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a b s t r a c t

Temperature is an important factor affecting the physical and chemical properties of materials, especially
when the temperature changes significantly, such as in the process of heat conduction. The correspond-
ing changes of material properties greatly complicate the distribution of temperature and thermal stress,
and make it much more difficult to accurately solve the thermal-elastic field. Using the generalized com-
plex variable method, the thermal-elastic problem of an elliptic cavity embedded in an infinite medium
has been analyzed in this paper, with the temperature dependence of thermal conductivity, elastic mod-
ulus and thermal expansion coefficient fully accounted for. The temperature, thermal flux and thermoe-
lastic fields have been obtained analytically. The analytical and numerical results show that thermal flux
solution is consistent with the temperature independent case, while the temperature and thermal stress
solutions are much more complicated. When the elliptical cavity degenerates into a crack, Mode I thermal
stress intensity factor K1 has a tiny negative value, which indicates that thermal flux can actually close
the crack slightly. In addition, both K1 and K2 vary nonlinearly with remote thermal loads, and depend
on 3=2;5=2 and 7=2 power of crack length. These results provide a powerful tool for the failure and reli-
ability analysis of temperature dependent materials.

� 2021 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the most basic forms of energy, heat widely exists in
various systems and devices (Li et al., 2012, 2003). The flow of heat
is accompanied by the change of temperature and has a profound
impact on its carrier, namely the medium itself. First of all, temper-
ature affects the microstructure and chemical composition of the
medium, thus affecting its thermal conductivity, electrical conduc-
tivity, elastic modulus, thermal expansion coefficient, hardness,
yield strength and rupture strength etc. (Aksamija and Knezevic,
2011; Xie et al., 2014; Liu et al., 2012; Rajabi et al., 2016; Huaijie
et al., 2018; Ezzat et al., 2014).

In addition, the thermal expansion of different positions and
directions caused by temperature change may not be compatible,
thus resulting in significant thermal stress and failure problems
(Hasebe and Wang, 2005; Florence and Goodier, 1960; Sih, 1962;
Sih, 1965; Wilson and Yu, 1979; Sherief and Ezzat, 1994; Ezzat
and Awad, 2010). For examples, Abbas and Marin (2017) consider
the problem of a two-dimensional thermoelastic half-space in the
context of generalized thermoelastic theory with one relaxation

time. Dag established two new computational method based on
the J(k)-integral (Dag, 2007; Dag et al., 2010) and J(1)-integral
(Dag et al. (2013)) to calculate crack tip parameters for functionally
graded materials (FGMs) that are subjected to mixed-mode ther-
mal loading. Alonso et al., 1999 characterized a nontrivial features
of heat conduction. While the heat conductivity is well defined in
the thermodynamic limit, a linear gradient appears only for quite
small temperature differences, and a thermal stress fracture mode
of material removal by laser cutting is researched by Molian et al.
(2008). Also, in our previous work, the electric, heat conduction
and corresponding progressive thermal stress distribution have
been discussed (Xie et al., 2019; Song et al., 2020). However, in
order to simplify the calculation, the temperature independent
material properties has been used in these studies.

In the experiment, the thermal conductivity, elastic modulus
and thermal expansion coefficient of most materials change signif-
icantly with temperature, which greatly complicates the analysis
and calculation of heat conduction and thermal stress. Some
numerical simulation methods have been developed to study ther-
moelasticity (Abbas and Youssef, 2012; Abbas, 2014), thermal
stress (Abbas, 2014) and material properties (Ezzat et al., 2004)
in temperature dependent cases. However, the numerical results
can not give the formula relationship between the parameters
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and the final field distributions. It is thus highly desirable if a
general analytic method for temperature and thermoelastic fields
in materials with temperature-dependent properties can be
derived.

Obviously, the temperature dependence of material properties
can significantly complicate the governing equations, including
heat conduction equations, equilibrium differential equations and
compatibility equations, and make it very difficult to solve these
equations analytically. According to our best knowledge, although
the temperature dependence of material properties is very impor-
tant in large temperature gradient problems, the analytical
research on such problems is still very rare.

In the current study, the thermal-elastic problem of an elliptic
cavity embedded in an infinite medium has been analyzed, with
the temperature dependence of thermal conductivity, elastic mod-
ulus and thermal expansion coefficient fully accounted for. The
temperature, thermal flux and thermoelastic fields have been
obtained analytically. The analytical and numerical results show
that thermal flux solution is consistent with the temperature inde-
pendent case, while the temperature and thermal stress solutions
are much more complicated. In addition, both K1 and K2 vary non-
linearly with remote thermal load, and depend on a3=2; a5=2 and a7=2

power of crack length.

2. Governing equations and general treatment

2.1. Heat conduction equation

In a two-dimensional plane, when the thermal conductivity of
the medium changes with temperature, the heat conduction equa-
tions are

JQx ¼ �j Tð Þ @T
@x ;

JQy ¼ �j Tð Þ @T
@y ;

ð1Þ

where T is temperature field, and j Tð Þ represents thermal conduc-
tivity, which varies with T arbitrarily.

In the following analysis, we consider that heat energy is con-
served in this system, such that thermal flux are divergence-free:

r � JQ ¼ 0: ð2Þ

2.2. Compatibility equation and equilibrium differential equation

The thermal expansion of different positions and directions
caused by temperature change may not be compatible, thus result-
ing in significant thermal stress. For solving this thermal stress, we
first list the compatible equations of thermoelasticity

@2cxy
@x@y

¼ @2ex
@y2

þ @2ey
@x2

; ð3Þ

and the geometric equations are

ex ¼ @u
@x ;

ey ¼ @v
@y ;

cxy ¼ @v
@x þ @u

@y ;

ð4Þ

The rest equations to be satisfied are the equilibrium differential
equations, which are also listed here

@rx
@x þ @rxy

@y ¼ 0;
@ry

@y þ @rxy

@x ¼ 0;
ð5Þ

In this paper, we consider that the elastic modulus and thermal
expansion coefficient vary with temperature, thus the constitutive
equation can be expressed as

ex ¼ 1
E Tð Þ rx � lry
� �þ k Tð ÞT;

ey ¼ 1
E Tð Þ ry � lrx
� �þ k Tð ÞT;

cxy ¼ 2 1þlð Þ
E Tð Þ rxy;

ð6Þ

where e; c;r;u vð Þ;l; E Tð Þ and k Tð Þ denotes linear strain, shear
strain, stress component, displacements, poisson‘s ratio, elastic
modulus and thermal expansion coefficient, respectively.

According to the stress function method, if the three stress com-
ponents are given by the same stress function H, then the equilib-
rium differential equations are automatically satisfied.

rx ¼ @2H
@y2

; ry ¼ @2H
@x2

; rxy ¼ � @2H
@x@y

: ð7Þ

2.3. General solutions of temperature-dependent properties problems

2.3.1. General solution of temperature field
In order to solve the divergence equation Eq. (2) for tempera-

ture field, we point out that there always exist a new function
U Tð Þ, which satisfies the following equation

U Tð Þ ¼
Z
j Tð ÞdT; ð8Þ

According to chain rule, the first order partial derivative of U Tð Þ to x
and y are

@U
@x ¼ j Tð Þ @T

@x ¼ �JQx
@U
@y ¼ j Tð Þ @T

@y ¼ �JQy

(
; ð9Þ

Substituting Eq. (9) into Eq. (2), and we obtain a classical Laplace
equation

@2U
@x2

þ @2U
@y2

¼ 0; ð10Þ

In the complex plane, the general solution of Eq. (10) can be
expressed as follow

U ¼ f zð Þ þ f zð Þ
h i

¼ 2Re f zð Þ½ �; ð11Þ

where z ¼ xþ iy. Accordingly, by substituting Eq. (11) into Eq. (9),
the expression of thermal flux JQ could be obtained as

JQx � iJQy ¼ �2f 0 zð Þ; ð12Þ

2.3.2. General solutions of thermoelastic fields
As we pointed out earlier in Eq. (7), the equilibrium differential

equations can be automatically satisfied if the three stress compo-
nents are given by the same stress function H. However, the com-
patibility equation represented by H is extremely complex now,
since the elastic modulus and thermal expansion coefficient are
both functions of temperature. In order to simplify the compatibil-
ity equation, we prove that there exists a new function U (as
detailed in Appendix 1) such that the three stress components sat-
isfying the equilibrium differential equation can be re-expressed as

rx ¼ E Tð Þ @
2U
@y2

;ry ¼ E Tð Þ @
2U
@x2

;rxy ¼ �E Tð Þ @2U
@x@y

; ð13Þ

Substituting Eq. (13) into Eq. (6), and we have

�x ¼ @2U
@y2 � l @2U

@x2 þ k Tð ÞT;
�y ¼ @2U

@x2 � l @2U
@y2 þ k Tð ÞT;

cxy ¼ �2 1þ lð Þ @2U
@x@y ;

ð14Þ

then substituting Eq. (14) into Eq. (3), the compatibility equation
can be finally obtained as
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@4U
@x4

þ 2
@4U

@x2@y2
þ @4U

@y4
¼ � @2

@x2
k Tð ÞT½ � � @2

@y2
k Tð ÞT½ �; ð15Þ

Eq. (15) is a fourth-order inhomogeneous partial differential equa-
tion, and it‘s analytical solution is

U ¼ Up þ Us; ð16Þ
where Up denotes particular solution and Us denotes general
solution. Observing Eq. (15), and it becomes clear that the left
side of this equation is fourth-order, while the right side of this
equation is second-order. Therefore, in order to obtain Up simply,
Eq. (15) can be reduced to a second order partial differential
equation

@2Up

@z@�z
¼ �k Tð ÞT; ð17Þ

Of course, Us is still the general solution of the original equation,
which could be expressed as

Us ¼ Re �zu zð Þ þ h zð Þ½ �; ð18Þ
Now the stress components could be rewritten as

rx þ ry ¼ 4E Tð Þ @2Up

@z@�z þ Re u0 zð Þ½ �
h i

;

ry � rx þ 2irxy ¼ 2E Tð Þ 2 @2Up

@z2 þ �zu00 zð Þ þ w0 zð Þ
h i

;
ð19Þ

and displacement components could be obtained by substituting
Eqs. (4) and (18) into Eq. (13)

uþ iv ¼ us þ iv sð Þ þ up þ ivp
� �

; ð20Þ
where

us þ iv s ¼ 3� lð Þu zð Þ � 1þ lð Þ zu0 zð Þ þ w zð Þ
h i

;

up þ ivp ¼ 3
R @2Up

@z@z dxþ 3i
R @2Up

@z@z dy� 2 1þ lð Þ @Up

@z ;
ð21Þ

As such, if the particular solution Up and general solution Us can be
derived, the fields of stress and displacement can then be deter-
mined, and the problem is completely solved.

2.4. Boundary condition

The thermal boundary condition at the insulation surface of this
elliptical cavity isZ Q

P
JQrds ¼ 0; ð22Þ

where P and Q are arbitrary points given on the boundary and r in
Eq. (22) means perpendicular to the boundary surface. Substituting
Eq. (9) and Eq. (11) into Eq. (22), we obtainZ Q

P
JQrds ¼

Z Q

P
JQydx� JQxdy ¼

Z Q

P
if 0 zð Þdz� if 0 zð Þd�z ¼ 0; ð23Þ

Thus

Re if zð Þ½ � ¼ Cons; ð24Þ
along the boundary surface.

The elliptical cavity surface is stress free, thus

l rxð Þs þm sxy
� �

s ¼ 0;

m ry
� �

s þ l sxy
� �

s ¼ 0;
ð25Þ

where l and m are

l ¼ dy
ds

; m ¼ � dx
ds

; ð26Þ

s here represents a segment of an arc along the boundary. Sub-
stituting Eqs. (13) and (26) into Eq. (25) yields

dy
ds

@2U
@y2

 !
s

þ dx
ds

@2U
@x@y

 !
¼ 0; ð27Þ

Then substituting Eq. (16) and Eq. (17) into Eq. (24), the stress
boundary condition can be finally expressed as

u zð Þ þ �zu0 zð Þ þ w zð Þ ¼ �2
@Up

@z
: ð28Þ

along the boundary surface.

3. Solutions for temperature and thermal flux fields

To be specific, we consider an elliptical cavity embedded in an
infinite medium, as shown in Fig. 1a, where a and b denote the
lengths of the major and minor semi-axes of the ellipse, and the
origin of the coordinate system is located at the center of the ellip-
tical cavity. At the far field, the medium is subjected to imposed
thermal flux J1Qx and J1Qy.

We adopt the following transforms for the subsequent analysis

z wð Þ ¼ R wþm
w

� �
; ð29Þ

where R ¼ aþb
2 ;m ¼ a�b

aþb ;w ¼ zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2�4mR2

p
2R , which maps the elliptical

cavity in z-plane into an unit circle in w-plane(as shown in Fig. 1b).
Before solving the problem, we first point out that the remote

thermal flux is actually determined by the remote thermal conduc-
tivity and temperature gradient. For a medium whose material
parameters are temperature-dependent, the remote thermal con-
ductivity and temperature gradient both change with the coordi-
nates, since the remote temperature changes with the
coordinates. For detailed description, we denote the remote tem-
perature gradient as

@T
@x

����
1
¼ tx;

@T
@y

����
1
¼ ty; ð30Þ

In the far field, substituting Eqs. (11) and (30) into Eq. (9), we obtain

@U
@x ¼ f 0 zð Þ þ f 0 zð Þ ¼ j1tx ¼ J1Qx;

@U
@y ¼ if 0 zð Þ � if 0 zð Þ ¼ j1ty ¼ J1Qy;

ð31Þ

where j1 denotes the remote thermal conductivity. Again we point
out that the remote thermal conductivity and temperature gradient
both change with the coordinates, while the product of the two, the
remote thermal flux is constant. Eq. (31) could be combined as

j1
2

tx � ity
� � ¼ f 0 1ð Þ; ð32Þ

thus we have

f zð Þ ¼ j1
2

tx � ity
� �

zþ f 0 zð Þ; ð33Þ

where f 0 zð Þ satisfies

Fig. 1. (a) An elliptical cavity embedded in an infinite matrix, (b) The w-plane after
conformal mapping.
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lim
z!1

f 0 zð Þ ¼ 0; ð34Þ

In order to cipher out the concrete form of f 0 zð Þ, we rewrite f zð Þ by
substituting Eq. (29) into Eq. (33) as

f zð Þ ¼ Rj1
2

tx � ity
� �

wþmRj1
2

tx � ity
� � 1

w
þ f 0 zð Þ; ð35Þ

Then substituting Eq. (35) into the boundary condition Eq. (24)
yields

f zð Þ ¼ Awþ A
w
; ð36Þ

where

A ¼ j1R
2

tx � ity
� �

; ð37Þ

Substituting Eq. (36) into Eq. (12), the thermal flux could be finally
obtained as

JQx � iJQy ¼
2 A� Aw2
� �
R w2 �mð Þ ; ð38Þ

Here we can see that the expression of heat flux is very concise, and
is consistent with the temperature independent case. In other
words, the temperature dependence of thermal conductivity does
not affect the thermal flux distribution when the remote thermal
flux is certain. Substituting Eq. (36) into Eq. (11), the equation that
determine the temperature field isZ
j Tð ÞdT ¼ 2Re Awþ A

w

" #
; ð39Þ

The right side of the above equation is the known function which
has been obtained, and the left side is the function of temperature.
Obviously, the final expression of temperature field depends on the
concrete form of j Tð Þ. In most cases, the form of j Tð Þ needs to be
fitted from the experimental data. For simplicity, we expand j Tð Þ
to a polynomial of temperature, thus

j Tð Þ ¼
Xn
i

jiT
i; ð40Þ

where ji are known coefficients determined by experimental data.
In this case, Eq. (39) will be transformed into a polynomial equation,
and the final temperature field can be obtained by using the polyno-
mial root formula. For example, when other coefficients are zero
except j0 and j2, the temperature field could be finally expressed
as

T ¼ Re f zð Þ½ �
j0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þw�wð ÞRe Aw½ �½ �2 � �w2w2j0j2

q
w�wj0

: ð41Þ

4. Solutions for stress fields

4.1. Particular solution and general solution

Observing Eq. (17), it is clear that the term �k Tð ÞT is a known
function with respect to temperature, and can be expanded to a
polynomial of temperature according to the experimental data.
However, due to the complexity of the expression of temperature
field itself, it is not a good choice to expand the right side of Eq.
(17) as the series of temperature. Noting that U Tð Þ is also a known
function with respect to temperature (see Eq. 8), and its expression
is much more concise, so we choose to expand the right side of Eq.
(17) as the series of U Tð Þ
k Tð Þ ¼

X
CkU

k Tð Þ; ð42Þ

To be specific, we choose the following non-linear relationship for
the later calculation

� k Tð ÞT ¼ c0 þ c1U Tð Þ þ c2U
2 Tð Þ; ð43Þ

where c0; c1 and c2 are known fitting coefficients according to the
experimental data. Combining Eqs. (11), (17) and (43), we obtain

@Up

@z@�z
¼ c0 þ 2c1Re f zð Þ½ � þ 4c2Re f zð Þ½ �2; ð44Þ

and

Up ¼ c0z�zþ c1 �zF zð Þ þ zF zð Þ
h i

þ c2 �z
Z

f 2 zð Þdzþ 2F zð ÞF zð Þ þ z
Z

f 2 zð Þd�z
� 	

; ð45Þ

where F zð Þ denotes the primitive function of f zð Þ

F zð Þ ¼ AR
2

w2 þ
�ARm
2

1
w2 þ R �A� Am

� �
lnw; ð46Þ

Substituting Eqs. (36) and (46) into Eq. (45), and then take the first

derivative of Up, thus leads to the expression of @Up

@z along the elliptic
surface

@Up

@z

����
f

¼
X3
k¼�3

akf
k þ lnr

X1
k¼�1

bkf
k þ c2

Z
f 2 zð Þd�z; ð47Þ

where

a�3 ¼ �4RA2c2

a�2 ¼ �3c1R�A

a�1 ¼ �3R c2R�A m�Aþ 3A
� �þ c0


 �

8>><
>>: ;

a0 ¼ �3R Aþm�A
� �

c1

a1 ¼ �3R mc0 þ A Aþ 3m�A
� �

c2

 �

a2 ¼ �3AmRc1

a3 ¼ �4A2mRc2

8>>>>>><
>>>>>>:

;

ð48Þ
and

b�1 ¼ 4�ARc2 A�m�A
� �

b0 ¼ 2Rc1 A�m�A
� �

b1 ¼ 4ARc2 A�m�A
� �

8><
>: ; ð49Þ

where f denotes w along the elliptic surface.
Substituting Eq. (47) and Eq. (29) into Eq. (28), and the stress

boundary condition could be finally expressed as

u fð Þþ z fð Þ
z0 fð Þu

0 fð Þþw fð Þ¼�2
X3
k¼�3

akf
kþ lnr

X1
k¼�1

bkf
kþc2

Z
f 2 zð Þd�z

" #
;

ð50Þ
where

z fð Þ
z0 fð Þ ¼

�f2 þm
�f�m�f3

¼ fþmf3

f2 �m
; ð51Þ

According to the stress boundary condition and the remote condi-
tion, u wð Þ could be selected as

u wð Þ ¼
X3
k¼�3

�ak

wk
þ c2

Z
f 2 zð Þdz; ð52Þ

Then the expression of w wð Þ could be obtained by substituting Eqs.
(51), (47) and (52) into Eq. (28) as

w wð Þ ¼ lnw
X1
k¼�1

bkw
k �wþmw3

w2 �m

X3
k¼�3

�k�ak

wkþ1 þ c2z0 wð Þf 2 zð Þ
 !

:

ð53Þ
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u wð Þ and w wð Þ are general solutions of the compatible equation
added to satisfy the stress boundary condition. However, they are
not the general solutions of the final form, since the single value
conditions have not been considered.

4.2. Stress and displacement single value conditions

In order to satisfy the single-valued condition of stress, it is nec-
essary to list the multivalued parts of stress components. Observ-
ing Eq. (19), and it could be obtained from Eqs. (45), (51) and

(52) that @2Up

@z@z and u00 zð Þ are both single-valued, while @2Up

@z2 and
w0 zð Þ are multi-valued

@2Up

@z2 ¼ d1 ln �wþ d2
ln �w
w2 ;

w0
1 zð Þ ¼ d3 lnwþ d4

lnw
w2 ;

ð54Þ

where

d1 ¼ b1
2z0 wð Þ

d2 ¼ � b�1
2z0 wð Þ

(
;

d3 ¼ b1
z0 wð Þ

d4 ¼ � b�1
z0 wð Þ

(
; ð55Þ

Substituting Eq. (54) into Eq. (19), and we could obtain the multi-
valued part of stress components.

ry � rx þ 2irxy
� ���

mult
¼ 2E Tð Þ d3 � 2d1ð Þihþ d4 � 2d2ð Þ ih

w2

� 	
; ð56Þ

according to Eq. (55) we have d3 ¼ 2d1 and d4 ¼ 2d2, thus it can be
concluded that the single stress condition is satisfied automatically.

The displacement components can be expressed through sub-
stituting Eqs. (52), (53) and (45) into Eq. (21). Here we only need
to give their multivalued terms

u ¼ 2Re g1 lnw½ � þ y � 2Re g2 lnw½ �;
v ¼ 2Re �ig1 lnw½ � þ x � 2Re g2 lnw½ �; ð57Þ

or

uþ iv ¼ 2 g1 � g1ð Þihþ z ig2 � ig2ð Þih; ð58Þ
where

g1 ¼ �4c1R mA� �A
� �

;

g2 ¼ i8c2 �Aþ A
m

� �
A� A

m

� �
;

ð59Þ

A new general solution u2 wð Þ and w2 wð Þ is introduced to ensure
that the final displacement is singular. Obviously, it still needs to
satisfy the stress boundary condition, which require

u2 fð Þ þ z fð Þ
z0 fð Þu

0
2 fð Þ þ w2 fð Þ ¼ 0; ð60Þ

According to Eq. (58), the expression of additional general solution
u2 wð Þ could be selected as

u2 wð Þ ¼ k1 lnwþ k2z lnw; ð61Þ
Substituting Eq. (61) into Eq. (60), and we could obtain the expres-
sion of w2 wð Þ

w2 wð Þ ¼ k2 � k2
� �

R mwþ 1
w

� 

lnw� k2R

� w2 þm
� �

1þmw2
� �

w w2 �mð Þ ; ð62Þ

In order to ensure that the additional general solution u2 wð Þ and
w2 wð Þ satisfy the single stress condition, the coefficient k2 must
satisfy

k2 � k2 ¼ 0; ð63Þ

Finally, in order to cancel out the multivalued displacement, we
combine Eqs. (61), (62), (63) and (58), noting that y � lnw is single-
valued (as proven in our previous paper (Song et al., 2020)), then
k1 and k2 could be obtained as

k1 ¼ 2 g1�g1ð Þ
1�3l ;

k2 ¼ ig2�ig2
4 ;

ð64Þ

and the two stress functions could be finally concluded as

u wð Þ ¼
X3
k¼�3

�ak
wk þ c2

R
f 2 zð Þdzþ k1 þ k2zð Þ lnw;

w wð Þ ¼ lnw
X1
k¼�1

bkwk � wþmw3

w2�m

X2
k¼�4

vkw
k

" #
;

ð65Þ

where

v�4 ¼ �mRA2c2 � 3�a3

v�3 ¼ �2�a2

v�2 ¼ ��a1 � 2Ac2mR�Aþ c2RA2 þ k2Rm

8>><
>>: ;

v�1 ¼ 0

v0 ¼ �A2mRc2 þ 2AR�Ac2 þ �a�1 þ k2R

v1 ¼ 2�a�2

v2 ¼ A2Rc2 þ 3�a�3

8>>>><
>>>>:

:

ð66Þ

This set of equations solves the problems completely, leading to the
full determination of the field distributions around the elliptic cav-
ity. Here we emphasize that both the particular solution Up and
General solution Us (i.e. u wð Þ and w wð Þ) are linear functions of
c0; c1 and c2 , so the final stress components are all linear functions
of c0; c1 and c2 .

5. Solutions for crack

For the special case of a crack with b=a ! 0;m ! 1 and R ! a=2,
the stress intensity factors of the right crack tip are worth studied,
and the expression of stress intensity factors K could be written as

K1 � iK2 ¼ 2
ffiffiffiffiffiffiffi
2p

p
Etlim

z!a

ffiffiffiffiffiffiffiffiffiffiffi
z� a

p
u0 zð Þ; ð67Þ

where Et denotes the elastic modulus at the right crack tip, and
u0 zð Þ could be deduced from Eq. (65) as:

u0 zð Þ ¼ u0 wð Þ
z0 wð Þ

¼ 2w2

a w2 � 1ð Þ
X2
k¼�4

dkwk þ ak2
2

1� 1
w2

� 

lnw

" #
þ c2f

2 zð Þ; ð68Þ

where

d�4 ¼ �3�a3

d�3 ¼ �2�a2

d�2 ¼ ak2
2 � �a1

8><
>: ;

d�1 ¼ k1
d0 ¼ ak2

2 þ �a�1

d1 ¼ 2�a�2

d2 ¼ 3�a�3

8>>><
>>>:

; ð69Þ

Substituting Eq. (68) into Eq. (67), thus

Ks ¼ K1 � iK2 ¼ 2
ffiffiffiffi
p
a

r
Et

X2
k¼�4

dk; ð70Þ

Eq. (70) could also be divided into 3 parts:

Ks ¼ K1s þ K2s þ K3s; ð71Þ
where
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K1s ¼ 3ic1
ffiffiffiffi
p

p
a3=2j1Etty;

K2s ¼ 3
8 c2

ffiffiffiffi
p

p
a5=2j2

1Et 2t2x þ t2y þ 9itxty
� �

;

K3s ¼ � 3
16 c2

ffiffiffiffi
p

p
a7=2j2

1Et 2t2x þ t2y � itxty
� �

:

ð72Þ

It can be seen from Eq. (70) to Eq. (72) that K1 and K2 are signifi-
cantly different from the classical temperature independent case.
Firstly, the stress intensity factors have nonlinear terms with
respect to the remote thermal loads. Secondly, the stress intensity
factors now depends on a3=2; a5=2 and a7=2. Thirdly, type 1 intensity
factor K1 may exist, although its value is much smaller then that of
K2.

6. Numerical results and discussions

In this section, we use numerical examples to verify the analyt-
ical results and search for valuable and meaningful results. Assum-
ing that the medium is Steel Alloy, with the corresponding material
parameters are showed in Table 1, and the size of this elliptic cav-
ity are a ¼ 0:01 m; b ¼ 0:004 m.

6.1. Contours of temperature and stress components

We first plot the contours of temperature in Fig. 2. It can be seen
that once the thermal conductivity changes with temperature, the
temperature distribution will be visible different from the classical
results. Although there is only about 50 degree temperature differ-
ence in the calculation area, and the corresponding thermal con-
ductivity change is only 5 percents. Through the comparison of
the three figures, it can be seen that the temperature distribution
in the calculation range becomes more complex and the tempera-
ture difference becomes larger after the material properties are
considered as temperature dependence.

We then calculate the contours of thermal stress in Figs. 3–5,
where the thermal expansion coefficient are set to be constant
(a), linear function of temperature (b) and nonlinearly function of
temperature (c). It is seen that when the material properties are
temperature dependent, the distribution of rx and ry has a visible
change compared with the classical results, while the distribution
of rxy does not change much. In addition, when the thermal expan-
sion coefficient is a nonlinear function of temperature, all the abso-
lute values of the three stress components at the right end of the

Fig. 3. Distribution of rx around the cavity under the assumption of: (a) material parameters being constant, (b) thermal expansion linearly with temperature, (c) thermal
expansion nonlinearly with temperature, (d) Plotlegend of rx .

Fig. 2. Distribution of temperature fields around the cavity under the assumption of thermal conductivity being (a) constant, (b) linearly with temperature, (c) nonlinearly
with temperature, (d) Plotlegend.

Table 1
Material parameters of 45 carbon steel.

Temperature (K) 293.15 373.15 473.15 573.15 673.15 773.15 873.15 973.15

j (T) (W/mK) 46.9 45.2 42.3 39.4 35.5 31

k Tð Þ10�6 (1/K) 11.7 12.43 13.13 13.67 14.10 14.47 14.76

E Tð Þ105 (MPa) 2.09 2.07 2.02 1.96 1.85 1.74 1.63
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elliptical cavity are about 10 percent smaller than those of the clas-
sical cases.

6.2. Stress concentration at right tip

To further appreciate the relationship between the maximum
stress and form of thermal expansion coefficient, we also show in
Fig. 6 the maximummises stress rs varies the geometric parameter
a=b,with the semiminor axis b fixed as 0.004. It can be seen from
Fig. 6 that rs changes nonlinearly with a=b. when a=b is less than
1, the stress changes slowly with the increase of a=b. But then, rs

increases more and more quickly, especially when a=b > 2, mainly
because the curvature of the right end increases rapidly. In addi-
tion, compared with the classical results, the value of rs becomes
slightly smaller when the material properties are considered as
temperature dependence.

Finally, we show the variation of the thermal stress intensity
factors with crack length and remote thermal load in Figs. 7 and
8. It can be seen that when the material properties are temperature
dependent, K1 has a small negative value, which is significantly dif-
ferent from the classical result that K1 is always zero, and indicates
that thermal flux can actually close the crack slightly. In addition,
both K1 and K2 vary nonlinearly with remote thermal load.

7. Concluding rremarks

The thermal-elastic problem of an elliptic cavity embedded in
an infinite medium has been analyzed in this paper, with the tem-

perature dependence of thermal conductivity, elastic modulus and
thermal expansion coefficient fully accounted for. The tempera-
ture, thermal flux and thermal stress distributions have been
obtained, and the following results can be summarized:

1. The analytical results indicate that the thermal flux distribution
is consistent with the temperature independent case. In other
words, the temperature dependence of thermal conductivity

Fig. 4. Distribution of ry around the cavity under the assumption of (a) material parameters being constant, (b) thermal expansion linearly with temperature, (c) thermal
expansion nonlinearly with temperature, (d) Plotlegend of ry .

Fig. 5. Distribution of rxy around the cavity under the assumption of (a) material parameters being constant, (b) thermal expansion linearly with temperature, (c) thermal
expansion nonlinearly with temperature, (d) Plotlegend of rxy .

Fig. 6. The mises stress at the cavity tip versus geometric parameter under the
assumption of (a) material parameters being constant, (b) thermal expansion
linearly with temperature and (c) thermal expansion nonlinearly with temperature.
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does not affect the thermal flux distribution when the remote
thermal flux is certain.

2. K1 and K2 are significantly different from the classical temper-
ature independent case. Firstly, the stress intensity factors have
nonlinear terms with respect to the remote thermal loads. Sec-
ondly, the stress intensity factors now depends on a3=2; a5=2 and
a7=2. Thirdly, type 1 intensity factor K1 may exist, although its
value is much small then that of K2.

3. The analysis shows that thermal flux solution is consistent with
the temperature independent case, while the temperature and
thermal stress solutions are much more complicated.

4. All the three stress components vary linearly with c0; c1 and c2.
The maximummises stress rs varies nonlinearly with c0 and c1,
which is caused by the nonlinear relationship between rs and
stress components.

5. K1 has a tiny negative value, which indicates that thermal flux
can actually close the crack slightly. In addition, both K1 and
K2 vary nonlinearly with remote thermal loads.

6. Both K1 and K2 increase with the increase of crack length, and
the increase of K2 is less obvious when the temperature depen-
dence of material properties is considered.
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Appendix A

In order to simplify the compatible equation, we point out that
there always exists two functions U1 and g1, which satisfy

@2U1

@x@y
¼ g0

1
@H
@x

� 

@2H
@x@y

¼ 1
E Tð Þ

@2H
@x@y

; ðA:1Þ

Thus it could be obtained from Eq. (A.1) that:

@U1

@x
¼ g1

@H
@x

� 

; ðA:2Þ

and

@2U1

@x2
¼ g0

1
@H
@x

� 

@2H
@x2

¼ 1
E Tð Þ

@2H
@x2

; ðA:3Þ

Similarily, there always exists two functions U2 and g2, which
satisfy

@2U2

@x@y
¼ g0

2
@H
@x

� 

@2H
@x@y

¼ 1
E Tð Þ

@2H
@x@y

; ðA:4Þ

and

Fig. 7. Stress intensity factors K1 (a) and K2 (b) versus half crack length under the assumption of material parameters being constant and temperature dependent
respectively.

Fig. 8. Stress intensity factors K1 (a) and K2 (b) versus remote thermal flux (JQy) under the assumption of material parameters being constant and temperature dependent
respectively.
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@2U2

@y2
¼ g0

2
@H
@y

� 

@2H
@y2

¼ 1
E Tð Þ

@2H
@y2

; ðA:5Þ

It could be learned from above Eqs. (72) and (A.3) that:

@2U2

@x@y
¼ @2U1

@x@y
; ðA:6Þ

Integrating Eq. (A.8), and we have:

U1 ¼ U2 þ f 1 xð Þ þ f 2 yð Þ þ Cons; ðA:7Þ
Obviously, U1 and U2 can only differ from functions of single vari-
able with respect to x or y. Therefore, in most complex problems,
that is, when the solutions of U1 and U2 do not contain the univari-
ate functions of x or y, we have

U ¼ U1 ¼ U2; ðA:8Þ
In these cases, substituting Eq. (72), Eq. (A.2), Eqs. (A.4), (A.5) and
(A.7) into Eq. (7) and we have

rx ¼ E Tð Þ @
2U
@y2

;ry ¼ E Tð Þ @
2U
@x2

;rxy ¼ �E Tð Þ @2U
@x@y

: ðA:9Þ

Here we emphasize that in fact U1 and U2 can contain linear func-
tions of x and y, which will not affect the establishment of Eq. (A.8),
since the expressions of stress components takes the second partial
derivative of U.
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