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Plane thermoelasticity solutions are presented for the problem of a crack in bonded materials with a
graded interfacial zone. The interfacial zone is treated as a nonhomogeneous interlayer having spatially
varying thermoelastic moduli between dissimilar, homogeneous half-planes. The crack is assumed to
exist in one of the half-planes at an arbitrary angle to the graded interfacial zone, disturbing uniform
steady-state heat flows. The Fourier integral transform method is employed in conjunction with the coor-
dinate transformations of field variables in the basic thermoelasticity equations. Formulation of the cur-
rent nonisothermal crack problem lends itself to the derivation of two sets of Cauchy-type singular
integral equations for heat conduction and thermal stress analyses. The heat-flux intensity factors and
the thermal-stress intensity factors are defined and evaluated in order to quantify the singular characters
of temperature gradients and thermal stresses, respectively, in the near-tip region. Numerical results
include the variations of such crack-tip field intensity factors versus the crack orientation angle for var-
ious combinations of material and geometric parameters of the dissimilar media bonded through the
thermoelastically graded interfacial zone. The dependence of the near-tip thermoelastic singular field
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on the degree of crack-surface partial insulation is also addressed.
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1. Introduction

The last few decades have witnessed impressive progress in the
areas of functionally graded materials, in the light of a number of
potential benefits that may stem from the use of such media in a
broad range of modern engineering practices, especially in ele-
vated temperature environments. From both the phenomenologi-
cal and mechanistic viewpoints, this progress can largely be
attributed to the tailoring capability to produce gradual variations
of thermophysical properties in the spatial domain to accommo-
date a variety of technological issues (Miyamoto et al., 1999). As
a result, the utilization of this new generation of engineered mate-
rials in the form of a transitional interlayer in bonded media or as a
graded coating deposited on the substrate has become one of the
highly innovative and promising applications in coping with vari-
ous shortcomings that are coupled with the apparent property
mismatch inherent in the conventional layered systems (Schulz
et al., 2003).

When the damage tolerance is a major concern in structural de-
sign with the graded components, the distinct problem area would
be to identify crack-tip singularities with the aim of quantifying
the effect of material gradations on crack driving forces and other
fracture parameters under iso- and nonisothermal loading
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conditions. A comprehensive review of related earlier studies of fo-
cal interest was compiled by Erdogan (1998), underscoring the
outstanding features regarding the crack-tip behavior that entails
graded, nonhomogeneous properties. The most notable is the
near-tip stress field retaining the square-root singularity together
with the same angular distributions around the crack tip as those
in the homogeneous material, independent of crack orientation,
when the spatially varying elastic modulus is continuous and not
necessarily differentiable near and at the crack tip. Readers are re-
ferred to Eischen (1987) and Jin and Noda (1994a) for the corre-
spondence between the near-tip fields in homogeneous and
nonhomogeneous bodies. The standard analysis methodologies
can thus be applied to cracks in functionally graded materials such
that the influence of material gradations manifests itself through
the values of crack driving forces.

Under the isothermal loading condition, a number of additional
contributions in the quasi-static crack problems were reported,
among others, by Choi (1996, 1997), Paulino et al. (2003), and Chan
et al. (2008). In particular, the mixed-mode and anti-plane behav-
ior of a crack at an arbitrary angle to the graded interfacial zone in
bonded structures was also investigated by Choi (2001a, 2007a),
while the problem of an inclined crack in a graded coating was
examined by Long and Delale (2005). Besides, Choi (2001b) tackled
the problem of a subsurface crack in a substrate with graded
layering under Hertzian contact tractions and Dag and Erdogan
(2002) presented the solution for a surface crack in a graded
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half-plane subjected to a sliding rigid stamp. Most recently, Choi
and Paulino (2010) performed the analysis of interfacial cracking
in a graded coating/substrate system loaded by a frictional sliding
flat punch. The elastodynamic response of a crack in media with
the graded properties was further dealt with by Choi (2004,
2006, 2007b) and Lee and Choi (2006).

It is well known that the presence of a crack in a thermally con-
ducting material results in local intensification of temperature gra-
dient in the vicinity of crack tips (Sih, 1965). A thermal disturbance
of this type from that in an otherwise unflawed medium may, in
turn, induce critical thermal stresses around the crack, leading to
a loss of load-carrying capacity and catastrophic failure of struc-
tural components through crack propagation. In this respect, tak-
ing the spatial variations in both elastic and thermal properties
into account, Noda and Jin (1993) and Jin and Noda (1994b) exam-
ined the steady-state and transient thermoelastic problems of a
crack located parallel to the boundary of a functionally graded
material, respectively, whereas Erdogan and Wu (1996) and Jin
and Batra (1996) analyzed an edge-cracked strip with graded ther-
moelastic properties subjected to statically self-equilibrating ther-
mal stresses and sudden cooling, respectively. Subsequently, Choi
et al. (1998) studied the thermal shock response of collinear cracks
in a layered half-plane with a graded interfacial zone and Fujimoto
and Noda (2001) demonstrated how the composition profile of a
graded plate affects the crack path under thermal shock. In
addition, Choi (2003) provided the mode II thermal stress intensity
factors when a uniform heat flow is disturbed by a crack perpen-
dicular to the graded interfacial zone in bonded materials, and Itou
(2004) considered the thermal stress problem of a crack in the
nonhomogeneous interfacial layer between two dissimilar half-
planes. With application to the analysis of a crack in a graded
coating, Huang et al. (2004) proposed a multilayered approach by
simulating the graded medium as a stack of several sublayers with
thermoelastic moduli varying linearly in each sublayer and contin-
uous at the subinterfaces. Moreover, El-Borgi et al. (2003, 2006)
and Gharbi et al. (2009) solved, respectively, the thermal loading
problems of an interface crack, an embedded crack, and a surface
crack in a graded coating. For the interface crack in a graded ortho-
tropic coating/substrate structure, the corresponding thermal-
stress intensity factors were evaluated by Chen (2005) and Zhou
et al. (2010), in which the crack surfaces were assumed to be per-
fectly and partially insulated, respectively. It should be noted that
various computational models to investigate the thermal fracture
behavior of functionally graded materials are available in the liter-
ature due to Walters et al. (2004), Yildirim (2006), Kim and Amit
(2008) and Dag and Yildirim (2009).

As can be inferred from the aforementioned, the previous at-
tempts undertaken to date for the nonisothermal analyses of crack-
ing with the graded constituents are restricted to relatively simple
configurations, for which the symmetries prevail about the crack
plane or the normal through the crack center. The present paper
is, therefore, devoted to the plane thermoelasticity problem of a
crack at an arbitrary angle to the graded interfacial zone in bonded
media under steady-state heat flows. The interfacial zone is treated
as a nonhomogeneous interlayer with continuous variations of
thermoelastic moduli between dissimilar, homogeneous half-
planes. In formulating the crack problem, the Fourier integral
transform method is employed in conjunction with the coordinate
transformations of basic field variables in thermoelasticity. Two
sets of Cauchy-type singular integral equations are derived for heat
conduction and thermal stresses in the bonded system with the
oblique crack. With a view to quantifying the criticality of
thermally-induced singular behavior in the near-tip region, the
hear-flux intensity factors and the thermal-stress intensity factors
are defined and evaluated in terms of the solutions to the integral
equations. Numerical results are obtained to illustrate the

variations of such crack-tip field intensity factors as a function of
crack orientation angle for various combinations of thermoelastic
and geometric parameters of the bonded materials. The effect of
crack-surface partial insulation on the strength of heat flux and
thermal stress singularities is also addressed.

2. Problem statement and governing equations

Consider the two homogeneous half-planes bonded through an
interfacial zone with the graded properties. As shown in Fig. 1, the
bonded system is subjected to steady-state heat flows of tempera-
ture gradients, VT, and VT, in the horizontal and vertical direc-
tions, respectively, and the half-plane on the right-hand side
contains an oblique crack disturbing the heat flows. The global geo-
metric coordinates (x,y) and the local crack coordinates (x;,y,) are
employed, with the relations between the two coordinates given
by:

Xy =mx+ny, y,=-nx+my, (1a)
m=cosf, n=sino, (1b)

where the crack orientation angle 0 is measured counterclockwise
from the x-axis. In the (x1,y;1) coordinates, the crack of length 2c
is directed along the line a < x; < b and y; = 0. With its distance from
the interfacial zone designated by d, the crack can be aligned from a
perpendicular position (0=0°) to a parallel or an interfacial one
(6=90°) in the bonded media. The cracked half-plane, the inter-
layer, and the uncracked half-plane are distinguished in order from
the right-hand side.

Let thermal conductivity coefficients, shear moduli, and thermal
expansion coefficients be denoted by k;, 1, and «;, j = 1, 2, 3, respec-
tively, and the interfacial zone be treated as a nonhomogeneous
interlayer of thickness h, with the properties approximated based
largely on analytical expediency as (Erdogan and Wu, 1996)

ka(x) = kie™, (%) = e,

where the material gradation parameters J, 8, and y are specified to
make the continuous transition of the thermoelastic moduli from
one half-plane to the other
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Fig. 1. Bonded dissimilar half-planes containing a crack at an arbitrary angle to the
graded interfacial zone under steady-state heat flows.
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and the Poisson’s ratio is taken to be constant as v;=v,j =1, 2, 3, be-
cause its variation within a practical range exerts an insignificant
influence on the values of crack driving forces (Choi, 1997).

Now that the bonded system is thermally loaded sufficiently
away from the crack, the resultant full-field temperature consists
of the temperature distribution To{(x,y), j =1, 2, 3, in the absence
of a crack and the temperature perturbation @j(x,y), j=1, 2, 3,
caused by the presence of the crack as:
Tj(X,y):Toj(X,y)"r@j(X,y); j:1>2737 (4)
where the thermoelastic singular response in the near-tip region is
typified by the nontrivial temperature field so that the formulation
hereinafter is thus given in terms of @j(x,y), j=1, 2, 3.

The heat flux components are written as:

00; 00; .
Q= —k—2 o i qy = —k; yj j=1,23 (5)
and with u(x,y) and u;(x,y), j=1, 2, 3, being the displacement
components in the x- and y-directions, respectively, the Duhamel-
Neumann constitutive equations for the plane thermoelasticity
are given by Nowinski (1978):

s ou; Ou ;
Hi ou; Oy .
ajyy:K—_J]{(1+K)a—;/y+(3— )E)J — 40 @} (6b)
Uiy OU; .
Ojy = u,( x 0;{); ji=1,2,3, (6¢)

where the subscript j is the number referred to the constituent, and
K =3-4v,a; = (1+v)oy for plane strain and k= (3 —v)/(1+),
o = oy for plane stress.

The steady-state heat conduction equations are expressed as:

v?o; +5aaﬁ:0; j=123 (7)

and the Navier-Cauchy equations of equilibrium governing the
thermoelastic behavior are written as:

gy 20 (O ow) P O (3 Oy
vu’”;c—lé)x ax+8y TR (T+%) 8x+(3 K) ay
4o e 30}
2 (e e+ . (8a)
20 (O, Ouy) o (Ouy Ou
Vu]y+ 18y<8x+8y +h 0x+8y
4oe™ pO; .
s I chcd B
_Kf‘l ay, .] 172737 (8b)

where § # 0, §# 0, 7 # 0 for the graded interlayer (j=2) and 6 =0,
p=0, y=0 for the homogenous half-planes (j=1,3). Note that
o5 = o when j=2.

In the uncoupled, quasi-static thermoelasticity problem at
hand, the temperature perturbation is first to be resolved from
the heat conduction problem and the ensuing temperature field
is then incorporated into the mixed boundary value problem for
thermal stresses.

3. Heat conduction analysis

The assumption of perfect thermal contact along the nominal
interfaces yields the continuity conditions for temperature and
heat fluxes as:

@1(07}’) = @2(07}’)7 @2(_h7.y) = @3(—}1,}/); ‘y| < 00, (93)
1x(0,¥) = 4x(0,¥),  Gox(—h,¥) = G5 (=h,y);  y| < oo, (9b)
O1(4+00,y) =0, O3(—00,y) =0; |y| <oo (9¢)

and the mixed thermal boundary conditions on the cracked plane
are imposed in the (x;,y1) coordinates

Guy, (%1, +0) = qqy, (%1, -0); X1 >0, (10a)
01(x1,+0) = O1(x1,-0); 0<Xx;<a, x; >b, (10b)
Gay, (%1, +0) = ky (mVT;C + nVTf)

—hc[@l(x1,+0)—@1()(1,—0)]; a< X <b, (10C)

where h, is the ratio between local heat flux and local temperature
discontinuity across the crack surfaces and termed as the crack-
surface heat conductance (Barber, 1976). It is noted that h. > 0 indi-
cates the partial heat flow between the crack surfaces in proportion
to the temperature difference, with the limiting case of h. = 0 corre-
sponding to the completely insulated crack.

The state of temperature and heat fluxes in the half-plane with
an arbitrarily oriented crack can be expressed as the sum of two
parts in the (x,y) coordinates:

01(x.y) = 0" (x,y) + 07 (x,y), (11a)
QxY) =4 xY) + 47 xYy): J=xy (11b)
or in the (x1,y1) coordinates:

01 (x1,51) = 0 (x1,y1) + O (1,31, (12a)
@y(xa,y1) =45 (%, y0) + 45 xy); - J= X0, (12b)

where the superscript (1) denotes the infinite plane with a crack
and the superscript (2) is for the half-plane without the crack.

For the thermal field in the homogeneous full-plane ( = 0) con-
taining the crack along a<x; <b and y; =0, the heat conduction
equation is solved based on the Fourier integral transform method
to give the general solutions for temperatures in the upper (y; > 0)
and lower (y; < 0) regions, with those for heat fluxes obtained from
Eq. (5). Upon fulfilling the thermal equilibrium in Eq. (10a) and
defining an auxiliary function to account for the crack-induced
temperature disturbance

dolt) = 2 [0 (x1.+0) -

i M (x;, —0)] X >0, (13)

the temperature and heat fluxes in the full-plane are derived in the
(x1,y1) coordinates as:

1) t—X
077 (X1,¥1) 27t/ $o(t) tan™! ( v, )dt, (14a)
ki " ¢o(t)y
(1) 1 0(DY1
Tix, (X1,51) = / dt (14b)
WU T o (t— %) v y?
k t—x
Gy, (1. 91) = — 5 TN g (14¢)

e o)y

subjected to the following continuity and single-valuedness condi-
tions outside the crack line:

b
bo(t)=0;0<t<at>b and / bo(t)dt = 0. (15a,b)

For the second part of the solution, the general expression of the
temperature can readily be obtained in the (x,y) coordinates in

terms of the Fourier integral as:

V) = 2]Tz / T Ae s x>0 (16)
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and those in the graded interlayer (6 # 0) and the uncracked half-
plane (6 = 0) are also obtainable as:

O,1(x,y / ZB e ds;  —h<x<0, (17)
0 j=1
0s(x,y) :E / Ce™™ds; x < —h, (18)

where s is the transform variable, A(s )
arbitrary unknowns, i = (—1)"?, and 2i(s

2 $2
—5+\/%+52, \/b—+sz (19)

The thermal interface continuity conditions, Eqs. (9a) and (9b),
can now be applied to determine the four unknowns, A(s), Bj(s),
j=1,2,and ((s), in terms of the auxiliary function ¢o, which then
remains to be evaluated from the thermal crack-surface condition
in Eq. (10c). To this end, the field components for the cracked half-
plane in the (x,y) coordinates, Eqgs. (11a) and (11b), are employed.
The full-plane solutions in Eqs. (14a)-(14c) obtained in the (x4,y1)
coordinates should thus be transformed to those in the (x,y)
coordinates

Bj(s), j=1, 2, and ((s) are
),j=1, 2, are given by:

01(x,y) = 6 (x1,y,) + O (x,),
Gix(X.y) = mqyy) (x1.y1) — g5y (X1,7) + 42 (X.Y).

(20a)
(20b)

where from Eqs. (14) and (16), together with Egs. (1) and (5), it can

be shown that:
<M> t+ / Ae Islx— ISyds
—nx

/¢>o
nt-y }dt

k]
qlx(x y) / ¢0( )|:x2 +y2+t2_2t(mx+ny)

+—1/ Als|e kv ds
21 ) o

(21a,b)

and by substituting Eqs. (17), (18) and (21) into Egs. (9a) and (9b),
the unknowns, A(s), Bj(s),j = 1, 2, and ((s), can be expressed in terms
of the function ¢g as provided in Appendix A.

Subsequently, the heat flux component in the y;-direction for
the cracked half-plane is written from Eq. (12b), with its second
part transformed as:

(22a)
(22b)

qty, (xa,y1) — g (x,y) + maiy) (x.y),
y =nx; +my,

Gy, (X1,Y1) =
X = mx; —ny,,

and using Egs. (5), (14c) and (16), one can obtain the following:

001
2m lim ——(x
o dy, (*1,51)

- / Poll) g 4 [ Adnis| —imsje msimnds x>0, (23)
a - M —00

where the first term on the right-hand side is the integral with a
Cauchy singular kernel.

After making use of the expression A(s) in Eq. (A.1) and applying
the crack-surface condition in Eq. (10c), a singular integral equa-
tion can be derived for heat conduction

b 27rh

t—xldt+/ ko(x1, t) o (t)
=-2nVT.; a<x;<b, (24)

a

where ko(xq,t) is a kernel bounded in the interval [a,b] andVT,,
denotes the equivalent temperature gradient across the crack
surfaces

ko(Xl,t): /x/l
J0

s)[mcosns(t —x;) — nsinns(t — x;)je”"™ 1) ds,

VT, =mVTy +nVTy (25a,b)
and the function Ag(s) is written as:

5(6"‘ 524452 1)
Ao(s) = (26)

25(6”’\/ Prds? _ 1) — Vo +4s2 (e*h\/(’“‘“2 + 1) 7
which is for the crack oriented perpendicular to the nominal
interface.

4. Thermal stress analysis

For the incumbent thermoelasticity problem of bonded media
with a graded interlayer, the conditions of displacement continuity
and traction equilibrium along the nominal interfaces should be
fulfilled as:

U1x(0,¥) = uz(0,¥), u1y(0,y) = uz(0,y); |yl < oo, (27a)
Usx(=h,y) = usx(=h,y), Uz(=h,y) =usy(=h,y); |yl < oo,

(27b)
01xx(0,y) = 02(0,¥), 01(0,y) = 029(0,y); |y < o0, (27¢)
GZxx(*hvy) = 0-3xx(*h:y)~, O-ny(*huy) = 03xy(*hay)§ M < 00,

(27d)
j(+00,y) — 0, Usi(—o00,y) =0; j=xy, [y < oo (27e)

and the mixed mechanical boundary conditions on the cracked
plane are prescribed in the (x;,y;) coordinates as:

Ty (Xl ’ +0) = O,y (X1, _0)7

O1xy, (X1=+0) = Oy, (Xlr 70)§ X1 > 07 (283)
Uiy, (X1,4+0) = Uiy, (X1, -0),

Uy, (X1, +0) = uyy, (X1, —0); 0<x;<a, x;>b, (28b)
O1y,y, (X1,+0) =0, O1x,y, (X1,+O) =0; a<x< b. (28C)

As in the case of prior heat conduction analysis, for the half-
plane with an oblique crack, the corresponding state of thermo-
elastic displacements and stresses can be written as the sum of
two parts in the (x,y) coordinates:

wiCy) = uy () + Ui (y): i=xy, (292)
a1(x,y) = 05 (6 y) + 0 (xy); Lji=xy (29b)
or in the (x;,y1) coordinate system:

wi(Xe,ye) = Uiy (0, y0) + U (X, y0); i =Xy, (30a)
Tui(X1, Y1) = 04 (X, Y1) + O3 (X y)s 1 =Xy, (30b)

where the superscripts (1) and (2), respectively, refer to the infinite
plane containing a crack and the half-plane without the crack.

In order to find the thermoelastic field components in the
homogeneous full-plane (6=0,8=0,y=0) with the crack along
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a<x;<band y; =0, the general solutions for displacements in the
upper (y; >0) and lower (y; <0) regions are obtained by solving
the Navier-Cauchy governing equations in Eqs. (8a) and (8b) and
those for stresses are obtainable from the constitutive relations
in Egs. (6a)-(6c). After enforcing the traction equilibrium in Eq.
(28a) and introducing two auxiliary functions

$1(X1) = ai [ b (xX1,40) — (xl,—O)} X >0, (31a)
by (x1) :Til[ugxl (x1,+0) — ) (1, — 0)];, x>0 (31b)

and with the use of relevant expressions from the result of heat con-
duction analysis, the components of thermoelastic displacements
and stresses in the full-plane can be derived in the (x1,y1)
coordinates:

1
Ly (X1.y1)

_]+K/ Pol(t Y11n[(f x1)? +y1} 2dt

— 2
e[ 00 [(1 e e

1+ (t=x1)+33
1 (1+K), _t—x  (t—x1)y;

- t tan — dt, 32a
e | #0155 e e

1
ngy)l (X] Y1 )

zlofK/abqﬁo(t) {(t—xl){] —In [(t—xl)z +y%]1/2}

B t=x], 1 /” (1+x)
2y, tan v, }dt Tox ¢1(t) 5 tan

-1 t—X]

Y1

—]lx/a $2(0) {(1 ;K) In[(t-x?+93]"

(t=2%1)¥1
(t—x1)* +y?2
i
(t—x1)" +y?

(32b)

n(l1+K
<2u1 >“5]x)1x1 (*1,1)

=0 /:%(t) {Ztan” =% (t=x)y

Vi (t=x)*+)2
b [—x 2(t—x1)y}
+ [t - dt
/a ! {(txl)%y% [(t—x1)2+yﬁ]2

(t—x)* -y
/¢2 1{t ) +},%qL[(t7)<1> +y1} ‘|dt

(320)

T(l1+xK
(zlu )0-51)/)1311 (Xl 7y1)

_ocl/ $o(t) (t= x1 +y dt
1
2(t—x1)y3

t— X] )
/d)] (t—x1)2+ 2 2
1)y [(tfxl) +J’%]

/¢2

S|t

t X])

— A, (32d)
t X1 ) +_y1]

(14K
(2'u )O-(ll)]y] (Xl 7yl)

12
_ocl/ Polt) +ln[(t—x1)2+yf] }dt
f X] +y1

- ¢1(t)J’1 (t= Xl) i 5dt
‘ (x93

t—x 2(t—x1)y?
/¢2 t 1 2_ ( Zl)yl 5 dt,
x)*+y; [(tfxl) +J’%]

(32e)

where the functions ¢;, j = 1, 2, should satisfy the conditions of con-
tinuity and single-valuedness as:
b
$(t)=0; 0<t<a t>b and / (tde=0; j=12.
a
(33a,b)

For the second part, the general solutions for the displacement
components are readily obtainable in the (x,y) coordinates in terms
of the Fourier integrals

i [~ ;
_ —|s|x—isy
am | [Foe (e ) e

uy (x.y) =

LY Y (VN ) GRS
TS /,mA<X \SI)e . (342)
Ui (x.y) = % / (Fy + Fyx)e k=i

+ﬁ / ‘A%xe"s"""‘yds; x>0, (34b)

where Fj(s), j=1, 2, are arbitrary unknowns.
The general expressions of the displacements in the graded
interlayer (5 # 0,8 # 0,7 # 0) can be also obtained as:

> Gme*ds

4
u2xxY /

% j=1
Za*erx/

1-x m“

Uy (x,y) = /
o0 i1

e s, (35a)

Z G enix- 1syds

20(*6" i / ZB e 9ds; —h<x<0, (35b)

where Gj(s),j=1,...,4, are arbitrary unknowns, nj(s),j=1,...,4, are

the roots of the characteristic equation

4 pn—s2? 4 (2= \ st — o (36)
1+x ’

from which it follows that:

= —7+ ¢+s2
(37a)

2 12
nj——g—ﬁﬁsz i(— )ﬁs<3 K) . Re(n;) <0, j=34

1+K
(37b)

12
Bs(3+z> . Re(nj)>0,j=1.2,
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and my(s), j=1,...,4, are given for each root as:

(T =r)(} + py) + (1 + K)s
=T (T =B 2ns

(38)

Moreover, the thermoelastic constants, @;(s), €2;(s), and Aj(s),
j=1, 2, in the particular solutions in Egs. (35a) and (35b) are de-

fined as:
4Ks? 1-kK
b=B+r+4)|T 2 <m> Pi| + Qs (399)
2 —
& =s(p+7+5)|Q+ 26(1 ) | - P (39b)
4xs? 1-k 2-K )

in which Pj(s) and Qi(s), j =1, 2, are given by:

1+k )
P=—(Ton) o+ s+ +4) -5 (40a)
o _HE=3)-26+%) (40b)

1-x

For the uncracked half-plane on the left-hand side (6=0,5=0,
7 =0), the general expressions of the displacement components
are written as:

i [~s K .
Usx(X,y) = o [ E |:H1 +H, <x ,E>:|e\s\x—1syds

OC; = l |s|x—isy
+TC(1+K) [WC<x+|S‘>e ds, (41a)
1 " |s|x—isy
Usy(x,y) = o | ;(H] + Hyx)e ds
oot [T LS iy _
A1 [%C|S|xe ds; x<-—h, (41Db)

where Hj(s), j=1, 2, are arbitrary unknowns.

As can be seen in the above, the general solutions involved in
the thermal stress analysis have a total of eight unknowns, Fj(s),
j=1,2,Gjs) j=1,...,4, and Hj(s), j=1, 2. The direct application
of interface conditions for the displacements and tractions, Egs.
(27a)-(27d), would lead to a system of algebraic equations to be
solved for these unknowns in terms of ¢;, j=1, 2, and ¢ as well.
In what follows, as a judicious way of accomplishing such a routine
procedure, the transfer matrix approach (Bahar, 1972) is exploited,
the result of which is to be utilized in deriving the integral equa-
tions for thermal stresses.

4.1. Application of interface conditions for thermal stresses

In order to apply the interface conditions in Eqs. (27a)-(27d),
the field components for the cracked half-plane in Eqs. (29a) and
(29b) as written in the (x,y) coordinates are employed, followed
by the transformation of full-plane solutions in Eqgs. (32a)-(32e)
obtained in the (x1,y;) coordinates to those in the (x,y) coordinates
and the use of Eq. (1) such that

Uie(X,y) = mut}) (x1,yy) — nui) (x1.y;) + Uiy (x,y), (42a)

= nutV ) @ 42b

uly(x-,.V) nu]xl (X13y1)+mu]yl (X17y1) +u]y (va)v ( )
Tix(X,y) = mzaglx)lxl (X1, 1) — zmna(llx)lyl (X1,51)

+02ay) (X1, )1) + O (%), (42¢)

1 1
Glx}’(x’y) =mn |:6(1x)1x1 (X1’y1) - G(Iy)lyl (Xl,y1 )}

+(m? =)oy, (%1,7) + O (x,Y). (42d)

The state vectors, fj(x,s), j = 1, 2, 3, containing the displacements
and tractions in the bonded system are then defined in the Fourier-
transformed domain (x,s) in the form as:

fi(x,s) = {up(x,5)/i, U (x,5), Oj(x,5) /i, 6'jxy(x,s)}T; j=1,2,3
(43)

and from Egs. (32), (34), (35), (41) and the constitutive relations in
Egs. (6a)-(6c), the vectors, fji (s),j = 1,2,3, evaluated at the right-
(+) and left-hand side (—) surfaces of the constituents can be writ-
ten as:

£ (s) =Ty (s)a; +f(s) + ¥(s), (44a)
f5(s) = Ty (s)az + (), (44b)
£5(s) =T} (s)as + f3;(s), (44c¢)

where Tji (s),j =1,2,3, are matrices which are a function of not only
the variable s, but also the elastic parameters of the constituents,
and 4 x 4 for the interlayer (j=2) and 4x2 for the half-planes
(j=1,3), while aj(s), j =1, 2, 3, are vectors for the unknowns in the
general solutions of thermoelasticity equations such that

a, = (Fi(8).F205)}, = {Gi(5),Ga(5).Ga(5),Ga(s)),  (45ab)

a; = {H(s),Ha(s)}' (45¢)

and fjir(s), j=1,2,3, are vectors that signify the nonisothermal ef-
fect originating from the nonhomogeneous part of the governing
equations in Egs. (8a) and (8b). In addition, ¥(s) is a vector of four
units in length whose elements are obtained by taking the Fourier
transform of the full-plane solutions in Eq. (32) with respect to
y-axis (see Appendix B).

By using the state vector equations, the interfacial conditions in
Eqgs. (27a)-(27d) can be expressed as:

1()ar +H17(5) +W(s) = Ty (5)az + £ (s),
2 (S)az +fr(s) = T5 ()3 + f3(s)

T (46a)
T (46b)

and the elimination of the unknown vector ay(s) yields the
following:

G(s)as +r(s) = Hi(s)a; + ¥(s), (47)

where G(s) is a 4 x 2 transfer matrix between the two half-planes
and r(s) is a vector of length four for the nonisothermal terms

3
G(s) = [[Hys),
j=2

1(s) = Ha(5) [f37(s) — f7(5)] + F30(5) — Fy1(s)

in which the matrix functions, Hi(s), j =1, 2, 3, are defined by:

(48a)

(48b)

-1

Hi(s) =T, (5), Hay(s) =T,(5)[Ty(5)] . Hs(s) =T;(s). (49)

The transfer matrix equation in Eq. (47) can be decomposed and
solved for the vectors, a;(s) and as(s). In particular, the vector a;(s)
that is essentially required in deriving the integral equations for
thermal stresses can be obtained in terms of the elements of the
vectors, W(s) and r(s), such that

{Fl } _ {Qn le} {fm }7 (50)
F Qxn Qxn] lfo

where Qy(s),i,j=1, 2, are elements of a 2 x 2 matrix and fo(s),j=1,
2, are those of a vector of length two as
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Hyy =My Hpp *Mu}q
§) = (51a)
Q) |:H21 — M1 Hyp — My
L L ¥, — v, —
fo(s) { 11 12}{ 3 Ta}_{ 1 rl} (51b)
Ly Ly Vy—14 ¥y —1;

in which Hy(s),i=1,...,4,j=1, 2, are elements of the matrix Hy(s),
and Mj(s), i ,j=1, 2, and Ly(s), i ,j =1, 2, are those of 2 x 2 matrices

Gn Gle| |:G31 G32}_] |:H31 Hsz}
M(s) = , (52a)
®) |:(;21 G| [Ga Gy Hy Hgp
Gn Glz} [531 G32}71
L(s) = (52b)
®) |:G21 G| [Ga Ga

It is noted that the matrix Q(s) depends only on the elastic constants
of the bonded system, and the vector fy(s) has the dependency on
the thermoelastic moduli and involves the functions ¢ and ¢,
j=12.

4.2. Integral equations for thermal stresses

The remaining traction-free crack surface conditions in the
(x1,y1) coordinates are written from Eqs. (28c) and (30b) as:

O1y,y, (X1,+0) = 1y 5, (%1,+0) + aly y, (X1, +0) =0; a<x <b,
O1xy, (X1,+0) = amy] (x1,+0)
+ le1 (x1,40)=0; a<x; <b,
(53a,b)

where the first terms on the right-hand side are evaluated from Eqgs.
(32d) and (32e) as the integrals with Cauchy singular kernels

T(l+K) .. ) Y $i(t)
o y}ljl:odly]yl (X1,y1) = |t dt, (54a)
T(l+K) .. ) _ " (D)
K e, o) - [
b
+aq/ do(OIn|t—xi|dt  (54b)

and the second terms transformed from the (x,y) coordinates to the
(x1,y1) coordinates are expressed as:

Ty, (1.31) = PO (RY) = 2mna'y (x.y) + Moy, (xy),  (55)
Gy, (x1.31) = mn [} (x.y) = 0 (x.y)] + (m? —n2)al (x.y),
(55b)
so that from Egs. (6), (34), and (22b), it can be shown that
Ey[@oaﬁﬁ (x1.y1)
= / {F1 [N]1(S,X1)+iN]2(S7X])]
+F2[N13(S X]) iN14(S X1 )]}e (mis|-+ins)yxy ds
2
]f’c/ AX11(5,%1) + iX12(5, %1 )] e~ MIsHHmx gg (56a)
" lim 6@
Ey}grlo Oy, (X1,51)
- / " {Fy[Nar (5,30) + iNaa (5. %1)]
+F2[N23 S X]) +iN24(5 Xl)]}e—(m\s\+ins)x1 ds
20
- / AlXa1 (5,31) + Xaa (5,x1 Y] (sl insi g (56b)

in which Nij(s,x1),i=1,2,j=1,...,4, and Xj(s,x1),1,j = 1, 2, are given
by:
Ny1(s,%1) = 2mnls|, Nia(s,%1) = (n* —m?)s, (57a)
Ni3(S,x1) = mn(2m|s|x; — 1 + k),
—(n?_ Is| 1 Is|

Nia(s,x1) = (n* —m )(msx ) ) + S (57b)
Npi(s,%1) = (n? —m?)|s|, Np(s,x;) = —2mns, (57¢)

5 5 1-x
No3(s,%1) = (n° —m?) | m|s|x; )
Naa(s,%1) = mn {g(l —K)— 2msx1}, (57d)
X11(8, %) = —m(n? — m?)|s|x; — 2m?,
X12(8,X1) =2mn (msx - u) (57e)
Xa1(s,%1) = —2mn(1 — mls|x,),
Xaals.x) = (2 = ) (msx, — ). (576)

Upon substituting Eqgs. (54) and (56) into Eq. (53) and using the
expressions of F(s),j =1, 2, in Eq. (50) and A(s) in Eq. (A.1), followed
by some algebraic manipulations, a system of Cauchy-type singular
integral equations is derived for the thermal stress analysis in the
form as:

a0 b 2
/a mdt’L/a ;ku(xl,t)qﬁj(t)dt

b
:/ [Oqglz(xht) *gn(xlat)w’o(t)dt; a<x <b,

/” ;f’z(t / ’ f:kz,-(xl,t)@(t)df
a - a j=1

b
:/ (06822 (%1, 8) — 821 (X1, ) — o5 In[t — X1 || o (£)dt; a<xq <D,
(58b)

where the kernels kij(x1,t), 1, j = 1, 2, and g(x4,t), i,j =1, 2, are writ-
ten as:

(58a)

kij(x1,t)

= / [4ii(s, %1, ) cos ns(t — x7)
0

— Ajgi2)(8, X1, t) sinns(t — x;)Je ™ ds; ij=1,2,
(59a)
gij(xl 7t)
:/ [Tji(s,X1,t)cosns(t —x1)
0
— i) (8,%1, ) sinns(t—xy)] e ™0 ds; (i,j)=(1,1),(2,1),
(59b)

gij(xl ’ t)
*1 .
= [ 5 40(5) g sx0) simms 1)
0

+Xii(s,%1) cosns(t — x;)|e ™ ds; (i,j) = (1,2),(2,2) (59¢)

in which Ay(s,xq,t), i=1,2,j=1,...,4, and I'y(s,x1,t), 1, j=1, 2, are
intricate functions of isothermal and nonisothermal moduli, respec-
tively, as well as the geometry of the bonded trimaterial system.
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The integrands of the kernels in Eqs. (59a)-(59c) retain the
exponentially decaying behavior as the variable s tends to be large,
indicating that the kernels are bounded. On the other hand, the dis-
appearance of the exponential decay that is noted when 0 — 90° or
(t+x1) — 0.0 renders the convergence rate of related improper
integrals relatively slower than they would be otherwise. The for-
mer is for a crack lying along or parallel to the nominal interface
and the latter is associated with a crack that has its tip extended
up to the interface. In particular, when d = 0.0 and 0° < 0 < 90°, it
can be shown that there exist logarithmic terms in the kernels
other than In|t — x4| in Eq. (58b), as discussed by Erdogan (1998)
for the two special cases of #=0° and 0 =90°. Such logarithmic
terms, nonetheless, can be treated as part of regular kernels in
the presence of Cauchy singular kernels 1/(t — x;) in the sense that
the logarithmic singularities are square-integrable, without affect-
ing the near-tip singular order of the thermoelastic field in the ob-
lique crack configuration, provided the thermoelastic moduli are
continuous and piecewise differentiable near and at the crack tip.
This is in contrast to the oscillatory or nonsquare-root singularities
encountered in the analysis of crack problems for bonded media
which are of piecewise homogeneous nature (Rice, 1988; Romeo
and Ballarini, 1995).

5. Solution procedure and near-tip field intensity factors

Because the dominant singular kernels in the integral equations
are attributable solely to the Cauchy type, the square-root crack-tip
behavior of the problem can be preserved by expressing the auxil-
iary functions as (Muskhelishvili, 1953)

Q;(t)

T . ag<t<b j=0,1,2 (60)
T_ab-_0

() =

where ¢;(t), j=0, 1, 2, are unknown functions, bounded and non-
zero at the end points. In the normalized interval

RS

the integral equations in Egs. (24) and (58) are rewritten as:

P8 a<my<n, (61)

10 T T T T T T T T T T T T

— : present result
: exact solution
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Fig. 2. Variations of mode II thermal-stress intensity factors Ky/Kro as a function of 0
in an infinite homogeneous plane under a horlzontal heat flow (VT =
VT, VT, = 0) for different values of /, where Krp =20 VTL3/2/ 1+x).
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Fig. 3. Variations of heat-flux intensity factors Ky/Kyo as a function of 0 under a
horizontal heat flow (VTf =VI,VTy = 0) for different values of 7, where
Ko = k1 VTc'?, hj2c = 0.5, and d/c = 0.0.
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Fig. 4. Variations of heat-flux intensity factors Ky/Kyo as a function of 0 under a
vertical heat flow (VT; =VI,VTy = 0) for different values of /, where
Kio = kiVT c'?, h/2c=0.5, and d/c = 0.0.
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in which h;(&n) = 18, (¢, 1) — g1 (&,1),j = 1,2, and Jp =hec[ky in
Eq. (62a) is the Biot number, as the dimensionless ratio between
heat conductance at the crack surfaces and the conductivity of the
cracked constituent, to describe the degree of crack-surface partial
insulation (Barber, 1980). As is evident in the foregoing, the integral
equation in Eq. (62a) for heat conduction should first be indepen-
dently solved for ¢g, with the corresponding results made available
for incorporation as the forcing terms in solving the system of inte-
gral equations in Eqgs. (62b) and (62c) for thermal stress analysis.

The solutions to the singular integral equations can, therefore,
be expanded into the series of the Chebyshev polynomials of the
first kind T}, as:

bi(6) = ¢;(n) = I <1,j=012  (63)

‘l o0
— ) GaTa(n);
Vi-ip? ; !

where ¢, j=0, 1, 2, n = 0, are unknown coefficients and via the
orthogonality for T,, the compatibility conditions in Egs. (15b)
and (33b) are identically satisfied when ¢jo=0,j=0, 1, 2.

After substituting Eq. (63) into Eqgs. (62a)-(62c), truncating the
series with the first N terms, and using the properties of the

a 0.6 T T T T T T T T T T T T T T T
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Fig. 5. Variations of thermal-stress intensity factors (a) Ki/Kr and (b) Ky/Kro as a
function of 6 under a horizontal heat flow (VT;‘ =VTI,VTy = 0) for different

values of , where Kro = 24,0, VTc*?/(1 + ), h/2c = 0.5, and d/c = 0.0.

Chebyshev polynomials (Gradshteyn and Ryzhik, 2000), one can
show that the integral equations are regularized

HZN;COn {n(1+%\/§>Un_1(é)+H3(é)} =-2nVT,; |¢<1,

N_(cin N THY (&) HL(E) | (cn B £1(8) .
w7 }unl(m;[Hﬁ:@ HE(@MC;"}{A@}, <1
(64a,b)

where U, are the Chebyshev polynomials of the second kind and the
functions, Hy(¢) and Hj(¢),i,j = 1,2, are given by

b—a [ ko(&,mTa(0)

Hy (&) = 65
O(Q) 2 ) \/W ]77 ( a)
N/ g b_a 1 ki‘ ) Tn ..

oy =75 [ I =12 (65b)

while the forcing functions, fj(¢), j=1, 2, that contain the thermal
loading are defined as:

a 0.24 ————————————1———
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Fig. 6. Variations of thermal-stress intensity factors (a) Ki/Kro and (b) Ky/Kro as a
function of 0 under a vertical heat flow (VT;‘ =VT,VT; = 0) for different values

of 7, where Kro = 24,0 VTc*?/(1 + ), h/2c = 0.5, and d/c = 0.0.
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_b-a{ "Ry (&) Ta(n)
fite) =" HZ;COHL 1 it dn, (66a)
b—a - Uhy(EmTa(n) 4T
A& == ;C0n|:/1 Hﬁdm 12T |. (66b)

To recast the functional equations in Egs. (64a) and (64b) into
solvable form, the zeros of Ty concentrated near the ends ¢ =*1
are chosen as a set of collocation points (Erdogan, 1978)

n(2j-1)

Ty(g) =0,¢ = cos [T}, ji=12,...)N (67)

and by evaluating Eq. (64a) at N station points &, a system of linear
algebraic equations is constructed and solved for cgy, 1 <n <N, to
be incorporated into Eqs. (66a) and (66b). Likewise, the equations
in Eq. (64b) can then be reduced to a system of linear algebraic
equations for ¢, j=1,2,1<n<N.
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Fig. 7. Variations of heat-flux intensity factors Ky/Kyo as a function of 0 under a
horizontal heat flow (VT;C =VI,VIy = 0) for different values of h/2c where
Ko = kyVTc'?, j, = 0.0, and d/c = 0.0.
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Fig. 8. Variations of heat-flux intensity factors Ky/Kyo as a function of 0 under a
vertical heat flow (VT;“ =VT,VT; = 0) for different values of h/2c where
Ko = kyVTc'?, 7, =0.0, and d/c = 0.0.

Once the coefficients, ¢j,, j=0, 1, 2, 1 < n < N, are obtained, the
integral equations in Eq. (24) and Eq. (58) can provide the values of
heat flux, q,,, (x1, 0),and tractions, o1y, y, (X1,0) and g1, y, (x1,0),ahead
of crack tips, respectively, that both possess the inverse square-root
singular behavior. The singular thermal behavior implies the thermal
energy localization in heat conduction around the crack and such
intensified energy would exert an adverse effect in dissipating the
heat. In order to measure the magnitude of local intensification of
the thermal field at the point of singularity and to signify the thermal
energy accumulated in the near-tip region as well, the heat-flux inten-
sity factors Ky can be defined and evaluated as (Tzou, 1991)

Ku(a) = lim v/2(a—x1)y, (%1,0)

N
:%’1/132;(12(—1)””60”; x<a, (68a)
n=1
Ku(b) = lim /204 = b)dyy, (x1,0)
N
BN EL o P (68b)
2V 2 4
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Fig. 9. Variations of thermal-stress intensity factors (a) Ki/Kro and (b) Ky/Kro as a
function of 0 under a horizontal heat flow (VT;C = VT, VT;,c = 0) for different

values of h/2c where Kro = 21,05 VTc*? /(1 + k), 5= 0.0, and d/c = 0.0.
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Furthermore, to characterize the severity of near-tip thermal stres-
ses that develop in turn, the mixed-mode stress intensity factors are
also defined and evaluated such that

{ Ki(a) } _lim /2@ %) { ?M (x1,0) }

Ky(a) x—a 12y, (X1,0)
C2u b-ad o f Cin )
=1V ;(—l) o f X1 < @, (69a)
Kl(b)} . {myy (Xl,O)}
=lim/2(x; - b he
{ Kll(b) X1—b ( ! ) O1xy, (X17 0)
o2, b-adL o)
_,HK,/T;{%}, %1 > b, (69b)

where K; and Kj; are modes I and II stress intensity factors, respec-
tively, and due to the continuity of thermoelastic moduli through
the graded interlayer, the field intensity factors in the preceding
equations are equally valid for d = 0.0 as well, in which one of the
crack tip is terminated at the location of nominal interface with
the interlayer.
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Fig. 10. Variations of thermal-stress intensity factors (a) Ki/Kro and (b) Ky/Kro as a

function of 6 under a vertical heat flow (VTf =VT,VTy = O) for different values

of h/2c where Kro = 24,05 VT /(1 + k), 4= 0.0, and d/c = 0.0.

6. Results and discussion

The integral equations in Eqgs. (24) and Eq. (58) are solved for
various combinations of geometric (0,h/2c,d/c) and thermoelastic
parameters (A, k3/kq, 3/ p1,3/1) of the problem under consider-
ation. The state of plane strain is assumed with the constant
Poisson’s ratio v = 0.3. In the numerical implementation, no more
than thirty-term expansions of the Chebyshev polynomials in Eq.
(63) are found to be sufficient for the solution to converge with
the desired level of accuracy, with the kernels in Egs. (25a) and
(59) and the other related integrals in Egs. (65) and (66) being eval-
uated based on the Gauss-Legendre and Gauss-Chebyshev quadr-
atures, respectively (Davis and Rabinowitz, 1984).

To confirm the validity of the current method of solutions, the
problem of a homogeneous plane of infinite extent containing a
partially insulated crack and subjected to a steady-state heat flow
in the horizontal direction (VTy = VT and VT =0) is first
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Fig. 11. Variations of heat-flux intensity factors Ky/Kyo as a function of 0 under a
horizontal heat flow (VT;C =VI,VTy = O) for different values of ks/k; where
Kio = ki VTc'?, 4, = 0.0, h/2c=0.5, and d/c = 0.0.
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Fig. 12. Variations of heat-flux intensity factors Ku/Kyo as a function of 0 under a

vertical heat flow (VT;° =VT,VT; = 0) for different values of ks/k; where
Kio = kyVTc'?, j, = 0.0, hj2c = 0.5, and d/c = 0.0.
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considered. In this case, the crack surfaces separate only in the slid-
ing or shear mode, regardless of crack orientation angle 0. The vari-
ations of corresponding mode II thermal-stress intensity factors Ky
are plotted in Fig. 2 as a function of 0, for different values of the Biot
number /. It is noted that the present values of Kj; are those at the
right-hand side crack tip and normalized with Ky = 2u0 VT2
(1 + k), which is for a fully insulated crack (4, =0.0) aligned per-
pendicular to the heat flow direction, and those evaluated for this
insulated crack are in exact agreement with the closed form solu-
tion (Sekine, 1987). With the crack-surface thermal condition
being relaxed via /4, greater than zero, the severity of the thermal
stress field around the crack is shown to be significantly alleviated,
leading to nonconservative results in comparison with those ob-
tained under the imposition of perfect crack-surface insulation.
As a next step toward predicting the thermally-induced crack-
tip singularities in the bonded system, a metal/ceramic pair that
is representative of titanium-based alloy (Ti-6Al-4V) bonded to
zirconia (Zr0,) is selected, with the ratios of thermoelastic moduli
given by ks/k; = 8.89, us/p; = 0.5658, o3/o; = 1.4487 (Fujimoto and
Noda, 2001) and h/2c=0.5, d/c=0.0, unless otherwise stated.
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Fig. 13. Variations of thermal-stress intensity factors (a) Kj/Kr and (b) Ky/Kro as a
function of 0 under a horizontal heat flow (VT;‘ =VTI,VTy = O) for different

values of ksfk; with wus/p;=0.2 and osfoa; =02 where Ko =2u,0VTc>?/
(14 k),4 =0.0,h/2c = 0.5, and d/c = 0.0.

Subsequently, further results are provided for the purpose of gain-
ing an insight into the effects of variations of thermoelastic proper-
ties (ks/ki, 13/ 1, 3/0q) on the crack-tip behavior in the prescribed
thermal loading environment. In this process, the resulting values
of the field intensity factors are discussed for each of the heat flows
in the horizontal and vertical directions.

Under the condition that the crack surfaces are partially insu-
lated in the above material pair, the variations of heat-flux inten-
sity factors Ky versus the crack obliquity ¢ are illustrated Figs. 3
and 4, under a steady-state heat flow in the horizontal direction
(VTy = VT and VT =0) and in the vertical direction (VT =
VT and VT = 0), respectively. The results are normalized by
Kuo = k1VTc'2. A generic feature is that with no thermal disorder
prevalent for the crack parallel to the direction of heat flow, the
magnitude of Ky increases as the angle between the crack line
and the heat flow direction is enlarged, but reduces as the crack
surfaces are rendered heat conductive (4> 0.0). Besides, it is
understood that the more harsh thermal condition endured by
the crack tip b is attributed to the mitigated effect of higher
thermal conductivity of the adjacent constituent.
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Fig. 14. Variations of thermal-stress intensity factors (a) Kj/Kyo and (b) Kj/Kqo as a
function of 0 under a vertical heat flow (VTf =VT,VTy = 0) for different values

of kafk; with psfpy =0.2 and osfoq =02 where Kro = 2,0, VTS /(1 + k), 2 =
0.0,h/2c = 0.5, and d/c = 0.0.



H.J. Choi/International Journal of Solids and Structures 48 (2011) 893-909 905

The variations of mixed-mode thermal-stress intensity factors
that correspond to Figs. 3 and 4 are displayed in Figs. 5 and 6,
respectively, with the normalizing quantity Ko = 2p, 05 VTc*?/
(1 + k), where the severity of near-tip thermal stresses is also
shown to be relieved as the crack becomes conductive with
Jp > 0.0. In contrast to the thermal behavior, however, the results
in Figs. 5 and 6 indicate that the crack tip a is suffering from the
rather intensified near-tip stress field such that both the values
of thermal-stress intensity factors, K; and Kj, at the crack tip a
are of greater magnitude than those at the crack tip b. To be spe-
cific, as shown in Figs. 5a and 5b for the heat flowing in the hori-
zontal direction, when the crack orientation angle 0 is enlarged,
the magnitudes of K; and K, are, in general, augmented in a monot-
onous manner from the null values at 0 = 0° to their maxima that
are matched with the interfacial cracking at 0 =90°. It is worth
mentioning for Fig. 6 that under the vertical heat flow that im-
pinges on the crack surfaces perpendicularly as 6 = 0°, the antisym-
metry of the temperature gradient, along with the geometric and
material symmetry with respect to the crack line, allows the crack
surfaces to separate not in the opening mode, but in the sliding
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Fig. 15. Variations of thermal-stress intensity factors (a) Ki/Kro and (b) Ky/Kro as a
function of 0 under a horizontal heat flow (VT;“ =VI,VTy = 0) for different

values of ks/k, with us/u; =5.0 and azfoy = 0.2 where Ko = 244,05, VTS /(1 4 K),
J» =0.0,h/2c = 0.5, and d/c = 0.0.

mode so that only the mode II thermoelastic deformation occurs
(Choi, 2003). Furthermore, albeit the magnitudes of Kj; in Fig. 6b
decrease consistently as the crack angle 0 increases, those of K in
Fig. 6a reach their peak around the angle 0 = 50°. It should be re-
marked that comparison of the maximum values of K; in Figs. 5a
and 6a reveals that the heat flow in the direction of material grada-
tion appears to give rise to the more severe near-tip condition than
the vertical heat flow.

With the imposition of a fully insulated crack-surface condition
(4p = 0.0) in the same material pair, Figs. 7 and 8 provide the vari-
ations of heat-flux intensity factors Ky as a function of 0 when the
heat flows in the horizontal and vertical directions, respectively,
for different values of graded interlayer thickness, h/2c. In this case,
the magnitude of Ky is shown to become larger as h/2c increases
with the implication that the interlayer of greater thickness is less
effective in dissipating the heat in the near-tip region, which is
seen to be considerable for the crack tip a.

The results in Figs. 9 and 10 illustrate the thermal-stress inten-
sity factors that are associated with the thermal behavior in Figs. 7
and 8, respectively, over the given range of crack obliquity 0. It can
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Fig. 16. Variations of thermal-stress intensity factors (a) Ki/Kro and (b) Ky/Kro as a
function of 0 under a vertical heat flow (VT;‘ = VT, VT; = 0) for different values

of ksfky with ps/;=5.0 and osfoy =02 where Kpo = 2p,04 VT /(1 4 k),
J» =0.0,h/2c = 0.5, and d/c = 0.0.
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be depicted from Figs. 9a and 10a that the increase in the interlayer
thickness h/2c is likely to lower the magnitudes of K; at both the
crack tips, counteracting the effect of the nearby compliant constit-
uent (us/p, = 0.5658). On the other hand, Figs. 9b and 10b clarify
the crack-tip deformation that is compatible with the results in
Figs. 7 and 8 such that the magnitudes of K;; become greater for
the greater h/2c, which appears to be fairly noteworthy for the
crack tip b. If the thickness of the graded interlayer were to in-
crease even further relative to the crack size, the thermal-stress
intensity factors in Figs. 9 and 10 which are now of mixed-mode
would degenerate to those as plotted in Fig. 2, namely, the mode
II thermal-stress intensity factors due to a uniform heat flow dis-
turbed by a crack in the infinite homogeneous plane. To be noted
is that locating the crack away from the interlayer (d/c > 0.0) would
have a similar influence that is observed when increasing the inter-
layer thickness.

In the sequel, additional results are presented in Figs. 11-20 in
order to examine the effects of material parameters (ks/ky, it/
U1,03/01) on the near-tip thermoelastic field as a function of crack
orientation angle 0. It is assumed that h/2c=0.5, d/c=0.0, and
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Fig. 17. Variations of thermal-stress intensity factors (a) Ki/Kr and (b) Ky/Kro as a
function of 0 under a horizontal heat flow (VT,? =VI,VTy = 0) for different

values of ks/k, with us/u; =0.2 and azfoy = 5.0 where Ko = 24,06, VTS? /(1 4 K),
Jp» =0.0,h/2c = 0.5, and d/c = 0.0.

Jp=0.0. To begin with, the results in Figs. 11 and 12 describe
how the thermal conductivity ratio ks/k; affects the thermal
behavior under the horizontal and vertical heat flows, respectively.
It is predicted that the magnitude of heat-flux intensity factors Ky
is reduced as the ratio ks/k; is increased, implying the enhanced
thermal protection for the crack by the facilitated heat dissipation
through the neighboring constituent that possesses the higher
thermal conductivity.

The dependence of thermal-stress intensity factors on the ther-
moelastic parameters is next discussed for the prescribed range of
crack obliquity 0. With the ratios of shear moduli and thermal
expansion coefficients being fixed as (us/u1, asfo1) =(0.2,0.2), the
results are shown in Figs. 13 and 14 for different values of the ther-
mal conductivity ratio ks/k;, when the heat flows in the horizontal
and vertical directions, respectively. Specifically, those in Figs. 13a
and 14a dictate that the increase in the ratio k3/k; has a tendency
to build up the severity of thermoelastic deformation in the open-
ing mode, by amplifying substantially the values of K;. On the other
hand, in compliance with the thermal response in Figs. 11 and 12,
one can observe from Figs. 13b and 14b that the increase in the
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Fig. 18. Variations of thermal-stress intensity factors (a) Ki/Kro and (b) Ky/Kro as a
function of 0 under a vertical heat flow (VTf =VT,VT; = 0) for different values

of ksfk; with ps/;=02 and osfoy =5.0 where Kio=2p,05VT*?/(1 4 K),
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ratio ks/k; tends to attenuate the thermoelastic singular behavior
in the shear mode.

For the combination of thermoelastic properties as (us/u,03/
o) =(5.0,0.2), the corresponding thermal-stress intensity factors
due to the horizontal and vertical heat flows are presented in
Figs. 15 and 16, respectively. Of interest in this case is the crack clo-
sure as can commonly be exemplified by the negative values of K;
in both Figs. 15a and 16a, which are obtained when k3/k; < 1.0 in
conjunction with the rigid constraint from the adjoining stiffer
constituent as us/p; =5.0. The variations of Kj; with respect to
the crack obliquity 0 and the ratio ks/k; in Figs. 15b and 16b, how-
ever, remain analogous to those in Figs. 13b and 14b.

As demonstrated in Fig. 17a and 18a for the values of K; ob-
tained under the heat flow in the horizontal and vertical directions,
respectively, the increase in the thermal expansion coefficient as
(ps/p,03/01) = (0.2,5.0) also enforces such crack closing behavior
to prevail in an obvious manner in the range of 6. This trend is
shown to become more notable if the thermal conductivity of the
adjacent constituent is lowered relative to that of the cracked con-
stituent. Moreover, the results in Figs. 17b and 18b indicate that
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Fig. 19. Variations of thermal-stress intensity factors (a) Kj/Kro and (b) Ky/Kro as a
function of 6 under a horizontal heat flow (VT;“ =VI,VTy = 0) for different

values of ks/k, with us/u; = 5.0 and azfoy = 5.0 where Ko = 244,05, VTS /(1 4 k),
Jp =0.0,h/2c = 0.5, and d/c = 0.0.

the effect of the ratio k3/k; on the values of Kj at the crack tip
a is reflected differently, depending on the crack orientation
angle 6.

The variations of thermal-stress intensity factors for the mate-
rial pair, (us/u1,03/aq) =(5.0,5.0), are provided in Figs. 19 and 20
as a function of 0 for the horizontal and vertical heat flows, respec-
tively. It is then remarkable that the values of K| are obtained to be
all negative for the given thermal conductivity ratios ks/kq, as plot-
ted in Figs. 19a and 20a, causing the crack surfaces to be rather
firmly closed with the greater magnitudes of K. Such crack closure
is predicted to be even more pronounced for the interfacial crack
(0 =90°) under the horizontal heat flow and for the oblique crack
(0 22 50°) subjected to the vertical heat flow, especially when the
ratio ks/k; is smaller than unity. As can be observed in Figs. 19b
and 20b, the values of Kj; delineate the quite intricate near-tip ther-
moelastic behavior, marking another salient departure from those
in Figs. 13b-16b. It should now be pointed out that the thermal-
stress intensity factors of the oblique crack appear to be more
strongly affected by the variation of thermal conductivity coeffi-
cients when the adjoining constituent retains the stiffer modulus
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Fig. 20. Variations of thermal-stress intensity factors (a) Kj/Kro and (b) Ky/Kro as a
function of 0 under a vertical heat flow (VT;‘ = VT, VT;“) = 0 for different values

of ksfk; with ps/u;=5.0 and osfey =5.0 where Ko =2p,05 VT /(14 k),
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along with the greater thermal expansion coefficient. Throughout
the results in Figs. 13-20, it can thereby be conjectured that for
the oblique crack geometry, the thermal-stress intensity factors
under the horizontal heat flow are induced to be of greater magni-
tude when compared with those due to the vertical heat flow,
which is particularly true for the stress intensification in the open-
ing mode.

7. Closure

The thermoelastic problem of uniform steady-state heat flows
disturbed by a partially insulated crack at an arbitrary angle to
the graded interfacial zone in bonded media has been investigated.
Based on the use of plane thermoelasticity equations and the
method of Fourier integral transform, two sets of singular integral
equations were derived for heat conduction and thermal stresses.
The emphasis was placed on the quantification of thermoelastic
deformation in the near-tip region in terms of the values of heat-
flux and thermal-stress intensity factors that elaborated several
unique and salient features in response to the variations of ther-
mophysical parameters in the problem over the given range of
crack orientation angle. The very involved nature of the crack-tip
behavior was indicated under the current nonisothermal loading
environment, which is quite distinctive from that previously ob-
served under the isothermal counterpart.

Specifically, it was manifested that the singular thermal stress
field around the crack tends to be intensified to a larger extent
by the horizontal heat flow in the direction of material gradation
than the heat flow in the vertical direction. It was also noteworthy
that when the neighboring uncracked constituent possesses the
stiffness and thermal expansion that are greater than those of
the cracked one, but with the lowered thermal conductivity, the
oblique crack in the bonded system has the enhanced likelihood
of being closed, as could be inferred by the negative mode I ther-
mal-stress intensity factors, with the implication of the ensuing
possibility of crack-surface contact and friction. Although the trac-
tion-free crack surface condition is thus invalidated, the contact
and friction between the closed crack surfaces were not taken into
account in the present work, in the sense that the crack closure is
what may take place in reality under the influence of prescribed
thermal loading and the corresponding negative values of mode I
stress intensification could still be applicable, if the superposition
with those due to the large enough residual and/or other tensile
loading gives rise to the positive resultants and keeps the crack
open.

In the mixed-mode thermal crack problem presented herein,
another point of interest would be to assess the possible crack
growth and arrest process based on the appropriate fracture crite-
rion. Whether the further crack extension would be the cleavage of
the adjacent graded interlayer, debonding along the nominal inter-
face or reflection back into the substrate may depend on the rela-
tive toughness to load factor ratios. Together with the values of
stress intensity factors, this basically requires the resources regard-
ing the material resistance to fracture in the near-tip region, espe-
cially when the crack intersects or lies along the interface with the
interlayer that essentially exhibits the nonhomogeneous variation
in its fracture toughness. Such consideration is, however, beyond
the scope of the current study and is left for the future
investigation.
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Appendix A

The arbitrary unknowns, A(s), Bi(s), j=1, 2, and ((s), in the gen-
eral solutions for the temperature field are obtained in terms of the
auxiliary function ¢ as:

1h e*/’-zh)

(= Is])(%2 = Is|) (e~
Als) = S Io(s) (A1)
_ ioh
Bi(s) = %Io@) (A2)
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where Ag(s) and Iy(s) are given by
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Appendix B
The elements of a vector ¥(s) = {¥1(s),¥s(s),¥3 (5),P4(s)}' in

Eq. (44a) are expressed in terms of the auxiliary functions ¢o and
¢, j=1,2,as:
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