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We propose a novel hybrid method for calculating accurate responses of geometrically nonlinear struc-
tures exhibiting complex snap-through and snap-back behaviours. The proposed method employs a
hybrid evolutionary-algebraic method to obtain each point of the equilibrium path, where the equilib-
rium is formulated generally as a minimisation problem. Genetic algorithm and Nelder-Mead simplex
methods are used together as the hybrid optimiser. To obtain any arbitrary point of the equilibrium path,
we only need a series of sparse matrix to vector multiplications and do not require information about pre-
vious equilibrium states, the assembly of tangent stiffness matrix, the solution of a set of system of linear
equations or factorisation processes. Both primary and secondary paths can be followed. In addition, uti-
lising the tangent stiffness matrix, this method can effectively find both the limit and bifurcation points
directly. The state of non-proportional loading can also be considered successfully. Additionally, we show
how to generate the solution of a structure whose geometrical and mechanical properties vary slightly,
starting from the original solution. Finally, to demonstrate the efficiency and capabilities of the present
approach, three examples that are well known for their complex snap-through snap-back load-deflection
curves are comprehensively studied, and the results obtained are compared with those reported in the

literature.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The calculation of local and global collapse loads is critical in
the reliable design of structures. For geometrically nonlinear struc-
tures, it is essential to trace the complete load-deflection curve as
well as determine an accurate estimation of the limit and bifurca-
tion points. The study of primary and secondary paths as well as
the post-buckling behaviour of a structure enables us to achieve
a deep insight into its real behaviour. The reader may refer to
Crisfield (1991) to observe the detailed reasons why we require
tracing the complete equilibrium path and its key points. Because
of the importance of this issue, it has been extensively investigated
by researchers. Different methods, including load controlled,
displacement controlled and arc-length methods, have been devel-
oped for the analysis of geometrically nonlinear structures. Among
the different methods developed for tracing nonlinear equilibrium
path, the arc-length method is undoubtedly most appealing tech-
nique. The method has attracted extensive attention since it was
first introduced by Riks (1972, 1979) and Wempner (1971). Bathe
and Dvorkin (1983), Belleni and Chulya (1987), Crisfield (1981,
1983), Forde and Sttemer (1987), Ramm (1981), Schweizerhof
and Wriggers (1986) and others have made different modifications
and improvements to the original method. To identify singular
points (limit or bifurcation points) on the equilibrium path,
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different approaches have been adopted. Among them, the formu-
lation of the problem using an extended system of equations is
most appealing; see, e.g. Ibrahimbegovi¢ and Al Mikdad (2000),
Moore and Spence (1980), Weinitschke (1985), Wriggers et al.
(1988) and Wriggers and Simo (1990). However, the extended sys-
tem usually becomes ill conditioned near a singular point, making
the solution procedure numerically unstable or very sensitive to
small errors. Magnusson and Svensson (1998) developed a method
for the direct computation of complete load-deflection curves,
including primary and secondary paths as well as the exact calcu-
lation of singular points. The method employs an extended system
of equations utilising the deflated block-elimination system (Chan
and Resasco, 1986) to avoid the ill-conditioning problem.

The methods summarised so far are often classified as incre-
mental-iterative methods. These methods are very popular and
have been used extensively in commercial finite element software.
Analytical representation of nonlinear equilibrium path (expanded
in power series of a perturbation parameter) has also been adopted
as an alternative approach even though it suffers from some limi-
tations. The limitations of this method have been eliminated by
combining a numerical approach with the perturbation technique,
leading to a new approach known as asymptotic numerical method
(ANM) (Damil and Potier-Ferry, 1990). ANM has been demon-
strated to be very efficient as a solution strategy for nonlinear
problems especially in structural mechanics. Cochelin (1994) pro-
posed a path following method based on ANM (see also Baguet
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and Cochelin (2003) and Elhage-Hussein et al. (2000)). Najah et al.
(1998) studied the performance of three types of ANM (the re-
duced basis, direct computation of series and Padé approximants)
and showed that ANM with Padé approximants is more efficient
than the others. For more applications of ANM in nonlinear struc-
tural mechanics the reader may also refer to Azrar et al. (1993),
Cochelin et al. (1994a,b) and Vannucci et al. (1998).

Recently, Lee et al. (2011) developed an explicit arc-length
method based on a dynamic relaxation method with kinetic damp-
ing for tracing the post-buckling equilibrium path of structures. To
find the solution of large-scale structures with geometrical nonlin-
earity, Labeas and Belesis (2011) suggested a special methodology
that exploits a series of incremental linear analyses and a set of fic-
titious forces in substitution of the typical Newton-type nonlinear
analysis. The methods reviewed above briefly are fully algebraic. In
this paper, a hybrid method is introduced for the efficient solution
of geometrically nonlinear structures. This method is a hybrid of a
genetic algorithm, as an evolutionary search approach, and the
Nelder-Mead simplex method, as an algebraic heuristic search
technique, to find points on the nonlinear equilibrium path as well
as to directly calculate the limit and bifurcation points for both
proportional and non-proportional loading. Our method also en-
ables us to generate a solution of a slightly modified structure
(modifications can be in both geometrical and mechanical proper-
ties) using the solution of the original structure without any need
for reanalysis. Three examples are studied comprehensively, and
the results obtained are compared with those reported in the liter-
ature. The comparisons clearly verify the accuracy and viability of
our approach.

2. Path-following methods

The equilibrium path may be followed through several meth-
ods, including load-controlled, displacement-controlled and ANM
techniques. Load-controlled methods cannot follow the post-buck-
ling path for structures exhibiting snap-through and snap-back
behaviour. Displacement-controlled methods can reach points be-
yond the limit points and can follow the post-buckling path even
for a state of snap-through. However, the methods suffer from
the same limitation as in the case of snap-back. To follow a com-
plete equilibrium path, a general method, namely arc-length, has
been introduced originally by Riks (1972, 1979) and Wempner
(1971). ANM can also be used as a promising method for the path
following problem. However, according to the popularity of the
arc-length method, in the next section, we briefly describe this
method.

2.1. Spherical and cylindrical arc-length methods

In general, the equilibrium can be formulated using an out-of-
balance force vector as follows.

g(u, /) = q;(u) - /q. =0 (1)

In Eq. (1), g(u, ) is the out-of-balance force vector, which is a
function of the internal forces q;(u) obtained from the true dis-
placements vector u and the external loading vector q, (indepen-
dent of displacement vector) multiplied by the scalar loading
parameter / (load factor). Note that Eq. (1) defines the equilibrium
in the state of proportional loading.

In the arc-length method, a single constraint equation a(u, 4) is
coupled with Eq. (1). The incremental form of this constraint (using
incremental form of displacements Au and loading parameter A/)
is given in Eq. (2)

a(Au, A%) = (Au'Au + Ai%yPqlq,) — AP =0 (2)

where Al is the fixed given radius of the desired intersection that is
an approximation to the incremental arc-length and v is a scaling
parameter.

By applying the Newton-Raphson method to Egs. (1) and (2)
and using the Batoz and Dhatt (1979) approach, iterative displace-
ments éu can be obtained as follows.

ou = ou + sAdu, (3)
where
ou=-K'g, ou.=K'q, 4)

In Eq. (4), K; is the tangential stiffness matrix. In addition, the
incremental and iterative changes in displacements and load
parameter are defined as given in Eq. (5)

Adiy1 = AXi + 04, Au;, 1 = Aug; + ouy i= 0,1,.. (5)

where, Ay = 0 and Au, = 0. Fig. 1 shows the variables defined for a
one degree of freedom system with ¢ = 1.

At this stage, using Eqgs. (2-5), a scalar quadratic equation is ob-
tained as given in Eq. (6), which can be solved for §4;, leading to a
new incremental load.

@100} + @300+ a3 =0 (6)
in which

a; = sulou, + v’q'q, (6a)
a, = 20ul(Au; + ou) + 2A2%y°q'q, (6b)
as = (Au; + 50)' (Aw; + o) — AP + A22y’qq, (6¢)

Eq. (6) is a quadratic equation and may have different roots,
including complex roots. When we have two real roots, a suitable
one could be selected by minimising the angle between the two
successive incremental displacements (see, e.g. Crisfield, 1991,
for more detail). The case of complex roots may be avoided by
decreasing the step length Al However, a more advanced method
to address complex roots was proposed by Kouhia and Mikkola
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Fig. 1. Schematic view of the arc-length procedure and the defined variables with
Y =1 (Crisfield, 1991).
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(1989). The method briefly mentioned above is usually referred to
the spherical arc-length method. Crisfield (1981) and Ramm (1981)
studied the effect of the scaling parameter on the efficiency of the
arc-length method. According to their studies, it is possible to set
this parameter to zero (y = 0) without considering significant
changes in the convergence properties. This case is referred to
the cylindrical arc-length method.

3. Proposed method
3.1. General formulation

In this section, we propose a direct formulation of the nonlinear
equilibrium path (material nonlinearity is not considered) based
on a known displacement field.

Let x be a vector of nodal coordinates for the initial model. In
addition, let u be a known displacement field (nodal displace-
ments). The new geometry of structure including updated nodal
coordinates, denoted by X,, can be obtained using Eq. (7) as
follows.

X, =X-+u (7)

Now, for each element, the deformation gradient F is formed
using original and new geometries as given in Eq. (8).

u o ou ou
1 + X ay 0z
_ ov v w
F - ox ] + ay oz (8)
ow ow ow
OX ay + %

Additionally, u, » and w are displacement functions in the x-, y-
and z-directions, respectively, based on the element’s shape func-
tions and nodal displacements.

For large deflections, different strain measures, including
Green-Lagrange, Almansi and Hencky (log-strain), may be used.
All of these strain measures can be derived from the deformation
gradient (see, e.g. Bathe, 1996 or Crisfield, 1991). However, in this
study, we use the Green-Lagrange strain measure that is given in
Eq. (9) in tensor form as:

1 5
E; = (FF—1) (9)
where I is a second order identity tensor. The Green-Lagrange strain
measure can be represented for truss elements in a very simple
form using initial and new lengths as follows.

PP
“="op

In Eq. (9a), I, is the length of element after applying the nodal
displacements, while [ is the original length.

Using Eq. (9) and the constitutive law considered, the second
Piola-Kirchhoff stresses (conjugated with Green-Lagrange strain
measure) are calculated. These stresses provide a vector of element
forces, denoted by p, in the local coordinate system of each ele-
ment. Finally, a rectangular equilibrium matrix, which is widely
used in the context of force method, is used to transform the vector
of element forces to the nodal internal forces in the global coordi-
nate system as given in Eq. (10)

q;(u) = Hp (10)

where q;(u) is the internal nodal force in the global coordinate sys-
tem created from the known nodal displacement field u and H is the
rectangular equilibrium matrix assembled from the equilibrium
matrix of all elements. The reader may refer to Prezemieniecki
(1968) for more details about this matrix and the generation meth-
od for different finite elements in the context of the force method.

(9a)

At this stage, the state of equilibrium can be written by setting
the out-of-balance force vector g to zero as previously given in

Eq. (1).
3.2. Treatment of the equilibrium path

According to the procedure described above, it is possible to
find the state of equilibrium by minimising the objective function
given in Eq. (11)

Minimise |q;(u) — /q,]l, (1)

Subject to Uy < Ui < Uy, W< A< Iy

where u; and u;, are the lower and upper bounds of displacements,
respectively. In addition, 4, and 4, are the lower and upper bounds
of the load factor, respectively. For some points, especially when
there is a complex load-deflection curve, it is possible that the
objective function defined in Eq. (11) converges to a local minimum
that is not as small as required (according to the tolerance defined).
In such cases, a modified objective function given in Eq. (12) should
be examined to reach a better point. However, two points obtained
as solutions of Eq. (11) and Eq. (12) may be used as new start points
for the unconstrained minimisation technique that we will use.

() - il
@], 12)

3.3. Direct evaluation of limit or bifurcation points

The formulation given in Eq. (11) could simply be modified to
enable us to directly find limit or bifurcation points. In a limit or
bifurcation point, the tangent stiffness matrix is no longer positive
definite, and full rank, i.e., the determinant of tangent stiffness ma-
trix, will be zero or a very small magnitude. However, when we are
working with real numbers, the determinant is not a proper crite-
rion for checking the rank of matrices. As an example, it can be
simply shown that a perfectly conditioned matrix may have a very
small determinant (with respect to the computer eps that is
2.22e—16 for 64 bit real numbers). As a result, we use eigenvalues
of the tangent stiffness matrix as a suitable indicator of its rank. Eq.
(13) shows the new optimisation problem defined for the direct
evaluation of limit or bifurcation points.

Minimise t; + t; (13)
Subject to Uy < U < Uy, <A<y

where

tr = [1q;(w) — 2qe|l,, (14a)
t; = min |diag(D)| (14b)

In Eq. (14b), D is a diagonal matrix consisting of all eigenvalues
of the tangent stiffness matrix that could be calculated using Eq.
(15) as follows

K.® = ®D (15)

K: is the tangent stiffness matrix formed using the current displace-
ment field, @ is the matrix of eigenvectors and D is the diagonal ma-
trix of eigenvalues. In fact, t, is the smallest absolute eigenvalue of
the tangent stiffness matrix. It is clear that when the objective func-
tion defined in Eq. (13) is zero or has a very small value, the calcu-
lated point is on the equilibrium path and the tangent stiffness
matrix is rank deficient. In relation to Eq. (15), it is useful to note that
the computational cost to calculate all eigenvalues and eigenvectors
of K; (within the minimisation process) is very significant, especially
for large scale structural models. Fortunately, we only need to
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calculate the smallest absolute eigenvalue of K;, hence the inverse
iteration method, known as the natural generalisation of the power
method, can be employed effectively. Inverse iteration method en-
ables us to find smallest absolute eigenvalue and corresponding
eigenvector of a matrix by solving a set of linear equations. The rate
of convergence of inverse iteration method can significantly be
accelerated by setting a suitable shift (Wilkinson, 1965). For special
cases (if K; is semi-positive definite at limit or bifurcation points)
original power method with a shift can also be employed that is very
faster than the inverse iteration method. However, this step is still
computationally expensive for large scale finite element models.

3.4. Direct evaluation of bifurcation points

The solution obtained from the previous section may be a limit
or bifurcation point. It is straightforward to determine which point
is reached. For each point as a solution of the minimisation prob-
lem defined in Eq. (13), a quantity can be calculated as follows

ts = Q.0 (16)

where ¢ is the eigenvector corresponding to the zero eigenvalue of
the tangent stiffness matrix. If t3 is zero, then the point obtained
will be a bifurcation point; otherwise, it will be a limit point. By
checking this value, it is possible to determine the type of point ob-
tained. However, another minimisation problem may be defined as
given in Eq. (17), where a bifurcation point may be detected directly
as follows.

Minimise t; +t; +t3 (17)

Subject to Uy < U < Uy, W<A< y

The solution process described thus far can directly detect the
limit and bifurcation points without any need to trace whole equi-
librium path and without any need to find a solution of a system of
linear equations, which is usually ill conditioned near the limit and
bifurcation points.

3.5. Non-proportional loading

The equilibrium relationship given in Eq. (1) is valid for a state
of proportional loading. In other words, there is only a single load-
ing parameter, 4, and all loads are scaled proportionally via this
parameter. For many practical structural problems, this loading re-
gime is too restrictive (Crisfield, 1991) and a structure may be sub-
jected to a non-proportional loading where loads are scaled by
different loading parameters. In this case, there are different sce-
narios for which a structure can be unstable according to different
combinations of loading parameters. This state is very expected
especially for the space structures that their live loads (e.g., snow
load) may be distributed non-uniformly.

The nonlinear equilibrium equations for a state of non-propor-
tional loading can be represented using matrix of loading parame-
ters as given in Eq. (18).

gu,A) =q;(u) — Aq, =0 (18)
where, A is a diagonal matrix of loading parameters as follows.
A = diag([21, 22, - .., Zn)) (19)

In Eq. (19), n is the total number of degrees of freedom (for all
free nodes) and /; is the loading parameter associated with ith de-
gree of freedom. For a state of proportional loading, we have a sin-
gle loading parameter, i.e., 4;=/4,i=1,2,...,nand A=Al (Iis an
identity matrix). Substituting A into Eq. (18) gives the equilibrium
equations in the state of proportional loading, Eq. (1). The formula-
tion proposed in Section 3.2 can be modified easily to solve Eq. (18)
as given in Eq. (20).

Minimise ||q;(u) — Aq,|, (20)

Subject to Uy < U < Uy, 2it < A < Ay

Unfortunately, this subject has not been addressed adequately
in the literature. As a result, it may still be a challenge to obtain
the nonlinear response of a structure to a non-proportional loading
via available solution strategies. However, as given in Eq. (20), our
method deals with this problem in the same way as the propor-
tional loading.

3.6. Solution for slight variation in initial data

The formulation of the problem with our method has an inter-
esting advantage over conventional methods. Suppose we have ob-
tained the complete solution of a geometrically nonlinear problem.
This solution may be achieved using any solution strategy, includ-
ing the method introduced here. Now, if one requires the solution
of a problem with slight changes in both the geometrical and
mechanical properties of the initial problem, conventional solution
procedures should be started with new initialisation. However, the
proposed method can simply be adapted to form the solution of
the new problem using the solution of old problem. In fact, it is suf-
ficient to find the solution of the new structure by minimising the
objective function defined in Eq. (11) (without constraints) using
an unconstrained minimisation technique where the previous
solution is considered as a good starting point. This notable feature
is useful especially for nonlinear analyses of structures where a
considerable computational effort is usually required. The effi-
ciency of this approach will be shown in Example 5.1.

4. Optimisation methods
4.1. Genetic algorithm

Genetic algorithms are used as a global search technique based
on Darwin’s evolution theory of ‘survival of the fittest’. The method
was first inspired by Holland (1975) and used by many others as
one of the most popular and practical meta-heuristic approaches.
In this method, an initial random population of feasible solutions

Table 1
Main parameters of the genetic algorithm used.

Parameter name Type or value

Bounds of variables
Population (type, size)

According to the type of problem
Real valued, 20 and 50 for
examples 1 and (2, 3) respectively
Selection Stochastic uniform
Elitism count 2
Crossover (type, rate) Heuristic (ratio = 1.7), 0.9
Mutation (type, rate) Adaptive feasible, 0.1
Stopping criteria (fitness limit) le-2, 1e-3

(generation number) 2000

Table 2
Main parameters of the Nelder-Mead simplex method.

Parameter name Type or value

Start point Solution generated by genetic
algorithm or any available
solution
Stopping criteria
(Max number of iterations) 200 x number of variables
(Max number of function evaluations) 200 x number of variables
Function tolerance le-10
Variables tolerance (Euclidian le—-10
distance)
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Table 3

Representation of an individual for the sate of proportional and non-proportional loading.

25

Chromosome representation (proportional loading)

Chromosome representation (non-proportional loading)

Genes corresponding to
displacements

Gene corresponding to single loading parameter

Genes corresponding to
displacements

Genes corresponding to loading
parameters

uq Uy Un A

uq Uy . Uy M Ao . Jn

(individuals) are evolved to generate better solutions based on ge-
netic operators (selection, crossover, mutation, etc.). We also use a
genetic algorithm as a global optimiser to solve the minimisation
problems defined in Section 3. The objective functions defined ear-
lier are selected as our desired fitness functions. The main param-

k=4
EA=1000

—_
<o

I.._
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Fig. 2. A two-member shallow truss.

Load (A p)
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1
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Isplacemen (z-direcn’on)--

eters, including the selection method and genetic operations used
in our genetic algorithm, are presented in Table 1.

4.2. Nelder-Mead simplex method

The Nelder-Mead simplex method (Nelder and Mead, 1965) is a
well-known heuristic optimisation method that finds the mini-
mum (or maximum) of an unconstrained multivariable function.
This method does not use any numerical or analytical gradients.
A simplex in n-dimensional space is characterised by the n + 1 dis-
tinct vectors that are its vertices. In two-dimensional space, a sim-
plex is a triangle, and in three-dimensional space, it is a pyramid.
At each step of the search, a new point in or near the current sim-
plex is generated. The function value (objective function) at the
new point is compared with the function’s values at the vertices
of the simplex, and usually, one of the vertices is replaced by the
new point using operations including reflection and expansion,
giving a new simplex. This step is repeated until the diameter of

- Primary path
.

25 :l

Fig. 3. Primary (blue dots) and bifurcated paths (red dots) for Example 5.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

Table 4
Detailed results for Example 1 (bifurcation point).

Generation/ lq; (a) — 2, ||, Displacement Load (/p) Computational
iteration (uqz) times (second)
Hybrid method 1 1.800950 0.213974 1.582241
2 0.917897 0.263471 2.172845
3 0.590701 0.349074 2.585803
5 0.198088 0.301845 2.634877
14 0.061466 0.319827 2.748782
15 0.046919 0.311922 2.751487 0.2571
23 0.024285 0.313895 2.722590
34 0.004967 0.314182 2.739831
39 0.002045 0.314500 2.741392
41 0.001159 0.314567 2.741415
42" 0.000904 0.314587 2.741422
43 0.000904 0.314587 2.741422
69 6.89e—05 0.314652 2.741326 0.0354
111 8.06e—08 0.314652 2.741392
147 7.54e—-11 0.314652 2.741392
Analytical, Krenk (2009) 0.314652 2.741392
Numerical, Magnusson and Svensson (1998) 0.3147 2.741

" After this generation the hybrid method switches from genetic algorithm to the Nelder-Mead simplex method.



26 K. Koohestani/ International Journal of Solids and Structures 50 (2013) 21-29

the simplex is less than the specified tolerance. However, to find a
minimum, the simplex method requires a starting point that
should be sufficiently close to the final desired point. In addition,
note that we use Nelder-Mead version of the simplex method as
described in Lagarias et al. (1998).

4.3. Proposed hybrid optimisation method

The optimisation methods described above have advantages
and disadvantages depending on what we are looking for. A genetic
algorithm as a global search technique employs different starting
points (a population of random individuals). This exceptional fea-
ture increases the chance of finding the global minimum rather
than a local one. However, the convergence rate of the method is
not as fast as a local optimiser. On the other hand, the simplex
method is very efficient as a local optimiser and works properly
and rapidly when a good (sufficiently close to the local minimum)
starting point is available. For complex problems, setting up a good
starting point is almost impossible. To overcome this weakness of
the simplex method, our hybrid solution procedure uses the solu-
tion of a genetic algorithm as a good starting point for the simplex
method.

First, we use the genetic algorithm to find a minimum according
to the tolerance adopted. We do not consider a hard tolerance for
this step. In other words, we aim to find a solution with a maxi-
mum of one to three significant digits. The solution obtained from
this step is close to the final solution. However, if the solution does
not converge to the defined tolerance, it may still be used as a
starting point for the next step and be able to converge to a valid
point according to the final convergence criterion. Second, the
solution obtained from the previous step is used as a starting point
for the simplex algorithm. This step is the final step to find a solu-
tion with high accuracy. Hence, a hard stopping criterion should be
considered. In this study, the stopping criterion is set to 1e—10 (see
Table 2).

The above process can be used similarly for non-proportional
loading and the only modification required is to add sufficient
number of genes (corresponding to the number of loading param-
eters) to each chromosome (Table 3).

Obviously, the best solution obtained from the genetic algo-
rithm is used as a good starting point for Nelder-Mead simplex
method, allowing the new variables (loading parameters) to be in-
cluded in the local search as well (see example 5.3).

Table 5
Detailed results for Example 1 (limit point).

5. Numerical examples
5.1. A two-member truss

In Fig. 2, a shallow truss consisting of two members is shown.
This example has been studied by several authors e.g., Krenk
(2009), Magnusson and Svensson (1998) and Pecknold et al.
(1985). Here, we consider the specific case associated with the per-
fect structure where the geometrical imperfection is ignored in the
y-direction. We aim to find the primary and bifurcated equilibrium
paths using the proposed method. Fig. 3 shows the primary and
bifurcated paths obtained using our method where the step size
for displacement in the z-direction is set to 0.02.

Tables 4 and 5 provide the detailed results obtained for the di-
rect calculation of the bifurcation and limit points. The results ob-
tained are in complete agreement with the analytical results
derived by Krenk (2009) and the numerical results reported by
Magnusson and Svensson (1998) (up to 10 significant digits are
the same according to the stopping criteria adopted). The compar-
isons clearly demonstrate the accuracy and efficiency of the pro-
posed method for the direct calculation of the limit and
bifurcation points without any need for tracing the complete equi-
librium path. In addition, to demonstrate the efficiency of the hy-
brid method (to emphasise the role of the Nelder-Mead method),
the bifurcation point is also obtained using a simple genetic

Initial structure
Load (A p)
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[
T
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Fig. 4. Generated equilibrium paths for the modified structures using procedure
described.

Generation/ lq; (1) — 2qe ||, Displacement Load (/p) Computational
iteration (uqz) times (second)
Hybrid method 1 1.628271 0.340253 1.441836
2 1.118989 0.425915 1.869237
3 0.16154 0.312999 2.880681
5 0.152083 0.419197 2.964717
10 0.076628 0.425477 2.906092 0.2103
14 0.068693 0.422400 2.965443
22 0.007848 0.422738 2.908817
30 0.004419 0.422738 2.90116
34 0.003443 0.422541 2.902666
35 0.001662 0.422638 2.901928
36" 0.000686 0.422638 2.902905
61 0.000384 0.422648 2.903611
70 0.000102 0.422648 2.903317 0.0451
118 1.06e—-07 0.422650 2.903275
157 8.94e-11 0.422650 2.903274
Analytical, Krenk (2009) 0.422650 2.903274
Numerical, Magnusson and Svensson (1998) 0.4226 2.903

" After this generation the hybrid method switches from genetic algorithm to the Nelder-Mead simplex method.
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Fig. 5. A star-shaped truss dome.

algorithm. In this case, the method converges to the desired point
after 1520 generations where the fitness value becomes 9.04e—11.
The computational time for this process is 6.834 s, which shows a
dramatic increase in comparison with the 0.2925 s of the hybrid
method, verifying the significant role of local search. Note that
all computations are performed on an Intel Pentium 4, 1.5 GHz
processor.

Furthermore, to show the viability of the proposed method in
relation with the procedure described in Section 3.6, two different

Load (Ap)
100 . ; .

changes in the initial data were made, and the solution of the new
structures is provided. In the first case, the height of the truss was
set to 0.9, and in the second case, the height and the EA were set to
0.9 and 500, respectively. The equilibrium paths related to these
cases were generated using the suggested procedure and are illus-
trated in Fig. 4. The results obtained are very accurate, and the
maximum residual for these cases in comparison with the solu-
tions obtained by reanalysis is 1e—10, according to the tolerance
adopted (Table 2).

5.2. A star-shaped 3D truss dome

Fig. 5 shows a star-shaped truss dome. Several researchers have
addressed this example extensively considering different load
cases. Here, we study the case that there is only a point load at
the top of the dome, i.e. 4y = and 4, = 0. The complete load-
deflection curve, including several limit and bifurcation points,
has been provided, e.g., by Magnusson and Svensson (1998) and
Wriggers et al. (1988) (see also Wriggers, 2010). This dome has also
been investigated in Crisfield (1997). We find the entire equilib-
rium path using the developed method in 1700 points. The load-
deflection curves for the displacement of nodes 1 and 2 in the
z-direction and the radial displacement of node 2 are illustrated
in Fig. 6. Obviously, the equilibrium path exhibits different snap-
through and snap-back events, which lead to a complex load-
deflection curve. Each point on the equilibrium path is obtained
using the hybrid algorithm developed in this paper. In addition,
the first limit point is calculated using the proposed method di-
rectly (Table 6 provides the detailed results) and compared with
that obtained by the authors mentioned above, thus verifying the
accuracy of the results.

5.3. 3D dome with non-proportional loading

In this example the 3D dome studied in the previous example is
considered again in a state of non-proportional loading, i.e.
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Fig. 6. Load-deflection curves for Example 2 (a) load and displacement in the z-direction (node 1); (b) load and displacement in the z-direction (node 2); (c) load and

displacement in the radial direction (node 2).
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Table 6

K. Koohestani/ International Journal of Solids and Structures 50 (2013) 21-29

Detailed results for Example 2 (first limit point).

Generation | [lq;(w) — iq.]|, Displacement Load (/p) Computational
iteration (u1z) times (second)
Hybrid method 1 42.66941 2.93063 —28.1198
4 27.06217 0.85330 5.900099
12 13.11603 1.25552 0.805619
22 5.428611 1.19697 3.026898
37 3.365671 1.24153 2.301372 6.5722
54 1.968832 0.84776 2.213790
68 0.506961 0.76518 3.772206
81 0.172269 0.77222 3.396856
100 0.025596 0.76814 3.411469
115 0.010087 0.76815 3.401420
125 0.009452 0.76815 3.409965
130 0.007123 0.76835 3.409186
185 0.000242 0.76857 3.406993 0.2618
264 7.17E-08 0.76856 3.407001
306 9.83E-11 0.76856 3.407001
Numerical, Magnusson and Svensson (1998) 3.407
Numerical, Wriggers et al. (1988) 3.407

" After this generation the hybrid method switches from genetic algorithm to the Nelder-Mead simplex method.
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Fig. 7. Different combinations of loads to make the structure unstable (state of non-
proportional loading).

nations for bifurcation (see Fig. 7). This simple example is provided
to show the importance of the non-proportional loading for the
reliable design of space structures and the viability of our method
to deal with this problem.

6. Conclusions

In this paper, a novel hybrid method is introduced for finding
the solution of geometrically nonlinear structures. The major
advantages of the methods and formulation suggested are as
follows:

1. Each point on the equilibrium path can be obtained directly
without any need to solve a set of linear equations or form a
tangent stiffness matrix, instead using a series of sparse
matrix to vector multiplications through a special optimisa-
tion process.

2. Limit and bifurcation points in any section of the load-
deflection curves for both proportional and non-propor-
tional loading can be found directly without tracing the
entire equilibrium path (formation of the tangent stiffness
matrix is required for this feature).

3. The nonlinear response of a structure to a slight variation in
the geometrical and mechanical properties can be obtained

directly.
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