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Highlights 
• Asymptotic homogenization method provides accurate numerical result 

• The spatial fiber distribution allows two composite property symmetry behavior 

• The imperfect interphase has influence on the effective properties 

• Magnetoelectric coupling is sensitive to fiber distribution and imperfection  
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Abstract 

 

The antiplane effective coefficients of two-phase piezoelectric-piezomagnetic periodic 

composite materials reinforced with cylindrical, unidirectional and periodically distributed fibers 

are computed by means of asymptotic homogenization method (AHM). The constituents have 

transversely isotropic properties belonging to 6mm symmetry group and the periodic distribution 
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of the fibers is assumed to be parallelogram-like as representative volume element (RVE). In the 

model, the imperfections are modeled as an idealization of spring-capacitor-inductor 

distributions at the interface. The antiplane local problems and the associated effective 

coefficients result of the AHM are explicitly described. The explicit formulae depend on the 

physical properties of the constituents of the phases and the constants that characterize the 

existence of the aforementioned imperfection. The validation of the present approach is shown 

by comparison with numerical results reported in the literature. The influences of the fiber spatial 

distributions and the imperfect fiber-matrix interface contact conditions on the effective 

properties are analyzed. Spatial fiber distribution induces some value changes in the magneto-

electric coefficient and two possible composites property symmetry are obtained: monoclinic 2 

and transversely isotropic. The effect of the imperfect contact parameter has a more pronounced 

value on the ME coefficient than the fiber distribution. 

 

1.   Introduction 

 

Composite materials that exhibit either improved properties or new ones in comparison to 

their constituents have been the focus of the scientific community for many years to support 

modern technology. Considerable advantages, in some of them, have been the structure 

optimization, the physics properties manipulation and the emergence of new properties due to 

couplings, while preserving a comparable or improved functionality level (Li and Dunn, 1998).  

The coupling magnetoelectric effect (ME) arises from cross or product properties, i.e., the 

polarization induced by a magnetic field, or conversely the magnetization induced by an electric 

field (Nan et al., 2008). The composites made of piezoelectric and piezomagnetic phases exhibit 

a coupling magnetoelectric effect, which does not exist in each phase, but appears as a result of 

the mechanical interaction between them. The coupling properties are important to design novel 

appropriate materials for smart device, broadband magnetic field probes, electromagnetic 

information transformation, sensors, actuation and controller, magnetoelectric memory cells 

(Wang, 2015; Xu and Xiao, 2015). 

The pioneering works on magnetoelectric composites are reported by Van Suchtelen (1972), 

Van Run et al. (1974) and Van den Boomgaard et al. (1974). The magnetoelectric composites 

turn out to have higher magnetoelectric coefficient than single-phase materials, therefore many 
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authors have focused their search on this line, e.g., Van den Boomgaard and Born (1978) and 

Bunget and Raetchi (1981) obtained magnetoelectric composites of the kind Ni - Zn ferrite - PZT  

and BaTiO3 - Ni(Co, Mn)Fe2O4. The raise of dissimilar kinds of multi-phase composite materials 

(thin films (nanostructures), bulk, particulates, laminates, fibrous and others) is motivated by the 

interest in understanding the coupling phenomena for a better manipulation of effective 

properties (Harshe et al., 1993; Benveniste, 1995; Wu and Huang, 2000; Nan et al., 2008; 

Dinzart and Sabar 2011; Kuo, 2014; Wang et al., 2015 and Kuo and Huang, 2016). 

The development of numerical models and experimental methods for materials 

characterization in different conditions is a field of research and development of strategic 

importance for the technology innovation. Micromechanics methods have been used to estimate 

the overall properties of periodic composites (see for instance the works of Eshelby, 1957; Mori 

and Tanaka, 1973; Mclaughlin, 1977; Benveniste, 1987, 1995; Hashin, 1990; Parton and 

Kudryavtsev, 1993; Nemat-Nasser and Hori, 1999; Aboudi, 2001; Tong et al., 2008; Kuo, 2011; 

Yan et al., 2013; Kuo and Chen, 2015). One of them, the asymptotic homogenization method 

(AHM), which is based on the double scale asymptotic expansion (see books of Pobedrya, 1984; 

Bakhvalov and Panasenko, 1989), is the tool, we applied in the present contribution. The AHM 

is an accurate mathematical tool that has been used in several works for effective properties 

estimation in elastic composites (López-Realpozo et al., 2014), piezoelectric composites 

(Rodríguez-Ramos et al., 2013), magneto-electro-elastic composites (Guinovart-Díaz et al., 

2013) and thermo-magneto-electro-elastic composites (Sixto-Camacho et al., 2013), among 

others. 

The prediction of the overall properties of magneto-electro-elastic (MEE) composites has 

aroused great interest among researchers, showing great impact on those composites where the 

coupled phenomena is induced from discontinuous reinforcements. The bonding condition at the 

interface between the fiber and matrix is one of the important factors for the analysis and control 

of the resulting material properties. The perfect bonding condition is an idealization that may be 

inadequate for the description of the physical nature and mechanical behavior of the interface 

region. The complicated description of the interface still motivates the necessity to introduce new 

simplified theoretical approaches. They simulate a more real behavior of the idealized composite 

and the way to include the caused effects on the interface during the conformation of the new 

composite (Wang and Pan, 2007; Wüerkner et al., 2013; Otero et al., 2014; Wang, 2015). 
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In particular, the linear spring interface and the interphase models are frequently employed 

to simulate the interface regions in fiber-reinforced composites. Both models, in general, 

illustrates some interface damages or the thin glue layer between two adjacent phases. In the 

first, the existence of displacement and/or stress discontinuities on the interface is assumed and 

represented by linear and nonlinear laws (Hashin, 1991; Benveniste and Miloh, (2001); Wang et 

al., 2005, López-Realpozo et al., 2011; Sevostianov et al., 2012; Kuo and Huang, 2016). The 

second model (known as three-phase model) is described as an active region, considered as a thin 

layer (interphase or mesophase) between the fiber and matrix (Hashin, 2002; Dinzart and Sabar, 

2011; Sevostianov et al., 2012; Yan et al., 2013). The last representation is a real and excellent 

approximation for the complex phenomenon that may occurs in the fiber-matrix transition zone. 

It is conveniently used in analytical or numerical solutions of boundary-value problems of 

composite materials Wang et al. (2005).  

In this work, the formal description reported by Wang and Pan (2007), Rodríguez-Ramos et 

al., (2010) for the interface models is further continued. Here, the existence of mechanic, electric 

and magnetic imperfections at the interface between piezoelectric and piezomagnetic phases are 

considered. Furthermore, the influence of the imperfect contact in the whole set of MEE 

effective properties of fiber unidirectional reinforced composite with parallelogram-like RVE is 

further studied. The AHM is applied to the heterogeneous media and techniques of the complex 

variable are applied to solve the local problems derived by the homogenization procedure. Brief 

formulation of the antiplane local problems, the solution of the local problems and the derivation 

of the effective coefficients are given.  

The main contribution of the present work is focused on the effect of the spatial fiber 

distribution and the effect of the mechanical, electrical and magnetical imperfect contact 

conditions on the magneto-electric (ME) effective coefficient. This effect has been only 

previously reported for hexagonal and square unit cell (Espinosa-Almeyda et al., 2011). Then, a 

wider range of parallelogram-like RVEs is studied, which is given as consequence of the several 

cases of fiber distributions considered herein. As a result of fiber distribution, it is possible to 

obtain two classes of symmetry point groups (monoclinic 2 and transversely isotropic structures) 

for global behavior and other ME effective properties are arisen for these types of symmetries. 

For some cases, higher ME moduli than previously reported ones can be achieved. In addition, 
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the effects of the imperfect contact condition at the interphase, the fiber volume fraction, and the 

selection of the constituent phases on the antiplane effective properties are discussed. 

 

2.   Heterogeneous problem formulation and basic formulation 

 

The composite is defined 3R  in the Cartesian system of coordinates 1 2 3( , , )x x x  with 

origin O  as can be seen in Fig.1 (a). This region   represents a solid material which responds to 

the linear coupling among the anti-plane shear and the inplane (
1 2Ox x ) electric and magnetic 

fields. The composite geometric description is characterized by a two-phase reinforced structure 

(fiber/matrix) in which the fiber distribution is represented by a parallelogram-like array. The 

unidirectional, circular, identical and continuous fibers are embedded in a medium (matrix) (Fig. 

1(a)). They are periodically distributed without overlapping and infinitely long in the 3Ox  

direction. 

The piezoelectric and piezomagnetic homogeneous constituents have transversely isotropic 

properties and belong to the crystal symmetry punctual group 6mm . The 3Ox  axis for both the 

fiber and the matrix is parallel to the fiber direction. The materials properties satisfy the 

conditions of symmetry ijkl jikl ijlk klijC C C C   , kij kjie e , kij kjiq q , 
ik ki  , 

ik ki   and

ik ki  , and the positivity 
3

1 10, , ( / ) ,s ijkl ij kl ij klm A C A A m A Ax  

3

2 20, , ( / )ik i k i km a a m a aa x  and 3

3 30, , ( / )ik i k i km bb m bbb x , 

where 1m , 2m  and 3m  are positive constants, and 3

s  is the space of symmetric 3 3  matrices. 

Also, for the piezoelectric (piezomagnetic) constituents the piezomagnetic (piezoelectric) 

properties have null values, and both constituents have null magnetoelectric properties.  

      The associated structure of the composite in the normal plane 
1 2Ox x  to cylindrical axis for the 

RVE at the microscale level is showed in Fig. 1(b) and it is characterized in the local Cartesian 

system of coordinates  1 2 3; , ,O y y y . Here, the appropriate RVE denoted as Y  is taken as 

parallelograms whose fiber cross section is a circle of radius 0R  in the 1 2Oy y plane. The 

regions occupied by the matrix 1 ( 1)S  and the fiber 2 ( 2)S  interact throughout the 

circular interphase denoted by  0: , 0 2iz z R e         such as, 1 2Y S S   and 
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1 2S S  . Furthermore, the RVE is considered to have periodicity property on the complex 

plane 1 2z y i y   where 1  and 2  are the principal periods and 
1  the angle of inclination of 

the cell, see Fig. 1(b). The percolation fiber volume fraction for 0

1 30  , 040 , 050 , 060 , 070 ,

080  and 090  are equal to 0.421, 0.571, 0.650, 0.732, 0.906, 0.835, 0.813, 0.797, and 0.785 

respectively. 

 

The antiplane constitutive equations for the magneto-electro-elastic materials under the 

previous description can be written (following the formulation of Nan, 1994; Li and Dunn, 1998) 

by components in the forms  

3 1313 3 113 1132 ,C e E q H                       (1) 

113 3 11 112 ,D e E H                        (2) 

113 3 11 11 ,B q E H                                (3) 

Being 1, 2  . Here, 3  and 3  are the antiplane shear stress and strain, E  and D  are the 

inplane electric field and electric displacement components and, H  and B  are the inplane 

magnetic field and magnetic induction components. 1313C , 113e , 113q , 11 , 11  and 11  are the 

shear modulus, piezoelectric, piezomagnetic, magnetoelectric coupling, the dielectric 

permittivity and the magnetic permeability coefficients, respectively.  

The equations associated to the theory of plane strain linear elasticity and the quasi-static 

approximation of the Maxwell’s theory takes the form  

/ 23 3,u ,                     (4)

,E x ,                                                         (5) 

,H x ,                              (6) 

where 3u  is the only non-null antiplane mechanical displacement and,   and   are the 

respective electric and magnetic potentials implicated. The comma notation is used to represent 

the partial derivate relative to the x  component, i.e., ( ) ( ), x      .  

The governing equations for a MEE composite  , in the static case and in absences of body 

forces, electric charges and electric current densities, take the form:  
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, 0ij j  , 
, 0i iD  , 

, 0.i iB                  (7) 

Then, if Eqs. (7) are combined with Eqs. (1)  (6), it yields to the coupled system of partial 

differential equations with rapidly oscillating coefficients on  ,  

1313 3, 113 , 113 , ,

113 3, 11 , 11 , ,

113 3, 11 , 11 , ,

( ( ) ( ) ( ) ) 0,

( ( ) ( ) ( ) ) 0,

( ( ) ( ) ( ) ) 0,

C u e q

e u

q u

   

   

   

 

   

   

  

  

  

y y y

y y y

y y y

                        (8) 

3 1( )u g x

 , 2 ( ),g x


  3( )g x


              (9) 

The Eqs. (8) together with the boundary conditions, Eq. (9), represent the antiplane problems 

associated with the theory of the linear magneto-electro-elasticity for a heterogeneous structure 

 , where 
1( ),g x  

2 ( )g x  and 
3( )g x  are infinitely differentiable functions on .  

The imperfections at the interphase are modeled as an idealization of the spring-capacitor-

inductor layer model. They are measured as parameter functions of imperfections like linear 

spring K , electrical capacitance M  and magnetic inductance N  according to Otero et al. 

(2014). They are characterized as follows: 

( ) ( )

3[[ ]] 0,n 

    
( ) ( )[[ ]] 0,D n 

    
( ) ( )[[ ]] 0,B n 

                                                         on       (10) 

( ) ( ) 1

3 3( 1) [[ ]],n K u  
     ( ) ( ) ( 1) [[ ]],D n M  

     ( ) ( ) ( 1) [[ ]],B n N  

              on      (11) 

In Eqs. (10) and (11), the normal component of the mechanical traction, electric displacement 

and magnetic flux are continuous across the interface .  They are proportional to the jump of 

mechanical displacements, electric and magnetic static potentials respectively (Wang and Pan, 

2007). The combination of the positive values of ,K  M  and N  parameters identify all possible 

imperfections existing between the idealized perfect contact case , ,K M N   and the 

complete decoupled case 0K M N    between the fiber and matrix.  
n




 is the  

component of the outward normal to the surface S  on .  ( ) (1) (2)[[ ]]f f f    describes the 

jump of the function f  across the interface taken from 
1S  to 

2S . It is possible to define 

dimensionless imperfect parameters as follow: (1)

1313 0/ ,K KC R  (1)

11 0/ ,M M R  and 

(1)

11 0/N N R . For numerical calculations, it is more convenient to propose that 1/K K , 

1/M M   and 1/N N  . Then, from now on for the imperfect parameters, we have: the 
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perfect limit case is 0K M N    and the total decoupled is , ,K M N   between the fiber 

and matrix.  

 

3.   Asymptotic homogenization method: effective properties and antiplane local problems  

 

The two scale asymptotic homogenization method is the tool used in this work. One scale, 

denoted by  1 2 3, ,y y yy  characterizes the heterogeneities at microscopic or local level and 

other one,  1 2 3, ,x x xx , describes the macroscopic or global behavior of the composite. The 

scales are related by / ,y x  where the dimensionless parameter /l L   ( 1  ) represents 

the ratio between the characteristic longitudes of the RVE ( )l  and the linear dimension of the 

composite ( )L , see Fig. 1. Fundamentally, the study for MEE fiber composites is derivated 

following the ideas of Pobedria (1984) and Bakhvalov and Panasenko (1989).   

The desired solution for the statement of the problem Eqs. (8)  (11) should be searched by a 

set of interconnected problems, starting by the expansion of functions U  that are infinitely 

differentiable and Yperiodic with respect to the local variable y  and are represented by 

means of the two scale asymptotic expression  

(0) (1) 2( ) ( , ) ( , ) O( ),   U x U x y U x y                                                                                       (12) 

where (1) (1) (1) (1) T

3( , , )u  U  is the correction of the original function T

3( , , )u  U  which are 

explicit functions of the so called local functions. These local functions are solutions of the well-

known local (or canonical) problems that satisfy the resultant differential equations linked with 

the original problem in the RVE (Sixto-Camacho et al., 2013).  

 

3.1   Antiplane local problems formulation and effective properties 

 

The corresponding antiplane local problems, denoted as 
13 ,  

23 ,  1 ,  2 ,  1  and 2 , 

are now formulated. The fundamental problem consists in finding the matching local functions 

( ) ,
X  ( )Y  and ( )

Z  that satisfies the Laplace equations, the imperfect contact conditions at the 

interface   over the RVE. These conditions can be written as: 
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( ) ( ) ( ) ( ) ( ) ( )

1313 , 113 , 113 ,

( ) ( ) ( ) ( ) ( ) ( )

113 , 11 , 11 ,

( ) ( ) ( ) ( ) ( ) ( )

113 , 11 , 11 ,

0,

0,

0,

C e q

e

q

     

  

     

  

     

  

 

 

  

  

  

X Y Z

X Y Z

X Y Z

                                                   in S
  ( 1,2  )             (13) 

   

   

1 (1)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1313
1313 , 113 , 113 , 1 1 1 2 2

0

1 (1)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 11
113 , 11 , 11 , 2 1 1 2 2

0

( ) ( ) (

113 , 11

( 1)
[[ ]],

( 1)
[[ ]],

KC
C e q n n n

R

M
e n n n

R

q


        

     


        

     

  



 


   








    


    



X Y Z X

X Y Z Y

X   
1 (1)

) ( ) ( ) ( ) ( ) ( ) ( ) 11
, 11 , 3 1 1 2 2

0

( 1)
[[ ]].

N
n n n

R


     

    


  


   Y Z Z

  on   (14) 

To guarantee that the solution of the antiplane local problems is unique, the local functions 

should satisfy the null average condition 0,X  0Y  and 0Z , where f  symbol 

identifies the volume average per unit length over Y,  defined by 
1

Y

Y ( )f f d


  y y . Also, 1  

and 2  denote the Kronecker’s delta functions where 1   is for the local problems 13 ,  1 ,   

and 1 , and 2  , for the local problems 23 ,  2 ,   and 2 . Here, the local functions ,X  ,Y  

and Z  represent the vector of displacement, the electrical and magnetic potential respectively 

over the RVE, and they are associated with the different local problems. These variables for each 

local problem are summarized in the following Table 1. 

 

Table 1 

 

The complete moduli of non-null effective coefficients for MEE composites associated with 

the antiplane local problems, with transversely isotropic piezoelectric and piezomagnetic 

constituents of 6mm  symmetry, are compiled in the effective matrix 

                        

23 13 1 2 1 2

23 2323 232 232

13 1313 131 131

1 113 11 11

2 223 22 22

1 113 11 11

2

* * *

* * *

* * *

* * *

* * *

         

C e q

C e q

D e

D e

B q

B





 

 

 

 
 
 
 

 
 
 
  
 

2313 132 132

1323 231 231

123 12 12

213 21 21

123 12 12

* * *

* * *

* * *

* * *

* * *

C e q

C e q

e κ α

e κ α

q α μ

23

13

1

2

1

2223 22 22

* * *

.E

E

H

Hq





 

  
  
  
  
  
  
  
    

  213 21 21

* * *
q α μ

                               (15) 
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The antiplane effective properties are functions of the corresponding local problem solutions 

on the RVE, of the constituent properties, and of the geometrical characteristic of the composite. 

It is important to note that, the parallelogram-like periodic cell allows a better manipulation for 

the composite macroscopic properties. In this sense, the new composites may have a monoclinic 

2 structure at a macroscopic level as result of the fiber distribution and that the composite is 

made of two transversely isotropic phases. Hence, it is possible to observe an increase in the 

number of effective coefficients (indicated in boldface in Eq. (15)) in comparison to the cases 

when the fibers have hexagonal or square distributions (for that case, the indicated boldface 

coefficients are null). 

 

3.2 Solutions of the antiplane local problems  

 

The solution for all antiplane local problems is determined by means of the methods of 

complex potential theory. The harmonic and doubly periodic local functions defined over the 

RVE, for each antiplane local problem (Eq. (14)), are found by means of the Laurent expansions 

of harmonic functions for the matrix and power expansions for the fiber, as follows 

 
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In Eq. (16) and Eq. (17), it is necessary to highlight that the summation symbol with superscript 

“o” means that “k” runs only over odd integers, 
0R  is the radio of the fiber in the composites, 

and the real or imaginary part of the complex number are represented by Re or Im respectively. 

The symbol      1 1/2

1 1 2

,

( 1)! ( 1)!( 1)! ( ) ,
k pk p

kp

m n

w k p k p R kp m n 
          with 

2 2 0,m n   2k p   and by definition 
2 0S  .  

11 1

,

( ) ´ 2

mn mn mn

m n

z z z z
       

    
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represent the Zeta quasi periodic Weierstrass function, which satisfies the quasi periodic 

conditions ( ) ( )z z  with 
1 2.mn m n  The principal periods are 1  and 2 , and 

,

´
m n

  with the prime over the summation symbolizes that the summation runs for all ,m n  

excluding ( , ) (0, 0)m n  . The corresponding coefficients 0 0 0, , , , , , ,k k k k ka a b b e e c d  and kf  are 

undetermined complex numbers.  They are different for each individual antiplane local problem. 

Only when we analyzed the square and hexagonal RVE, these coefficients are real. These 

particular cases can be seen in Espinosa Almeyda et al. (2011). 

Finally, the solution of the local problems 13 ,  23 ,  1 ,  2 ,  1  and 2  is 

determinated by means of a system which is a result of substituting Eqs. (16) and (17) in to Eq. 

(14) (see Sixto-Camacho et al., 2013) and after some algebraic manipulations, we have 

 

 

 

1 2 1 2 1 2 1 1 1 2

3 4 3 4 3 4 2 1 1 2

5 6 5 6 5 6 3 1 1 2

( ) ( ) ( ) T ,

( ) ( ) ( ) T ,

( ) ( ) ( ) T ,

p p p p p p p p p p p p p

p p p p p p p p p p p p p

p p p p p p p p p p p p p

a E a b E b e E e R i

a E a b E b e E e R i

a E a b E b e E e R i

 

 

 

  

  

  

      

      

      

A A B B C C

A A B B C C

A A B B C C

            (18) 

where 1/2 1/2

0 1

1

( ) ( ) ( )o

p p k kp

k

E f f f k p w






  , and 
0 /R R l  is the dimensionless radius of the 

fiber. The independent terms are denoted by 1T ,  2T  and 3T , and the coefficients ,spA  spB  and 

spC  ( 1,6)s   are dimensionless relations that are defined in Appendix A. The sum by the 

repeated indices k  and p  is applied, with , 1, 3, 5,k p . The over bar indicates complex 

conjugate. The relation between the specific local problems and the independent terms is given 

in Table 2. 

 

Table 2 

 

It is important to notice that the right part of the system Eq. (18) is the same one for all antiplane 

local problems, only the left part is different. In addition, the involved series of kpw  are 

convergent and, consequently, the Eq. (18) is a normal infinite system of algebraic equations, 

which is solved by means of truncations (with 0N  as truncation order) to obtain approximations 

of the undetermined coefficients ka , kb  and ke . Larger orders of truncation give a better level of 
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approximation. The complex solutions of Eq. (18) depend on the material constants, fiber 

distribution and volume fraction.  

The simple analytical expression of the effective coefficients shown in Eq. (15) for the 

antiplane problems are deduced by applying the Green’s theorem to the RVE area, taking into 

consideration Eq. (16) and Eq. (17), as well as the double periodicity of the local functions and 

the orthogonality of the system of functions  in

n
e  


with 0 2 ,    where the dimensionless 

coefficients (1)

15 ,E  (1)

15Q  and (1)

11A  are summarized in Appendix A. A representation of them 

associated with 13  and 23  local problem is 

(1) (1)
1313 2313 1 15 1 15 1

(1) (1) (1)
113 213 15 15 1 1 11 1

(1) (1) (1)

15 25 1 11 1 1113 213

1 ( ),
V

( ),
V

( ),
V

d
C iC a E b Q e

d
e ie E E a b A e

d
q iq Q Q a A b e

         associated to the local problem 13 L          (19) 

(1) (1)
3123 3223 1 25 1 15 1

(1) (1) (1)

123 223 15 15 1 1 11 1

(1) (1) (1)

123 223 15 15 1 11 1 1

( ),
V

( ),
V

( ),
V

d
C iC i a E b Q e

d
e ie iE E a b A e

d
q iq iQ Q a A b e

     associated to the local problem 23 L          (20) 

with d  the diameter of the fibers and 
1 2 1V sin  the volume of the RVE. The remaining 

ones related to the rest of the local problems are showed in the Appendix B, 

The analytical expressions of moduli effective coefficients are functions of the constituent 

material properties and the phase volume fraction, of periodic cell 1  and 2  by means of the 

systems solutions 1,a  1b  and 1e , corresponding to the associated local problem. The precision 

here is only based on the number of iterations. They are needed to achieve the convergence. 

Computation stops when the difference between the coefficients 1,a  1b  and 1e  for subsequent 

steps reaches the desired precision. These coefficients are substituted into the expressions Eqs. 

(19) and (20) in order to finally obtain the overall properties. 

An important approximation from Eq. (18) is obtained if we consider 
0N 1 . In this case, 

the only unknowns of the system are those whose subscripts k  and p  are equal to 1, and 
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therefore, the solutions are easy to find. Here, the system (see Eq. (18)) is reduced in the 

matricial compact form as 

 2 ,E R J X R                 (21) 

where  1 1 1 1 1 1

TX x y z t l m  is the transpose of the vector X , which contains the real and 

imaginary parts of the unknown 1 1 1,a x iy 
 1 1 1b z it   and 1 1 1e l im  . The transpose of the 

independent vector   is given by  21 1 21 2 41 1 41 2 61 1 61 2

T

            A A A A A A  for the 

13  and 23  local problems, by

 

 21 1 21 2 41 1 41 2 61 1 61 2

T

            B B B B B B  for the 

1  and 2  local problems, and by  21 1 21 2 41 1 41 2 61 1 61 2

T

            C C C C C C  for the 

1  and 2  local problems, with 1   for 13 ,  1 ,   and 1 , and 2  , for 23 ,  2 ,  and 

2 . 

The matrices E  and J  have the following form 

11 11

11 11

31 31

31 31

51 51

51 51

1 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

E

 
 
 
 

  
 
 
  
 

B C

B C

B C

B C

B C

B C

, 

21 1 21 3 21 1 21 3 21 1 21 3

21 2 21 4 21 2 21 4 21 2 21 4

41 1 41 3 41 1 41 3 41 1 41 3

41 2 41 4 41 2 41 4 41 2 41 4

61 1 61 3 61 1 61 3 61 1 61 3

61 2 61

H H H H H H

H H H H H H

H H H H H H
J

H H H H H H

H H H H H H

H H

  


  



A A B B C C

A A B B C C

A A B B C C

A A B B C C

A A B B C C

A A 4 61 2 61 4 61 2 61 4

,

H H H H

 
 
 
 
 
 
 
 
   B B C C

 

where  1 11 12 ,H h h    2 21 22 ,H h h    3 21 22H h h   and  4 11 12H h h  . Also,

1 2 2 1
11

1 2 2 1

Re ,h
   

  

 
  

 

1 2 2 1
21

1 2 2 1

Im ,h
   

  

 
  

 

1 2 2 1
12

1 2 2 1

Re ,h
   

  

 
  

 

1 2 2 1
22

1 2 2 1

Imh
   

  

 
  

 
  

with 2 / 2  and  is the conjugate of . The coefficients 
1,sA  

1sB  and 
1sC  ( 1,6)s   

are defined in Appendix A, considering p  equal to 1. In general, the system Eq. (21), for each 

local problem, is easily solved for the corresponding unknowns 1a , 1b  and 1.e  Then, the effective 

coefficients showed in Eqs. (19) and (20), and in Appendix B are determinated. 

 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.   Model validation and Numerical results 

 

Limit cases for the present model can be obtained when the analytical expressions are 

reduced to those that describe a transversally isotropic two-phase composites with purely elastic 

or piezoelectric constituents and parallelogram-like RVE, such as the works reported by 

Guinovart-Díaz et al. (2011), (2012); López-Realpozo et al. (2011); Rodríguez-Ramos et al. 

(2011).  

The numerical simulations were conducted for different cases of two-phase composites 

(fiber/matrix). The values of the elastic, piezoelectric, dielectric, piezomagnetic and magnetic 

properties used in the computations are shown in Table 3. The results are fundamentally verified 

through comparisons between the present model and the numerical results reported by: i) Wang 

and Pan (2007), which implement of Mori–Tanaka self-consistent method; ii) Yang et al. (2013), 

development of the eigenfunction expansion-variational method; iii) Kuo (2011) mixed a method 

of complex potentials with a re-expansion formulae and the generalized Rayleigh’s formulation 

on periodic conductive composites and iv) Xu and Xiao (2015) using the analytical method 

based on the average-field theory. 

 

Table 3 

 

The three-phase model (fiber/interphase/matrix) approach to describe the imperfect contact 

considering the interphase as a thin third phase between the matrix and the fiber has received 

attention in the literature Yan et al. (2013) and Espinosa-Almeyda et al. (2014). A first validation 

can be seen in Table 4. Here, comparisons of the present model with the above mentioned three-

phase models and with analytical models for multicoated fibers developed by Kuo (2011) and Xu 

and Xiao (2015) are reported. The Yan et al. (2013) and Kuo (2011) three-phase models with 

doubly periodic microstructures assumed that the concentric fibers radius relation is 4/5. Herein, 

it is considered that the volume fraction for the fiber and the interphase are 0.6 and 10
-6

, 

respectively.  

As shown in table 4, the variations of the antiplane MEE effective properties are presented 

for a two-phase composite BTO/CFO (fiber/matrix) with different truncation orders of the 

system 
0N , 

0 1, 3, 5,(N 7, 9)  and with square RVE. Here, the BTO fiber volume fraction is 0.6 

and the imperfect contact conditions at the interface are limited to the perfect case 
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( 0)K M N   . Notice that the convergence of the present model is reached for smaller 

values of 
0N , 

0(N 3) . Truncations of higher order must be included for high volume fraction 

of fibers as well as for higher contrast between the fiber and matrix. Good match among the 

approaches can be observed. 

 

Table 4 

 

Fig. 2(a) and (b) illustrate the effective ME coefficients * *

11 22    versus the fiber volume 

fraction 2V  for the two-phase composites: CFO/BTO and TD/BTO, respectively. In both figures, 

perfect contact conditions at interface, and square or hexagonal RVEs are considered. The 

obtained values by AHM are compared up to the maximum allowed fiber volume fraction 

(percolation) with those given by Wang and Pan, (2007) when the RVE is only hexagonal and by 

Yan et al., (2013), when the RVEs are hexagonal and square. The accuracy with the values 

reported by Wang and Pan (2007) are obtained for a first truncate order 
0(N 1)  of the system 

Eq. (18). The truncation order 
0N 9  allows the AHM numerical precision to reproduce the 

results given by Yan et al., (2013).
 

 

In both Figs. 2(a) and 2(b), the respective maximum allowable fiber volume fractions are 

0.7853 for square RVE and 0.906 for a hexagonal RVE. Note that, for small values of 
2V ,  the 

type of RVEs (square or hexagonal) does not impact on *

11,  it is the same value in both RVEs. 

However, when 
2V  increases, the effect of the RVE is significant and it is more noteworthy in a 

TD/BTO composite (Fig. 2(b)). Near the percolation, the property has notable changes. For a 

composite CFO/BTO (see Fig. 2(a)), it is seen that, the ME property weakens after reaching the 

highest magnitude when 
2V 0.76  for a square RVE; 

2V 0.84  for a hexagonal RVE and 

2V 0.86  for the estimation compared with Wang and Pan (2007). For a TD/BTO composite 

(see Fig. 2(b)), the ME property increases considerably up to the fiber percolation. This drastic 

change in the magnetoelectric property is also reported by Yan et al., (2013). They argue that 

when fibers contact together at percolation, the matrix is separated by the fibers, then the matrix 

that was a continuous phase before fiber percolation becomes a discontinuous phase and the 
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initially disperse fibers form a continuous phase. Therefore a sudden change of the 

magnetoelectric coefficient is something possible. Higher values are reached for the square RVE. 

After that, some local extreme values are reaches for 
2V 0.4193  and 

2V 0.5790  when the 

RVE is square and 
2V 0.3794  and 

2V 0.8586  when the RVE is hexagonal. 

 

In Fig. 3, the effective ME property *

11  for different two-phase composites versus the fiber 

volume fraction are depicted for a hexagonal RVE, under perfect contact conditions at interface. 

Here, four two-phase composites made of combinations of CFO, BTO and TD are analyzed. 

Comparison between the values obtained by the present model with those reported by Yan et al., 

(2013) is presented. The estimations illustrated in Fig. 3 show that the numerical values obtained 

by the models are coincident. From Fig. 3, it is seen that the ME property *

11  of the BTO/TD 

composite is much large than those of the other constituent combinations and different behaviour 

for *

11  are observed when the components are exchanged. Additionally, in composites with 

BTO as matrix and CFO or TD as fiber, a higher ME coupling property *

11  is obtained when the 

fiber is made of TD. We should notice that the ME coupling property depends on the 

piezoelectric and piezomagnetic properties, as well as the jump of the mechanic property. In this 

sense, the piezomagnetic property of the CFO is bigger than that of the TD; then, the evident 

increase of *

11  is due to the jump of the mechanical property at interface. 

The analysis developed in Table 4, Figs. 2 and 3 allows us to illustrate, as a particular case, 

the phenomena of the interface imperfection by means of the effect of a thin interphase. The 

approaches obtained by the different models show the accuracy and the efficiency of the 

employed method. 

 

In Table 5, we present the overall MEE properties for two-phase composite (BTO/CFO) 

under perfect contact for different parallelogram-like fiber distribution, (i.e., different RVEs with 

respective inclination angle 
1  equal to 45°, 50°, 60°, 70°, 75°, 80° and 90° - see Fig. 1(b)). The 

values are computed considering 
2V 0.6  and 

0N 9 . The present model allows analyzing the 

structure-property relationship. Consequently, the composite belongs to monoclinic symmetric 

class characterized by 18 different homogenized coefficients derived from the RVE, when it is 
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different from the hexagonal (60°) and square (90°) RVEs. Only for hexagonal and square 

RVEs, the global properties of the composites are transversely isotropic, i.e., the property 

relations * *

1313 2323,C C  * *

113 223,e e  * *

113 223,q q  * *

11 22 ,   * *

11 22   and * *

11 22 ,   are satisfied 

and the rest of the coefficients are null. From Table 5, it is important to note that, for the same 

fiber volume fraction and for the RVE angle, 
1 , less than 60°, the properties have notable 

differences, not being like that when the RVE angle are higher than 60°. These differences in the 

properties must be a result of the axial symmetry changes due to the spatial fiber distribution. 

The interactions between neighboring fibers, because of the specific geometry of the structure, 

have a strong influence in the overall behaviour of the material. Also, it is observed that the 

properties *

1323,C  *

123 ,e  *

123,q  *

12 ,  *

12  and *

12  are more sensitive to the geometry of the RVE that 

the remaining ones, when the angle changes. 

The imperfect contact condition effects on the effective properties are also discussed below. 

In Fig. 4, the ME effective property *

11  of  a  BTO/CFO (fiber/matrix) composite versus the 

fiber volume of fraction 
2V  is given. Here, the influence of various parallelogram-like RVE (as 

seen, RVEs with the 
1  angle equal to 45°, 60°, 75°, 80° and 90°) on the property *

11  is 

analyzed. Only two different mechanical imperfections K  characterized by 0.45K   and 

10K   with 0M N   are considered. The numerical values are determinated for a first order 

of truncation 
0(N 1)  of the system (Eq. (18)). For the hexagonal RVE, a comparison between 

the Present model (AHM - 60°) and Wang and Pan (2007) models are shown until the fiber 

percolation. 

From Fig. 4, we can conclude that the ME coefficient decreases as consequence of the 

growing effect of the mechanical imperfection. This result is congruent with those reported by 

Wang and Pan (2007). Hence, the contact imperfection and the fiber distribution have a 

pronounced effect on *

11 . Here, the weakest values are obtained when the fibers has a hexagonal 

distribution. In this case, the property *

11  continually grows until their maximum values and 

then falls down. 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

For the rest of RVE types, the different lines of *

11  have very light changes of concavity, and 

finally, they increase quickly until 
2V  reaches the percolation limit. For 

1 45   , the ME 

coefficient, *

11 , has the highest values in comparison to the rest of the 
1  values in the same 

volume fraction interval. When the angle 
1  is in the range 

160 90 ,     the behaviors of the 

curves of all coefficients are similar, the differences are remarkable near the maximum 

percolation point. In that point, as seen, the differences are reduce when the imperfection is 

bigger.  

 

In Fig.5, different fiber volume fraction curves of the normalized ME effective coefficient 

*

11  computed by AHM model for a periodic hexagonal cell versus different mechanical 

imperfections K  (Fig. 5(a)), electrical imperfection M  (Fig. 5(b)) and magnetical imperfection 

N  (Fig. 5(c)) are displayed. The numerical calculations are carried out for a two-phase 

(BTO/CFO) composite for different fiber volume fractions to the percolation volume
2  0 6V .90 ,

 

and for a first truncate orders 
0N 1

 
of system Eq. (18). Here, the ME property decreases as 

consequence of the mechanical, electrical and magnetical imperfections growth. Besides, for 

each imperfection type, the normalized ME dependence for the percolation acts as a lower limit. 

The normalization of *

11
 
is relative to the perfect contact case.  

For Fig.5(a), it is worthily to notice that a reasonable coincidence has been achieved for 

almost all the curves with the exception of those where the fiber volume fraction is less than 

0.15. According to the definition of K  starting from K , K  must be an intensive parameter in 

the formal thermodynamic sense. The coincidences of the curves in Figs. 5(a) and 5(c) mean that 

the effect of the fiber volume fraction is almost negligible on the dependence on the normalized 

magnetoelectric coefficient. Hence, this is the adequate dependence to quantify the effect of K  

on *

11 . The maximum values of 
*

11  are obtained when 0,K   which corresponds to the perfect 

contact.   

As an example, it can be seen that for 1.5K  , the ME coefficient loses the 50% of its 

value, and for 5K  , it loses the 80%. This is a valid result for all the fiber volume fraction 

values under a good approximation (see Fig. 5(a)). For 1N  , the ME coefficient loses the 50% 

and for 4.2N  , it loses the 80%  no matter what the value of the fiber volume fraction is (see 
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Fig. 5(c)). However, it is not possible to systematize the effect of the M  parameter on the ME 

coupling as can be seen in Fig. 5 (b) since the weakening of the ME depends on the fiber volume 

fraction. Further research focused on the systematization of the imperfect contact parameter is 

needed. 

 

Fig. 6 illustrates the dependence of the ME coupling coefficient *

11  as function of the 

electrical and magnetical imperfections M  and N , respectively. It can be observed for the 

composite CFO/BTO (Fig. 6 (a)) that the ME coefficient weakening is more sensitive to the 

electrical imperfection M  than the magnetical imperfection. For the composite TD/BTO (Fig. 

6(b)), the ME coefficient intensely decrease as both the electrical and magnetical imperfections 

get stronger. 

In Table 6, the mechanical, electrical and magnetical imperfection influence on the ME 

coefficients *

11,  *

12  and *

22  are illustrated. The values are reported for a CFO/BTO composite 

when hexagonal, square and parallelogram-like with 
1 75    the RVEs are considered. Here, 

the CFO volume fraction is 0.6 and the truncate order of the system Eq. (18) is 0 1.N   In 

addition, a comparison between Wang and Pan (2007) and AHM models for hexagonal RVE is 

displayed. From Table 6, we concluded that, for each combination of the imperfect parameters 

,K  M  and ,N  it is possible to see that the properties *

11,  *

12  and *

22  decrease as any kind of 

imperfection appears.  Note that, when the RVE is hexagonal or square, the coefficient *

11  is the 

only one reported. It is due to the transversely isotropic symmetry of the composite (the 

coefficients * *

11 22   and *

12 0  ), as reported by Yan et al. (2013). For the parallelogram-like 

RVE with 
1 75   , the effective coefficients *

12  and *

21
 
are non-null and coincident. The last 

result is due to the fact that the composite exhibits a monoclinic symmetry. In addition, it is 

necessary to notice that under the effects of the imperfect contact conditions for the three types 

parallelogram-likes RVE, the ME maximum values are reached when the RVE is square. 

 

In Table 7, the complete magneto-electro-elastic moduli for two parallelogram-like RVEs 

under different type of imperfection are presented. The Table 7 RVE angles are 
1 45    and 

1 75 .    The imperfections sets are varied in five combinations: perfect contact 
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( 0)K M N   , only mechanical imperfection ( 10K   and 0M N  ), only electrical 

imperfection ( 10M   and 0K N  ), only magnetical imperfection ( 10N   and 0K M  ), 

and a total imperfection ( 10).K M N    From Table 7, it can be seen how the properties are 

sensitive under the different imperfection effects. Notice that some properties are more sensitive 

to an imperfection type than the other ones, and even for the properties *

2313,C  *

213,e  *

213 ,q  *

12 ,  

*

12 ,  and *

12 , the signs change. This is because of the transversely orthotropic behavior 

associated with the inclination, 
1 , of the RVE. The Table 8 complements the results reported in 

Table 7. 

 

In Table 8, a general summary of the different imperfection effects on the magneto-electro-

elastic properties for two composites (BTO/CFO and CFO/BTO) with parallelogram-like RVE is 

given. As we can see, the properties are grouped according to whether they are affected or not by 

an specific type of imperfection.  

From Tables 7 and 8, it is possible to conclude that: i) the parallelogram-like RVE, i.e., fiber 

array have always influence on the MEE effective properties regardless of the presence or kind 

of imperfection; ii) The imperfection effect on the properties, summarized in Table 8, does not 

depend on the kind of the RVE; iii) The magnetoelectric coupling properties ( *

11,  *

12  and *

22 ) 

are always affected by any of the situations studied herein, as type of imperfection, fiber 

distribution or change of constituent; iv) The effective piezomagnetic (piezoelectric) coupling is 

not affected by any kind of imperfect contact when the matrix is made of the piezomagnetic 

(piezoelectric) constituent; v) The effective piezoelectric (piezomagnetic) coupling is affected 

when the fiber is made of the piezoelectric (piezomagnetic) constituent and the electrical 

(magnetic) imperfection is present. For these cases, the mechanical imperfection always affects 

the coupling; vi) The effective elastic property *

2323C
 
is affected when the matrix is made of 

piezoelectric constituent and the electrical imperfection is present; the underlined coefficients 

*

1313(C  and *

2323)C  are affected only near the percolation point under the same previous 

conditions. 
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In Fig. 7, the MEE effective properties for a porous composite are given. Herein, the numerical 

fulfillment of the exact relations 1313 113 113 11 11

(1) (1) (1) (1) (1)

1313 113 113 11 11

C e q

C e q

 

 

    

    , 2323 223 223 22 22

(1) (1) (1) (1) (1)

1313 113 113 11 11

C e q

C e q

 

 

    

     

and 2313 213 213 12 12

(1) (1) (1) (1) (1)

1313 113 113 11 11

C e q

C e q

 

 

    

    , obtained by Sixto-Camacho et al., (2015) for porous fiber 

composite, was demonstrated. In addition, the relations (3.6)-(3.15) from Sixto-Camacho et al., 

(2015) are also satisfied. Hence, each curve of Fig. 7 describes all the normalized properties 

shown in the Oy axes for a specific 
1 . The porosity is represented by empty fibers periodically 

distributed in a homogeneous and transversely isotropic matrix. The porosity distribution is 

defined by a parallelogram-like array as REV. These relations are applicable for any kind of 

RVE with empty-fiber. Note that, the curves for each porosity distribution are monotonically 

decreasing from the normalized matrix value to the allowed lower value that corresponds to the 

percolation limit. This effect of the weakening of the properties is due to the fact that the pore 

size increases. As validation, in Fig. 7(a), a comparison with the results reported by Bravo-

Castillero et al. (2009) when 1 90   is showed. The curves illustrate a total coincidence for 

BaTiO3 porous material.  

 

5. Conclusions 

 

In this work, an approach using the asymptotic homogenization method for estimating the 

antiplane effective properties of two-phase piezoelectric–piezomagnetic fiber reinforced 

composites with imperfect fiber-matrix interface and parallelogram-like fiber arrangement is 

proposed. The analytical formulae derived for the antiplane general local problems, their 

solutions and the corresponding effective coefficients have a simple form and are of easy 

computational implementation. Also, the formulae are also valid for studying the interface 

problem of two-phase piezoelectric or elastic composite. The accuracy and efficiency of the 

present method were tested with the existing analytical results and for all the comparisons, good 

approximations were obtained. Regarding the numerical result, we have come to the conclusion 

that: 
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i) The manipulation of the fiber distribution, represented as parallelogram-like RVEs, allows two 

class of symmetry point group for the composite global behavior: monoclinic 2 and transversely 

isotropic structure.  

ii) The moduli of effective properties are either influenced or not depending on the type of the 

contact imperfection, i.e., here interpreted as linear spring ,K  an electrical capacitance M  and a 

magnetic inductance N , and the set of materials constituents.  

 iii) The magnetoelectric coupling is sensitive to the fiber distribution, the type of imperfection 

and the combination of constituents. 

iv) The effect of the imperfection is dominant over the spatial fiber distribution. The imperfect 

contact conditions considerable changes the values of the ME coefficients. While, the fiber 

distribution induces weaker changes in the ME coupling and, sometimes, the appearance of new 

components (monoclinic 2). Each of these effects can be studied separately. 

v) The connection between the imperfect contact parameters and the weakening of ME 

coefficient cannot always be established as an independent function on the composite structure. 

More systematization is needed in this sense. 

vi) This approximation is capable of describing the porosity behaviour in a proper way. 
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Appendix A 

 

The magnitudes involved in the systems Eq. (18) are summarized   

1 1,p A   (1) (2) (1) (2)

2 15 15 15 151 / ,p ppK E E pM Q Q pN               A  3 1,p A  

 (1) (2) (2) (1) (1) (2)

4 15 15 15 15 15 11 / ,p pE E E pK E pM Q A pN                 A  5 1,p A   
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 (1) (2) (2) (1) (2) (1)

6 15 15 15 15 11 15 / ,p pQ Q Q pK E A pM Q pN                 A   

 (1) (2) (1) (2) (1) (2)

1 15 15 15 15 11 15 / ,p pE E E pK E pM A Q pN                 B  

 (1) (2) (1) (2) (1) (2)

2 15 15 15 15 11 15 / ,p pE E E pK E pM A Q pN                 B  

 (1) (2) (1) (2)

3 15 15 11 111 / ,p pE E pK pM A A pN                B  

 (1) (2) (1) (2)

4 15 15 11 111 / ,p pE E pK pM A A pN                B  

 (1) (2) (1) (2) (2) (1)

5 11 11 15 15 11 11 / ,p pA A E Q pK A pM A pN                  B

 (1) (2) (1) (2) (2) (1)

6 11 11 15 15 11 11 / ,p pA A E Q pK A pM A pN                  B  

 (1) (2) (1) (1) (2) (2)

1 15 15 15 11 15 15 / ,p pQ Q Q pK A E pM Q pN                 C  

 (1) (2) (1) (1) (2) (2)

2 15 15 15 11 15 15 / ,p pQ Q Q pK A E pM Q pN                 C  

 (1) (2) (1) (2) (1) (2)

3 11 11 15 15 11 11 / ,p pA A Q E pK A pM A pN                  C  

 (1) (2) (1) (2) (1) (2)

4 11 11 15 15 11 11 / ,p pA A Q E pK A pM A pN                  C  

 (1) (2) (1) (2)

5 15 15 11 111 / ,p pQ Q pK A A pM pN                C  

 (1) (2) (1) (2)

6 15 15 11 111 / ,p pQ Q pK A A pM pN                C  

being 
(1) (2) (1) (2)

15 15 15 151 ,p pK p E E M p Q Q N                 
( ) ( ) ( ) ( )

15 113 1313 11/ ,E e C     

 (1) (2) (1) (1) (2)

15 15 15 15 111 ,p E E pK p E M p Q A N               
( ) ( ) ( ) ( )

15 113 1313 11/ ,Q q C     

 (1) (2) (1) (2) (1)

15 15 15 11 151 ,p Q Q pK p E A M p Q N               
( ) ( ) ( ) ( )

11 11 11 11/ ,A      
  

(2) (1)/ ,      (2) (1)/ ,      (2) (1)

3 3 3 3/C C      and (2) (1)/ ,      ( 1, 2)  . 

The majority of the previous magnitudes of the dimensionless problems was obtained by means 

of the transformations reported by Wang and Ding (2006). 

 

Appendix B  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

The simple analytical expression of the remaining effective coefficients corresponding to the 

antiplane local problems 1 ,  1 ,  2  and 2  are given  

(1) (1) (1)

113 123 15 1 1 15 1 1 15 1 1

(1) (1)

11 21 15 1 1 1 1 11 1 1

(1) (1) (1)

11 21 11 15 1 1 11 1 1 1 1

( ),
V

1 ( ),
V

( ),
V

d
e ie E a E b Q e

d
i E a b A e

d
i A Q a A b e

         associated to the local problem 1 ,     

(1) (1) (1)

213 223 25 2 1 15 2 1 15 2 1

(1) (1)

12 22 15 2 1 2 1 22 2 1

(1) (1) (1)

12 22 22 25 2 1 22 2 1 2 1

( ),
V

( ),
V

( ),
V

d
e ie iE a E b Q e

d
i i E a b A e

d
i iA Q a A b e

     associated to the local problem 2 ,     

(1) (1) (1)

113 123 15 1 1 15 1 1 25 1 1

(1) (1) (1)

11 21 11 15 1 1 1 1 11 1 1

(1) (1)

11 21 15 1 1 22 1 1 1 1

( ),
V

( ),
V

1 ( ),
V

d
q iq Q a E b Q e

d
i A E a b A e

d
i Q a A b e

         associated to the local problem 1 ,     

(1) (1) (1)

213 223 25 2 1 25 2 1 25 2 1

(1) (1) (1)

12 22 22 15 2 1 2 1 11 2 1

(1) (1)

12 22 25 2 1 22 2 1 2 1

( ),
V

( ),
V

( ),
V

d
q iq iQ a E b Q e

d
i iA E a b A e

d
i i Q a A b e

      associated to the local problem 2 .     
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Table captions 

 

Table 1. Local problems with associated local functions. 

Local Problem X  Y  Z  1  
2  

3  

13 23( )  
13 3 23 3L ( L )  

13 23M ( M)  
13 23N ( N)  ( )

1313C   ( )

113e   ( )

113q   

1 2( )  
1 3 2 3P ( P )  

1 2Q ( Q)  1 2R ( R)  ( )

131e   ( )

11

  ( )

11

  

1 2( )  
1 3 2 3S ( S )  1 2T ( T)  

1 2V ( V)  ( )

131q   ( )

11

  ( )

11

  

 

Table 2. Local Problems and the corresponding independent terms. 

Local Problem 1T  
2T  

3T  Local  Problem 1T  
2T  

3T  

13
 2 pA  4 pA  6 pA  

23  2 pA  4 pA  6 pA  

1
 2 pB  4 pB  6 pB  

2  2 pB  4 pB  6 pB  

1
 2 pC  4 pC  6 pC  

2  2 pC  4 pC  6 pC  

 

Table 3. Material properties used in the numerical simulations. 

 

Table 4. A comparison of MEE effective coefficients obtained by the present model (AHM) for a 

two-phase composite BTO/CFO with the models reported by Yan et al. (2013), Kuo (2011), 

Espinosa-Almeyda et al. (2014) (AHM three-phase model), and Xu and Xiao (2015). 

Composite:   fiber/matrix = BTO/CFO
 

N0 

*

1313C  (GPa) *

113e  (C/m
2
) *

11  (10
-9

 C
2
/ Nm

2
) 

Present 

model 

Yan et 

al., 2013 

AHM 

three-

phase 

model 

Present 

model 

Yan et 

al., 2013 

AHM 

three-

phase 

model 

Present 

model 

Yan et 

al., 2013  

AHM 

three-

phase 

model 

1 50.79 50.78 50.79 0.2579 0.2768 0. 2579 0.3362 0.3544 0.3362 

3 50.79 50.79 50.79 0.2588 0.2596 0.2588 0.3371 0.3379 0.3371 

5 50.79 50.79 50.79 0.2588 0.2587 0.2588 0.3371 0.337 0.3371 

7 50.79 50.79 50.79 0.2588 0.2588 0.2588 0.3371 0.3371 0.3371 

9 50.79 50.79 50.79 0.2588 0.2588 0.2588 0.3371 0.3371 0.3371 

Kuo 50.8 0.255 0.337 

Material  

Properties 

( )

55C 

 
(N/m

2
) 

( )

15e 

 
(C/m

2
) 

( )

11

  

 (C
2
/Nm

2) 

( )

15q 

 
(N/Am) 

( )

11

   

( Ns/VC) 

( )

11


 

(Ns
2
/C

2) 

BaTiO3 (BTO) 43  x 10
9
 11.6 11.2 x 10

-9
 0 0 5 x 10

-6
 

CoFe2O4 (CFO) 45.3  x 10
9
 0 0.08 x 10

-9
 550 0 590  x 10

-6
 

Terfenol-D (TD) 13.6  x 10
9
 0 0.05 x 10

-9
 108.3 0 5.4  x 10

-6
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Xu-Xiao 50.792 0.25822 0.33654 

N0 

*

15q  (N/Am) *

11  (10
-6

 Ns
2
/C

2
) *

11  (10
-12

 Ns/VC) 

Present 

model 

Yan et 

al. 2013 

AHM 

three-

phase 

model 

Present 

model 

Yan et 

al., 2013  

AHM 

three-

phase 

model 

Present 

model 

Yan et 

al., 2013 

AHM 

three-

phase 

model 

1 128.4 163.4 128.4 141.4 178.7 141.4 6.017 5.562 6.018 

3 128.0 130.7 128.0 141.0 143.8 141.0 6.020 5.987 6.020 

5 128.0 128.1 128.0 141.0 141.1 141.0 6.020 6.019 6.020 

7 128.0 128.0 128.0 141.0 141.0 141.0 6.020 6.020 6.020 

9 128.0 128.0 128.0 141.0 141.0 141.0 6.020 6.020 6.020 

Kuo 128 140 6.03 

Xu-Xiao  128.23 141.24 6.0181 

 

Table 5. Effective properties of a two-phase MEE composite (BTO/CFO) with parallelogram-

like fiber distribution under perfect contact conditions and 2V  0.6 . 

1  
*

1313C  *

1323C  
*

2323C  
*

113e  
*

123e  
*

223e  
*

113q  
*

123q  
*

223q  

(GPa)
 

(C/m
2
) (N/Am) 

45° 50. 807 0.1024 50. 602 0.22294 -0.12563 0.47421 86.15 -35.438 157.026 

50° 50. 814 0.0343 50. 756 0.21726 -0.05093 0.30273 115.969 -19.543 148.766 

60° 50. 806 0 50. 806 0.23471 0 0.23471 137.619 0 137.619 

70° 50. 797 -0.0104 50. 804 0.24936 0.01902 0.23551 137.74 7.831 132.039 

75° 50. 794 -0.011 50. 8 0.25386 0.02015 0.24307 134.621 8.007 130.33 

80° 50. 792 -0.009 50. 796 0.25673 0.0165 0.25091 131.322 6.348 129.083 

90° 50.791 0 50. 791 0.25878 0 0.25878 128.026 0 128.026 

1  

*

11  
*

12  
*

22  
*

11  *

12  *

22  
*

11  
*

12  
*

22  

(nF/m) 
1210  (Ns/VC) 

610 (Ns
2
/C

2
) 

45° 0.3027 -0.1204 0.5434 6.5716 0.5343 5.5029 96.409 -37.752 171.914 

50° 0.2973 -0.0488 0.3792 6.1995 0.2809 5.7282 128.174 -20.819 163.113 

60° 0.3140 0 0.3140 5.9151 0 5.9151 151.237 0 151.237 

70° 0.3281 0.0182 0.3148 5.9039 -0.1112 5.9849 151.366 8.343 145.293 

75° 0.3324 0.0193 0.3220 5.9403 -0.1142 6.0014 148.044 8.531 143.472 

80° 0.3351 0.0158 0.3295 5.9800 -0.0908 6.0121 144.53 6.762 142.145 

90° 0.3371 0 0.3371 6.0203 0 6.0203 141.019 0 141.019 

 

Table 6.  Variations of the ME coefficients *

11,  *

12  and *

22  for a CFO/BTO composite for 

three types RVEs and different imperfections values of K , M  and N . 

Magnetoelectric coefficients  * * *

11 12 22( , , )     1210  (Ns/VC) 

2V 0.6  60° 90° 75° 
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*

11  *

11  
  

*

11  *

12  
  

*

22  

K M N 
Present 

model 

Wang and 

Pan  (2007) 

Present 

model 
Present model 

0 0 0 5.26117 5.26117 5.40018 5.30002 -0.12993 5.36965 

1 0 0 2.86437 2.86437 3.51417 3.18576 -0.04218 3.20836 

10 0 0 0.56159 0.56159 0.75394 0.66091 -0.00216 0.66207 

0 1 0 2.63248 2.6325 2.69568 2.64854 -0.06564 2.68372 

0 10 0 0.47887 0.47887 0.49007 0.48163 -0.012 0.48806 

0 0 10 3.96204 3.96204 4.07019 3.96465 -0.19456 4.06892 

0 0 250 0.57199 0.57199 0.6791 0.61419 -0.05754 0.64503 

K=M=N=10 

(only AHM) 
0.03844 0.04603 0.04189 -0.00187 0.04289 

 

Table 7. MEE effective properties for BTO/CFO composite with parallelogram-like RVE and 

fiber volume fraction 2V  0.6  and 
0 9N  .  

1  
= 45° *

1313C  *

2313C  *

2323C  *

113e  *

213e  *

223e  *

113q  *

213q  *

213q
 

K M N 
(GPa) (C/m

2
)
 

(N/Am)
 

0 0 0 50.807 0.1024 50.602 0.2229 -0.1256 0.4742 86.150 -35.438 157.026 

10 0 0 11.637 -2.312 16.261 0.0219 -0.0092 0.0402 84.063 -36.069 156.202 

0 10 0 50.859 0.028 50.803 0.1628 -0.0498 0.2623 86.151 -35.438 157.027 

0 0 10 50.808 0.1028 50.603 0.2229 -0.1256 0.4742 83.935 -36.121 156.176 

10 10 10 11.637 -2.312 16.262 0.0163 -0.0030 0.0224 83.772 -36.168 156.109 

1  
= 75° *

1313C  *

2313C  *

2323C  *

113e  *

213e  *

223e  *

113q  *

213q  *

213q
 

K M N 
(GPa) (C/m

2
)
 

(N/Am)
 

0 0 0 50.794 -0.011 50.8 0.2539 0.0201 0.2431 134.62 8.0074 130.33 

10 0 0 14.745 0.5356 14.458 0.0235 0.0014 0.0227 133.56 8.0926 129.23 

0 10 0 50.847 -0.0030 50.848 0.1907 0.0115 0.1846 134.62 8.0075 130.33 

0 0 10 50.794 -0.011 50.80 0.2539 0.0201 0.2431 133.54 8.0908 129.207 

10 10 10 14.745 0.5356 14.458 0.0176 0.0007 0.0173 133.45 8.0998 129.113 

1  
= 45° *

11  *

12  *

22  *

11  *

12  *

22  *

11  *

12  *

22  

K
 

M
 

N
   x 10

-9
  (C

2
/Nm

2
)
 

  x 10
-12

   (Ns/VC)
 

  x 10
-6

  (Ns
2
/C

2
)
 

0 0 0 0.3027 -0.1204 0.5434 6.5716 0.5343 5.5029 96.409 -37.752 171.914 

10 0 0 0.3044 -0.1230 0.5505 0.9536 0.1207 0.7122 96.41 -37.752 171.914 

0 10 0 0.2315 -0.0436 0.3187 5.427 0.8461 3.7348 96.409 -37.752 171.914 

0 0 10 0.3027 -0.1204 0.5434 0.6014 0.0501 0.5012 90.405 -38.723 167.85 

10 10 10 0.2322 -0.0442 0.3206 0.0616 0.0124 0.0368 90.405 -38.723 167.85 

1  
= 75° *

11  *

12  *

22  *

11  *

12  *

22  *

11  *

12  *

22  

K
 

M
 

N
   x 10

-9
  (C

2
/Nm

2
)
 

  x 10
-12

   (Ns/VC)
 

  x 10
-6

  (Ns
2
/C

2
)
 

0 0 0 0.3324 0.0193 0.3220 5.9403 -0.1142 6.0015 148.04 8.5307 143.472 

10 0 0 0.334 0.0196 0.3235 0.6557 -0.0062 0.6590 148.04 8.5307 143.472 
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0 10 0 0.256 0.01 0.2507 4.5960 -0.1914 4.6986 148.04 8.5307 143.472 

0 0 10 0.3324 0.0193 0.3220 0.5417 -0.0104 0.5473 143.59 8.6739 138.939 

10 10 10 0.2569 0.0102 0.2515 0.0429 -0.0019 0.0439 143.59 8.6739 138.939 

 

Table 8. Effect of imperfect parameters in the overall magneto-electro-elastic properties of 

composites. 

Imperfect 

parameters 

Composite: BTO/CFO  

affected not affected 

K 

*

1313,C  *

2313,C  *

2323,C  *

113 ,e  *

213,e  
*

223,e  *

11,  *

12 ,  *

22.  

*

113,q  *

213 ,q  *

223 ,q  *

11,  *

12 ,  

 *

22 ,  *

11,  *

12 , *

22.  

M 

*

2313,C
 

*

113 ,e  *

213,e  *

223,e  *

11,  
*

12 ,  *

22 ,  *

11,  *

12 ,  *

22.  

*

1313,C
 

*

2323 ,C  *

113,q  *

213 ,q  *

223 ,q   

*

11,  *

12 ,  *

22.  

N 
*

11,  *

12 ,  *

22.  

*

1313,C  *

2313,C  *

2323,C  *

113 ,e  *

213,e  *

223,e *

113,q  
*

213 ,q  *

223 ,q  *

11,  *

12 ,  *

22 ,  *

11,  *

12 ,  *

22.  

Imperfect 

parameters 

Composite: CFO/BTO 

affected not affected 

K 

*

1313,C  *

2313,C  *

2323,C  *

113,q  
*

213 ,q  *

223 ,q  *

11,  *

12 ,  *

22.  

*

113 ,e  *

213,e  *

223,e  *

11,  *

12 ,   
*

22 ,  *

11,  *

12 ,  *

22.  

M 
*

11,  *

12 ,  *

22.  

*

1313,C  *

2313,C  *

2323,C  *

113 ,e  *

213,e  *

223,e  *

113,q  
*

213 ,q  *

223 ,q  *

11,  *

12 ,  *

22 ,  *

11,  *

12 ,  *

22.  

N 

*

113,q  *

213 ,q  *

223 ,q *

11,  *

12 ,  
*

22 ,  *

11,  *

12 ,  *

22.  

*

1313,C  *

2313,C  *

2323,C  *

113 ,e  *

213,e  
*

223,e  *

11,  *

12 ,  *

22.  
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Fig. 1. (a) Representative cross section of a two-phase MEE fiber composite with a doubly 

periodic microstructure and (b) extracted parallelogram RVE. 
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Fig. 2. Variation of the effective ME coefficients * *

11 22( )   versus the fiber volume fraction 

2V .  Comparison with Wang and Pan (2007) and Yan et al., (2013) models for a two-phase 

composite with square or hexagonal RVE under perfect contact condition is reported. (a) 

CFO/BTO; (b) TD/BTO. 

 

 

Fig. 3. Variation of the effective ME coefficients * *

11 22( )   versus the fiber volume fraction 2V .  

Comparisons between the AHM (present model) and Yan et al., (2013) models for different two-

phase composites considering hexagonal RVE under perfect contact conditions. 
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Fig. 4. Variation of the effective ME coefficient 
*

11
 of a two-phase MEE composite (BTO/CFO) 

versus the fiber volume fraction 2V  for different parallelogram-like RVEs under two kind of 

mechanical imperfections. 
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Fig. 5. Variation of the normalized ME effective coefficient *

11  versus the interfacial 

imperfections for different fiber volume fractions of BaTiO3. 
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Fig. 6. Variation of the normalized ME effective coefficient *

11  under electrical and magnetical 

imperfections for a two-phase composite with hexagonal RVE. (a) CFO/BTO; (b) TD/BTO. 

 

 

Fig. 7. The normalized effective properties of the two-phase composite with empty fiber versus 

the volume fraction of the fiber for different fiber array. 

 


