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Abstract

The incompressible hyperelastic Mooney-Rivlin constitutive model allows for pressure-inflation

response of spherical shells that could either be globally stable (a monotonic pressure-radius

graph) or could instead involve instability jumps of various kinds as pressurization pro-

ceeds. The latter occurs when the pressure-radius graph is not monotonic, allowing for a

snap-through bifurcation that gives a sudden burst of inflation. For a given structure (shell

thickness) composed of a specific material (a parameter choice in the M-R constitutive

model), the form of the pressure-radius graph becomes fixed, enabling the determination

of whether and when such a burst will be triggered. Internal swelling of the material that

makes up the shell wall will generally change the response. Not only does it alter the quan-

titative pressure-inflation relation but it can also change the qualitative stability response,

allowing burst phenomena for certain ranges of swelling and preventing burst phenomena

for other ranges of swelling. This paper provides a systematic framework for predicting how

such swelling ranges depend on structural geometry and material parameters.

Keywords: hyperelasticity, swelling, shells, burst

1. Introduction

Soft matter swells, causing quantitative changes in the material’s mechanical properties.

These can lead to qualitative changes in the stability of the overall structure, possibly trig-

gering various bifurcation phenomena associated with localization, buckling and other forms
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of nonuniqueness. Here we examine how swelling affects the inflation response of hyperelas-

tic spheres. The inflation response of a hyperelastic sphere in the absence of swelling is a

classical problem in finite deformation continuum mechanics. As is well known, the result-

ing presssure-expansion response is not always given by a monotonically increasing graph.

When this happens, various inflation jump events can be triggered. The intent of this work

is to examine how swelling affects this response.

For our purposes, swelling is regarded as a general process that encompasses free-volume

change at the microscopic level. This would typically be due to mass addition resulting

from some diffusive or transport mechanism, but other fine scale processes of a mechanical or

chemical nature can also be regarded as contributing to volume change. Polymers, elastomers

and hydrogels naturally swell when exposed to liquid or when subject to high humidity

Treloar (1975); Stuart et al. (2010); Drozdov (2013). Biological tissues and cells exhibit

volume and shape change under similar processes of hydration and mass exchange Van der

Sman (2015), but also more generally as a result of biological growth Goriely et al. (2010);

Sadik et al. (2016). In many cases osmotic pressure is the causal agent that drives water and

other mass transport across bio-membranes such as those surrounding red blood cells and

intercellular vesicles Graf et al. (1995); Vinod Kumar & Demeke (2011); Li et al. (2013). The

mechanical consequences of these processes in terms of deformability, instability, limiting

stretch and possible rupture are significant Evans et al. (2003); Gibbons & Klug (2008);

Nagel et al. (2009).

Here we focus attention on a class of swellable hyperelastic materials in order to examine

how the constitutive theory affects the spherically symmetric expansion of a pressurized

hollow sphere. The sphere may be thick or thin. The thin wall limit corresponds to a hyper-

elastic swellable membrane. In the absence of swelling the class of materials corresponds to

a classical Mooney-Rivlin material. The inflation response for a hollow sphere composed of

the classical Mooney-Rivlin material has been extensively studied. We especially focus on a

detailed characterization by Carroll Carroll (1987) that provides conditions that determine

when the inflation response is monotone versus when it is not. We use this characteriza-

tion to describe the non-swelling response of the sphere problem under consideration here.

We then generalize the analysis so as to determine how swelling affects the outcome. In

particular, we exhibit swelling induced transitions between monotone and non-monotone

inflation curves. We provide a systematic framework for understanding and predicting these

transitions, and we discuss the ramifications of these transitions in terms of a snap-through
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type bifurcation (a swelling induced burst).

2. Preliminaries

The continuum mechanical treatment of finite deformation describes how locations X in a

reference configuration ΩX are mapped into deformed locations x in the current configuration

Ωx. The gradient of the map x = χ(X) is the tensor

F = ∂x/∂X. (1)

In this work we focus attention on changes in the material’s natural free volume and this

allows the material to expand and contract. This volume change is typically due to a mass

addition such as fluid absorption, however other mechanisms of volume change can be treated

by the present framework. Whatever the cause, this volume change can vary from point to

point and is described with the aid of a swelling field v = v(X).

In the absence of volume change v = 1, whereas volume increase (or decrease) gives v

greater (or less) than one. In the present treatment this generates a volume constraint on

the deformation in the form

detF = v. (2)

A theory that uses (2) provides a generalization of the conventional theory for incompressible

materials. For example, such a treatment is employed in Tsai et al. (2004) to analyze how

nonhomogeneous swelling fields induce flexure deformations in a rectangular block.

The energetic framework is based on a hyperelastic elastic energy density Was a function

of both F and v. The energy density is frame invariant and this requires W to depend on F

only through the right Cauchy-Green deformation tensor C = FTF. In the absence of body

forces the equilibrium equation is divT = 0 where T is the Cauchy stress tensor:

T =
2

v
F
∂W

∂C
FT − pI. (3)

Here p is the hydrostatic pressure associated with the volume constraint (2). Attention

is restricted to isotropic materials so that the dependence of W on C is in terms of its

invariants I1 = tr C = λ2
1 + λ2

2 + λ2
3 and I2 = 1

2

(
(tr C)2 − tr C2

)
= λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1. Here

λi > 0 (i = 1, 2, 3) are the principal stretches as measured from the unswollen reference
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configuration (λ2
i are the eigenvalues of C). The third invariant I3 = det C is equal to v2

by virtue of (2). We shall use notation W = W (I1, I2, v) and W = W̄ (λ1, λ2, λ3, v) in what

follows.

The Cauchy stress tensor T is symmetric and its eigenvalues are the principle stresses,

denoted by T1, T2 and T3. In the absence of swelling a standard requirement on any isotropic

hyperelastic constitutive model is the well known Baker-Ericksen inequality

(Ti − Tj)(λi − λj) > 0, (i 6= j, λi 6= λj, no sum). (4)

This is a requirement that the maximum (minimum) principle stress direction correlates with

the maximum (minimum) stretch direction. For a swellable isotropic material the same logic

continues to apply and so we presume that (4) holds for the materials under consideration

here.

The particular constitutive model that will be used for specific examples in this paper is

motivated by the well known Mooney-Rivlin model

WMR(I1, I2) = d1(I1 − 3) + d2(I2 − 3), (5)

in the classical incompressible theory where the positive constants d1 and d2 are empirically

determined material parameters. The generalization of the Mooney-Rivlin model for swelling

is to keep the basic form (5) while now letting d1 and d2 depend upon v. For this purpose

we shall in what follows consider examples using

W (I1, I2, v) = d1

(
I1

v2/3
− 3

)
+ d2

(
I2

v4/3
− 3

)
, d1 = d1(v), d2 = d2(v), (6)

with d1 ≥ 0, d2 ≥ 0 and d1 + d2 > 0. The reason for the scalings I1/v
2/3 and I2/v

4/3 in (6)

is that I1/v
2/3 = I2/v

4/3 = 3 for an equiaxial free expansion F = v1/3I. This enables certain

algebraic simplifications.

When (6) holds the Cauchy stress tensor (3) becomes

T = 2

(
d1

v5/3
+ I1

d2

v7/3

)
b− 2

d2

v7/3
b2 − pI, b = FFT . (7)
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Calculating Ti and Tj from (7) one then obtains

Ti = 2

(
d1

v5/3
+ (λ2

j + λ2
k)
d2

v7/3

)
λ2
i − p, (i 6= j 6= k 6= i). (8)

Using this result it follows for the material model (6) that

(Ti − Tj)(λi − λj) = 2

(
d1

v5/3
+ λ2

k

d2

v7/3

)
(λi − λj)2(λi + λj) (9)

Thus the Baker-Ericksen type condition (4) is automatically satisfied when W is given by

(6) because d1 ≥ 0 and d2 ≥ 0.

Constitutive laws similar to (6) have previously been used to study a variety of boundary

value problems involving mass addition and volumetric change. This includes the studies

of Pence and Tsai on swelling induced cavity formation in tubes Pence & Tsai (2005) and

spheres Pence & Tsai (2006). Amar and Goriely Ben Amar & Goriely (2005) make use of

a constant material parameter version of (6) in the context of more generalized processes

of growth to investigate instabilities in the inflation response of spherical shells when the

shell wall experiences anisotropic growth. The study Demirkoparan & Pence (2008) ana-

lyzes swelling induced twist in fiber reinforced composites for materials where the matrix

constituent swells (and is described by (6)) but the fibrous constituent does not swell and so

admits to an alternative constitutive law. In this paper we will ultimately make use of (6)

to study the interaction of swelling and pressure on the inflation response of thick walled

spheres when the material parameters d2 and d2 are also swelling dependent.

3. Kinematics for radial inflation of a spherical shell

Using the framework just described in Section 2 we consider a finite thickness spherical

shell with inner radius Ri > 0 and outer radius Ro > Ri prior to any loading or any swelling.

Attention is restricted to radially symmetric swelling v = v(R). The loading is taken to

consist of applied pressures Pi and Po on the inner and outer boundaries. These symmetric

conditions motivate the consideration of the symmetric deformation for radial inflation

r = r(R), θ = Θ, φ = Φ (10)
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on Ri ≤ R ≤ Ro, 0 ≤ Θ < 2π, 0 ≤ Φ ≤ π where the radial inflation function r(R) is

to be determined. Thus (10) is a map from reference spherical coordinates (R,Θ,Φ) to

deformed spherical coordinates (r, θ, φ). Let {eR, eΘ, eΦ} represent the unit basis vectors

in the reference configuration and let {er, eθ, eφ} represent the unit basis vectors in the

deformed configuration. It follows from (10) that the deformation gradient is given by

F = λr(er ⊗ eR) + λθeθ ⊗ eΘ + λφeφ ⊗ eΦ with

λr = r
′

and λθ = λφ = r/R (11)

in which prime ′ denotes the differentiation with respect to R (r
′

= dr/dR). The swelling

constraint (2) is

v =
r2r

′

R2
, (12)

Integrating (12) from the inner radius Ri to a generic radial value R gives

r3 = r3
i + 3

∫ R

Ri

v(ζ)ζ2dζ (13)

where ri = r(Ri). More generally (13) provides the map r = r(R) in terms of the single

parameter ri which still needs to be determined. The Cauchy stress tensor takes the form

T = Trr(er ⊗ er) + Tθθ(eθ ⊗ eθ + eφ ⊗ eφ) (14)

with

Trr =
2

v

∂W

∂I1

λ2
r +

4

v

∂W

∂I2

λ2
rλ

2
θ − p,

Tθθ =
2

v

∂W

∂I1

λ2
θ +

2

v

∂W

∂I2

(λ2
r + λ2

θ)λ
2
θ − p.

(15)

The equilibrium equations divT = 0 gives that p = p(R) along with the requirement

dTrr
dr

+
2

r
(Trr − Tθθ) = 0. (16)

The specified pressures Pi and Po at the inner and outer surfaces yield the boundary condi-

tions

Trr
∣∣
ri

= −Pi, Trr
∣∣
ro

= −Po, (17)
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where ro = r(Ro).

Using (12) and (15) the equilibrium equation (16) provides an ordinary differential equa-

tion for p(R) which can be integrated. The two boundary conditions (17) determine the

integration constant that emerges from this integration as well as the scalar ri. Once ri is

so determined the whole kinematics r = r(R) then follows from (13) and consequently the

deformation gradient tensor F is fully known. This constitutes the most obvious solution

procedure for determining the output response r(R) as a function of the input swelling field

v(R) and the input pressure values Pi and Po.

There is however a shortcut that gets to the same result by making direct use of the

stored energy density in terms of the principle stretches W̄ (λr, λθ, λφ, v). It is based on a

straight forward adaptation of a well known procedure from hyperelasticity when no swelling

is present. This earlier procedure corresponds to the special case v ≡ 1 in the present

treatment. Because W (I1, I2, v) = W̄ (λr, λθ, λφ, v) with λθ = λφ one may employ the chain

rule for the differentiation in (15) in the form

∂W

∂I1

=
∂W̄

∂λr

∂λr
∂I1

+ 2
∂W̄

∂λθ

∂λθ
∂I1

, (18)

with
∂λr
∂I1

=
λ2
r + λ2

θ

2λr(λ2
r − λ2

θ)
,

∂λθ
∂I1

=
λθ

2(λ2
θ − λ2

r)
. (19)

A similar differentiation applies with respect to I2 and on this basis one confirms that

Trr =
λr
v

∂W̄

∂λr
− p, Tθθ = Tφφ =

λθ
v

∂W̄

∂λθ
− p. (20)

Introduce the variable

s = r/R, (21)

which, in view of (11), is the biaxial stretch λθ = λφ. Also let si = ri/Ri and so = ro/Ro

and note that (13) gives

s3
o =

(
Ri

Ro

)3

s3
i +

3

R3
o

∫ Ro

Ri

v(R)R2dR. (22)

In this regard, the following derivation will be useful for the formulations in the next section

ds

dr
=
ds/dR

dr/dR
=
Rr
′ − r
R2r′

=
v − s3

Rv
, (23)

7
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where the last step from the above chain of equations is due to (12). The relation (23)

together with (12) gives

λr = r
′
= v/s2, λθ = λφ = r/R = s, (24)

and hence W̄ (λr, λθ, λφ, v) = W̄ (v/s2, s, s, v). Now define

w(s, v) = W̄ (v/s2, s, s, v) (25)

and calculate the derivative

∂w(s, v)

∂s
=
∂W̄

∂λr

∂λr
∂s

+ 2
∂W̄

∂λθ

∂λθ
∂s

= −2v

s3

∂W̄

∂λr
+ 2

∂W̄

∂λθ
. (26)

The combination of (24), (26) and (20) gives Trr − Tθθ = −(s/2v)∂w(s, v)/∂s so that the

equilibrium equation (16) can be expressed as

dTrr
dr

=
s

rv

∂w(s, v)

∂s
. (27)

This is now integrated with the aid of (17) and (23) to yield

∆P ≡ Pi − Po =

∫ so

si

1

v − s3

∂w(s, v)

∂s
ds. (28)

Because so is determined by si from (22) it follows that ∆P from (28) is indeed a function

of si. In the absence of swelling, meaning that v = 1 identically, (28) retrieves a standard

expression from conventional incompressible, isotropic hyperelasticity (see (7.18) of Green &

Shield (1950) and (5.3.21) of Ogden (1997)). The above swelling generalization is equivalent

to that given in (22) of Pence & Tsai (2006).

In general the swelling field v could depend on position within the shell wall, i.e., v =

v(R). This would then require v to be treated as a function of s for the purpose of the

integration in (28), say v(R) = v̂(s). Such a treatment could be developed but we will not

do so in this paper. Instead we shall henceforth restrict attention to homogeneous swelling

in the shell wall. This means that v is constant as a function of R, however such a v could

vary with time in a quasi-static fashion. Thus in this work we now restrict attention to

homogeneous swelling where v is a time-dependent parameter. It then follows from (13)

8
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that

r =
(
r3
i + v(R3 −R3

i )
)1/3

. (29)

For the case of material model (6), one obtains that

w(s, v) =

(
v2/s4 + 2s2

v2/3
− 3

)
d1 +

(
s4 + 2v2/s2

v4/3
− 3

)
d2 (30)

and this in turn puts (28) in the form

∆P =

∫ so

si

4

v − s3

[(
s

v2/3
− v4/3

s5

)
d1 +

(
s3

v4/3
− v2/3

s3

)
d2

]
ds. (31)

Note that (31) continues to allow for the possibility of d1 = d1(v) and d2 = d2(v). Equation

(31) in conjunction with

so =
1

Ro

(
R3
i s

3
i + v(R3

o −R3
i )
)1/3

(32)

provides the general relation between: amount of swelling v, applied pressure ∆P , and inner

radius expansion ri = si Ri for a material with swelling dependent stored energy density (6).

Although the integration associated with (31) could certainly be performed, the resulting

lengthy analytical expression does not provide much insight. Instead, we obtain results by

generalizing ideas put forward by Carroll in the context of the incompressible theory (in

which there is no swelling concept).

4. The role of swelling in the pressure-inflation relation

In the absence of swelling, the inflation of a pressurized spherical shell is a classical prob-

lem that has been widely studied within the theory of incompressible finite hyperelasticity,

i.e., with the constraint detF = 1. As first discussed in detail by Green and Shield Green &

Shield (1950), a radially symmetric spherical inflation is possible in every isotropic homoge-

neous incompressible hyperelastic material. Ultimately, it is given by the v = 1 version of

(28) and (30). This permits the construction of an inflation graph, which is a plot of ∆P

as a function of ri. A basic discussion on different qualitative forms for the inflation graph

is given by Carroll Carroll (1987). This in turn allows one to identify different material

classes. As we now show, these concepts readily generalize so as to provide similarily useful

organizing concepts when swelling takes place.

9
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4.1. Uniform expansion occurs for homogeneous swelling in the absence of pressure

While the discussion in Carroll (1987) made no reference to the swelling concept, the

concept is easily introduced into the treatment. Namely, there is now a separate inflation

graph for each value of v. As v is increased continuously, it generates a family of inflation

graphs in a continuous fashion. We consider the basic features of this family of graphs

for a material obeying the Baker-Ericksen type condition (4). Using (24) this condition,

henceforth referred to as the B-E condition, becomes

(Trr − Tθθ)(λr − λθ) =
s3 − v
2v s

∂w

∂s
= −(v − s3)2

2vs︸ ︷︷ ︸
≤ 0

1

v − s3

∂w

∂s︸ ︷︷ ︸
integrand of (28)

. (33)

Thus the B-E condition (4) gives that the integrand in (28) is negative at all locations where

λr 6= λθ. What happens if λr = λθ? Isolated locations where λr and λθ coincide have no

effect on the overall integral. This leaves a case in which λr and λθ coincide on some interval

in s. In that case r
′

= r/R = v1/3 on that interval. Then, because s = r/R = v1/3 which is

a single value, the interval is in fact just a single point. We conclude that (4) ensures that

the integrand of (28) is negative except at possible isolated locations that do not effect the

evaluation of the integral.

It is useful to remark upon the special case for which λr = λθ for all R within the

shell wall. This corresponds to r
′

= r/R = v1/3 for all R, i.e., r3 = vR3 throughout the

spherical shell. This represents a uniform expansion. For a uniform expansion it follows

that s = r/R = v1/3 for all R so that so = si = v1/3. Consequently the limits of integration

in (28) are identical and thus ∆P = 0. This gives the baseline result:

• In the absence of pressurization (∆P = 0), homogeneous swelling causes the sphere to

undergo uniform expansion (r3 = vR3). This gives λθ = λr and Trr = Tθθ for all R.

Such a homogeneous swelling expansion is represented by the point (si,∆P ) = (v1/3, 0) on

the inflation graph.

Suppose now that r3 > vR3, i.e., an amount of inflation that exceeds uniform expansion.

This will be the case if ri > v1/3Ri. Then s3 = r3/R3 > v and it follows from (23) that

ds/dr < 0 and hence so < si. Thus the integral in (28), because the integrand is negative,

gives ∆P > 0. Furthermore λθ = r/R > v1/3, λr = r′ = vR2/r2 < v1/3 and hence Tθθ > Trr

10
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for all R. Consequently one obtains another useful result, the first part of which is also

intuitive:

• A positive pressurization ∆P > 0 causes the inflation to exceed that of the uniform

expansion due to the swelling alone. Then λr < v1/3 < λθ and Trr < Tθθ for all R.

In a similar fashion, it follows that ∆P < 0 gives an inflation that is less than that of a

swelling induced uniform expansion. In such a case one might also expect various wrinkling

type instabilities that break the spherical symmetry. For this reason we restrict attention

to ∆P ≥ 0. For the same reason we also avoid the consideration of de-swelling (0 < v < 1).

4.2. Qualitative behavior in the absence of swelling

For a specified value of v the form of the pressure-inflation graph is determined by the

stored energy density W using (28). The resulting relation between ∆P and si = ri/Ri is

dependent on the shell thickness. This shell thickness will be characterized by the thickness

ratio parameter

ξ
def
= Ri/Ro, 0 < ξ < 1. (34)

The thin shell limit is then ξ → 1. The other limit of ξ → 0 can be viewed either as a

microvoid in a finite body or as a spherical hole in an infinite body.

If v = 1, i.e. no swelling at all, then we are in the domain of conventional incompressible

hyperelasticity and the problem reduces to one that has been extensively studied. In this

conventional incompressible hyperelastic context, Carroll Carroll (1987) identifies three dif-

ferent types of behavior which he names type (a), type (b) and type (c). These three types

are diagrammed in Figure 1 and are described as follows:

• type (a) behavior: ∆P increases monotonically with increasing ri;

• type (b) behavior: ∆P increases to a maximum value and then decreases to a nonneg-

ative asymptotic value;

• type (c) behavior: ∆P first increases to a local maximum, then decreases to a local

positive minimum before again monotonically increasing.

In the hyperelastic theory without swelling, certain stored energy forms W always give an

inflation graph with type (a) behavior. The Mooney-Rivlin material (5) specialized to d1 = 0

and d2 > 0 is such a material.

11
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Other stored energy forms always give an inflation graph with type (b) behavior; the

neo-Hookean material, meaning a Mooney-Rivlin material (5) with d2 = 0 and d1 > 0, is

such a material.

Finally there are certain stored energy forms that give type (a) behavior if ξ is relatively

small but give type (c) behavior if ξ is relatively large (close to one). The Mooney-Rivlin

material (5) with d1 = 10d2 is such a material. For these materials there is a transitional

value of the thickness ratio Ri/Ro = ξ, say ξa/c, such that ξ < ξa/c implies type (a) behavior

and ξ > ξa/c implies type (c) behavior. Alternatively stated, these materials have a type (c)

inflation graph for thin shell geometries but have a type (a) inflation graph for thick shell

geometries. While the above classification framework was established by Carroll Carroll

(1987) for the incompressible theory (v ≡ 1) we now use it to describe the swelling materials

under consideration.

type (c) 

type (a)

type (b) 
local minimum

local maximum

si=1; DP=0

2 4 6 8 10
-0.5

0.0

0.5

1.0

si=ri�Ri

D
P
�Μ

Figure 1: Inflation graphs showing three qualitatively different types of behavior (a)-(c) in the absence of
swelling. These particular graphs correspond to W given by (5), all with thickness ratio ξ = 0.5. The
differences are due to the values of d1 and d2. Here: d1 = 4d2 (top); d1 = 9d2 (middle); and d2 = 0
(bottom).
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4.3. Quantitative Determination of the Inflation Behavior Type

For any fixed value v > 1 the inflation graph will continue to display one of the vari-

ous behaviors shown in Figure 1. However changes in v could cause a transition from one

behavior type to another. For this reason it is useful to obtain a more quantitative charac-

terization of the conditions that distinguish the different graph behaviors. The presence of

either a local maximum or a local minimum in the inflation graph is dependent on whether

the derivative
d

dsi
(∆P ) vanishes for some value of si. It follows from (28) that this derivative

is given by

d

dsi
(∆P ) =

s2
i

v − s3
i

(
1

s2
o

∂w

∂s

∣∣∣∣
so

− 1

s2
i

∂w

∂s

∣∣∣∣
si

)
, (35)

where use has been made of (13) and the connections

s3
o = s3

i ξ
3 + v(1− ξ3),

dso
dsi

= ξ3 s
2
i

s2
o

. (36)

Equation (35) shows that the inflation graph will have a zero slope location only if the

following condition is met:

d

dsi
(∆P ) = 0 ⇔ 1

s2
o

∂w

∂s

∣∣∣∣
so

=
1

s2
i

∂w

∂s

∣∣∣∣
si

. (37)

To make use of this condition let η be the similarity variable v/s3. Because we restrict

attention to ∆P ≥ 0 it then follows that r ≥ v1/3R and hence

0 < η = v/s3 ≤ 1. (38)

Next define the auxiliary function

G(η, v)
def
= 1

2
v1/3η2/3∂w(s, v)

∂s

∣∣∣∣
s=(η/v)

−1/3
. (39)

Using (39) it follows that condition (37) is equivalently expressed as

d

dsi
(∆P ) = 0 ⇔ G(ηi, v) = G(ηo, v), (40)

with

ηi = v/s3
i , ηo = v/s3

o. (41)
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Conditions (20), (26) and (39) enable a physical interpretation for the function G in terms

of swelling v, stretch s = λθ, and stresses Tθθ, Trr, namely

G(η, v)
∣∣∣
η=vR3/r3

=
v2

λ3
θ

(Tθθ − Trr). (42)

Now for any fixed value v, the development in Section 4.2 showed that a uniform ex-

pansion takes place if ∆P = 0. This means that s = r/R = v1/3 for all R so that, in

particular, so = si = v1/3 and hence ηi = ηo = 1. Because all of the principle stretches are

then coincident one also obtains from (20) that Tθθ = Trr. Consequently (42) indicates that

G(1, v) = 0. (43)

Conversely, ∆P > 0 gives si > so > v1/3 which in turn implies s3
i > s3

o > v and hence

0 < v/s3
i < v/s3

o < 1. It follows that the first arguments of G in (40) are ordered

0 < ηi < ηo < 1 when ∆P > 0. (44)

Also in this case the B-E inequality (4) gives Tθθ > 0 > Trr at each location R of the

nonuniform spherical expansion. Hence (42) yields

G(η, v) > 0 for 0 < η < 1. (45)

Figure 2 shows graphs for G(η, v) corresponding to each of the three inflation curves

displayed in Figure 1 computed on the basis of (39) taking v = 1. The three graphs are

ordered from top to bottom in the same way as the graphs in Figure 1. Note that each of the

three graphs in Fig. 2 obey both of the conditions (43) and (45). The two top curves tend

to ∞ as η → 0 while the bottom curve goes to zero at η = 0. The top curve is monotone

decreasing, the middle curve is decreasing-increasing-decreasing, and the bottom curve is

increasing-decreasing. As we discuss next, these behaviors correlate with the type (a), type

(c) and type (b) behaviors exhibited in Figure 1.

To make direct contact with condition (40) we define the function that maps ηi to ηo for

the specific thickness ratio ξ under consideration. In view of (36) this function is

η̂o(ηi, ξ)
def
=

ηi
ξ3 + ηi(1− ξ3)

. (46)
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Figure 2: Graphs for G(η, v) corresponding to the three inflation curves in Figure 1. The function G(η, v)
is computed on the basis of (39) using (6) and taking v = 1. This is equivalent to using (5) and ultimately
gives the expression (50) that we examine in more detail later.

The function η̂o is now used to define the composite function H
def
= {G ◦ η̂o}, i.e.,

H(η, v, ξ)
def
= G

(
η̂o(η, ξ), v

)
. (47)

We now have two functions: G(η, v) defined in (39) and H(η, v, ξ) defined in (47). In general

these are different functions of their first argument η. An exception occurs when ξ = 1. This

is because (46) gives η̂o(ηi, 1) = ηi which in turn provides G(ηi, v) = H(ηi, v, 1).

The stationary value characterization (40) is now expressed as

d

dsi
(∆P ) = 0 ⇔ G(ηi, v) = H(ηi, v, ξ). (48)

We seek to determine under what circumstances, namely for what values (ηi, v, ξ), the

condition (48) is met. For this reason we now, for the rest of this section, use ηi for the first

argument of both G and H. The previous result (45) establishes that G(ηi, v) is a strictly

positive function of ηi on 0 < ηi < 1. The function H(ηi, v, ξ) is similarly strictly positive
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on 0 < ηi < 1. Also (43) gives that H(1, v, ξ) = G(1, v) = 0.

Fix the value v and consider the graphs of G(ηi, v) and H(ηi, v, ξ) as a function of ηi

on the interval 0 < ηi ≤ 1 for different values of ξ. Because G(1, v) = H(1, v, ξ) = 0 these

graphs meet at the endpoint ηi = 1. However because of inequality (44):

The graph of H is shifted to the left of the graph of G on the interval 0 < ηi < 1. The

amount of this shift is nonuniform in ηi and is dependent upon ξ.

In the thin shell limit ξ → 1 this shift becomes vanishingly small. Figure 3 shows such a

leftward shift for each of the three G graphs from Figure 2. In particular, each of the Fig. 2

graphs is redisplayed as solid curve. The left shifted graphs are displayed as dashed curves

of the same color. We take ξ = 0.5 because this gives the thickness ratio associated with the

curves from Figure 1. Because ξ = 0.5 is not close to one (i.e., the shell is thick) the amount

of leftward shift is large and this causes the H curves to become distorted relative to the

original G curves. However, what is not changed for each same color pair is the monotonicity

properties: decreasing for the blue pair, decreasing-increasing-decreasing for the red pair,

increasing-decreasing for the green pair. In other words the monotonicity properties of H

as a function of ηi do not vary with ξ and so can be regarded as inherited from the original

function G.

Condition (48) holds if and only if the graph of G intersects the graph of H somewhere on

the interval 0 < ηi < 1. If such an intersection occurs, then the associated value of ηi locates

either a maximum or a minimum in the corresponding inflation graph. We now consider the

consequences of this observation for each of the three different forms of G shown in Figure

2:

The first and simplest G graph form is one that is monotonically decreasing as a function

of ηi. In this case the graph of G cannot intersect its shifted image H. Consequently,

• forms for W that generate a monotonically decreasing G as a function of ηi always

give a type (a) inflation graph.

This case is represented by the pair of blue curves in Figure 3. The solid and dashed blue

curves do not intersect, and consequently the corresponding inflation graph in Figure 1 is

monotone.

The second graph form for G is one in which it is decreasing-increasing-decreasing as a

function of ηi as represented by the red curve of Figure 2. It then follows that a small shift
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Figure 3: G graphs from Fig. 2 (solid) along with the corresponding H graphs (dashed) for thickness ratio
ξ = 0.5. Each point on a G graph is shifted to the left to give a corresponding point on the H graph. This
shift is small if ξ is close to one (a thin shell). Here, because ξ is not very close to one, the nonuniform shift
distorts the curves, however the basic monotonicity properties do not change.

to the left of this graph will result in two intersections of the original graph with its shifted

image. The associated inflation graph will then have a local maximum followed by a local

minimum, in other words type (c) behavior. In this graphical construction the amount of

shift increases as ξ decreases from ξ = 1, i.e., as the shell gets thicker. This is represented by

the pair of red curves in Figure 3. There are two points of intersection, and these correspond

to the local maximum and local minimum of the middle curve in Figure 1.

Eventually however, the amount of shift will be sufficient to cause the shifted graph to

clear itself of any intersection with the original graph. The specific shift associated with

just losing this intersection involves the two intersection points coming together at a single

special intersection point where the two graphs now have a common tangent. At this special

shift, not only does (48) hold, but also

∂

∂ηi
G(ηi, v) =

∂

∂ηi
H(ηi, v, ξ). (49)
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This now becomes an equation for the value of ξ associated with a transition from type (c)

behavior to type (a) behavior. Consequently:

• forms for W that generate a G function that is decreasing-increasing-decreasing on

0 < ηi < 1 give type (c) inflation behavior for thin shells and type (a) inflation behavior

for thick shells. The special transition value ξ = ξa/c is found by simultaneous solution

of (48) and (49) for ηi and ξ.

The third and final graph form for G is one that obeys G = 0 at ηi = 0 and which then

increases with ηi before decreasing back to zero at ηi = 1. In this case all left shifted curves

for H will have exactly one intersection with the original G curve. Hence there will be a

type (b) inflation graph for all values of ξ. Consequently:

• forms for W that generate a G function that is increasing-decreasing on 0 < ηi < 1

always give a type (b) inflation graph.

It is important to realize that the above inflation graph characterization in terms of G

has focused on the effect of ηi and ξ irrespective of the value of v. In other words the

homogeneous swelling value v has been regarded as a fixed parameter in all of the above

discussion. However, for a given stored energy density W (I1, I2, v) the conclusions based on

the above G graph treatment for one value of v could differ from the conclusions obtained

for a different value of v. For example, the graph of G could be monotonically decreasing

with ηi for values of v at and near v = 1, but could be decreasing-increasing-decreasing for

relatively larger values of v. In such a case, if the shell is sufficiently thin, such a W would

lead to a type (a) inflation graph when the material is unswollen but would give a type (c)

inflation graph when the material is swollen. It is this issue of swelling induced changes in

qualitative behavior to which we now turn our attention.

5. The swellable Mooney-Rivlin material

We illustrate the effect of a changing amount of swelling using the material constitutive

law (6). Thus for v = 1 this retrieves the familiar Mooney-Rivlin form (5).
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5.1. Inflation behavior prior to swelling

Setting v = 1 in G(η, v) gives a function that shall be denoted by g(η), i.e., g(η)
def
=G(η, 1).

This removes v from consideration and effectively reduces the analysis procedure to that

described by Carroll Carroll (1987) for conventional incompressible isotropic hyperelastic

materials (i.e., no volume change). For the conventional Mooney-Rivlin material (5) this

function is given by

g(η) = 2d1(η1/3 − η7/3) + 2d2(η−1/3 − η5/3). (50)

Note that g(1) = 0. Also g(η)→∞ as η → 0 provided that d2 > 0. However if d2 = 0 then

g(0) = 0. Indeed the cases used in generating the graphs in Figures 1 - 3 all corresponded

to this specific example.

By considering the equivalent of the derivative of g, Carroll Carroll (1987) shows how

the monotonicity of this g is dependent upon the parameter ratio d2/d1. In particular, the

following critical value

(d2/d1)|cr def
= max

0<η<1

[
η−2/3 − 7η4/3

5η2/3 + η−4/3

]
≈ 0.215 (51)

has special significance. Carroll shows that if d2/d1 is greater than this critical value then

g(η) is monotone decreasing on 0 < η ≤ 1, but if d2/d1 is less than this critical value then

g(η) is decreasing-increasing-decreasing.

For our purposes it is convenient to examine the resulting consequences after expressing

d1 and d2 in the form

d1 = 1
2
αµ, d2 = 1

2
(1− α)µ (52)

which in turn gives
d2

d1

=
1− α
α

, α =
d1

d1 + d2

. (53)

The reason for introducing (52) and (53) is that it makes µ > 0 the shear modulus. Indeed

using (52) in (5) gives an alternative standard way of writing the Mooney-Rivlin energy

form. The parameter α is in the interval 0 ≤ α ≤ 1. The special ratio of d2/d1 given in (51)

corresponds to the critical value

αcr =
d1

d1 + d2

∣∣∣∣
cr

=
1

1 + (d2/d1)

∣∣∣∣
cr

≈ 0.823. (54)
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The derivative dg/dη = g
′
(η) that is computed from (50) has two roots if α is in the range

αcr < α < 1 and has no roots if α is in the range 0 ≤ α < αcr. This identifies the behavior

of the inflation graph as follows:

• If 0 ≤ α < αcr then the function g is monotonically decreasing with η. The inflation

graph has no stationary value and so gives type (a) behavior for all ξ.

• If αcr < α < 1 then the function g is decreasing-increasing-decreasing. The behavior is

either type (a) or type (c) depending on whether ξ is greater or less than a transitional

value ξa/c = ξa/c(α). If ξ > ξa/c then the behavior is type (c). If ξ < ξa/c then the

behavior is type (a).

• If α = 1 then d2 = 0 and g(0) = 0. This is the neo-Hookean special case and the

function g has only one stationary value. The behavior is then type (b) for all ξ.

As described in the discussion following (49), the transition value of ξ when αcr < α < 1

can be obtained by simultaneous solution of (48) and (49). This gives a value ξa/c = ξa/c(α)

for each value of α in the range αcr < α < 1 when v = 1. The curve ξ = ξa/c(α) is plotted in

Figure 4. Any ordered pair (ξ,α) that is above the curve ξ = ξa/c corresponds to a structure

(characterized by ξ) composed of a material (characterized by α) that gives an inflation

graph having type (c) behavior. Conversely, ordered pairs (ξ,α) below the curve ξ = ξa/c

correspond to a structure-material combination with a type (a) inflation graph. All of this

follows directly from Carroll’s work Carroll (1987).

5.2. Inflation graph sequences for increasing swelling

When swelling is present we consider the generalization of (5) that is given by (6). Then

g as given by (50) generalizes to

G(η, v) = 2(η1/3 − η7/3)d1(v) + 2(η−1/3 − η5/3)d2(v). (55)

The direct correspondence between (55) and (50) is due to the scalings I1/v
2/3 and I2/v

4/3

in (6). This allows the analysis of G in (55) to proceed in a similar fashion to the previous

analysis of (50). The main difference is that now we must account for the possible dependence

of the ratio d2/d1 upon v.

We begin by considering the case where d1 and d2 are independent of v. According to

(53) this is equivalent to α being independent of v. In this case homogeneous swelling has no
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Figure 4: Qualitative behavior of the inflation graph for the Mooney-Rivlin model W = d1(I1 −
3)+d2(I2−3) as a function of material parameter α = d1/(d1 +d2) and thickness ratio ξ = Ri/Ro.
The curve ξ = ξa/c provides a transition between type (c) and type (a)-behavior.
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Figure 5: Inflation graphs for the Mooney-Rivlin-type model (6) using (52) with α = 0.85, and
thickness ratio ξ = Ri/Ro = 0.3. All the inflation graphs exhibit type (a) behavior.

effect on the type of inflation graph. Such a result is consistent with remarks given in Pence

& Tsai (2006). As a first example, consider the material parameter α = 0.85. Then, because

α = 0.85 > αcr, there is a transition value of ξa/c which, according to Figure 4, is given by

ξa/c = 0.47. We now separately consider ξ = 0.3 < ξa/c (a relatively thick walled structure)

and ξ = 0.7 > ξa/c (a relatively thin walled structure). The pair (ξ, α) = (0.3, 0.85) is in the

type (a) behavior region of Figure 4, and so the v = 1 inflation graph for ξ = 0.3 displays

type (a) behavior. This inflation graph is shown in Figure 5 along with the inflation graphs

for an increasing sequence of v values. Because d2/d1 is independent of v all of the inflation

graphs are monotonic. Turning to the pair (ξ, α) = (0.7, 0.85), which is in the type (c)

behavior region of Figure 4, it follows that the v = 1 inflation graph for ξ = 0.7 displays

type (c) behavior. Figure 6 shows this inflation graph along with those for a similarly

increasing sequence of swelling values v. Because d2/d1 is again independent of v all of these

graphs exhibit type (c) behavior.
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Figure 6: Inflation graphs for the same material as in Fig. 5 (i.e., (6) and (52) with α = 0.85), but
now the thickness ratio ξ = 0.7. This corresponds to a relatively thinner walled structure. All the
inflation graphs now exhibit type (c) behavior.

5.3. Swelling dependent material stiffness parameters

More generally the parameters d1 and d2 may be swelling dependent, i.e., d1 = d1(v)

and d2 = d2(v). It then follows that the ratio d1(v)/d2(v) changes with the amount of

swelling. This can lead to the inflation graph behavior changing its type as v increases. To

demonstrate consider materials for which the Mooney-Rivlin parameters d1(v) and d2(v) in

(6) have the form

d1 = 1
2
µα vp and d2 = 1

2
µ(1− α) vq, (56)

where µ > 0 and 0 ≤ α ≤ 1 are fixed material constants. This is consistent with (52) as can

be seen by taking v = 1. Equation (56) introduces the additional exponent parameters p

and q. The choice p = 0 and q = 0 then formally retrieves the case that was just examined

in Section 5.2 with both d1 and d2 independent of v.

For p 6= 0 and q 6= 0 the material behavior remains dependent on the ratio
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d2

d1

=
1− α
α

vq−p. (57)

Thus if p = q then the ratio d2/d1 is independent of v and the inflation graph behavior does

not change with v. However if p 6= q then the behavior of the function G, which is now

determined by d2/d1, depends on the amount of swelling v.

The critical value of (d2/d1)cr = 0.215 from (51) continues to distinguish between mono-

tonic and non-monotonic graphs G. In this regard, for any fixed material parameter α, one

may solve (57) for the special swelling value v that is associated with (d2/d1)cr. Define this

special value of v as vA↔C . Making the replacements d2/d1 → (d2/d1)cr and v → vA↔C in

(57) and solving for vA↔C yields vA↔C = vA↔C(p− q, α) with

vA↔C(p− q, α)
def
=

(
α

1− α (d2/d1)cr

) 1
q−p

= (0.215)
1
q−p
( α

1− α
) 1
q−p . (58)

Now working through the various possibilities it follows that:

if p < q then the graph of G is





monotone whenever v > vA↔C ,

non-monotone whenever v < vA↔C ,

(59)

and:

if p > q then the graph of G is





monotone whenever v < vA↔C ,

non-monotone whenever v > vA↔C .

(60)

For the case of a non-monotone G graph, as discussed in Sections 4.2 and 5.1, there is a

special value ξa/c of the thickness ratio ξ that gives the transition between type (a) and

type (c) behavior. It is obtained by solving simultaneously the two equations (48) and (49).

For given α, p and q, this value is a function of the swelling amount, hence we can write

ξa/c = ξa/c(v). Such a function is directly useful if one seeks to determine the effect of a

fixed amount of swelling as applied to a range of different structures, each with a different

shell thickness.

However the more practical problem involves a fixed structure that is subject to a changing
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amount of swelling. This motivates an inverting of the relation ξ = ξa/c(v) to obtain v =

va/c(ξ). The value of swelling va/c = va/c(ξ) demarcates the transition between type (a)

behavior and type (c) behavior for the given shell geometry. From the material perspective,

va/c(ξ) will depend on α, p and q. In fact, like vA↔C as given in (58), the dependence of va/c

upon p and q will be in terms of p − q, i.e., va/c = va/c(ξ, p − q, α). However, unlike vA↔C

which is independent of ξ and given by the simple form (58), the function va/c is dependent

upon ξ and not given by a similarly simple expression. In fact the connection between these

two is that

va/c(ξ, p− q, α)

∣∣∣∣
ξ=1

= vA↔C(p− q, α). (61)

The qualitative form of the curves va/c as a function of ξ depends on whether p > q or

p < q. This is thoroughly discussed in Appendix A. In particular, this appendix explains

why (61) holds, and how this leads to the conclusions (59) and (60). This allows a detailed

accounting for how the inflation graph varies with v beginning from the originally unswollen

value v = 1 and then predicting if and when the inflation graph changes its behavior type

as v increases.

This can be illustrated by considering the same α and ξ values associated with Figures

5 and 6 but now allowing for p 6= 0 and q 6= 0. For this purpose we first consider the

case p < q that is obtained by taking p = 0 and q = 2/3. In particular, consider two

subcases corresponding respectively to a thick shell (ξ = 0.3) and to a relatively thinner

shell (ξ = 0.7). Thus the two subcases correspond to (ξ, α, p, q) = (0.3, 0.85, 0, 2/3) and to

(ξ, α, p, q) = (0.7, 0.85, 0, 2/3). The v = 1 curve for the first subcase is identical to the v = 1

type (a) curve from Figure 5. Similarly, the v = 1 curve in the second subcase matches the

v = 1 type (c) curve from Figure 6. However the curves for v > 1 will no longer match the

curves shown in these respective figures. One finds for the first subcase, that with ξ = 0.3,

the type (a) inflation graph that is present for v = 1 persists for all increasing v. This aspect

mirrors the situation in Figure 5 even though the individual curves for v > 1 are different.

In the second subcase of ξ = 0.7 one finds that the inflation graph is originally type (c) for

v = 1 but it eventually transitions to type (a) behavior as v increases. This transition occurs

at v = 1.27, a result that can be predicted on the basis of the procedure for determining

va/c that is described in the appendix.

The case p > q can be handled similarly. For this purpose consider p = 2/3 and q = 0,

again for the respective thick and thin shell values ξ = 0.3 and ξ = 0.7. Once again the
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v = 1 curves match the v = 1 curves from Figures 5 and 6 respectively. Once again the

v > 1 curves do not match the curves in these two figures. In fact, Figures 7 and 8 show a

v > 1 curve sequence for these two respective cases. For the subcase of ξ = 0.7 one finds

that the original type (c) behavior at v = 1 will persist as v increases (Fig. 8). In contrast,

for the case of ξ = 0.3 one finds that the original type (a) behavior at v = 1 will transition

to type (c) behavior as v increases (Fig. 7). This transition occurs at v = 1.54, where,

again, such a result can be understood in detail on the basis of the treatment given in the

appendix.
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Figure 7: Inflation graphs for the Mooney-Rivlin-type model (6) using (56) with α = 0.85, p = 2/3, q = 0,
and thickness ratio ξ = 0.3. The inflation graphs exhibit the type (a) behavior for 1 ≤ v < 1.54 and type
(c) behavior for v > 1.54.
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Figure 8: Inflation graphs for the Mooney-Rivlin-type model (6) using (56) with α = 0.85, p = 2/3, q = 0,
and thickness ratio ξ = 0.7. The inflation graphs exhibit type (c) behavior for all v ≥ 1.
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6. Swelling induced burst

Each of the previous Figures 5 - 8 shows a sequence of inflation graphs for a given shell

thickness ratio ξ composed of a given model material (α, p, q). Such a figure can be used to

gauge how the sphere expands as a function of increasing swelling v. If the pressurization is

fixed during the swelling, then a quasi-static increase in v corresponds to moving between

different curves on the same figure along the horizontal line determined by the stipulated

∆P . For continuously increasing v the associated increase in si will also be continuous so

long as all of the curves in the sequence are monotonically increasing. However if the curves

are not all monotone increasing then there is clearly the possibility of a discontinuity in si.
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Figure 9: Inflation burst caused by increasing v at fixed ∆P = 0.258µ for the inflation graphs from Fig. 6.
Prior to swelling the pressurization ∆P = 0.258µ has given a mild radial increase (from si = ri/Ri = 1 to
si = ri/Ri = 1.14 on the v = 1 curve). Now increasing v at this fixed ∆P gives a continuous increase of si
with v (dashed red line) until encountering the inflation graph for v = 2 where there is a local maximum.
Further increase of v requires a jump across to the other increasing branch of the v = 2 curve (solid red
segment). This corresponds to an inflation burst with radial increase from si = 2.37 to si = 4.32.

For example, consider again Figure 6. The inflation graphs for all v are non-monotone

(type (c)) and the si interval of graphical decrease varies with v. Figure 9 identifies the

specific pressurization ∆P that corresponds to the local maximum for v = 2. Its value
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is ∆P = 0.258µ. Starting with an unswollen and unpressurized sphere (v = 1,∆P = 0)

consider first an increase in pressure from ∆P = 0 to ∆P = 0.258µ while the sphere remains

unswollen. The inflation response corresponds to climbing the v = 1 curve to ∆P = 0.258µ

with a relatively small increase in si from si = 1 to si = 1.14.

Now holding this pressurization fixed let v increase. Then one may proceed in sequence

through all of the curves from the original v = 1 curve to the curve for v = 2. During this

sequence there is a corresponding continuous increase in si. However, increasing v beyond

v = 2 cannot proceed with a continuous increase in si because the local maximum signals

the onset of an interval in si corresponding to v < 2. This interval proceeds from si = 2.37

to si = 4.32. While this interval precludes a continuous increase in si as v increases through

v = 2 it does permit a discontinuous increase from si = 2.37 to si = 4.32 at v = 2. After

such a jump in si it is then again possible for si to increase continuously because the inflation

graphs again become ordered so as permit si to increase with v. Figure 10 shows directly

the corresponding radial increase with swelling (si as a function of v).

Inflation burst at v=2Dsi = 1.95

DP=0.258Μ

1.0 1.5 2.0 2.5 3.0
1

2

3

4

5

6

7

8

v

s i

Figure 10: Inflation burst showing si = ri/Ri vs. v at ∆P = 0.258µ caused by an increase in the swelling
parameter v. Locations denoted by • provide correlation with the inflation graphs depicted in Figure 9.
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The jump in si corresponds to a “burst of inflation” of limited extent (it concludes at

si = 4.32). Such a burst, which can also be described as a snap-through, is due to the pres-

ence of a local maximum in the sequence of inflation graphs. This gives multi-valued choices

for si when an inflation graph exhibits two increasing branches separated by a decreasing

branch.

Under such circumstances some kind of burst is inherent in the mechanical description.

However, the description is potentially ambiguous as regards the value of v at which the

jump occurs. For example, we have just described a jump from si = 2.37 to si = 4.32 when

both ∆P = 0.258µ and v = 2. However, for ∆P = 0.258µ the inflation graphs become

multi-valued in si for values of v < 2 and so the question arises, “why not jump before

v = 2?”. In other words, while v = 2 is the maximum value of v that permits one to avoid

a discontinuity, there is always the possibility of executing an earlier jump.

Such issues have been extensively studied in conventional hyperelasticity Müller & Strehlow

(2004) (i.e., no swelling). Then for a single type (c) inflation graph an increase in ∆P even-

tually provokes a jump to the second increasing branch for the simple reason that the first

increasing branch has a maximum permissible ∆P value. This jump could occur at the local

maximum or it could occur before the local maximum. Viewing such jumps as a type of

phase transition it can be shown that an energy minimal quasi-static process of ∆P increase

predicts that the transition occurs prior to attaining the maximum. Specifically it occurs

at the value of ∆P associated with the “Maxwell line” construction Ericksen (1975). On

the other hand, a transition that occurs at the local maximum upon loading (and at the

local minimum upon unloading) is consistent with a notion that the prevailing phase can,

under carefully controlled conditions, be preserved even though distantly related states of

deformation may now lower the system free energy. In other words, if the system is not sub-

ject to large disturbances then jumps will occur at extrema of the inflation graph because it

is only then that the inevitable small disturbances provoke a jump to a more energetically

favorable configuration.

Such considerations continue to apply to the notion of swelling induced burst that we have

been describing. In particular, the sequence of inflation graphs depicted in Figure 6 leads to a

situation where, at fixed ∆P , a continuous increase in v will give some kind of abrupt change

in inflation. Whether this occurs at the local maximum of an inflation graph or whether it

occurs prior to such a local maximum is then to be answered on the basis of a more refined
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treatment. This includes energetic stability analysis such as that described in Ericksen

(1975) as well as the consideration of less symmetric deformations (such as those with new

modes of localized deformation Kyriakides & Chang (1990)). More generally, one can employ

a broader thermodynamic framework that allows for supplemental physical considerations

(e.g., an additional kinetic relation), as well as additional theoretical considerations from

the outset (e.g., inertial dynamics, finer scale physics, a statistical physics treatment of

fluctuations). Finally, it is worth remarking that the notion of pressure control is itself likely

to be an idealization, and that other forms of control, such as one based on controlling a set

mass of sealed in gas Alexander (1971), can lead to different predictions on how transitions

occur between different points on an inflation graph.

The inflation burst illustrated in Figure 9 was based on the inflation graphs for the case

that was presented in Figure 6. In that case all of the inflation graphs for v ≥ 1 involved

type (c) behavior. Thus one could possibly argue that the swelling induced burst could have

been anticipated on the basis of the original unswollen v = 1 inflation graph. However,

in general it would be premature to draw conclusions on either the presence or absence of

swelling induced burst just on the basis of the v = 1 inflation graph.

For example, the unswollen v = 1 inflation graph in Figure 7 exhibits type (a) behavior.

Thus if v = 1 then a continuous increase in pressure will result in a continuous expansion and

so by itself provides no indication of a burst possibility. However swelling induced inflation

burst can still occur. This is shown in Figure 11 for the example of Figure 7. Starting on the

v = 1 inflation graph with ∆P = 1.16µ we consider a subsequent increase in v. The value

∆P = 1.16µ is chosen for this discussion because it gives the local maximum on the v = 2

inflation graph (other values could similarly be considered). Holding ∆P at this fixed value,

an inflation burst is triggered at v = 2 in a manner similar to that previously depicted in

the example of Figures 9 and 10. In that previous example the inflation graph behavior was

type (c) for all values of ∆P prior to the burst. In the present example, the swelling induced

burst involves inflation graphs that transition from “benign” type (a) graphs to “burstible”

type (c) graphs as the swelling proceeds.

A converse phenomena is also possible if the v = 1 unswollen graph is type (c) and which

then transitions to type (a) as the swelling proceeds. This was the case for (ξ, α, p, q) =

(0.7, 0.85, 0, 2/3) that was discussed in Section 5.3 right after equation (61). In such a case

it is found that certain loading sequences which alternate pressurization with strategically

placed episodes of swelling and deswelling enable burst avoidance. This contrasts with the
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Figure 11: Inflation burst caused by increasing v at fixed ∆P = 1.16µ for the inflation graphs from Fig. 7.
Initially, the radius increases continuously, first with v = 1 as ∆P increases from zero to 1.16µ and then
at this fixed ∆P as v increases to v = 2 (dashed red segment). At v = 2 there is a jump from the first
increasing branch to the second increasing branch after which a continuous increase is again the case.

inevitability of burst if all of the pressurization takes place at fixed v.

7. Concluding Remarks

The combined effect of external loading and internal swelling can give rise to complicated

states of deformation. Even in the simple setting of a spherical shell subject to combinations

of simple pressure with uniform through-thickness (homogeneous) swelling, instabilities can

arise that might not otherwise be present if either pressurization or swelling was acting by it-

self. Here we have investigated the role that swelling can have on eliciting qualitative changes

in the pressure-expansion inflation response. Generalizing methods of analysis pioneered by

Carroll in the context of incompressible hyperelasticity we have examined a rather straight

forward constitutive model, one which is motivated by the well known Mooney-Rivlin model

in the incompressible theory, so as to incorporate swelling dependent stiffness parameters.

We have shown how certain dependencies preserve the overall qualitative nature of the in-
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flation process independent of the amount of swelling, whereas other dependencies do not.

In the latter case we have provided general rules, illustrated with examples, showing how

certain constitutive forms cause a monotonic (benign) inflation response in the absence of

swelling to become nonmonotonic (burst-inducing) as the swelling proceeds. Alternative

constitutive forms have the opposite effect, burst-inducing inflation response in the absence

of swelling can be mitigated into benign inflation response as the swelling proceeds.

The present study has been limited to the consideration of spherical symmetry. Bifur-

cations away from spherical symmetry have been extensively studied in the hyperelastic

theory, again in the absence of swelling. In particular, the identification of locations on the

inflation graph where such bifurcations may initiate can be found by treating an incremental

aspherical deformation superimposed on the original spherically symmetric finite deforma-

tion. The resulting incremental equations are developed in Haughton & Ogden (1978) for

both shells of finite thickness and in the thin membrane limit. The membrane specialization

especially permits powerful analysis techniques that allow one to not only identify the initi-

ation of aspherical modes, but to also gauge the relative stability of one branch with respect

to another (see Chen & Healey (1991) for a detailed analysis of the spherical solution vs. the

branch of “pear shaped” solutions). More recently, highly refined shooting methods have

been employed to follow the various solution branches so as to assess how they connect to

each other, and how their relative stability can be determined under a variety of controlling

situations Fu & Xie (2014). The study here has focused on shells of finite thickness, and

so does not make use of the special membrane theory limit, and the elegant procedures

that this permits. Finally, returning to the case of finite thickness shells, recent work in

the incompressible hyperelastic theory Bustamante & Dorfmann (2013) has uncovered the

rich possibilities for different orderings of the various aspherical bifurcation modes that can

occur under various modifications of the hyperelastic energy density function – both quanti-

tatively (one term Ogden vs. two term Ogden) and qualitatively (standard energy forms vs.

those with limited chain extensibility). Returning to the issue of swelling, the development

of surface roughness due to swelling has been observed in solid hydrogel spheres. This may

then give way to an aspherical and facetted surface morphology as the swelling proceeds

Bertrand et al. (2016). These are typically confined to distinct ranges of overall swelling and

may be connected to nonuniform states of internal hydration (v = v(R) in the notation of

the present paper), especially if the identified swelling ranges differ on the basis of whether

the overall fluid content is increasing or decreasing.
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The overall considerations of the present study, as well as possible future studies that

bring to bear the techniques in the above referenced works, give rise to the prospect that

swelling, when viewed as a control variable, could be manipulated so as to tune the inflation

response of spherical shells and membranes. This includes the possibility of both triggering

and avoiding instances of inflation burst. On this basis, one may even speculate to what

extent such processes of regulation might be present in biological systems. For example,

colonies of soft celled creatures are capable of rapidly undergoing complex shape changes.

This includes the green alga volvox in the shape of a spherical shell. At a crucial point in

their embryonic development, volvox essentially turn themselves inside-out in a process that

is conjectured to be triggered by cell shape change at a specific latitude on the shell Höhn

et al. (2015); Haas & Goldstein (2015). An intriguing issue in this context is the extent

to which the global conditions of the type examined here might possibly abet the resulting

snap-through process.
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Appendix A. Appendix: Effect of the constitutive exponents p and q on the

transitional swelling value va/c

The inflation graph of ∆P vs. si for the Mooney-Rivlin swelling model that combines

(6) with (56) displays either type (a) or type (c) behavior depending on the thickness ratio

ξ = Ri/Ro and the swelling value v. If for fixed ξ it is possible that v alone can cause such a

transition, then this transition happens when v = va/c. The transition value va/c is sensitive

to the constitutive parameters α, p and q in (56), however it is not sensitive to µ.

In (61) it is stated that the connection between the function va/c and the function vA↔C

is

va/c(ξ, p− q, α)

∣∣∣∣
ξ=1

= vA↔C(p− q, α). (61)

This can be understood as follows: type (c) behavior is associated with a graph for G that

is not monotonic. Any transition from a monotonic graph to a nonmonotonic graph for G

must take place at a value of v for which the graph develops an inflection point with zero

slope. The condition for this determines vA↔C . On the other hand for a finite thickness

shell the condition that determines va/c is the simultaneous solution of (48) and (49). The

conditions (48) and (49) depend on the thickness ratio ξ because this dictates the amount

that the graph of G shifts to the left in order to generate the H graph. This shift becomes

vanishingly small in the thin shell limit ξ → 1. In order for the match condition (48) to

hold under a vanishingly small shift it is required that any such location is one at which the

graph of G has zero slope. Similarly, for the matching slope condition (49) to hold under a

vanishingly small shift requires a zero curvature location. A location with both zero slope

and zero curvature is the defining condition for vA↔C . Consequently, vA↔C is the same as

va/c in the thin shell limit ξ = 1.

For a finite thickness shell (ξ < 1) the values of vA↔C and va/c will no longer be the same.

Here it is useful to recall the diagram in Figure 4 which, for v = 1, served to determine the

specific thickness ratio ξ associated with the (a) to (c) behavior transition for values of α

that were in the special range permitting both behaviors. When swelling is present any such

transition is sensitive to both ξ and v. It is then useful to construct curves of va/c as a function

of the structural parameter ξ for fixed material parameters α, p, q. Given a particular shell

geometry constructed of a specific material, one can then locate the appropriate point on

such a va/c curve for the purpose of determining the transitional swelling value. The form

of these curves are qualitatively different depending on whether p > q or p < q. We now
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describe in more detail these two separate cases.

Appendix A.1. Dependence of va/c on ξ for p > q

If p > q then the Mooney-Rivlin swelling model (6) with (56) gives va/c > vA↔C . The

sphere exhibits type (a) behavior for v < va/c and type (c) behavior for v > va/c. For fixed

constitutive parameters α, p, q the difference |va/c − vA↔C | decreases for relatively thinner

shells (i.e., as ξ = Ri/Ro increases). In particular, va/c → vA↔C as ξ → 1.

These features are apparent in Figure A.12 which plots the dependence of va/c upon ξ

for exponent choices p = 2/3 and q = 0. Because va/c depends on p and q only through

their difference, the Fig. A.12 plots apply more generally to any p and q values obeying

p − q = 2/3. The different curves correspond to different values of α. Each curve is

monotonically decreasing from infinity (as ξ → 0) to the value of vA↔C at ξ = 1. Curves for

values of α > 0.823 are everywhere above the line va/c = 1. This is because vA↔C > 1 when

α > 0.823. In contrast, because α < 0.823 makes vA↔C < 1 it follows that the curves for

α < 0.823 cut the line v = 1. Because we limit attention to v ≥ 1 the portions that continue

into v < 1 are shown as dashed.

The α value of 0.823 is the value of αcr that was first introduced in (54) in the context of

the standard neo-Hookean model. By virtue of (61) it also serves to make vA↔C(p−q, αcr) = 1

because of the direct way in which the standard incompressible model ((5) with (52)) was

generalized to the swelling model ((6) with (56)).

The curves shown in Figure A.12 correspond to p − q = 2/3. Curves with similar

qualitative behavior are obtained provided that p > q. In particular, the α value of 0.823 is

always associated with vA↔C = 1. Spherical shells with p > q and α > 0.823 have va/c > 1.

They exhibit type (a) behavior for 1 ≤ v < va/c and exhibit type (c) behavior for for v > va/c.

Appendix A.2. Dependence of va/c on ξ for p < q

One may similarly construct curves of va/c vs. ξ for the case in which p < q. Now the

curves are increasing with ξ instead of decreasing. Each curve continues to approach the

value vA↔C as ξ → 1, however now they increase from the value zero at ξ = 0. The other

major difference is in the significance of these curves. Namely, the spherical shells now have

a type (a) behavior in the region above the curves (v > va/c) and have a type (c) behavior

in the region below the curves (v < va/c).

Such curves are displayed in Figure A.13 which plots the dependence of va/c upon ξ

for exponent choices p = 0 and q = 2/3. More generally this figure also applies to any
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Figure A.12: Transitional swelling value va/c versus ξ = Ri/Ro for the Mooney-Rivlin-type model (6) with
parameters µ, α, p and q in (56). The transitional swelling value va/c is independent of µ and is dependent
on p and q only via the difference p− q. These plots are for p− q = 2/3. For a given α-curve the inflation
graph exhibits type (c) behavior if (ξ, v) is in the region above the curve and type (a) behavior if (ξ, v) is in
the region below the curve.
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Figure A.13: Transitional values for swelling va/c versus ξ = Ri/Ro for Mooney-Rivlin-type model (6) with
parameters µ, α, p and q in (56). The transitional swelling value va/c is dependent on α as shown but is
independent of µ. The curves are dependent on p and q only via the difference p − q. This figure is for
p− q = −2/3. For a given α-curve the inflation graph exhibits type (c) behavior when (ξ, v) is in the region
that is below the curve and type (a) behavior in the region that is above the curve.
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p and q values obeying p − q = −2/3. Qualitatively similar curves hold for any p and q

obeying p < q. The value α = 0.823 continues to retain its special significance because of

its continued association with the condition vA↔C = 1. It is now the case that curves for

α < 0.823 are always confined to the region va/c < 1. Because the condition v < 1 is not

being considered, the α < 0.823 curves are shown as dashed over their entire length. Thus

if α < 0.823 (and p < q) then any spherical shell has type (a) behavior for v ≥ 1.

Conversely curves for α > 0.823 cut the line v = 1. The portions of these curves that are

below the value v = 1 are again shown as dashed. If α > 0.823 and the shell is sufficiently

thick then it has a type (a) inflation graph for all v ≥ 1; this is because va/c < 1. However if

the shell is sufficiently thin then va/c > 1; this means that it has a type (c) inflation graph

for 1 ≤ v < va/c and a type (a) inflation graph for v > va/c. Consequently in such a case

a quasi-static increase in v from the unswollen state v = 1 will generate a transition from

type (c) to type (a) behavior as v passes through the special value va/c.
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