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a b s t r a c t

The present article is devoted to investigate the propagation of elasto-thermodiffusive (ETNP) surface
waves in a homogeneous isotropic, thermally conducting semiconductor material of half-space with
relaxation of heat and charge carrier fields. The secular equation, a more general functional relation, that
governs the propagation of elasto-thermodiffusive (ETNP) surface waves in homogeneous isotropic, ther-
moelastic semiconductor material halfspace with relaxation of heat and charge carrier fields has been
derived by solving a system of coupled partial differential equations. A hybrid numerical technique
consisting of Descartes algorithm for solving complex polynomial characteristic equation along with
functional iteration scheme has been successfully used to solve the secular equation in order to obtain
dispersion curves, attenuation coefficient and specific loss factor of energy dissipation for p-type
germanium (Ge) semiconductor. Some particular forms of the general secular equation governing the
propagation of elasto-thermodiffusive (ETN/ETP), thermoelastic (ET), elastodiffusive (EP/EN) and thermo-
diffusive (TP/TN) surface waves have been also deduced and discussed. In order to illustrate the analytical
development, the numerical solution of the secular equation and other relevant relations under different
situations is also carried out for Ge semiconductor materials to characterize the elasto-thermodiffusive
(ETP) and thermodiffusive (TP) surface waves. The computer simulated results have been presented
graphically in respect of the dispersion curves, attenuation coefficient and specific loss factor.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The existence of Rayleigh waves was predicted by Lord Rayleigh
(1885) in connection with the earth quake spectrum analysis. Ray-
leigh waves travel along the surface of the earth at about 10 times
the speed of sound in air. It is well known that surface waves are
not only of a pure acoustic or elastic character but they can also
be coupled with other physical fields such as piezoelectric, mag-
netic, electric, diffusion, etc. Lockett (1958), Chadwick and Windle
(1964) and Atkin and Chadwick (1981) studied the propagation of
thermoelastic Rayleigh waves in the context of coupled
thermoelasticity.

In order to eliminate the paradox of infinite velocity of heat
propagation in classical theory of thermoelasticity different theo-
ries of non-classical thermoelasticity have been evolved, see Het-
narski and Ignaczak (1999). Some researchers namely Lord and
Shulman (1967), Green and Lindsay (1972), Dhaliwal and Sherief
(1980) and Chandrasekharaiah (1986) modified the Fourier law
of heat conduction and constitutive relations so as to obtain a
hyperbolic equation for heat conduction. These models include
ll rights reserved.

: +91 1972 223834.
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the time needed for the acceleration of heat flow and take into
account the coupling between temperature and strain fields. These
theories are also supported (Ackerman et al., 1966; Guyer and
Krumhansal, 1966; Ackerman and Overtone, 1969) by experimen-
tal exhibition of the actual occurrence of finite velocity of heat
propagation so-called ‘second sound’ though the frequency win-
dow of its existence is extremely small. Banerjee and Pao (1974)
investigated the propagation of plane harmonic waves in infinitely
extended anisotropic solids, taking into account the thermal relax-
ation time. It is also pertinent to mention here that the non-classi-
cal theories of thermoelasticity are inconsistent with the second
law of thermodynamics as stated by, Ignaczak (2006) that the en-
tropy inequality does not always hold in the ‘generalized thermo-
elasticity’. An extensive study of wave propagation in heat
conducting elastic solids has been carried out by some authors
namely Nayfeh and Nasser (1971), Sharma (1986), Sharma and
Singh (1985), Scott (1989), and Sharma et al. (2000) under the
influence of thermal relaxation time in ‘‘infinite velocity” and ‘‘fi-
nite velocity” descriptions.

The interaction of elastic, thermal and diffusion of charge car-
rier’s fields in semiconductors has been investigated after formu-
lating the problem mathematically by Maruszewski (1986a,b,
1987a,b, 1989) and Many et al. (1965). The theory developed
in these researches is phenomenological by its nature and its
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application led to phonons of mixed nature, which cannot be con-
sidered of a pure transversal, longitudinal or interface character.
This provides a description of optical phonons in semiconductors
of different kinds, achieving a relatively good coincidence with
both experimental data and calculation base on microscopic
(atomistic) approaches. In case of semiconductors the presence of
coupled oscillations together with uncoupled one of pure mechan-
ical nature was also found. It is also mentioned that in the uncou-
pled cases, the velocities for thermal fields are observed at very low
temperatures, then, for diffusion, the velocities are observed in
semiconductors at room temperatures dealing with charge carri-
ers, see Maruszewski (1989). In order to explore the simultaneous
interactions of elastic, thermal and diffusion of charge carrier’s
fields Maruszewski (1989) studied the propagation of thermodiffu-
sive surface waves in semiconductor materials based on the phe-
nomenological model developed by him that includes relaxation
times of heat and charge carriers in addition to life times of the car-
riers. He also presented numerical solutions of his model under
these specific situations. But his investigations finally limited to
some special and particular situations and remained departed from
the general solution of the said model thereby ignoring the pres-
ence of some of the interacting fields included in the basic govern-
ing equations at a time. Recently, Sharma and Thakur (2006)
simplified the Maruszewski (1989) model of governing equations
by introducing non-dimensional quantities and studied the propa-
gation of plane harmonic elasto-thermodiffusive (ETNP) waves in
semiconductor materials. Four coupled longitudinal waves,
namely, the quasi-thermoelastic (QTE), quasi-elastodiffusive
(QEN/QEP), quasi-thermodiffusive (QTN/QTP) and quasi-thermal
(T-mode) in addition to decoupled shear waves are found to exit
in an infinite semiconductor. Sharma et al. (2007) investigated
the propagation characteristics of elasto-thermodiffusive (ETN)
surface waves in semiconductor material half-space.

The engineering literature on heat waves suffer from a lack of
observational data which could establish the applications in which
they are important and the theoretical approximations appropriate
to these applications. According to Achenbach (2005) unlike the
hyperbolic solutions, the classical solution show no distinct wave
front and temperature increase starts at the initial time, as
expected. However, the difference in the predicted temperature
between two theories is small and only apparent for a very small
time scale (of the order of 100 ps). The selection of the theory for
the time scales of interest can be done for convenience with no
practical effect on calculated results. Likewise, the choice of a spe-
cific value for the heat propagation speed in the hyperbolic equa-
tion does not affect the results. However, from the practical point
of view, the choice of a value of heat propagation speed equal to
the speed of longitudinal waves in the hyperbolic formulation, pre-
sents some numerical advantages. Therefore, in case of applica-
tions to common materials it is necessary to do experiments
with process times in the window 10�13–10�8 s where hyperbolic
phenomena and relaxation effects can be important. Ning et al.
(2004) studied the characteristics of temperature field due to
pulsed heat input based on non-Fourier heat conduction hypothe-
sis. Noting that the relaxation time for ordinary materials is recog-
nized to be very small, they observed that the non-Fourier effect
would give some influence, especially for such phenomena with
high rate of temperature change as picosecond or femtosecond
pulsed laser heating. The temperature distribution in such cases
is to be predicted not by the classical Fourier law but by the
non-Fourier heat conduction theory. Although in engineering
applications Fourier’s law and diffusion give an easier and better
description, but in cases where the relaxation and process times
are comparable it would be desirable to allow for both diffusion
and relaxation by adopting constitutive models which have both
thermal conductivity and a relaxation time or relaxation spectra.
Keeping in view the above stated facts in the present com-
munication, we propose to solve a boundary value problem
dealing with surface wave propagation in thermoelastic semi-
conductor materials based on the governing equations derived
by Maruszewski (1989) which includes both relaxation and dif-
fusion processes. It pertinent to mention here that the Mar-
uszewski’s model did not receive much attention during the
last one and half decade because of complex mathematical nat-
ure and non-availability of its solution governing the simulta-
neous interaction of all the involved coupled fields in compact
and isolated mathematical conditions. A more general secular
equation that governs the propagation of ETNP-surface waves
in thermoelastic semiconductors has been obtained in closed
and compact form through analytical treatment and method.
Keeping in view the complicacies involved in this secular equa-
tion due to various interacting fields, a numerical technique has
also been developed for its solution in order to extract informa-
tion regarding the influence of coupling of various fields on the
wave characteristics. Some special cases of surface wave propa-
gation have also been deduced and discussed. In order to illus-
trate the analytical development, the numerical solution of
secular equation governing ETP-surface waves in a relaxation
type germanium (Ge) semiconductor is carried out by writing
a FORTRAN code. The computer simulated results so obtained
have been presented graphically.
2. Formulation of the problem

We consider a homogeneous isotropic, thermally conducting,
elastic semiconductor medium initially under undeformed state
and at uniform temperature T0. We take the origin of coordinate
system O x y z at any point ‘O’ on the top plane surface and z-axis
pointing normally into the halfspace, which is thus represented by
z P 0. We assume that the surface z = 0 is stress free, thermally
insulated or isothermal and in addition there is no flow of elec-
trons/holes across it or equilibrium state of charge carrier fields
is set up on the surface. We choose x-axis along the direction of
wave propagation in such a way so that all the particles on a line
parallel to y-axis are equally displaced and hence all the field quan-
tities are independent of y-coordinate. Further, the disturbance is
assumed to be confined to the neighbourhood of the free surface
and hence vanishes as z ?1. In linear theory of thermoelasticity
for semiconductors, the governing field equations for temperature
T(x,z, t), displacement vector ~uðx; z; tÞ ¼ ðu;0;wÞ, electron and hole
charge carrier fields N(x,z, t) and P(x,z, t), respectively, in the ab-
sence of body forces and heat sources, are given by Maruszewski
(1989).
lr2~uþ ðkþ lÞrr �~u� knrN � kprP � kTrT ¼ q €~u; ð1:1Þ
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where the notations

r2 ¼ o2

ox2 þ
o2

oz2 ; an
1 ¼

aQn

aQ ; ap
1 ¼

aQp

aQ ;

an
2 ¼

aQn

an ; ap
2 ¼

aQp

ap ; P ¼ p� p0; N ¼ n� n0; kT ¼ ð3kþ2lÞaT ;

T ¼ T1 � T0 ð2Þ

are used. Here, k, l are Lame parameters; q is the density of the
semiconductor; kn, kp are the elastodiffusive constants of electrons
and holes; aT is the coefficient of linear thermal expansion of the
material; K is the thermal conductivity; ap, an are thermodiffusive
constants of holes and electrons; aQn, aQp, aQ, an, ap are the flux like
constant; Dn, Dp are the diffusion coefficients of electron and holes.
The quantities mnq, mpq, mqn, mqp are the Peltier–Seebeck–Dufour–
Soret like constants; tQ, tntp are, respectively, the relaxation times
of heat, electron and hole fields; Ce is the specific heat; tþn ; t

þ
p denote

the life times of the carriers’ fields; n, p and n0, p0 are the non-equi-
librium, equilibrium values of electrons and holes concentrations,
respectively. The comma notation is used for spatial derivatives
and a superposed dot represents differentiation with respect to
time. Here, in addition the field variables are also assumed to satisfy
all restrictions as described by Maruszewski (1989).

2.1. Boundary conditions

The surface z = 0 of the half space is assumed to satisfy the fol-
lowing boundary conditions:

ku;x þ ðkþ 2lÞw;z � kT T � knN � kpP ¼ 0; ð3:1Þ

u;z þw;x ¼ 0; ð3:2Þ
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Here, KS and sn, sp are, respectively, the surface heat conduction
coefficient and surface recombination velocities.

We define the quantities
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Here, eT is thermoelastic coupling parameter, v is the thermal diffu-
sivity. Introducing the quantities (4) in Eq. (1), we obtain
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where~u ¼ ðu; 0;wÞ is the non-dimensional displacement vector. The
boundary conditions (3) at the surface z = 0, takes the following
non-dimensional form:

ð1� 2d2Þu;x þw;z � knN � kpP � T ¼ 0; ð6:1Þ

u;z þw;x ¼ 0; ð6:2Þ
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3. Solution of the problem

In order to solve the problem, we use Helmholtz decomposition
theorem to express the displacement vector as ~u ¼ r/þr�~w,
r �~w ¼ 0 so that the displacement components are written as

u ¼ o/
ox
þ ow

oz
; w ¼ o/

oz
� ow

ox
; ð7Þ

where the vector point potential function is defined as
~w ¼ ð0;�w;0Þ.

Upon introducing Eq. (7) in Eqs. (5.1)–(5.4), we obtain
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Eqs. (8.1) and (8.4) in the above system can be simplified under the
assumption that the considered semiconductor is of relaxation type
because for such materials the diffusion approximation of the phys-
ical process ceases to be obligatory and the diffusion/life times
tn; tþn ðtp; tþp Þ, become comparable to each other in their values
ðtn ¼ tþn ; t

p ¼ tþp Þ, see Maruszewski (1989).
We consider the case of time harmonic waves so that the solu-

tions /, T, N, P and w, of Eq. (8) take the form of

/; T;N; P;wð Þ ¼ �/ðzÞ; TðzÞ; �NðzÞ; PðzÞ; �wðzÞ

 �

exp ikðx� ctÞf g ð9Þ

where c ¼ x
k is the phase velocity, k and x are wave number and

angular frequency of the waves, respectively. Substitution of solu-
tions (9) in Eqs. (8.1)–(8.4) led to a coupled system of four equations
in terms of ð/; T;N; PÞ. The requirement of the existence of non-triv-
ial solution of this system provides us a quartic polynomial charac-
teristic equation in m2, which give us four pairs of the characteristic
roots ±mi (i = 1,2,3,4). In general, the characteristic roots ±mi

(i = 1,2,3,4) are complex and therefore, the solution is a superposi-
tion of the plane waves attenuating with depth. As we are consider-
ing surface waves only, so without loss of generality, we choose
only that form of mi which satisfies the radiation condition viz.
Re(mi) P 0. After lengthy but straight forward algebraic reductions
and simplifications, we obtain the following formal solution for
the functions (/,N,P,T,w) that satisfy the radiation condition
Re(mi) P 0. We have

ð/; T;N; PÞ ¼
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Here, we have defined the quantities
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and s0n; s�n; s�p and sQ are defined in Appendix A.

The quantities a2
i ; i ¼ 1;2;3;4 are the roots of complex biquadratic

equation

a8 � Aa6 þ Ba4 � Ca2 þ D ¼ 0; ð14Þ
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The quantities J; J�; Ji; J
0
i ði ¼ 1;2;3;4Þ and J00i ði ¼ 1;2;3Þ are defined

in Appendix A. Upon inserting solutions for / and u from (10) in
Eq. (7), the displacement components are obtained as

u ¼
X4

j¼1

ikAje�mjz � bA5e�bz

 !
eikðx�ctÞ; ð16Þ

w ¼ �
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 !
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Clearly, the displacements get modified due to the characteristic
roots corresponding to thermal and diffusion field equations because
of coupling among interacting fields in addition to relaxation and life
time effects. The stresses can also be obtained in similar manner.

4. Derivation of secular equation

Upon invoking the boundary conditions (6) at the surface z = 0,
we obtain a system of five simultaneous linear equations in ampli-
tudes Aj, j = 1,2,3,4,5. This system of equations provides us a non-
trivial solution, if the determinant of the coefficients of unknowns
Aj, j = 1,2,3,4,5 vanishes. This, after applying lengthy algebraic
reductions and simplifications, led to the following secular equa-
tion for the propagation of Rayleigh type surface waves in the ther-
moelastic semiconductor material half space. We obtain

ðb2 þ k2Þ2½L1 � L2 þ L3 � L4� ¼ 4k2bðm1L1 �m2L2 þm3L3 �m4L4Þ;
ð18Þ

where

L1 ¼ P2ðQ 3R4 � Q 4R3Þ � P3ðQ 2R4 � Q 4R2Þ þ P4ðQ2R3 � Q 3R2Þ;
ð19Þ

Pi ¼ ðhT �miÞWi þ enqðhn �miÞSi þ epqðhp �miÞVi

 �

;

i ¼ 1;2;3;4; ð20:1Þ
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Q i ¼ ðhTen �mieqnÞWi þ hn�e0nq �mi

� �
Si

h i
; i ¼ 1;2;3;4; ð20:2Þ

Ri ¼ ðhTep �mieqpÞWi þ hp�e0pq �mi

� �
Vi

h i
; i ¼ 1;2;3;4; ð20:3Þ

�e0nq ¼ �ix�enqsn
1;

�e0pq ¼ �ix�epqsp
1:

ð21Þ

Here, L2, L3, L4 can be obtained from L1 defined in Eq. (19) by replac-
ing the subscripts permutation (2,3,4) with (1,3,4), (1,2,4) and
(1,2,3), respectively. The secular equation (18) contains complete
information about the phase velocity, wave number and attenua-
tion coefficient of the (ETNP) surface waves in a thermoelastic semi-
conductor halfspace. The secular equations in case of (i) isothermal
and isoconcentrated, (ii) isothermal and impermeable, (iii) ther-
mally insulated and isoconcentrated and (iv) thermally insulated
and impermeable surface conditions prevailing at the boundary of
the semiconductor half-space can be written from the secular equa-
tion (18) by setting (hT = 0,hn = 0,= hp), (hT = 0,hn,hp ?1),
(hT ?1,hn = 0,= hp) and (hT ?1hn,hp ?1), respectively, in Eq.
(20). The secular equations for ETN-waves in n-type semiconductor
and ETP-waves in p-type semiconductor can be written from the
secular equation (18) by setting (P = 0,a0

p = 0 = ep,eqp = 0) and
(N = 0,a0

n = 0 = en,eqn = 0), respectively.

5. Special cases of surface wave

This section is devoted to the reductions and deductions of the
secular equation (18) in different conditions and under various sit-
uations to which semiconductor halfspace has been subjected.

5.1. ET-surface waves

Let us now consider the case of ET surface wave propagation.
When complete equilibrium state of electron and hole concentra-
tion is established, the system becomes charge free. The thermo-
elastic (ET) waves concern with the reciprocal dynamical
interactions of the elastic and thermal fields when the electron
and hole fields are omitted so that we have N ¼ 0 ¼ P,
en ¼ ep ¼ 0, eqn ¼ 0 ¼ eqp ¼ kn ¼ 0 ¼ kp.

The secular equation (18) governing the interaction in this case
reduces to

ðb2 þ k2Þ2 m2
1 þm1m2 þm2

2 � a2
 �
� 4k2bm1m2ðm1 þm2Þ

¼ hT ðb2 þ k2Þ2ðm1 þm2Þ � 4k2bðm1m2 þ a2Þ
h i

: ð22Þ

Eq. (22) is the same as obtained and discussed by various research-
ers such as Chadwick and Windle (1964), Atkin and Chadwick
(1981) and Lockett (1958) in case of couple thermoelasticity and
Nayfeh and Nasser (1971) in the context of generalized
thermoelasticity.

5.2. Elastodiffusive (EN/EP) surface waves

If we confine our discussion to the propagation of EN waves
concerning the reciprocal dynamical interactions of the elastic
and electron diffusion fields and omit the thermal and hole fields
ðP ¼ T ¼ 0; eT ¼ 0 ¼ enq;an

0 ¼ 0 ¼ an
0Þ, the secular equation (18)

governing the interaction becomes

ðb2 þ k2Þ2 m2
1 þm1m3 þm2

3 � a2
 �
� 4bk2m1m3ðm1 þm3Þ

¼ hn�e0nq ðb
2 þ k2Þ2ðm1 þm3Þ � 4bk2ðm1m3 þ a2Þ

h i
: ð23Þ

Eq. (23) can also be discussed on parallel lines as Eq. (22) and has
already been investigated by Maruszewski (1989) in an alternative
form. It seems that the electron near the surface has, in principle,
similar conductivity properties like that of heat when the surface
of the body is covered by an infinite thin film and hence the elas-
to-electron coupling gives almost same type of results.

In case of EP waves concerning the reciprocal dynamical inter-
action of the elastic and hole-diffusion fields, the influence of ther-
mal and electron fields is omitted ðN ¼ T ¼ 0; eT ¼ 0 ¼ epq;ap

0 ¼
0 ¼ ap

0Þ. The secular equation for EP surface wave can be obtained
in Section 5.1 similar manner from Eq. (23) by replacing N with
P; n with p; and m3 with m4.

5.3. Thermodiffusive (TN/TP) waves

If we confine our discussion to the propagation of TN-waves
concerning the reciprocal dynamical interactions of the thermal
and electron diffusion fields and omit the elastic and hole fields
ð/ ¼ 0 ¼ P;ap

0 ¼ 0 ¼ ep; eqp ¼ 0 ¼ eT ;w ¼ 0Þ. Then the secular equa-
tion (18) governing the interaction in this case becomes

enqðm2 � hTÞðm2
2 � a2

nÞ � enqðm2
2 � a2

Q Þðm2 � hnÞ
h i
ðeqnm3 � hTenÞ m2

3 � a�2n

� 	
� eqn m3 � hn�e0nq

� �
m2

3 � b2
1

� 	h i
� m2

3 � a�2n

� 	
ðm3 � hTÞ � ðm3 � hnÞ m2

3 � b2
1

� 	
enqeqn


 �
m2

2 � a2
n

� 	
ðeqnm2 � hTenÞenq � m2 � hn�e0nq

� �
m2

2 � a2
Q

� �h i
¼ 0:

ð24Þ

Eq. (24) has been obtained and discussed by Maruszewski (1989) in
the dimensional form. Similarly, in case of TP-waves, the influence
of elastic and electron fields is omitted (/ = 0 = N,a0

n = 0 = en,eq-

n = 0 = eT,w = 0). The secular equation can be written from Eq. (24)
by replacing N with P; n with p; and m3 with m4.
6. Solution of the secular equation

In general, wave number and hence the phase velocities of the
waves are complex quantities, therefore the waves are attenuated
in space. In order to solve the secular equation, we take

c�1 ¼ V�1 þ ix�1Q ; ð25Þ

where k = R + iQ, R ¼ x
V and R, Q are real numbers. Here, it may be

noted that V and Q, respectively, represent the phase velocity and
attenuation coefficient of the waves. Upon using representation
(25) in secular equation (18) and various relevant relations, the
complex roots a2

i ði ¼ 1;2;3;4Þ of quadratic equation (14) can be
computed with the help of Descartes procedure. These are then
used to obtain the complex characteristic roots m2

i ði ¼ 1;2;3;4Þ
from Eq. (13). The characteristic roots m2

i ði ¼ 1;2;3;4Þ are further
used to solve the secular equation (18) to obtain phase velocity
(V) and attenuation coefficient (Q) of the surface waves by using
function iteration numerical technique outlined below.

The secular equation (18) is, in general, of the form F(c) = 0
which upon using representation (25) leads to a system of two real
equations f(V,Q) = 0 and g(V,Q) = 0. In order to apply functional
iteration method we write V = f*(V,Q) and Q = g*(V,Q), where the
functions f* and g* are selected in such a way that they satisfy
the conditions

of �

oV

����
����þ of �

oQ

����
���� < 1;

og�

oV

����
����þ og�

oQ

����
���� < 1 ð26Þ

for all V, Q in the neighbourhood of the root. If (V0,Q0) be an initial
approximation to the root, then we can construct the successive
approximations according to the formulae
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Fig. 1. Phase velocity profile of ETP isothermal waves with life time effect of charge
carriers.
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V1 ¼ f �ðV0;Q 0Þ Q 1 ¼ g�ðV1;Q 0Þ
V2 ¼ f �ðV1;Q 1Þ Q 2 ¼ g�ðV2;Q 1Þ

..

. ..
. ..

.

Vnþ1 ¼ f �ðVn;Q nÞ Q nþ1 ¼ g�ðVnþ1;Q nÞ

ð27Þ

The sequence {Vn,Qn} of approximations to the root will converge to
the actual value ðV0;Q0Þ of the root provided ðV0;Q0Þ lies in the
neighbourhood of the actual root. For the initial value of
c = c0 = (V0,Q0), the roots mj (j = 1,2,3,4) are computed from Eqs.
(13) and (14) by using Descartes’ procedure for each value of the
wave number R for assigned frequency. The values of mj

(j = 1,2,3,4) so obtained are then used in secular equation (18) to
obtain the current values of V and Q each time which are further
used to generate the sequence (27). The process is terminated as
and when the condition jVn+1 � Vnj < e, e being arbitrarily small
number to be selected at random to achieve the accuracy level, is
satisfied. The procedure is continuously repeated for different val-
ues of the wave number (R) to obtain corresponding values of the
phase velocity (V) and attenuation coefficient (Q). Thus the real
phase velocity and attenuation coefficient during the propagation
of Rayleigh type disturbance in the semiconductor thermoelastic
half space can be computed from dispersion relation (18).

6.1. Specific loss

The energy dissipated (DW) in a specimen through a stress cy-
cle, to the elastic energy (W) stored in the specimen when the
strain is a maximum, is called specific loss. According to Kolsky
(1963) in case of sinusoidal plane wave of small amplitude, the
specific loss DW

W equals to times the absolute value of the imaginary
part of k to the real part of k, i.e. DW

W ¼ 4p ImðkÞ
ReðkÞ

��� ���, where k is a complex
number such that Im(k) > 0. Here,

DW
W
¼ 4p

ImðkÞ
ReðkÞ

����
���� ¼ 4p

Q
R

����
���� ¼ 4p

VQ
x

����
����: ð28Þ
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Fig. 2. Attenuation coefficient profile of ETP isothermal wave with life time effect of
charge carriers.
7. Numerical results and discussion

In order to illustrate the analytical development in the previous
section, we now perform some numerical computations and simu-
lations. Here, we make assumption that the semiconductor is of the
relaxation type so that the diffusion approximation of the physical
processes ceases to be obligatory and tn; tþn ; tp; tþp turn comparable
to each other in their values meaning that tn ¼ tþn ; tp ¼ tþp . Here,
we confine ourselves to discuss the phase velocity, attenuation,
and specific loss profiles for ETP surface waves at various situa-
tions. The semiconductor material for the numerical purpose is ta-
ken as Ge whose physical data as reported by Maruszewski (1989)
and Sharma and Thakur (2006) is given as under

k ¼ 0:48� 1011 N m�2; l ¼ 0:53� 1011 N m�2;

q ¼ 5:3� 103 kg m�3; tþp ¼< 10�5 s; Dp ¼ 0:5� 10�2 m2 s�1;

mqp ¼ �0:004� 10�6 v k�1
; K ¼ 60 W m�1 K�1;

Ce ¼ 310 J kg�1 K�1; ap ¼ 1:3� 10�3 m2=s;

aT ¼ 5:8� 10�6 K�1; n0 ¼ 1020 m�3;

mpq ¼ �0:004� 10�6 v k�1
; T0 ¼ 298 K:

The numerical calculations have been done for different nondimen-
sional values of the life time tþp ¼ 0:796;0:0796; 0:00796 which cor-
respond to their respective dimensional values tþp ¼ 10�12 s;
10�13 s;10�14 s.

Fig. 1 shows the plots of variations of the phase velocity (V) of
ETP surface waves with wave number (R) for different values of life
times of hole carrier fields in Ge semiconductor material halfspace
under isothermal surface conditions. The phase velocity profiles are
observed to increase with decreasing values of life time of hole car-
rier field. The magnitude of phase velocity profile corresponding to
tþp ¼ 10�14 s has the high large magnitude as compared to that of
other considered cases. The phase velocity profiles are noticed to
be dispersive in character with decreasing life time of charge carrier
fields, however, the variation of phase velocity becomes stable for
higher values of the wave number. Fig. 2 concerns with the varia-
tions of attenuation (Q) with wave number (R) in Ge halfspace un-
der isothermal conditions. The attenuation profile corresponding to
the life time ðtþp ¼ 10�13 sÞ of charge carriers observes Gaussian
behaviour and the profiles corresponding to life times ðtþp ¼
10�14 s and tþp ¼ 10�15 sÞ follow platykurtic trends with increasing
wave number. The attenuation profiles suffer significant dispersion
with decreasing life time of hole carrier fields. This behaviour of
phase velocity and attenuation profiles in Figs. 1 and 2 shows that
ETP surface waves are quite sensitive to life time of charge carriers’
field. Fig. 3 concerns with the variation of non-dimensional phase
velocity (V) of ETP surface waves with wave number (R) for differ-
ent life times for insulated surface conditions prevailing at the sur-
face of the halfspace. It is observed that the non-dimensional phase
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Fig. 3. Phase velocity profile of ETP insulated waves with life time effect of charge
carriers.
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velocity increases in wave number range R 6 2 and then decreases.
After wave number range R 6 4, all the profiles corresponding to
different life times asymptotically converge to a single value. It is
noticed that at low wave number ranges the effect of life time is
prominent whereas there is no effect at higher wave numbers.
Fig. 4 shows the variation of non-dimensional attenuation (Q) of
ETP surface waves with non-dimensional wave number (R) under
insulated surface conditions for hole field prevailing at the surface
of the material. The attenuation profiles corresponding to life times
tþp ¼ 10�14 s and tþp ¼ 10�13 s, show minimum variation with re-
spect to wave number. Initially, these profiles increase steadily in
order to ultimately become constant. The attenuation profile corre-
sponding to life time tþp ¼ 10�12 s follows Gaussian distribution in
the wave number range 1 6 R 6 4 with slight dispersion outside
this interval. These profiles established the sensitivity of phase
velocity and attenuation towards life time of charge carrier fields.

From Figs. 1–4, it is inferred that the phase velocity and atten-
uation profiles are noticed to be distinctive and significantly af-
fected due to life times at long wave lengths as compared to that
at short wave lengths. This is attributed to the fact that long wave-
length waves are capable of penetrating deep into the halfspace
due to which the interaction between various interacting fields is
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Fig. 4. Attenuation coefficient profile of ETP insulated wave with life time effect of
charge carriers.
set up and coupling between them becomes operative which re-
sults in significant changes in the wave characteristics. However,
at the short wavelengths the waves follow the surface of the semi-
conductor halfspace with least disturbance to the medium and
consequently coupling of various interacting fields has negligible
small effect on wave characteristics at all values of life times of car-
rier fields. Moreover, the significant effect of thermally insulated
and isothermal boundaries of the semiconductor halfspace on
these wave characteristics is also visible from their plots.

It is observed from Figs. 5 and 6 that the thermal relaxation
time has significant effect on the phase velocity and attenuation
coefficient of ETP surface waves in case of isothermal and insulated
surface conditions. The effect of thermal relaxation is observed to
be comparatively low at large wave numbers rather than at small
one on these quantities. The phase velocity increases due to ther-
mal relaxation time in the wave number range 0 6 R 6 2 and suf-
fers a decrease in amplitude for 3 6 R 6 7 before its trend gets
reversed and ultimately zigzag type behaviour is observed by it.
The attenuation profile achieves peak value at wave number
R = 3 in case of insulated surface conditions and at wave number
value R = 6 for isothermal condition before it starts decreasing in
magnitude. These profiles exhibit a prominent effect of heat relax-
ation time.

Fig. 7 presents the variations of specific loss factor of energy
dissipation in a stress cycle when the specimen is subjected to
maximum strain with respect to wave number for two considered
life times tþp ¼ 10�12 s;10�13 s at fixed value of thermal relaxation
time. The magnitude of specific loss factor is noticed to be signifi-
cantly large at vanishing wave numbers and it sharply decreases in
the range 0 6 R 6 1.5 before it starts decreasing steadily for R P 2
after suffering a slight increase for 1.5 6 R 6 2 in order to become
asymptotically convergent forR P 6. Thus the material exhibit
maximum internal friction at long wavelength limits 0 6 R 6 1 as
observed from the profiles. The variations of specific loss factor
with respect to wave number for two considered values of non-
dimensional thermal relaxation time tQ = 0.2,0.4 at fixed value of
life time of charge carries are plotted in Fig. 8. It is noticed that
the profiles of this quantity follow Gaussian behaviour with mean
at R = 2 and R = 3 in case of tQ = 0.2 and tQ = 0.4 in the wave number
ranges 1 6 R 6 3.5 and 1 6 R 6 5.5, respectively. These profiles fol-
low sharply decreasing trend in the range 0 6 R 6 1 but decrease
steadily in the wave number range R P 5.5. The comparison of pro-
files in Figs. 7 and 8 suggests that at long wavelengths (0 6 R 6 1)
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Fig. 5. Phase velocity profile of ETP isothermal waves/insulated wave with heat
relaxation effect.
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the material exhibit more internal friction with increasing life time
of charge carrier field than that in case of thermal relaxation time.
However, this trend gets reversed at short wavelengths (R P 1).

Fig. 9 depicts the variations of phase velocity with wave number
for insulated thermodiffusive (TP) waves with wave number on
linear log scale. It is found that the effect of life time on the phase
velocity is quite large at small wave number values as compared to
that at large wave numbers. Fig. 10 represents variations of non-
dimensional attenuation of TP surface waves for insulated surface
conditions with respect to wave number. The attenuation profile
corresponding to tþp ¼ 10�12 s starts from zero value and increases
in a fluctuating manner with increasing wave number to ulti-
mately become steady. However, attenuation profiles for
tþp ¼ 10�13 s and tþp ¼ 10�14 s show Gaussian behaviour with mean
at R = 2 in the wave number range 0 6 R 6 4 and then ultimately
become steady for R P 5. The ups and downs in particle motion
show the sensitivity of TP waves towards the life times of charge
carriers.
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Fig. 9. Phase velocity profiles of TP insulated waves with life time effect of charge
carriers.
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The profiles in Fig. 11 show almost similar trend of variations of
phase velocity as that in Fig. 9 except that here the magnitude of
variations of phase velocity is comparatively small and the profiles
are subjected to periodic fluctuations at small values of thermal
relaxation time which disappear with increasing values of this
parameter at all wave numbers. The profiles in Fig. 12 present al-
most similar behaviour as that in Fig. 10 in the whole wave number
range with the exception that the maximum value of this quantity
occur at R = 1 in case of tQ = 0,0.2 and at R = 2 for tQ = 0.4 in addition
to having high magnitude of variations.

Figs. 13 and 14 present the variations of specific loss factor with
wave number with different life times of charge carriers and relax-
ation time of heat effect, respectively. It is observed that the pro-
files of specific loss observe almost Gaussian behaviour in the
wave number range 0 6 R 6 3 before these ultimately become al-
most steady in nature after observing fluctuating trend at large
wave number values in both the considered figures. The effect of
life and thermal relaxation times on the specific loss factor is no-
ticed to be significantly large at small wave numbers (long wave
0

0.25

0.5

0.75

1

1.25

1.5

0 1 2 3 4 5 6

Wave number

A
tt

en
ua

tio
n 

 

tQ = .0
tQ = .2
tQ = .4

Fig. 12. Attenuation coefficient profiles of TP insulated waves with heat relaxation
effect.

Wave number

Fig. 14. Specific loss profile of TP insulated waves with heat relaxation effect.
lengths) as compared to that at large wave numbers (short wave
lengths). This is attributed to the fact that the long wave length
waves penetrate deep into the medium and thus the coupling ef-
fects become operative thereby leading significant to modifications
while short wave length wave follows the surface with little distur-
bance to the solid.

8. Conclusions

It is observed that the life time of charge carriers and thermal
relaxation time significantly affect the characteristics of ETP sur-
face waves in Ge semiconductor. The effect of life time of holes
and relaxation of heat is found to be quite large at long wave-
lengths rather than on short wavelengths. This is attributed to
the fact that the former is capable of deep penetration into the
medium thereby making coupling of various interaction fields
operative but the latter follows the surface of the semiconductor
with least disturbance to the medium. The considered waves are
observed to be significantly affected due to the presence of ther-
mally insulated and isothermal boundaries of the p-type semicon-
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ductor (germanium) halfspace. It is observed that at long wave-
lengths, the material exhibit more internal friction with increasing
life time of charge carrier field than that in case of thermal relaxa-
tion time. However, this trend gets reversed at short wavelengths.

Though the transportation of heat in the solids at room temper-
ature is normally diffusion dominant, however, the inclusion of
thermal relaxation and life times in the energy as well charge car-
riers equations also facilitates the numerical computations, see
Achenbach (2005). Usually in engineering applications Fourier’s
law and diffusion give an easier and better description, however,
in case the relaxation and process times are comparable it would
be desirable to allow for both diffusion and relaxation by adopting
constitutive models which have both thermal conductivity and
relaxation spectra. The treatment of thermal and diffusion fields
together at room temperature in semiconductor materials may
be useful in many therapies. This study may give potential impact
on the fabrication quality of semiconductor and other engineering
applications such as non-destructive testing (NDT), detection of
cracks and other surface imperfections in the materials in addition
to design and construction of SAW devices.
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Appendix A

The quantities used in Eq. (15) are given by

j ¼ 1� eqpepq � eqnenq � eqnepqknðeqn � eqpÞ;

j1 ¼ Jp 1� eqnkn
� 	

þ Knkneqp � eqn Jp enq � kn
� 	

þ Ipkneqp

 �

þ eqp Kn enq � kn
� 	

� Ip 1� eqnkn
� 	
 �

;

j2 ¼ Jn 1� eqpkp
� 	

þ Kpkpeqn � eqn In 1� eqpkp
� 	


�Kp epq � kp
� 	�

� eqp Ineqnkp � Jn epq � kp
� 	
 �

;

j3 ¼ ðepq � kpÞF1 þ eqnkpF2 þ ð1� kpeqpÞF3;

ðA:1Þ

j01 ¼ ðJnJp � KnKpÞ � eqnðInJp � IpKpÞ þ eqpðInKn � JnIpÞ;

j02 ¼ ðs0p � kpsQ ÞF1 � ix�1enðap
0 � kpÞF2 þ s�p � ix�1epkp

� �
F3;

j03 ¼ ðepq � kpÞG1 þ eqnkpG2 þ ð1� kpeqpÞG3;

j04 ¼ sQ ð1� kpeqpÞð1� kneqnÞ � knkpeqneqp

 �
� ix�1en ð1� kpeqpÞ enq � kn

� 	
þ kneqp epq � kp

� 	
 �
� ix�1ep kpeqn enq � kn

� 	
þ 1� eqnkn
� 	

epq � kp
� 	
 �

;

ðA:2Þ

j001 ¼ s0p � kpsQ
� �

G1 � ix�1en ap
0 � kp

� 	
G2 þ s�p � ix�1epkp

� �
G3;

j002 ¼ sQ Jp 1� kneqn
� 	

þ Knkneqp

 �

� ix�1en Jp enp � kn
� 	


þIpkneqp
�
þ ix�1ep Kn enq � kn

� 	
� Ip 1� kneqn

� 	
 �
;

j003 ¼ sQ Jn 1� kpeqp
� 	

þ Kpkpeqn

 �

� ix�1en In 1� kpeqp
� 	


�Kp epq � kp
� 	�

� ix�1ep Inkpeqn � Jn epq � kp
� 	
 �

;

j� ¼ sQ ½JnJn � KnKp� � ix�1en½InJp � IpKp�

þ ix�1ep½InKn � JnIp�;
ðA:3Þ
where

In ¼ s0n � knsQ ; Ip ¼ s0p � kpsQ ; Jn ¼ s�n � ix�1knen;

Jp ¼ s�p � ix�1kpep; Kn ¼ ix�1en ap
0 � kp

� 	
;

Kp ¼ ix�1ep an
0 � kn

� 	
; ðA:4Þ

F1 ¼ gqp eqnkn � 1
� 	

� gqneqpkn;

F2 ¼ gqp kn � enq
� 	

� fQeqpkn;

F3 ¼ fQ 1� eqnkn
� 	

� gqn enq � kn
� 	

;

F ¼
b2 þ k2
� �2

4k2b
;

ðA:5Þ

G1 ¼ gqnix�1ep an
0 � kn

� 	
� gqp s�n � ix�1enkn

� 	
;

G2 ¼ fQ ix�1ep an
0 � kn

� 	
� gqp s0n � knsQ

� 	
;

G3 ¼ fQ s�n � ix�1enkn
� 	

� gqn s0n � knsQ
� 	

;

ðA:6Þ

fQ ¼ 1þ ð1þ eTÞsQ ; gqn ¼ eqn þ ix�1en 1þ eTð Þ;
gqp ¼ eqp þ ix�1ep 1þ eTð Þ; ðA:7Þ

sQ ¼ tQ þ ix�1; e0n ¼
en

eqn ; e0p ¼
ep

eqp ;

s0n ¼ tQan
0 þ ix�1ðan

0 þ an
0Þ � an

0x
�2=tþn ;

s0p ¼ tQap
0 þ ix�1ðap

0 þ ap
0Þ � ap

0x
�2=tþp ;

s�n ¼
v

Dn tn þ ix�1 1� 2nan
0Dn

v � tn

tþn

� �
þ 1

x2tþn

� �
;

s�p ¼
v

Dp tp þ ix�1 1� 2pap
0Dp

v � tp

tþp

 !
þ 1

x2tþp

" #
:

ðA:8Þ
References

Achenbach, J.D., 2005. The thermoelasticity of laser based ultrasonics. J. Therm.
Stresses 28, 713–728.

Ackerman, C.C., Overtone, W.C., 1969. Second sound in helium-3. Phys. Rev. Lett. 22,
764–766.

Ackerman, C.C., Bartman, B., Fairbank, H.A., Guyer, R.A., 1966. Second sound in
helium. Phys. Rev. Lett. 16, 789–791.

Atkin, R.J., Chadwick, P., 1981. Surface waves in heat conducting elastic body –
correction and extension of paper of Chadwick and Windle. J. Therm. Stresses 4,
509–521.

Banerjee, D.K., Pao, Y.H., 1974. Thermoelastic waves in anisotropic solids. J. Acoust.
Soc. Am. 56, 1444–1453.

Chadwick, P., Windle, D.W., 1964. Propagation of Rayleigh waves along isothermal
and insulated boundaries. Proc. Roy. Soc. Am. 280, 47–71.

Chandrasekharaiah, D.S., 1986. Thermoelasticity with second sound – a review.
Appl. Mech. Rev. 39, 355–376.

Dhaliwal, R.S., Sherief, H.H., 1980. Generalized thermoelasticity for anisotropic
media. Q. Appl. Math. 38, 1–8.

Green, A.E., Lindsay, K.A., 1972. Thermoelasticity. J. Elasticity 2, 1–7.
Guyer, R.A., Krumhansal, J.A., 1966. Thermal conductivity, second sound and

phonon, hydrodynamic phenomenon in non-metallic crystals. Phys. Rev. 148,
778–788.

Hetnarski, R.B., Ignaczak, J., 1999. Generalized thermoelasticity. J. Therm. Stresses
22, 451–476.

Ignaczak, J., 2006. Nonlinear hyperbolic heat conduction problem: closed form
solutions. J. Therm. Stresses 29, 999–1018.

Kolsky, H., 1963. Stress Waves in Solids, Dover Press, New York.
Lockett, F.J., 1958. Effect of thermal properties of a solid on the velocity of Rayleigh

waves. J. Mech. Phys. Solids 7, 71–75.
Lord, H.W., Shulman, Y., 1967. The generalized dynamical theory of

thermoelasticity. J. Mech. Phys. Solids 15, 299–309.
Many, A., Goldstein, J., Grover, N.B., 1965. Semiconductor Surfaces. North-Holland,

Amsterdam.
Maruszewski, B., 1986a. Electro-magneto-thermo-elasticity of extrinsic

semiconductors: classical irreversible thermodynamic approach. Arch. Mech.
38, 71–82.



J.N. Sharma et al. / International Journal of Solids and Structures 46 (2009) 2309–2319 2319
Maruszewski, B., 1986b. Electro-magneto-thermo-elasticity of extrinsic semiconductors.
Extended irreversible thermodynamic approach. Arch. Mech. 38,
83–95.

Maruszewski, B., 1987a. Coupled evolution equations of deformable
semiconductors. Int. J. Eng. Sci. 25, 145–153.

Maruszewski, B., 1987b. Heat and charge carrier relaxation in deformable
semiconductors. In: Yamamoto, Y., Miya, K. (Eds.), Electro-Magneto-
Mechanical Interactions in Deformable Solids and Structures. North-Holland,
Amsterdam, pp. 395–400.

Maruszewski, B., 1989. Thermodiffusive surface waves in semiconductors. J. Acoust.
Soc. Am. 85, 1967–1977.

Nayfeh, A., Nasser, S.N., 1971. Thermoelastic waves in solid with thermal relaxation.
Acta Mech. 12, 53–69.

Ning, Y.U., Shoji, I., Tatsuo, I., 2004. Characteristics of temperature field due to
pulsed heat input calculated by non-Fourier heat conduction hypothesis. JSME
Int. J. Ser. A 47, 574–580.
Rayleigh, L., 1885. On waves propagation along the plain surface of an elastic solid.
Proc. Lond. Math. Soc. 17, 4–11.

Scott, N.H., 1989. The stability of plane waves in generalized thermoelasticity. In:
McCarthy, M.F., Hayes, M.A. (Eds.), Elastic Wave Propagation. North-Holland,
Amsterdam, pp. 623–628.

Sharma, J.N., 1986. On the low and high-frequency behavior of generalized
thermoelastic waves. Arch. Mech. 38, 665–673.

Sharma, J.N., Singh, H., 1985. Generalized thermoelastic waves in anisotropic media.
J. Acoust. Soc. Am. 85, 1407–1413.

Sharma, J.N., Thakur, N., 2006. Plane harmonic elasto-thermodiffusive waves in
semiconductor materials. J. Mech. Mater. Struct. 1, 813–835.

Sharma, J.N., Kumar, V., Sud, S.P., 2000. Plane harmonic waves in orthorhombic
thermoelastic materials. J. Acoust. Soc. Am. 107, 293–305.

Sharma, J.N., Thakur, N., Singh, S., 2007. Propagation characteristics of elasto-
thermodiffusive surface waves in semiconductor material half-space. J. Therm.
Stresses 30, 357–380.


	Elasto-thermodiffusive (ETNP) surface waves in semiconductor materials
	Introduction
	Formulation of the problem
	Boundary conditions

	Solution of the problem
	Derivation of secular equation
	Special cases of surface wave
	ET-surface waves
	Elastodiffusive (EN/EP) surface waves
	Thermodiffusive (TN/TP) waves

	Solution of the secular equation
	Specific loss

	Numerical results and discussion
	Conclusions
	Acknowledgments
	Appendix A
	References


