.,

W ¼ WeðFeÞ þWpðaÞ ð3Þ

with Wp representing the stored energy due to plastic work. Finally,
by enforcing the principle of material frame indifference, Eq. (3) can
be re-written as

W ¼ WeðCeÞ þWpðaÞ; Ce :¼ FeT � Fe: ð4Þ

Further details are omitted. They may be found, e.g., in Lubliner
(1972).

Adopting the framework of rational thermodynamics in the
sense of Coleman & Noll (Coleman and Noll, 1963; Coleman,
1964; Coleman and Gurtin, 1967), the evolution equations com-
pleting the constitutive model are derived by means of the restric-
tions imposed by the second law of thermodynamics. For
isothermal conditions, the dissipation inequality D P 0 reads

D ¼ Fp � S � FpT � 2
oW
oCe

� �
:

1
2

_Ce þ S : FpT � Ce � _Fp
� �

þ Q � _a P 0

ð5Þ

with P and S :¼ F�1 � P being the first and the second Piola-Kirchhoff
stress tensor and Q :¼ �oaW denoting the stress-like internal vari-
able work conjugate to a. Ineq. (5), together with the by now stan-
dard procedure by Coleman & Noll, gives rise to

S ¼ 2
oW
oC
¼ 2 Fp�1 � oW

oCe � Fp�T ð6Þ

and the reduced dissipation inequality

D ¼ R : Lp þ Q � _a P 0: ð7Þ
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Here, R ¼ 2 Ce � oCe W are the Mandel stresses (cf. Mandel, 1972)
and Lp ¼ _Fp � Fp�1

is the plastic velocity gradient. Evidently, both
objects belong to the intermediate configuration induced by the
multiplicative split (1). It is obvious that Ineq. (7) alone is not suf-
ficient for deriving evolution equations for Lp and _a, respectively.
More precisely, loading conditions are needed.

For deciding whether purely elastic unloading or plastic loading
occurs, a switch is required. For that purpose and following classi-
cal plasticity theory, an admissible stress space Er is introduced (cf.
Lubliner, 1997). Consistently with Ineq. (7), Er is formulated in
terms of Mandel stresses, i. e.,

Er ¼ ðR;QÞ 2 R9þn
� �� /ðR;QÞ 6 0

�
: ð8Þ

Here and henceforth, / is the yield function. It has to be convex,
sufficiently smooth and to comply with restrictions imposed by
experimental observations. As well known, if ðR; QÞ 2 intEr, the
solid deforms purely elastically. Only if ðr; QÞ 2 oER, a plastic re-
sponse is possible.

Combining Eq. (8) and Ineq. (7), the evolution equations for Lp

and a can be derived. They can be naturally obtained from the pos-
tulate of maximum dissipation, i.e.,

max
ðeR;eQ Þ2Er

eR : Lp þ eQ � _a�
h i

ð9Þ

resulting in

Lp ¼ k oR/ _a ¼ k oQ /; ð10Þ

together with the Karush–Kuhn–Tucker conditions

k P 0 / k P 0: ð11Þ

As a result, plastic deformations (Lp–0) require ðR;QÞ 2 oEr. The
plastic multiplier k is obtained from the consistency condition

_/ ¼ 0: ð12Þ

Evolution laws of the type (10) are characterized by the prop-
erty that the rates of the internal variables (together with Lp) are
normal to the yieldsurface (/ ¼ 0). Clearly, such laws are referred
to as associated flow rules or normality rules. In the present section,
only such evolution laws will be considered.

2.2. Standard dissipative solids

The fundamentals of standard dissipative solids are addressed
in this subsection. It follows to a large extent (Ortiz and Stainier,
1999; Carstensen et al., 2002). The ultimate goal of this subsection
is to recast the constitutive framework summarized before into an
equivalent minimization problem.

Roughly speaking, the potential to be minimized is the stress
power

Pð _u; _Fp; _a;R;QÞ ¼ P : _F ¼ _Wð _u; _Fp; _aÞ þDð _Fp; _a;R;QÞ: ð13Þ

Note that Eq. (13) makes only sense from a physical point of
view, if the stresses R and the internal variables Q defining the
plastic flow Lp and the strain-like variables a, respectively, are
admissible. Following (Ortiz and Stainier, 1999; Carstensen et al.,
2002), this constraint can be enforced by introducing the charac-
teristic function of Er, i.e.,

JðR;QÞ :¼
0 8ðR;QÞ 2 Er

1 otherwise

	
: ð14Þ

With J, the constrained problem associated with Eq. (13) reads
now

eEð _u; _Fp; _a;R;QÞ ¼ Pð _u; _Fp; _a;R;QÞ þ JðR;QÞ: ð15Þ
The interesting properties of the functional (15) become appar-
ent, if the stationarity conditions are computed. A straightforward
calculation yields

dðR;Q ÞeE ¼ 0) ðLp; _aÞ 2 oJ

dð _aÞ eE ¼ 0) Q ¼ � oW
oa

dð _FpÞ
eE ¼ 0) R ¼ FeT � oW

oFe ¼ 2 Ce � oW
oCe :

ð16Þ

Here, oJ is the subdifferential of J, (cf. Rockafellar, 1997). Accord-
ing to Eqs. (16), the stationarity condition of ee results in the flow
rule, the constitutive relation for the internal stress-like variables
and the constitutive relation for the Mandel stresses R.

So far, a stationarity principle equivalent to associative plastic-
ity theory at finite strain has been discussed. It can be shown that
mathematically, this principle is represented by a saddle point
problem (minimization with respect to ( _a, _Fp), maximization with
respect to (R, Q). However, as advocated in Ortiz and Stainier
(1999) and Carstensen et al. (2002), it is possible to derive a re-
duced functional whose minimum yields the evolution equations.
For that purpose the dual of J (the dissipation), i.e.,

J�ðLp; _�aÞ ¼ sup R : Lp þ Q � _�a
� ��ðR;QÞ 2 Er

�
; ð17Þ

defined by a Legendre transformation is required. Inserting the re-
duced dissipation Ineq. (7) into the stress power (13) and subse-
quently, into Eq. (15), together with the Legendre transformation
(17), yields finally the reduced counterpart of Eq. (15)

Eð _u; _Fp; _aÞ ¼ _Wð _u; _Fp; _aÞ þ J�ðLp; _aÞ: ð18Þ

Hence, the only unknown variables are _u, _Fp and _a. They follow
jointly from the minimization principle

W
�

redð _uÞ :¼ inf
_Fp ; _a

Eð _u; _Fp; _aÞ ð19Þ

which, itself, gives rise to the introduction of the reduced functional
W
�

red depending only on the deformation mapping. Furthermore, by
recalling that W

�
red represents indeed the stress power and making

use of Eq. (13), the first Piola Kirchhoff stress tensor results conve-
niently from

P ¼ oð _FÞW
�

redð _uÞ: ð20Þ

As evident, this equation is identical to that of standard hyper-
elasticity with the sole exception that the potential W

�
red is incre-

mentally defined, i.e., it varies in time. For a more detailed
derivation of the variational framework addressed in this subsec-
tion, the interested reader is referred to Ortiz and Stainier (1999)
and Carstensen et al. (2002).

2.3. Numerical implementation

The numerical implementation of the variational method dis-
cussed before, depends heavily on the Legendre transformation
(17). Clearly, this transformation, in turn, is affected by the yield
function. For the sake of concreteness, / is assumed to be of the type

/ ¼ ReqðR� Q kÞ � Q iðaiÞ � Q eq
0 ð21Þ

with Req, Q k, Q i and Q eq
0 denoting an equivalent stress, a backstress

tensor, a stress-like internal variable associated with isotropic hard-
ening and the initial yield strength, respectively. Furthermore, ak

and ai represent the strain-like variables conjugate to Q k and Q i.
If Q k and Q i are stress-like, Req should be a linear mapping. More
precisely, Req is chosen to be a positively homogeneous function
of degree one. This restriction is fulfilled for many yield functions
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such as Rankine, von Mises, Hill, Drucker-Prager, Tresca, Mohr-Cou-
lomb or crystal plasticity. Positive homogeneity implies

Req ¼ oRR
eq : R ¼ oR/ : R ð22Þ

and consequently,

dReq ¼ oRR
eq : dR ¼ oR/ : dR ¼ oR½oR/ : R� : dR ¼ oR/

: dRþ ½R : o2
RR/� : dR) R : o2

RR/ ¼ 0 : ð23Þ

This conditions will be used for proving consistency of the algo-
rithm. By postulating associative evolution equations, they are ob-
tained from Eq. (21) as

Lp ¼ k oR/; _ak ¼ k oQ / ¼ �k oR/; _ai ¼ �k ð24Þ

Inserting Eqs. (24) into the dissipation (7), the second law of ther-
modynamics yields

D ¼/¼0
k Q eq

0 P 0: ð25Þ

and thus, the (reduced) stress power reads

eE ¼ _Wþ k Qeq
0 : ð26Þ

Clearly, Eq. (26) is only physically meaningful for admissible evolu-
tion equations, cf. Eq. (10). Furthermore, note that the necessary
yield condition / ¼ 0 is already naturally included (see Eq. (25)).

Conceptionally, variational constitutive updates are simply an
approximation of the minimization problem (19). A first step to-
wards this approximation is obtained by applying a time integra-
tion to Eq. (19), i.e.,

ðFp; ak;aiÞ ¼ arg inf Iana
inc ; ð27Þ

with

Iana
inc ¼

Z tnþ1

tn

eE dt ¼ Wnþ1 �Wn þ Qeq
0 Dk ð28Þ

Here, the notations Dk :¼
R tnþ1

tn
k dt and ð�Þn :¼ ð�ÞðtnÞ have been

introduced. The superscript ð�Þana is used to highlight that Iana
inc re-

sults from an analytical integration. Note that the unknowns
ðFp; ak;aiÞ are functions (in time). In line with Ortiz and Stainier
(1999); Carstensen et al., 2002, a discrete approximation of Eq.
(28) is derived by using a time discretization of the type

Fp
nþ1 ¼ exp Dk oR/jnþ1


 �
� Fp

n

aijnþ1 ¼ a ijn � Dk

akjnþ1 ¼ akjn � Dk oR/jnþ1:

ð29Þ

Clearly, other consistent time integration can be employed as
well (cf. Mosler and Bruhns, submitted for publication). With
Eqs. (29), the discrete (approximated) counterpart of minimization
problem (27) can be written as

ðFp
nþ1; akjnþ1;aijnþ1Þ ¼ arg inf Iinc; ð30Þ

with

Iinc ¼ Wnþ1ðFp
nþ1; akjnþ1;aijnþ1Þ �Wn þ Q eq

0 Dk � Iana
inc : ð31Þ

So far, variational constitutive updates are relatively simple and
hence, the respective implementation seems to be straightforward.
Unfortunately, this is not the case. The reasons for that are mani-
fold. For instance, a direct minimization of Winc with respect to
Fp

nþ1 is not admissible, since Fp has to comply with physical con-
straints resulting from the flow rule (and of course, det Fp > 0).

Recently, a convenient parameterization of the evolution equa-
tions (29) was given in Mosler and Bruhns (submitted for publica-
tion). By introducing pseudo stresses eR which are not identical to
their physical counterparts, i.e., eR–R, Eqs. (29) are re-formulated
as
Fp
nþ1ðeR; aÞ ¼ exp a2oR/jeR

h i
� Fp

n

aijnþ1ðaÞ ¼ aijn � a2

akjnþ1ðeR; aÞ ¼ akjn � a2oR/jeR :
ð32Þ

Consequently, eR can be interpreted as an unknown variable defin-
ing the flow direction, i.e., oR/jR ¼ oR/jeR , and a2 :¼ k P 0. Making

use of Eq. (32) allows to re-write Eq. (30) as

X ¼ arg inf
X

IincðXÞ; with Iinc ¼ Wnþ1ðXÞ �Wn þ Qeq
0 Dk ð33Þ

with the unknowns being

X ¼ ½eR; a� ) dim½X� ¼ 10: ð34Þ

It is noteworthy that the unconstrained optimization problem
(33) includes naturally the necessary yielding condition / ¼ 0,
and admissible evolution equations are canonically included as
well. Further details are omitted. They may be found in Mosler
and Bruhns (submitted for publication).

The unconstrained minimization problem (33) can be solved in
a standard manner, e.g., by employing gradient-type schemes (cf.
Geiger and Kanzow, 1999). The first derivatives of Iinc are summa-
rized below,

oIinc

oDk
¼ oWe

oDk
þ oWp

oDk
þ Q eq

0 ð35Þ

oIinc

oeR ¼ oWe

oeR þ oWp

oeR ; ð36Þ

with

oWe

oDk
¼ � ðFe

trialÞ
T � oW

e

oFe

� 

: D exp �DkoR/jeR

h i
: oR/jeR ; ð37Þ

oWe

oeR ¼ � ðFe
trialÞ

T � oW
e

oFe

� 

: D exp �DkoR/jeR

h i
: o2

R/
��eR Dk; ð38Þ

oWp

oDk
¼ Q i þ Q k : oR/jeR ; ð39Þ

oWp

oeR ¼ oWp

oak
:
oak

oeR ¼ Dk Q k : o2
R/
��eR : ð40Þ

with Fe
trial being the trial elastic deformation gradient, i.e.,

Fe
trial :¼ Fnþ1 � ðFp

nÞ
�1
: ð41Þ

In Eqs. (37) and (38), the derivative of the exponential mapping

D exp A½ � :¼ o exp A½ �
oA

ð42Þ

can be computed in a standard fashion, e.g. Ortiz et al. (2001) and
Itskov (2003). For the sake of brevity, the second derivatives neces-
sary for a Newton-type iteration are omitted. However, they can be
computed in a straightforward manner.

By analyzing the stationarity condition of Iinc, consistency of the
algorithm can be checked. For instance, taking the variation of Iinc

with respect to Dk and enforcing stationarity results in

oIinc

oDk

����
Dt!0

¼ �R : oR/þ Q i þ Q k : oR/þ Q eq
i ¼ �/ ¼ 0; ð43Þ

i.e., the necessary condition for yielding. Furthermore, with N :¼
R� Q k, the stationarity condition associated with the pseudo stres-
ses eR reads

oIinc

oeR ¼ 0 )
Dk–0

ðR� Q kÞ : o2
R/ ¼ N : o2

N/ ¼ 0: ð44Þ

Hence, Eq. (23) is fulfilled and consequently, the plastic flow
direction is compatible with the stresses and hence, it is
admissible.
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It bears emphasis that in line with conventional plasticity the-
ory, the optimization problem inf Iinc is non-smooth (with respect
to Dk). To sidestep this problem, predictor-corrector methods are
usually applied, cf. Eq. (41). Following the return-mapping algo-
rithm, a trial step characterized by a purely elastic response is as-
sumed first (Dk ¼ 0, Fp

nþ1 ¼ Fp
n , Q kjnþ1 ¼ Q kjn and Q ijnþ1 ¼ Q ijn).

Clearly, if this state is physically admissible, the functional Iinc

has to show a minimum at Dk ¼ 0. With Eqs. (35)–(40) (cf. Eq.
(43)), the respective condition yields

oIinc

oDk

����
Dk¼0
¼ �/trial > 0 () /trial 6 0: ð45Þ

with /trial :¼ /ðFnþ1; F
p
n;Q ijn;Q kjnÞ. Remarkably, this inequality

agrees with that of the classical return-mapping algorithm. It is
noteworthy, that the remaining components of the gradient of Iinc

vanish trivially, i.e.,

oIinc

oeR
����
Dk¼0
¼ 0: ð46Þ

Further details about the numerical implementation are omitted.
They can be found in Mosler and Bruhns (submitted for publica-
tion). In the cited paper, a tuned algorithm for fully isotropic models
is given as well.

3. A class of non-associative elastoplastic models based on a
volumetric-deviatoric split: plasticity theory at finite strains

Based on the variational constitutive update for standard dissi-
pative solids as discussed in the previous section, the extensions
necessary for non-associative plasticity theory are elaborated here.
In contrast to the constitutive framework considered before, some
more restrictive assumptions have to be introduced. More pre-
cisely, focus is on a class of non-associative plasticity models
showing a volumetric-deviatoric uncoupled response.

3.1. Elasticity

Focusing on the elastic response for now, the first crucial
assumption is the decomposition of the elastic free energy into a
deviatoric and a volumetric part (cf. Simo and Taylor, 1991). More
specifically,

We ¼ We
dev þWe

vol; with We
dev ¼ We

devðC
e
devÞ; We

vol ¼ We
volðJ

eÞ:
ð47Þ

Here, the following notations have been introduced:

Je :¼ det Fe; Fe
dev :¼ ðJeÞ�1=3 Fe; Ce

dev :¼ ðFe
devÞ

T � Fe
dev ¼ ðJ

eÞ�2=3Ce:

ð48Þ

Eq. (47) yields the second Piola-Kirchhoff stresses (belonging to the
intermediate configuration)

Se :¼ 2 oCeWe ¼ Je
oJe ½We

vol� Ce�1 þ 2 oCe
dev
½We

dev� : Pdev ð49Þ

where

Pdev :¼ oCe Ce
dev ¼ ðJ

eÞ�2=3
Isym � 1

3
Ce 	 Ce�1

� 

ð50Þ

is a projection tensor. Finally, the Mandel stress can be computed by
using Eq. (47). They result in

R :¼Ce � Se ¼ Je
oJe ½We

vol�1

þ 2 ðJeÞ�2=3 Ce � oCe
dev
½We

dev� �
1
3

oCe
dev
½We

dev� : Ce
� �

1
� 


: ð51Þ

In this section, only yield functions and plastic potentials based on a
similar split as that in Eq. (47) will be considered. For this reason,
the volumetric as well as the deviatoric part of the stresses are re-
quired. With Eq. (47), they are obtained as

tr½R� ¼ 3 Je
oJe ½We

vol� ð52Þ

and

devR :¼ R� 1
3

tr½R� 1

¼ 2ðJeÞ�2=3 Ce � oCe
dev
½We

dev� �
1
3

oCe
dev
½We

dev� : Ce
� �

1
� 


: ð53Þ
3.2. Plasticity

Analogously to the elastic response, the considered class of
yield functions is also characterized by a volumetric-deviatoric
split, i.e.,

/ ¼ Req
vol þ Req

dev � Q i � Q eq
0 ð54Þ

with

Req
vol ¼ Req

volðtr½N�Þ; Req
dev ¼ Req

devðdev½N�Þ; and N :¼ R� Q k:

ð55Þ

Following Section 2, / and consequently, Req
vol and Req

dev are as-
sumed to be positively homogeneous functions of degree one, see
Eq. (22). It is noteworthy that the yield function (54) covers a broad
range of different plasticity models. For instance, by setting

Req
vol ¼ j tr½N�; Req

dev ¼ kdev½N�k; ð56Þ

the Drucker-Prager model is obtained. Mohr-Coulomb’s yield func-
tion is given by

Req
vol ¼ j tr½N�; Req

dev ¼
1
2
½max Ri �min Ri�: ð57Þ

Here, max Ri and min Ri are the largest and smallest eigenvalue
of R. It bears emphasis that Req

dev according to Eq. (57) is indeed a
positively homogeneous function of degree one. Finally, an aniso-
tropic Drucker-Prager prototype is defined by using a Hill-type
equivalent stress for the deviatoric part, i.e.,

Req
vol ¼ j tr½N�; Req

dev ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dev½N� : D : dev½N�

q
; ð58Þ

with D representing a fourth-order weighting tensor (cf. Mosler and
Bruhns, submitted for publication).

In contrast to the yield function (54), the plastic potential g
defining the flow rule and the evolution equations is assumed to
be purely deviatoric, i.e.,

g ¼ Req
dev � Q i � Q eq

0 : ð59Þ

Consequently,

Lp ¼ k oRR
eq
dev; _ak ¼ �koRR

eq
dev; _ai ¼ �k: ð60Þ

Clearly, this represents a limiting case being important, for in-
stance, in soil mechanics. Bearing in mind that Req

dev is positively
homogeneous of degree one, the dissipation is calculated as

D ¼ oRg : R� oRg : Q k � Q ið Þk ¼ Req
dev � Q i

� �
k ¼/¼0

Q eq
0 � Req

vol

� �
k:

ð61Þ
3.3. Numerical implementation

In this subsection, the algorithmic formulation associated with
the constitutive model based on the volumetric-deviatoric split
as introduced before, is presented. That is, focus is on plasticity
theories fulfilling the restrictions (47), (54) and (59). It has already
been mentioned, that this class covers a broad range of different
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important prototypes such as non-associative Drucker-Prager or
Mohr-Coulomb plasticity.

3.3.1. Fundamentals of the algorithm
Analogously to Section 2, the evolution laws are approximated

by a time integration and they are parameterized by the pseudo
stresses eR and the parameter a ¼

ffiffiffiffiffiffi
Dk
p

, i.e.,

Fp
nþ1 ¼ exp a2oRgjeR

h i
� Fp

n

aijnþ1 ¼ a ijn � a2

akjnþ1 ¼ akjn � a2oRgjeR :
ð62Þ

Clearly, since the plastic flow is traceless (tr½oRg� ¼ 0),

det Fp
nþ1 ¼ 1) det Fe

nþ1 ¼: Je ¼ J ¼ det F: ð63Þ

Furthermore, the strain-like internal variable ak is also purely
deviatoric (if akðt ¼ 0Þ ¼ 0) and thus, it is physically reasonable
to postulate

tr½Q k� ¼ 0: ð64Þ

As a result, by using tr½R� according to Eq. (52), together with Eq.
(63),

Req
volðtr½R� Q k�Þ ¼ Req

volðtr½R�Þ ¼ Req
volðJ

eÞ ¼ Req
volðJÞ: ð65Þ

Hence, a backward-Euler integration of the dissipation (61) yieldsZ tnþ1

tn

Ddt � Q eq
0 � Req

vol

��
nþ1

� �
Dk ð66Þ

and consequently, the integrated stress power is approximated as

IincðXÞ ¼ Wnþ1ðXÞ �Wn þ Q eq
0 � Req

vol

��
nþ1

� �
Dk; X ¼ ½eR; a�; ð67Þ

cf. Eq. (31). In line with the previous subsection, the potential IincðXÞ
can be minimized in case of plastic loading by gradient-type optimi-
zation schemes. The first derivatives are summarized below:

oIinc

oDk
¼ � ðFe

trialÞ
T � oW

e

oFe

� 

: D exp �DkoRgjeR

h i
: oRgjeR

þ Q i þ Q k : oRgjeR þ Q eq
0 � Req

vol

��
nþ1 ð68Þ

oIinc

oeR ¼ � ðFe
trialÞ

T � oW
e

oFe

� 

: D exp �DkoRgjeR

h i
: o2

Rg
��eRDk

þ Dk Q k : o2
Rg
��eR : ð69Þ

The second derivatives of IincðXÞ can be computed in a similar
fashion. According to Eq. (67), only the Helmholtz energy depends
on the pseudo stresses and thus, oIinc=oeR ¼ oW=oeR. Consequently,
the gradient of Iinc with respect to eR is identical to that of the asso-
ciative model (compare Eq. (69) to Eq. (36)) with the sole exception
that the yield function / is replaced by the plastic potential g.

3.3.2. Consistency of the algorithm
Although the algorithm has been completely defined, it is not

clear yet, if the method is consistent. Thus, a consistency analysis
is given in this paragraph. In line with Section 2.3, the stationarity
condition of Iinc with respect to the plastic multiplier Dk is consid-
ered first. Employing Eq. (68) and focusing on the limiting case
Dk! 0, stationarity of Iinc requires

oIinc

oDk

����
Dt!0

¼ �ðR� Q kÞ : oRg|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼Req

dev

þQ i þ Qeq
0 � Req

vol ¼ �/ ¼ 0 ð70Þ

As a result, the yield condition is naturally included within the pro-
posed variational method. Clearly, the evolution equations are
explicitly enforced by using the parameterizations (62) of the flow
rule and the hardening laws.
A careful analysis of Eq. (68) reveals the requirements necessary
for consistency of the algorithm: the integrated dissipation does
not depend on the pseudo stresses and furthermore, it depends lin-
early on the plastic multiplier Dk. This is a direct consequence of
Eq. (65). More precisely,

/� g ¼ Req
vol – Req

volðeR;DkÞ: ð71Þ

Hence, the difference between the yield function and the plastic po-
tential is not affected by variables associated with dissipation. The
identity (71), in turn, results from the orthogonality of the spaces
URvol

¼ fRjR ¼ a1; a 2 Rg and URdev
¼ fRjtr½R� ¼ 0g. Therefore, the

additive decompositions of the Helmholtz energy, the yield function
and the plastic potential are required to derive a variationally con-
sistent method.

The proof of consistency is completed by analyzing the remain-
ing components of the gradient of Iinc. Again, they yield

oIinc

oeR ¼ 0 )
Dk–0

ðR� Q kÞ : o2
Rg ¼ N : o2

Ng ¼ 0: ð72Þ

Hence, Eq. (23) is again fulfilled and consequently, the plastic
flow direction is compatible with the (physical) stresses and hence,
it is admissible.

Remark 1. According to Section 2 (see Eq. (20)), for models
fulfilling the normality rule, the stresses follow jointly from the
minimization principle infIinc as well. More precisely, in this case P
results from the hyperelastic relation

P ¼ oWincðFnþ1Þ
oFnþ1

¼ oWeðFnþ1Þ
oFnþ1

; ð73Þ

with WincðFÞ :¼ infeR;aIincðeR; a; Fnþ1Þ. However, for the class of non-
associative models presented in this section, the dissipation (61)
depends on R and thus, it is affected by the deformation gradient.
Hence,

P ¼ oWincðFnþ1Þ
oFnþ1

¼ oWeðFnþ1Þ
oFnþ1

� Dk
oReq

vol

oF|fflfflfflfflfflffl{zfflfflfflfflfflffl}
–0

ð74Þ

with

oReq
vol

oF
¼ oReq

vol

oðtr½R�Þ
oðtr½R�Þ

oJ
J F�T : ð75Þ

As a result, the size of the loading steps has to be checked care-
fully such that Dk (and accordingly DkoReq

vol=oF) are sufficiently
small. Alternatively, P can be computed in the standard manner,
i.e., by utilizing P ¼ oWe=oF . However, it bears emphasis that the
algorithm is nevertheless consistent. That is, for the limiting case
Dt ! 0

P ¼ oWincðFnþ1Þ
oFnþ1

¼ oWeðFnþ1Þ
oFnþ1

ð76Þ

is obtained.
4. Numerical example

The efficiency and performance of the constitutive update as
advocated in the previous section are demonstrated by means of
numerical analyses of a compression test (Subsection 4.1, see
Fig. 1) and a shear test (Subsection 4.2). Clearly, these examples
guarantee that deviatoric as well as volumetric stresses are non-
vanishing and therefore, those numerical analyses represent suit-
able benchmarks.

For both examples, a functional of the type

We ¼ 1
2

l tr Ce
dev


 �
� 3

� �
þ 1

4
K ðJe � 1Þ2 ð77Þ



Fig. 1. Uniaxial compression test: boundary conditions and material parameters
according to Eqs. (77)–(79).
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Fig. 2. Uniaxial compression test: stress–strain diagrams obtained by computing
one loading/unloading cycle for the three different constitutive models according to
Fig. 1.
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Fig. 3. Uniaxial compression test: stress–strain diagrams obtained by computing
one loading/unloading cycle for the non-associative constitutive model according to
Fig. 1; the size of the loading steps varies between Dk1 ¼ 0:01 (20 steps) and
Dk1 ¼ 0:0001 (2000 steps).
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is adopted for the elastic response, while the plastic part of the
Helmholtz energy is assumed to be quadratic, i.e

Wp ¼ 1
2

Hi a2
i þ

1
2

Hk ak : ak: ð78Þ

Consequently, coupled linear isotropic/kinematic hardening is con-
sidered. The model is completed by a yield function of the type

/ðR;Q k;Q iÞ ¼ jjdev½R� Q k�jj þ jtr½R� � Q i � Q eq
0 : ð79Þ

Based on Eqs. (77)–(79) three different constitutive laws have been
implemented:

� Drucker-Prager model with associative evolution; Eqs. (77)–(79)
� von Mises model (Drucker-Prager model with j ¼ 0)
� non-associative Drucker-Prager model (Eqs. (77)–(79) and a

purely deviatoric flow rule).

The material parameters used in the computations are summa-
rized in Fig. 1. Except for the hardening parameters, they are iden-
tical to those employed in Borja and Regueiro (2001), if the
deformations are infinitesimal small. For a physical interpretation
of the variables, the interested reader is referred to Borja and Reg-
ueiro (2001). For instance, j ¼ 0:233 corresponds to a friction an-
gle of 30�. Obviously, since the hardening parameters are identical
for all models, the mechanical response predicted by the novel
constitutive update for the non-associative Drucker-Prager type
model is expected to range between the limiting associative mod-
els. As a result, the correctness of the implementation can be
checked easily.

4.1. Cyclic compression test

The three aforementioned constitutive models are applied to
the analysis of one compression loading cycle. More precisely,
loading is prescribed until a stretch of 0:9 is reached (10% shorten-
ing). Subsequently, loading is reversed. The results obtained from
finite element analyses are summarized in Fig. 2. As expected,
the von Mises-type model predicts plastic yielding first. Further-
more, the slope of the stress–strain diagram is almost identical
for the tension and the compression regime (stresses). By contrast,
the Drucker-Prager model exhibits the well-known tension–com-
pression asymmetry, i.e., the hardening effects are more dominant
for compression. The non-associative version of the Drucker-Prager
model as presented in the previous section features the same
asymmetry – however, less pronounced. In this respect and as
anticipated, the response of the non-associative constitutive law
lies in the middle between both associative models.

The robustness of the discussed implementation is analyzed
next, by re-computing the same problem as before. However, the
size of the loading steps is now varied. As evident from Fig. 3,
the results of the constitutive update do not depend on the size
of the load step. Furthermore, even if relatively large loading incre-
ments are applied, the robustness of the algorithm is verified.
Numerical problems did not occur.

4.2. Cyclic shear test

As a second example, a cyclic shear test is numerically analyzed.
More precisely, a purely displacement-driven problem character-
ized by a deformation gradient of the type

F ¼ 1þ ðkc � 1Þe1 	 e1 þ ce1 	 e2 ð80Þ

is considered. Here and henceforth, ei are the standard Cartesian ba-
sis vectors, kc 2 ð0;1Þ denotes a prescribed compression stretch and
c represents the amplitude of the shear strain. Clearly, if kc ¼ 1
(vanishing compression strain), the von Mises model and the varia-
tionally consistent non-associative Drucker-Prager type extension
yield almost identical results. For this reason, a non-vanishing com-
pression strain of magnitude kc ¼ 0:99 is applied (1% compression
strain). While kc is kept fixed, the shear strain c is subsequently in-
creased from 0 to 0.05 (5% shear strain). The material parameters of
the three different constitutive models are identically chosen as in
the previous subsection (see Fig. 1).

The computed results are summarized in Fig. 4. As expected and
in line with the previous subsection, the non-associative model is
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Fig. 4. Cyclic shear test: stress–strain diagrams obtained by computing one
loading/unloading cycle for the three different constitutive models according to
Fig. 1.
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again bounded by the two associative counterparts. Evidently, all
models predict a hardening effect. However, due to the relatively
small hardening moduli Hi and Hk, this effect stems mostly from
the coupling between the volumetric and the deviatoric mechani-
cal response. Consequently, the von Mises model shows the least
pronounced effect. By contrast both yield functions depending on
the volumetric stresses exhibit strong hardening effects.

5. Conclusion

In this paper, an enhanced variational constitutive update suit-
able for a class of non-associative plasticity theories at finite
strain has been proposed. Following previously published works
on variational constitutive updates, this method allows to com-
pute the current internal variables describing plastic deformations
by means of a minimization problem. Physically, one seeks to
minimize the integrated stress power subjected to a constraint
which is associated with the yield function. Besides this physically
sound interpretation of internal states as energy minimizers, this
strategy shows mathematical advantages (existence of solution)
as well as numerical advantages (standard minimization problem)
as well. In contrast to existing models, the advocated approach
can be applied even to a broad class of non-associative evolution
equations. Clearly, this represents a first important step towards a
general framework for more universally valid variational constitu-
tive update. The considered class of material models is based on a
volumetric-deviatoric uncoupled response for the elastic stored
energy, the yield function and the plastic potential, respectively.
Prominent and frequently applied plasticity models falling into
the aforementioned class are Rankine, von Mises, Hill, Drucker-
Prager, Tresca, Mohr-Coulomb or crystal plasticity. The fundamen-
tal ideas required for deriving such a variationally consistent
method were a convenient parameterization of the evolution
equations and the hardening laws, together with an orthogonality
between the spaces of purely deviatoric and purely volumetric
tensors. The resulting minimization problem is formally identical
to that of associative models and can be solved by employing
standard gradient-type optimization schemes. The presented
numerical examples demonstrated the applicability, robustness
as well as the performance of the proposed implementation. By
comparing the proposed variationally consistent non-associative
model to its associative limiting cases, it has been found that all
models show a similar efficiency, i.e., the respective CPU costs
are almost identical.
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