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a b s t r a c t

This paper deals with the effective behaviour of elastic materials periodically reinforced by linear slender
elastic inclusions. Assuming a small scale ratio e between the cell size and the characteristic size of the
macroscopic deformation, the macro-behaviour at the leading order is derived by the homogenization
method of periodic media. Different orders of magnitude of the contrast between the shear modulus of
the material lm and of the reinforcement lp are considered.

A contrast lm/lp of the order of e2 leads to a full coupling between the beam behaviour of the inclusions
and the elastic behaviour of the matrix. Under transverse motions, the medium behaves at the leading
order as a generalized continuum that accounts for the inner bending introduced by the reinforcements
and the shear of the matrix. Instead of the second degree balance equation of elastic Cauchy continua
usually obtained for homogenized composites, the governing equation is of the fourth degree and the
description differs from that of a Cosserat media.

This description degenerates into, (i) the usual continua behaviour of elastic composite materials when
O(lm/lp) P e, (ii) the usual Euler–Bernoulli beam behaviour when O(lm/lp) 6 e3.

The constitutive parameters are derived and can be computed or estimated from simplified geometries.
Simple criteria are given to identify the appropriate model for real reinforcements under given loadings.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction composites is that of elastic equivalent Cauchy media where the
Understanding the behaviour of reinforced materials is of inter-
est in engineering mechanics of hand-made fiber oriented materi-
als encountered in aeronautics (mat of carbon or glass fibers, etc.),
in civil engineering (pile foundations massif, embankments of rein-
forced earth, etc.), or in the domain of natural materials studied in
biomechanics (bones, vegetal tissues, etc.).

These materials belong to the wider class of composites media on
which numerous studies aim at establishing the relation between
the constituents, the local morphology and the global behaviour.
This is justified by the fact that phenomena in heterogeneous media
can be upscaled and formulated in terms of macroscopic behaviour,
provided that the condition of scale separation is fulfilled. This latter
condition requires a medium morphology sufficiently regular to be
described by a representative elementary volume much smaller in
size than the characteristic size of the phenomena (Auriault,
1991). In the literature, these conditions are systematically satis-
fied, implicitly or explicitly. Among the works on upscaling, let us
mention the variational approaches, e.g. Hashin (1983), and the
asymptotic methods of homogenization of periodic media (San-
chez-Palencia, 1980). For elastic constituents, the homogenization
limited to the leading order proves that the macro-behaviour of
ll rights reserved.
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elastic tensor can be determined as soon as the microstructure is
known (Léné, 1978). Descriptions accounting for the higher terms
introduce so-called ‘‘non-local’’ correctors (Gambin and Kröner,
1989; Boutin, 1996). The ‘‘non-local’’ denomination expresses that
the stress state does not depend only on the strain state in an ele-
mentary representative volume but takes into account the strain
gradient, or equivalently the strain in the neighbour representative
volumes. In this sense the stress–strain relation is ‘‘non-local’’. In
those previous works it was shown that the leading order descrip-
tion strictly applies for homogeneous macro-strain, whereas in
other cases the effective behaviour involves higher gradients of
strain (double gradient in most cases i.e., the curvature). Thus, in
the range of loading where homogenization applies, composites ap-
pear as Cauchy media with small perturbations induced by the cor-
rectors, i.e., ‘‘slightly non-local’’ generalized media. As is the case for
Cosserat’s media or micromorphic media (Eringen, 1968) the funda-
mental difference with Cauchy media lies in the existence of an
intrinsic finite length, related to the cell size of the composite.
Numerous works are devoted to this topic and for a recent revue
the reader may refer to Forest (2006).

In above mentioned results, the non-local effects in 3-D compos-
ites (made of constituents of properties of the same order) appear as
correctors and not at the leading order. Conversely, in 1-D (homoge-
neous) beam theory, the curvature effect dominates. This leads to
think that it should be possible to obtain non-local effects at the
leading order in 3-D composite made of soft matrix and stiff parallel
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Fig. 1. Cylindrical beam of section of any form. (a) Dimensions. (b)
Section notations.
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beams in finite concentration. This is the question investigated in
this paper. Such a topic has been sparsely investigated in the litera-
ture. Through asymptotic method (Caillerie, 1980) studied the effect
of a single stiff beam in a soft medium, and (Pideri and Seppecher,
1997a; Pideri and Seppecher, 1997b) then (Bellieud and Bouchitté,
2002) showed through a mathematical study that the energy of par-
allel beams in a soft matrix includes bending terms. For the same
kind of material (Sudret and De Buhan, 1999; de Buhan and Hassen,
2008) developed a ‘‘multiphase model’’ based on a phenomenologi-
cal approach that accounts for shear and bending effects. Auriault
and Bonnet (1985) studied the dynamics of composites with non-
connected soft inclusions. More recently, in the frame work of the
homogenization of discrete media (Caillerie et al., 1989), different
kinds of generalized media at the leading order were identified in
reticulated media according to their morphology (Hans and Boutin,
2008). Among the earlier applications in the engineering field, let us
mention the numerical works of Postel (1985) and the phenomeno-
logical attemps of Makris and Gazetas (1992) at describing the
behaviour of massif of pile foundations.

The present contribution aims at deriving through asymptotic
homogenization, the effective behaviour of elastic materials peri-
odically reinforced by linear slender elastic inclusions. With a sys-
tematic use of the scaling and of the 1D geometry of the inclusions,
the analysis is performed for finite concentration of fiber at differ-
ent magnitudes of the contrast between the shear modulus of the
material lm and of the reinforcement lp. According to the asymp-
totic method, the contrast is weighted by the powers of the scale
ratio e between the cell size and the characteristic size of the mac-
roscopic deformation.

A contrast lm = lpe2 leads to a generalized continuum charac-
terized at the leading order by a full coupling between the beam
behaviour of the inclusions and the elastic matrix behaviour. In-
stead of the second degree differential equation of elastic Cauchy
continua, the governing equation is of the fourth degree and differs
from that of Cosserat media. This general situation degenerates
either into the usual continua behaviour of elastic composite mate-
rials when O(lm/lp) P e, or into the usual Euler–Bernoulli beam
behaviour when O(lm/lp) 6 e3. Those results are established
through formal expansions and the convergence is not handled
here (on this point cf. Bellieud and Bouchitté, 2002).

The paper is divided into six sections. The elements necessary
for the study concerning beam model and asymptotic approach
are given in Section 2. Section 3 presents the macro-behaviour of
the reinforced material for a stiffness contrast of e2 in the specific
case of transverse shear. The general macroscopic constitutive
law is established in Section 4 for the same contrast. Larger or
weaker contrasts are investigated in Section 5. Section 6 is devoted
to the practical applications of the results. The discussion empha-
sizes the domain of validity of the different descriptions and their
possible extensions.
2. Derivation of beam model through asymptotic method

A beam is a slender cylindrical body (of section Sp of any form)
of axial dimension L much larger than the typical dimension of sec-
tion h (Fig. 1(a)). This geometry naturally introduces:

� the small parameter e = h/L, inverse of the slenderness, used in
the expansions,
� the distinction between directions (i) in the axis (unitary vector

a1) and (ii) in the plane (aa; a = 2,3) of the section. In the paper,
greek indices run from 2 to 3; latin from 1 to 3.

Through asymptotic method (Trabucho and Viano, 1996) have
shown that these geometrical features enable to move from the
3-D constitutive law of the material to the 1-D beam behaviour.
This approach enables to handle statics and dynamics of homoge-
neous, heterogeneous or anisotropic beams. This section recall the
developments strictly necessary for the sequel, and only homoge-
neous straight beams made of isotropic elastic material are
considered.

2.1. Specificity of the beam’s kinematic and appropriate space
variables

The geometry of straight, homogeneous, unloaded beam sug-
gests that the phenomena vary along the axis according to L and
within the section according to h. Moreover, generally, a beam is
not loaded by external tangential forces on its contour C (other
cases will be studied in further sections). These two facts constrain
the kinematic: denoting the motion by u, the stress tensor by r and
the normal of boundary C of the straight beam by n = na � aa, one
has:

ðr � nÞ � a1 ¼ r1ana ¼ 0 on C where r1a ¼ lðu1;xa þ ua;x1 Þ

Here and in the following, the derivative according to a given vari-
able, for instance xa, is denoted by ;xa , the second derivative accord-
ing to xa and x1, by ;xax1 ; . . .

Since u1;xa ¼ Oðu1=hÞ and ua;x1 ¼ Oðua=LÞ, the vanishing of r1a on
C requires:

O
u1

h

� �
¼ O

ua

L

� �
i:e: Oðu1Þ ¼ eOðuaÞ

This means that the transverse motions are associated with a nor-
mal motion of one order less. To respect this physical condition,
the motions are rescaled in the following form:

u ¼ eu1a1 þ uaaa so that Oðu1Þ ¼ OðuaÞ ð1Þ

As the pertinent dimensionless space variables are (x1/L,x2/h,x3/h),
the appropriate physical space variables reads (x1,y2,y3), where
ya = (L/h)xa = e�1xa (Fig. 1(b)). For quantity u expressed in function
of (x1,ya) the gradient operator r ¼ @xi

ai – that applies on u(x) –
becomes:

ru ¼ ð@x1 a1 þ e�1@ya aaÞu with uðx1; yÞ

and the integrals are modified as (ds = dy2dy3; dc = dyC):Z
S
uðxÞdS ¼ e2

Z
S
uðx1; yÞds;

Z
C
uðxÞdC ¼ e

Z
C
uðx1; yÞdc

In this paper we use the following conventions:
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� jSj ¼
R

S dx2dx3; jS0j ¼
R

S dy2dy3 ¼ e�2jSj,
� Ia ¼

R
S ðxaÞ2dx2dx3; I0a ¼

R
S ðyaÞ

2dy2dy3 ¼ e�4Ia,

� the local problems are set on the ‘‘natural’’ y-frame originated at
the center of ‘‘mass’’ of the beam section Sp and orientated along
its principal axis of inertia. Thus:
Z

Sp

yads ¼ 0;

Z
Sp

yaybds ¼ 0 for a – b
2.2. Formulation of the problem

2.2.1. Reduced strain and stress tensors
The specificity of the axial direction leads to decompose any

symmetric tensor A into:

A ¼ Aijðai � aj þ aj � aiÞ=2 ¼ Ana1 � a1 þ ðAt � a1 þ a1 � AtÞ þ As

where, for strain (A = e) or stress (A = r), the three reduced tensors
are respectively:

� An = A11: the scalar axial strain or stress,
� At = A1aaa: the 2D vector of the strain or stress exerted out of the

plane of the section,
� As = Aab(aa � ab + ab � aa)/2: the 2D second rank tensor of the

strain or stress in the plane of the section.

Considering motions in the form (1), the reduced strain tensors
are of different order:

en ¼ eu1;x1 ; et ¼ ½ðu1;ya þ ua;x1 Þ=2�aa;

es ¼ e�1½ðua;yb
þ ub;ya Þ=2�ðaa � ab þ ab � aaÞ=2 ð2Þ

The stress and strain tensors are related by the linear isotropic elas-
ticity of the material:

r ¼ 2leþ ktrðeÞI; where k;l stands for Lame coefficients

Thus, denoting Is = a2 � a2 + a3 � a3:

rn ¼ 2len þ kðtrðesÞ þ enÞ; rt ¼ 2let;

rs ¼ 2les þ kðtrðesÞ þ enÞIs ð3Þ

Consequently, rt is of zero order while rn and rs contains terms of
order e�1 and e.

Using the Young modulus E = 2l(1 + m) and the Poisson ratio
m = k/2(k + l), we also have:

r ¼ E
1þ m

eþ m
1� 2m

trðeÞI
h i

; e ¼ 1
E
½ð1þ mÞr� mtrðrÞI�

so that en and rn are known as soon as tr(es) and tr(rs) are
determined:

en ¼
1

2m
ð1� 2mÞð1þ mÞ

E
trðrsÞ � trðesÞ

� �
;

rn ¼
1

2m
½�EtrðesÞ þ ð1� mÞtrðrsÞ� ð4Þ

For instance, in the case of in plane motion: en = 0 and rn = mtr(rs).

2.2.2. Local balance equations and variational formulations
Here, zero body and surface forces are assumed. The momen-

tum balance div(r) = 0, reads:

ðri1;x1 þ e�1ria;ya Þai ¼ 0

The specificity of a1 direction leads to split the balance and bound-
ary conditions (r � n = 0) into:
� a scalar equation along a1 driving the vector stress rt, the axial
gradient of the scalar rn being a forcing term, with homoge-
neous boundary conditions:
a1 direction:
rn;x1 þ e�1divyðrtÞ ¼ 0 in Sp ð5Þ
rt � n ¼ 0 on C ð6Þ

The equivalent variational formulation is established classi-
cally as:

8w1; C1 scalar defined on SpZ
Sp

rn;x1 w1ds ¼ e�1
Z

Sp

rt � gradyðw1Þds
� a vectorial equation in the plane (a2,a3) governing the in plane
stress tensor rs, the axial gradient of vector rt being a
forcing term, with homogeneous boundary conditions:
ða2; a3Þ directions:
rt;x1 þ e�1divyðrsÞ ¼ 0 in Sp ð7Þ
rs � n ¼ 0 on C ð8Þ
whose equivalent variational formulation reads:
8ws; in plane C1 vector defined on SpZ
Sp

rt;x1 �wsds ¼ e�1
Z

Sp

rs : eyðwsÞds
2.2.3. Global balance equations of the section
The balance equations of global forces, are derived by integrat-

ing (5) and (7) over Sp. Using the divergence theorem and the
boundary conditions (6)–(8) give:Z

Sp

divyðrtÞds¼
Z

C
rt �ndc¼0 and

Z
Sp

divyðrsÞds¼
Z

C
rs �ndc¼0

Thus, inverting ya-integration and x1-derivate, provides the follow-
ing balance equations over the section (valid when the beam is free
of any surface or volume loading):

along a1 :

Z
Sp

rnds

" #
;x1

¼ 0; along a2; a3 :

Z
Sp

rtds

" #
;x1

¼ 0 ð9Þ

Three global momentum equilibrium equations can also be estab-
lished. Again, axial and in-plane directions must be distinguished.
First, multiply (5) by ya and integrate over Sp:Z

Sp

yarn;x1 dsþ e�1
Z

Sp

yadivyðrtÞds ¼ 0

Integrating the second integral by part and applying the divergence
theorem yields:Z

Sp

divyðyartÞds�
Z

Sp

rt � aads ¼
Z

C
yaðrt � nÞdc�

Z
Sp

rt � aads

and the integral over C vanishes because of the free boundary con-
dition (6). Finally, inverting ya-integration and x1-derivate leads to
the two momentum of momentum balance equations:

along aa :

Z
Sp

yarnds

" #
;x1

� e�1
Z

Sp

rt � aads ¼ 0

The global momentum of momentum balance in direction a1 is
established by taking the vectorial product of (7) by the position
vector y = yaaa and integrating over the section:Z

Sp

y� rt;x1 dsþ e�1
Z

Sp

y� divyðrsÞds

¼
Z

Sp

y� rt;x1 dsþ e�1a1

Z
Sp

�1abyarbc;yc ds

" #
¼ 0
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where � is the third rank tensor expressing the vectorial product.
Integrating by part, then using the divergence theorem and the
symmetry of r, and finally the free boundary condition (8), gives:Z

Sp

�1abyarbc;yc ds ¼ �
Z

Sp

�1abrbadsþ
Z

C
�1abyarbcncdc

¼ 0þ a1 �
Z

C
y� ðrs � nÞdc ¼ 0

Consequently:

a1 �
Z

Sp

y� rtds

" #
;x1

¼ 0

To sum up, denoting by Na1 and T = Taaa the normal and shear
forces, and by M = Maaa and M1a1 the bending and torsion momen-
tum, respectively, the balance equations of beams free of surface or
volume loading are:

along a1 : N;x1 ¼ 0; N ¼
Z

Sp

rnds;

M1;x1 ¼ 0; M1 ¼ a1 �
Z

Sp

y� rtds
along aa : M;x1 � e�1T ¼ 0; M ¼
Z

Sp

yrnds;

T ;x1 ¼ 0; T ¼
Z

Sp

rtds

To go further it is necessary to relate the forces and the momentum
to the motion. This is achieved by means of asymptotic expansions,
the main steps of the process are presented in Appendix A.

2.3. Beam description in presence of body and contact forces

2.3.1. Unloaded beam
The unloaded beam description at the leading order is split into

sets of uncoupled equations (for bi-symmetric section) relating
forces and momentum to motions. The results can be written with
the unscaled variables xi by the inverse change of variable xa = eya.
This leads to consider the physically observable quantities eQ i ¼ eiQ i

instead of the scaled quantities Qi, and to express the parameters in
the system xi (i.e., practically, with the same units in the section
and in the beam axis). Furthermore, there is no constraint on the
relative order of magnitude of the uncoupled, hence independent,
mechanisms. For this reason, the exponent specifying the order
may be omitted (while keeping in mind that this is only the leading
order description). Finally, one obtains the usual Euler–Bernoulli
beam description in the absence of inner or external loading:

� Normal force N and mean vertical motion U1
N;x1 ¼ 0; N ¼ EjSpjU1;x1
� Transverse forces Ta, momentum Ma and mean transverse
motion Ua
Ma;x1 � Ta ¼ 0; Ta;x1 ¼ 0; Ma ¼ �EIaUa;x1x1
� Torsion momentum M1 and in-plane rotation of the section X
M1;x1 ¼ 0; M1 ¼ lItX;x1
2.3.2. Loaded beam
Let us examine body forces b = biai – such that div(r) = b in Sp –

and contact forces f = fiai – such that f = r � n = (rt � n)a1 + rs � n on
C – that can be applied while being compatible with a beam
behaviour. First, they should not brake the axial/transerve scale
separation so that they may be expressed as b(x1,ya), f(x1,ya). Sec-
ond, they should be small enough not to disturb the leading kine-
matic of the section. This happens if b and f are of the orders:
b1 ¼ eb1
1; f 1 ¼ e2f 2

1 ; ba ¼ e2b2
a; f a ¼ e3f 3

a ð10Þ

Indeed, in that case, the problems remain identical up to the fourth
one (see Appendix A). Only the equilibrium is modified by b and f
which averaged values on Sp and C act as sources. Denoting:

Biþ2
j ¼

Z
Sp

bi
jds; Fiþ1

j ¼
Z

C
f i
j dc

C4
a ¼

Z
Sp

yab1
1ds; C5

1 ¼ a1 �
Z

Sp

y� b2ds;

G4
a ¼

Z
C

yaf 2
1 dc; G5

1 ¼ a1 �
Z

C
y� f 3dc

the balance equations become (the uncoupling of bending and tor-
sion requires that b1

1 and f 2
1 respect the bi-symmetry of the section):

N3
;x1
¼ B3

1 þ F3
1

M4
a;x1
� T4

a ¼ C4
a þ G4

a; T4
a;x1
¼ B4

a þ F4
a

M5
1;x1
¼ C5

1 þ G5
1

With the unscaled variables, the loaded beam description reads
(dropping the exponents since the order of magnitude of the com-
pression, bending and torsion mechanisms are independent):

U ¼ ðU1 þ xaUa;x1 Þa1 þ Uaaa þXa1 � ðxaaaÞ

N;x1 ¼
Z

Sp

b1dx2dx3 þ
Z

C
f1dxC; N ¼ EjSpjU1;x1

Ma;x1 � Ta ¼
Z

Sp

xab1dx2dx3 þ
Z

C
xaf1dxC; Ma ¼ �EIaUa;x1x1

Ta;x1 ¼
Z

Sp

badx2dx3 þ
Z

C
fadxC

M1;x1 ¼ �1ab

Z
Sp

xabbdx2dx3 þ
Z

C
xafbdxC

 !
; M1 ¼ lItX;x1

Smaller magnitudes of b and f leave the leading order unchanged
and such a situation can be treated as unloaded beam; conversely,
larger amplitudes are incompatible with a beam model.

3. Transverse behaviour of periodic parallel beams in a soft
matrix

This section aims (i) to identify the conditions in which fiber rein-
forced materials behave as generalized continua and (ii) to derive
the relevant modelling. The medium is made of a matrix (indexm)
in which a periodic lattice of parallel identical homogeneous straight
beams (indexp) is embedded with a perfect contact (Fig. 2(a)). The
characteristic dimension L along the beam axis is much larger than
the lateral dimension ‘ of the period (Fig. 2(b)) of area S = Sm [ Sp

and boundary @S; the typical size of the beam section h is of the same
order than ‘ so that the fibers are in finite concentration. This intro-
duces the scale parameter e = ‘/L. The materials (m,p) are isotropic
elastic. Obviously, the contrast between the elastic properties of
the matrix and of the beam materials plays a crucial role:

� Without matrix, the beams clamped at their extremities are
governed by bending.
� If (m,p) materials are identical, one has a homogeneous medium

governed by shear.

3.1. Contrast of beam-matrix stiffness

Section 2.3 suggests that, at the leading order of the upscaled
description, the bending will survive when the contact forces



Fig. 2. Studied fiber reinforced material. (a) Periodic lattice of parallel identical homogeneous straight beams embedded in a matrix. (b) Period dimensions.
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exerted by the matrix on the beam are of the order f1 ¼ e2f 2
1 or

smaller, and conversely, that the action of the matrix on the beam
only remains when contact forces are O(e2) or larger. Hence, denot-
ing the variables in the matrix and in the beams by ante-exponent
m, p, respectively, a description including both effects may be ob-
tained when:

f1 ¼ prt � n ¼ �ðmr � nÞ � a1 ¼ e2f 2
1 on C

Thus, under transverse motions the shear stress in the matrix
ðmr � nÞ � a1 ¼ Oðlm

mua;x1 Þ is smaller by two order than the zero or-
der reference stress on the beam Oðlp

pua;x1 Þ. The motion continuity
on C, imposes mua = O(pua), and the estimate lm

mua;x1 ¼
e2Oðlp

pua;x1 Þ imply:

lm ¼ lpOðe2Þ; and additionally km ¼ kpOðe2Þ

The stiffness contrast has to be integrated in the asymptotic pro-
cess. In this aim, we rescale the elastic coefficients of the matrix,
taking those of the beam as reference:

lm ¼ lpOðe2Þ ¼ l0me2; km ¼ kpOðe2Þ ¼ k0me2 so that

l0m ¼ OðlpÞ; k0m ¼ OðkpÞ

and the stresses in both materials are written in the form below:

pr ¼ kptrðpeÞI þ 2lp
pe; mr ¼ e2½k0mtrðmeÞI þ 2l0m

me�

The general constitutive law under general motions will be de-
rived in Section 4. To focus on the key point, this section deals with
dominating transverse macroscopic motions varying macroscopi-
cally according to the axial direction only. Because of the plane
geometry of the period, the quantities only depend locally on the
variables ya (Fig. 3). The motions of both constituents are rescaled
in the form:
Fig. 3. Fiber reinforced material section. Notations.
quðx1; yaÞ ¼ eðqu1Þa1 þ quaaa; q ¼ m; p ð11Þ

This enables to extend to the matrix the formulation developed for
the beam and to express the balance equations and the perfect con-
tact conditions at the beam/matrix interface as :
a1 direction:

qrn;x1 þ e�1divyðqrtÞ ¼ 0 in Sq q ¼ m;p ð12Þ

mrt � n ¼ prt � n on C ð13Þ

mu1 ¼ pu1 ð14Þ

ða2; a3Þ directions:

qrt;x1 þ e�1divyðqrsÞ ¼ 0 in Sq q ¼ m;p ð15Þ

mrs � n ¼ prs � n on C ð16Þ

muaaa ¼ puaaa ð17Þ
3.2. Homogenized transverse behaviour

The motions are sought in the form of S-periodic expansions in
power of e. According to the scaling (11) the terms of the balance
equation and the boundary condition in axial and in-plane directions
jump from a factor e2, and as the contrast of elastic properties is also
e2, it is sufficient to expand qua and qu1 in the even powers of e, i.e.:

qu ¼
X
i¼0

e2i qu2i
a aa þ eðqu2iþ1

1 a1Þ
� �

q ¼ m; p; muiðx1; yaÞ S-periodic in ya ð18Þ

The expansions of the stresses are:

prij ¼ kpekkdijþ 2lpeij ¼ e�1ðpr�1
ij Þ þ pr0

ij þ eðpr1
ijÞ þ e2ðpr2

ijÞ þ � � �

mrij ¼ e2ðk0mekkdijþ 2l0meijÞ ¼ eðmr1
ijÞ þ e2ðmr2

ijÞ þ � � �
3.2.1. Local problems in the beam and matrix
The analysis here below shows that because of the contrast of

stiffness, the problems in the beam and those in the matrix are
of different nature. As a matter of fact, the stiff beam imposes its
motion to the soft matrix (then governed by problems of Dirichlet
type) and in turn, the matrix imposes its stresses onto the beam
(then governed by problems of Neumann type).

Since mr is at the most of order e, the presence of the soft matrix
leaves unchanged the resolution of the first and second problems
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(Appendix A.2) within the beam. Thus, disregarding the torsion at
this order (which is consistent with a macro-rotation of the same
order than the macro-distorsion) and the mean vertical motion
U1

1ðx1Þ (because the compression kinematics is independent of
the purely transverse kinematics on which we focus here):
pu0 ¼ U0 ¼ U0

aðx1Þaa;
pu1 ¼ �y � U0

;x1
a1; and

pe�1 ¼ pe0 ¼ 0; pr�1 ¼ pr0 ¼ 0

In the matrix, the leading order problem ((15)-e0; (17)-e0) reads:

divyðmr1
s Þ ¼ 0 in Sm with mr1

s ¼ l0meyðmu0Þ þ k0mdivyðmu0ÞIs

mu0 ¼ U0 on C
mu0 y-periodic on @S

8><>:
of which the solution mu0 = U0(x1) means that the matrix follows the
uniform translation of the beam section. It follows that mr1

s ¼ 0
then mr1 = 0. Thus, the resolution of the third problem in the beam
(Appendix A.2) is unchanged giving the usual bending kinematic
and stress state:
pu2¼ mU0

a;x1x1
naþ pU2ðx1ÞþX1ðx1Þa1�y

pe1¼�½a1�a1�mIs�ðy �U0
;x1x1
Þ; pr1¼ pr1

na1�a1; pr1
n¼�Epy �U0

;x1x1

At the next order, since mr1
n ¼ 0, the problem in the matrix is

((12)-e; (14)-e):

divyðmr2
t Þ ¼ 0 in Sm with mr2

t ¼ l0m½mu1
1;ya
þ U0

a;x1
�aa

mu1
1 ¼ pu1

1 ¼ �y � U0
;x1

on C
mu1

1 y-periodic on @S

8>><>>:
From linearity the solution of this problem, where the forcing term
results from the beam motion on C, is (wa are the particular solu-
tions for U0

a;x1
¼ 1):

mu1 ¼ mu1
1a1; mu1

1 ¼ ð1=2ÞwaðyÞU0
a;x1

mr2
t ¼ l0m½aa þ ð1=2ÞgradyðwaÞ�U

0
a;x1

; mr2
n ¼ 0; mr2

s ¼ 0
3.2.2. Global beam-matrix balance
The global balance equation along a1 is derived by integrating

((12)-e) over both Sp and Sm and summing. Using the divergence
theorem one obtains (remind that mr1

n ¼ 0):Z
Sp

pr1
n;x1

dsþ
Z

C

pr2
t � ndcþ

Z
C

mr2
t � ð�nÞdcþ

Z
@S

mr2
t � ndc ¼ 0

With the stress continuity ((13)-e1) and the periodicity, the inte-
grals on C and @S vanish. Introducing the expression of pr1

n, consis-
tently with the fact that the mean axial motion U0

1 is taken to be
null, we are left with the trivial equation:

0 ¼
Z

Sp

pr1
n;x1

ds ¼ �EpU0
;x1x1
�
Z

Sp

yds ¼ 0

Now, multiplying ((12)-e) by ya, integrating over Sp and Sm, and
using the stress continuity ((13)-e1) give the momentum balance
equations according to in-plane directions aa:Z

Sp

yaðpr1
nÞds

" #
;x1

�
Z

Sp

pr2
t � aads�

Z
Sm

mr2
t � aads

þ
Z
@S

yaðmr2
t � nÞdc ¼ 0 ð19Þ

Then, introducing the previous expressions of pr1
n and mr2

t , dividing
by S0 one obtains:

r2
t � aa

� 	
¼ l0mc�1b

1a U0
b;x1
�

EpI0pa
S0

U0
a;x1x1x1

where, here and in the sequel, the mean value is denoted by h�i, for
instance:
hr2
t i ¼

1
jS0j

Z
Sp

pr2
t dsþ

Z
Sm

mr2
t ds

 !
;

hrki ¼ 1
jS0j

Z
Sp

prkdsþ
Z

Sm

mrkds

 !

and:

c�1b
1a ¼ dab þ

1
2

1
S0

Z
@S

yagradyðwbÞ � ndc
� �

Finally, the global equilibrium in directions aa is established by
integrating ((15)-e2) over both Sp and Sm, using the divergence the-
orem, the stress continuity ((16)-e2) and the periodicity:

hr2
t i;x1

¼ 0

Recall that the physically observable stresses are ~r2
t ¼ e2r2

t and not
r2

t . Coming back to the unscaled physical variables and parameters
expressed in the system xi(xa = eya) since e2l0m ¼ lm and
e2I0pa=S0 ¼ Ipa=S one obtains:

h~r2
t i ¼ C1b

1a
1
2

U0
b;x1
� EpIpa

S
U0

a;x1x1x1


 �
aa; C1b

1a ¼ 2lmc�1b
1a ð20Þ

h~r2
t i;x1

¼ 0 ð21Þ
3.3. Discussion and physical interpretation

Eqs. (20) and (21) define the macroscopic behaviour of the rein-
forced material under macroscopic transverse motions U0

aðx1Þaa.
The balance equations (without body forces) includes:

� A classical shear contribution related to the distorsion U0
a;x1

. The
elastic coefficients only depend on the local geometry and on
the elastic parameters of the matrix. It is shown in Section 4.2.1
that they coincide with those given by the usual homogeniza-
tion approach in the case of infinitely rigid reinforcements
(Léné, 1978).
� A non-classical bending contribution related to the derivative of

the curvature U0
a;x1x1x1

. The bending inertia parameter is exactly
that of the beam (divided by the section). Conversely to usual
composites, where higher gradient terms appear as correctors
(Boutin, 1996), here the bending effect arises at the leading
order.

3.3.1. Generalized inner bending continua
The macroscopic behaviour differs from the description of com-

posites usually derived by homogenization (e.g. Léné, 1978; San-
chez-Palencia, 1980; Postel, 1985). Here we obtain a generalized
medium where the macroscopic variable is the translation U0,
and the mean stress tensor h~r2i ¼ h~r2

t i � a1 þ a1 � h~r2
t i combines

at the same order local and non-local terms related respectively
to the strain tensor ex(U0) and its second gradient. The behaviour
can be seen either as the one of the reinforced matrix loaded by
the body transverse forces induced by the bended beam (namely
the gradient of the momentum, T ¼ M;x1 ), i.e., with simplified obvi-
ous notations:

½CU;x1 �;x1
¼ 1

S
½M;x1 �;x1

; M ¼ EIU;x1x1

or also as the one of the beam loaded by shear force induced by the
reinforced matrix:

½T�;x1
¼ S½CU;x1 �;x1

; T �M;x1 ¼ 0; M ¼ EIU;x1x1

The reinforced media differs essentially from Cosserat media since
no out of plane rotation appears in the macro kinematic of the cell.
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Note that, as the rigid beam ‘‘imposes’’ its motion to the soft matrix,
the stiffnesses of the beam in bending and of the matrix in shear are
combined ‘‘in parallel’’. Thus, the internal mechanism drastically
differs from that of Timoshenko beams, where the bending and
shear stiffnesses are somehow combined ‘‘in series’’.

Description (20) and (21) is similar to results derived by the
phenomenological approach (Sudret and De Buhan, 1999), to the
mathematical analysis of energy (Bellieud and Bouchitté, 2002)
and to the behaviour of reticulated media made of beams regularly
interconnected by tiny beams (Hans and Boutin, 2008). It provides
a generalization of the work of (Pideri and Seppecher, 1997), which
consider infinitesimal concentration of cylindrical fibers with ex-
tremely high modulus. Those latter assumptions lead to bending
effects but neglect the stiffenning due to fibers in the effective
shear behaviour of the reinforced matrix. Further, the extremely ri-
gid fibers avoid any kinematics involving non-uniform vertical mo-
tion. Such a restriction to in plane motions is overcomed in the
present approach, as presented in Section 4.

3.3.2. Macroscopic stress tensor and mean surface forces
By construction h~r2i is the mean of the symmetric stresses, and

thus is a symmetric tensor. In the case of uniform strain, it reduces
to the Cauchy stress classically obtained for composites. Con-
versely, for inhomogeneous strain, the macroscopic stress does
not match the usual concept of Cauchy stress tensor in the sense
that, on a surface oriented by p (different of the cell surface i.e.,
p – a1), the average eT ðpÞ ¼ e2TðpÞ of the stresses acting on this sur-
face differs from h~r2i � p ¼ e2hr2i � p as proven here below. By def-
inition of hr2

t i as the mean value of r2
t on S we have:

hr2i � a1 ¼ hr2
t i ¼ Tða1Þ

However, for in plane orientation p, expression (19) provides:

hr2i � aa ¼ fhr2
t i � aaga1

¼
Z

Sp

yaðpr1
nÞds

" #
;x1

þ
Z
@S

yaðmr2
t � nÞdc

8<:
9=;a1

Considering rectangular basic cell S = jl2a2 � l3a3j the last integral
can be transformed into (taking for instance aa = a2):

1
S

Z
@S
ðmr2

t � nÞy2dc ¼ 1
l2 � l3

(Z l2=2

�l2=2

mr2
t ðy2; l3=2Þ

�
�mr2

t ðy2;�l3=2
�
� a3y2dy2 þ

Z l3=2

�l3=2
ðl2=2Þmr2

t ðl2=2; y3Þ
�

�ð�l2=2Þmr2
t ð�l2=2; y3Þ

�
� a2dy3

)

The first RHS integral vanishes because of the stress y3-periodicity.
The second integral simplifies to give the average of the stresses
acting on the a2-oriented boundary of the cell:

1
S

Z
@S
ðmr2

t � nÞy2dc ¼ 1
l3

Z l3=2

�l3=2

mr2
t ðl2=2; y3Þ � a2dy3 ¼ Tða2Þ � a1

Consequently:

hr2i � aa ¼ TðaaÞ þ
Z

Sp

yaðpr1
nÞds

" #
;x1

– TðaaÞ

To sum up, the macroscopic balance equations apply to the sym-
metric stress tensor averaged on the cell section. However, the
non-zero divergence of the stress in the cell makes that the classical
Cauchy interpretation does not apply to this tensor.

3.3.3. Energy and boundary conditions
The higher order of differentiation in the equilibrium equations

modifies the nature of the boundary conditions. These latter can be
identified through the energy at the macroscale. Consider an infi-
nite layer of reinforced material of height H along a1, take the sca-
lar product of (21) by a field test U0 and integrate over the height.
One obtains, after two integrations by part:

0 ¼
Z H

0
h~r2

t i;x1
� U0dx1

¼ �
Z H

0

1
2

C1b
1aU0

b;x1
U0

a;x1
� EpIpa

S
U0

a;x1x1x1
U0

a

� �
dx1 þ h~r2

t i � U0� �H

0

andZ H

0

1
2

C1b
1aU0

b;x1
U0

a;x1
þ EpIpa

S
U0

a;x1x1
U0

a;x1x1

� �
dx1

¼ h~r2
t i � U

0 þ EpIpa

S
U0

a;x1x1
U0

a;x1

� �H

0
ð22Þ

The elastic energy (LHS of (22)) accounts for both shear and bending
deformations and balances the work (RHS of (22)) produced at the
boundaries (normal ±a1) by the mean surface stress
hr2i � a1 ¼ hr2

t i ¼ Tða1Þ submitted to the motion U0 and by the beam
momenta EpIpa

S U0
a;x1x submitted to the beam section rotations U0

a;x1
.

Hence, accordingly with the fourth degree differential equation,
two boundary conditions must be specified at each extremities, in
terms of displacement or stress as in usual media but also in rota-
tion or momentum as for beams. By construction of the macro-
scopic modelling, the interpretation of these latter conditions is
directly linked to the actual conditions imposed on the fibers. An
illustration of the influence of the type of boundary conditions is gi-
ven in Section 6.4.
4. Homogenized constitutive law of periodic parallel beams in a
soft matrix

The study is here extended to macro kinematic U = Ui(x1,xa)ai.
Since U1 and Ua may be of the same order, the reduced strain ten-
sors no more respect the orders given by (2). Hence the axial and
in-plane problems differ at each order and it is necessary to con-
sider full expansions:

u ¼
X
i¼0

eiui ¼
X
i¼0

eiui
jaj i:e:; u1 ¼

X
i¼0

eiui
1; ua ¼

X
i¼0

eiui
a ð23Þ

Therefore, the set of balance equations becomes: a1 direction:

qrn;x1 þ divxðqrtÞ þ e�1divyðqrtÞ ¼ 0 in Sq; q ¼ m;p ð24Þ

ða2; a3Þ directions:

qrt;x1 þ divxðqrsÞ þ e�1divyðqrsÞ ¼ 0 in Sq; q ¼ m;p ð25Þ
4.1. Leading order of motions

4.1.1. In the beam
Two independent problems govern respectively prs

�1; pu0
aaa

and pr�1
t ; pu0

1. They are given by (25–16) and (24–13) both at order
(e�2 � e�1):

divyðpr�1
s Þ ¼ 0 in Sp

pr�1
s ¼ 2lpesyðpu0Þ þ kpdivyðpu0ÞIs

pr�1
s � n ¼ 0 on C

8>>><>>>:
divyðpr�1

t Þ ¼ 0 in Sp with pr�1
t ¼ lpðpu0

1;ya
Þaa

pr�1
t � n ¼ 0 on C

8<:
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The solution is a rigid in-plane motion of the section and an out of
plane translation:

pu0
a ¼ U0

aðxÞ þ N�1ðxÞ½a1 � y�a; pu0
1 ¼ U0

1ðxÞ and

pe�1 ¼ 0; pr�1 ¼ 0

We again assume that the macro-rotation is of the same order than
the macro-distorsion and therefore we disregard the torsion at this
order by taking N�1 = 0.

4.1.2. In the matrix
Similarly, two independent problems govern respectively

mrs
1; mu0

aaa and mr1
t ;

mu0
1. They are given by (25–17) and (24–

14) both at orders (e0 � e0):

divyðmr1
s Þ ¼ 0 in Sm

mr1
s ¼ 2l0mesyðmu0Þ þ k0mdivyðmu0ÞIs

mu0
a ¼ U0

a on C

mu0
a y-periodic on @S

8>>>>>>><>>>>>>>:
divyðmr1

t Þ ¼ 0 in Sm with mr1
t ¼ l0mðmu0

1;ya
Þaa

mu0
1 ¼ U0

1 on C

mu0
1 y-periodic on @S

8>>><>>>:
It is obvious that the matrix motion is homogeneous and identical
to that of the beam:

mu0 ¼ pu0 ¼ U0ðxÞ and me�1 ¼ 0; mr1 ¼ 0
4.2. Leading order of the beam and matrix stresses

4.2.1. In the axial direction
The governing problem in the beam is defined by (24–13) at or-

ders (e�1 � e0), i.e., using the results of the previous order:

divyðpr0
t Þ ¼ 0 in Sp with pr0

t ¼ lp
pu1

1;ya
þ U0

1;xa
þ U0

a;x1

h i� �
aa

pr0
t � n ¼ 0 on C

8<:
and in the matrix by (24–14) at orders (e1 � e1), giving with the pre-
vious results

divyðmr2
t Þ ¼ 0 in Sp with mr2

t ¼ l0m mu1
1;ya
þ U0

1;xa
þ U0

a;x1

h i� �
aa

mu1
1 ¼ pu1

1 on C

mu1
1 y-periodic on @S

8>>>><>>>>:
This is the sequence of problems already solved in Section 3.2.1 ex-
cept that now the forcing term etxðU0Þ ¼ ð1=2Þ½U0

1;xa
þ U0

a;x1
�aa in-

cludes U0
1;xa

. Consequently:

pu1
1¼�2y �etxðU0ÞþU1

1ðxÞ; pe0
t ¼0; pr0

t ¼0

mu1
1¼waðyÞetxaðU0ÞþU1

1ðxÞ; mr2
t ¼2l0m½aaþð1=2ÞgradyðwaÞ�etxaðU0Þ

By construction, wa only depends on the geometry of the period.
Further, since the imposed displacements on C correspond to a zero
inner deformation of the beam (pe0

t ¼ 0), wa are the solutions that
would be obtained by usual homogenization of composites – with
this geometry and under out of plane distorsion – in the case of
an infinitely rigid body occupying Sp (Léné, 1978). For a bi-symmet-
ric cell, the solutions wa respect the following properties:

waðya; ybÞ ¼ �wað�ya; ybÞ; waðya; ybÞ ¼ waðya;�ybÞ ð26Þ
4.2.2. In-plane directions
The in-plane governing problem in the beam is defined by

(25)–(16) at orders (e�1 � e0), i.e., using the previous results:

divyðpr0
s Þ ¼ 0 in Sp

pr0
s ¼ 2lp esyðpu1Þ þ esxðU0Þ

h i
þ kp divyðpu1Þ þ divxðU0Þ

� �
Is

pr0
s � n ¼ 0 on C

8>><>>:
The solution is derived by building an in-plane motion pv1 where
the local plane stress is identical to the plane stress induced by
the 3-D motion U0, i.e.:

2lpesxðU0Þ þ kpdivxðU0ÞIs ¼ 2lpesyðpv1Þ þ kpdivyðpv1ÞIs

Observing that:

esyðesxðU0Þ � yÞ ¼ esxðU0Þ and divyðesxðU0Þ � yÞ ¼ U0
a;xa

we must have:

kpU0
1;x1

Is ¼ 2lpesyðpv1 � esxðU0Þ � yÞ þ kpdivyðpv1 � esxðU0Þ � yÞIs

The left hand side isotropic term due to the axial gradient of the ver-
tical component can be written as mpU0

1;x1
½2lpesyðyÞ þ kpdivyðyÞIs�

and finally:

pv1 ¼ esxðU0Þ � yþ mpU0
1;x1

y

From the same reasoning than in Appendix A.2 (third problem), it
follows that:

esyðpu1
aaa þ pv1Þ ¼ 0 and pr0

s ¼ 0

Consequently, pu1
aaa þ pv1 is a rigid in-plane motion of the section,

and:

esyðpu1Þ ¼ �esyðpv1Þ ¼ �esxðU0Þ � mpU0
1;x1

Is ð27Þ

The in-plane strain field in the beam is:

pe0
s ¼ esyðpu1Þ þ esxðU0Þ ¼ �esyðpv1Þ þ esxðU0Þ ¼ �esyðmpyU0

1;x1
Þ

¼ �mpU0
1;x1

Is

and the isotropic elasticity relations (4) lead to the normal stress
and strain:

pe0
n ¼ U0

1;x1
; pr0

n ¼ EpU0
1;x1
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4.2.3. In the whole section
Accounting for the above results, (25–14) at orders (e1 � e1) and

the constraint (27), give:

divyðmr2
s Þ ¼ 0 in Sm

mr2
s ¼ 2l0m esyðmu1Þ þ esxðU0Þ

h i
þ k0m½divyðmu1Þ þ divxðU0Þ�Is

esyðpu1Þ ¼ �esxðU0Þ � mpU0
1;x1

Is in Sp

mu1
a ¼ pu1

a on C
mu1

a y-periodic on @S

8>>>>>>>><>>>>>>>>:
This is a 2D elastic problem in which the forcing terms are esx(U0)
and U0

1;x1
. The existence and uniqueness of a zero mean value solu-

tion is established from Stampaccia theorem in a similar way as
Levy and Sanchez-Palencia (1983). Consider the convex K of the
in-plane motions u = uaaa within S(mu in Sm, pu in Sp) such that:

K ¼ u;C1; S-periodic; esyðuÞ ¼ �esxðU0Þ � mpU0
1;x1

Is in Sp;

Z
S

uds ¼ 0
� 


Noticing that the balance of mr2
s simplifies into:

divyðmr02s Þ ¼ 0 in Sm; mr02s ¼ 2l0mesyðmu1Þ þ k0mdivyðmu1ÞIs
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we have for any field v of K:

0 ¼
Z

Sm

divyðmr02s Þ � ðv� mu1Þds

¼ �
Z

Sm

mr02s � eyðv� mu1Þds�
Z

C
ðmr02s � nÞ � ðv� pu1Þdc

By construction esy(v � pu1) = 0 in Sp (including C = @Sp), so that
v � pu1 is an in-plane rigid body motion of the form A + Ba1 � y.
Thus, the last integral representing the virtual energy Ep in the sec-
tion Sp becomes:

A �
Z

C

mr02s � ndc� Ba1 �
Z

C
ðmr02s � nÞ � ydc ¼ Ep

By considering the limit case of a composite where the inclusion
(index i) becomes infinitely rigid compared to the matrix (Léné,
1978) has shown that:

Ep ¼ 0

The physical reason lies in the fact that, as the stresses in both
materials are of the same order (r = O(lm

mu/l) = O(li
iu/l)), the elas-

tic energy in the inclusion, E i ¼ Oðliðiu=lÞ2Þ, becomes negligible
compared to the energy of the matrix, Em ¼ Oðlmðmu=lÞ2Þ, when
the inclusion tends to be rigid: E i=Em ¼ Oðlm=liÞ ! 0. Besides, the
divergence theorem applied to divyðmr02s Þ (with the periodicity)
and to divyðmr02s Þ � y provide (see Section 2.2.3):Z

Sm

divyðmr02s Þds ¼
Z

C

mr02s � ndc ¼ 0;Z
Sm

divyðmr02s Þ � yds ¼
Z

C[@S
ðmr02s � nÞ � ydc ¼ 0

so that the vanishing of Ep implies:Z
@S
ðmr02s � nÞ � ydc ¼ 0 ð28Þ

Finally, we are left with the problem:

8v 2 K Aðmu1; v� mu1Þ ¼ 0;

Aðu; vÞ ¼
Z

Sm

2l0mesyðuÞ : esyðvÞ þ k0mdivyðuÞdivyðvÞ
h i

ds

where the solution u1 in S is unique since A is a bilinear symmetric
coercive form. By linearity, the solution (of non zero mean value)
reads:

u1
d ad ¼ UabðyÞexabðU0Þ þ mp� ðyÞU0

1;x1
þ U1

d ad

where the 2D in-plane fields Uab and � = Uaa = U22 + U33, are
respectively the particular zero mean value solutions for esx(U0) =
(aa � ab + ab � aa)/2 and U0

1;x1
¼ 1. By construction, Uab depends

on the period’s geometry of and on mm. As the imposed displace-
ments on C correspond to a zero inner deformation of the beam
section ðpe0

s ¼ 0 when U0
1;x1
¼ 0Þ, Uab are the same solutions that

would be obtained by standart homogenization of composites –
with this geometry and under esx(U0) – in the case of an infinitely
rigid body occupying Sp (Léné, 1978). In accordance with the con-
straint (27), Uab consist, within Sp, into a rigid body motion (of
translation /ab and rotation hab) and the deformation field associ-
ated to the imposed unit strains, i.e.:

Uab ¼ /ab þ haba1 � y� ðyaab þ ybaaÞ=2 in Sp

In the case of bi-symmetric cells, the solutionsUab respect the follow-
ing properties of symmetry (no summations on repeated indices and
a – b):

U23
a ðya; ybÞ ¼ U23

a ð�ya; ybÞ; U23
a ðya; ybÞ ¼ �U23

a ðya;�ybÞ
Uaa

a ðya; ybÞ ¼ �Uaa
a ð�ya; ybÞ; Uaa

a ðya; ybÞ ¼ Uaa
a ðya;�ybÞ

Uaa
b ðya; ybÞ ¼ Uaa

b ð�ya; ybÞ; Uaa
b ðya; ybÞ ¼ �Uaa

b ðya;�ybÞ ð29Þ
and consequently haa = 0, and /ab = /aa = 0.
The in-plane stress state in the matrix is given by:

mr2
sab ¼ ½2l0mðeabðUfgÞ þ dafdbgÞ þ k0mðdivyðUfgÞ þ dfgÞdab�exfgðU0Þ

þ ½2l0mmpeabðUggÞ þ k0mðmpdivyðUggÞ þ 1Þdab�U0
1;x1

ð30Þ

Finally, the normal stress is:

mr2
n ¼ 2l0mU0

1;x1
þ k0m½divyðmu1Þ þ divxðU0Þ�

¼ ½2l0mU0
1;x1
þ k0mdivxðU0Þ� þ k0m½mpdivyðUggÞU0

1;x1

þ divyðUabÞexabðU0Þ�

To sum up, the leading order of the stress in the matrix reads:

mr2 ¼ c0ðyÞ : exðU0Þ

and can be formulated with the usual 6 � 6 matricial notation:

mr2
11

mr2
22

mr2
33

mr2
23

mr2
13

mr2
12

0BBBBBBBBB@

1CCCCCCCCCA
¼

c011
11 c022

11 c033
11 c023

11 0 0
c011

22 c022
22 c033

22 c023
22 0 0

c011
33 c022

33 c033
33 c023

33 0 0
c011

23 c022
23 c033

23 c023
23 0 0

0 0 0 0 c013
13 c012

13

0 0 0 0 c013
12 c012

12

0BBBBBBBBB@

1CCCCCCCCCA

ex11ðU0Þ
ex22ðU0Þ
ex33ðU0Þ
ex23ðU0Þ
ex13ðU0Þ
ex12ðU0Þ

0BBBBBBBBB@

1CCCCCCCCCA
where, without summation on repeated indices:

c011
11 ¼ k0m½1þ mpdivyð� Þ� þ 2l0m; c0aa

11 ¼ k0m½1þ divyðUaaÞ�
c0bb
aa ¼ k0m½1þ divyðUbbÞ� þ 2l0m½dab þ eaaðUbbÞ�;

c011
aa ¼ k0m½1þ mpdivyð� Þ� þ 2l0mmpeaað� Þ

c023
23 ¼ 2l0m½1þ 2e23ðU23Þ�; c01a

1a ¼ 2l0m½1þ ð1=2Þwa;ya
�

c023
11 ¼ 2k0mdivyðU23Þ; c011

23 ¼ 2l0mmpe23ð� Þ
c023
aa ¼ 2½k0mdivyðU23Þ þ 2l0meaaðU23Þ�; c0aa

23 ¼ 2l0me23ðUaaÞ
c012

13 ¼ l0mw2;y3
; c013

12 ¼ l0mw3;y2

ð31Þ

This ends the resolution within the matrix. In the beam, the
leading stress and the first order displacement are given here be-
low. Conveniently, in-plane rotation of the section is decomposed
into the in-plane rotation W0 inherent to U0 and the additional
torsion term pX0(x):

pr0 ¼ EpU0
1;x1

a1 � a1

pu1 ¼ U1ðxÞ � 2y � etxðU0Þa1 � y � esxðU0Þ � mpyU0
1;x1

þ pU1
s ðxÞ þ ½W

0ðxÞ þ pX0ðxÞ�a1 � y
pU1

s ðxÞ ¼ /abexabðU0Þ þ mp/
aaU0

1;x1

W0ðxÞ ¼ �ð1=2ÞcurlxðU0Þ � a1 ¼ ðU0
2;x3
� U0

3;x2
Þ=2

pX0ðxÞ ¼ habexabðU0Þ þ mph
aaU0

1;x1
� ðU0

2;x3
� U0

3;x2
Þ=2
4.3. Global axial balance at the leading order – First order of the beam
stresses

4.3.1. In the axial direction
The next order field in the beam is governed by (24)–(13) at or-

ders (e0 � e1). As pr0
t ¼ 0 and mr1

t ¼ 0, one obtains :

ðpr0
nÞ;x1
þ divyðpr1

t Þ ¼ 0 in Sp

pr1
t ¼ lpðpu2

1;ya
þ ½pu1

1;xa
þ pu1

a;x1
�Þaa

pr1
t � n ¼ 0 on C

8><>:
Here ðpr0

nÞ;x1
acts as a source term and ½pu1

1;xa
þ pu1

a;x1
� as forcing

term. The condition of compatibility of the source is established
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by integrating the balance equation on Sp. This provides the axial
balance equation at the leading order:Z

Sp

pr0
nds

" #
;x1

¼ jS0pjðpr0
nÞ;x1

¼ 0 i:e: : ½EpU0
1;x1
�;x1
¼ 0 ð32Þ

Thus, the source term vanishes. Now, the determination of pu2
1 is

performed in two steps.
First, the forcing term related to pu1 � pX0(x)a1 � y can be di-

rectly integrated and provides a first contribution pv2
1 (disregarding

the integration constant) to pu2
1:

pv2
1 ¼ �2y � etxðU1 þ pU1

s Þ

þ 2y � gradx½etxðU0Þ � y� þ y � ½esxðU0Þ�;x1
� yþ mpjyj2U0

1;x1x1

n o.
2

Consequently pu1 � pX0(x)a1 � y does not create any out of plane
stress in the section.

Second, the problem related to pX0(x)a1 � y is identical to the
wrapping problem in the beam, see Appendix A.3. It results that
the second contribution to pu2

1 reads wðyÞpX0
;x1

. Finally, summing
both contributions and including the integration constant, give:

pu2
1 ¼ pU2

1ðxÞ þ pv2
1 þwðyÞpX0

;x1
ð33Þ

and the stress pr1
t is exclusively due to the vertical gradient of tor-

sion pX0
;x1

:

pe1
t ¼ ð1=2Þ½gradyðwÞ þ a1 � y�pX0

;x1
; pr1

t ¼ 2lp
pe1

t ð34Þ

The properties (61) (Appendix A.3) of the wrapping stresses vector
f = l(grady(w) + a1 � y) yield to the vanishing of the mean value of
pr1

t and the skew symmetry of
R

Sp
y� pr1

t ds:Z
Sp

pr1
t ds ¼ 0;Z

Sp

½y� pr1
t þ pr1

t � y�ds ¼ 0 hence
Z

Sp

y � pr1
t ds ¼ 0

Denoting by J 0p the ‘‘wrapping inertia’’ J 0p (¼ I0p for circular beam
section, cf. Section A.3):

J 0p ¼
Z

Sp

y2ðw;y3
þ y2Þds ¼

Z
Sp

y3ð�w;y2
þ y3Þds

one has:Z
Sp

y� pr1
t ds ¼ lpJ

0
p

pX0
;x1
½a2 � a3 � a3 � a2� ð36Þ
4.3.2. In-plane directions
The problem in the beam defined by (25)–(16) at orders

(e0 � e1), simplified by the results pr0
t ¼ 0; pr0

s ¼ 0 and mr1 = 0,
takes the form:

divyðpr1
s Þ ¼ 0 in Sp

pr1
s ¼ 2lp½esyðpu2Þ þ esxðpu1Þ� þ kp½divyðpu2Þ þ divxðpu1Þ�Is

pr1
s � n ¼ 0 on C

8><>:
The resolution is close to the one developed for pr0

s . Recalling that
esy(na) = yaIs and noticing that the in-plane field gradsx(y � esx(U0).
y) has the following plane strain:

esyðgradsxðy � esxðU0Þ � yÞÞ ¼ 2esxðesxðU0Þ � yÞ

the plane stress induced by pu1 is re-expressed as the plane stress of
the in-plane motion pv2

s , i.e.:
2lpesxðpu1Þ þ kpdivxðpu1Þ�Is ¼ 2lpesyðpv2
s Þ þ kpdivyðpv2

s ÞIs

pv2
s ¼ esxðU1Þ � yþ mpU1

1;x1
y� 2mp½etxaðU0Þ�;x1

na

� ð1=2Þ½gradsxðy � esxðU0Þ � yÞ þ mpjyj2gradsxðU0
1;x1
Þ�

It follows that:

esyðpu2
aaa þ pv2

s Þ ¼ 0 and pr1
s ¼ 0

Then pu2
aaa þ pv2

s is a rigid in-plane motion of the section, and:

pu2
aaa ¼ �pv2

s þ U2
aðxÞaa þX1ðxÞa1 � y ð37Þ

The in-plane strain field in the beam is:

pe1
s ¼ esyðpu2Þ þ esxðu1Þ ¼ �esyðpv2

s Þ þ esxðu1Þ

¼ �esyðmpyU1
1;x1
� 2mpn

a½etxaðU0Þ�;x1
Þ

¼ �mpðU1
1;x1
� 2ya½etxaðU0Þ�;x1

ÞIs ¼ �mp
pu1

1;x1
Is

The isotropic elasticity leads to the normal component that ends the
determination of both stress and strain states (pe1

t and pr1 are given
by (34)):

pe1
n ¼ pu1

1;x1
; pe1 ¼ ½a1 � a1 � mpIs�pu1

1;x1
þ pe1

t � a1 þ a1 � pe1
t

pr1
n ¼ Ep

pu1
1;x1

; pr1 ¼ pr1
na1 � a1 þ pr1

t � a1 þ a1 � pr1
t

4.4. Global momentum equilibrium at the leading order

4.4.1. Axial direction
The global balance results from (24–13) at orders (e � e2). As

mr1
t ¼ 0, one obtains:

ðpr1
nÞ;x1
þ divxðpr1

t Þ þ divyðpr2
t Þ ¼ 0 in Sp

divyðmr2
t Þ ¼ 0 in Sm

pr2
t � n ¼ mr2

t � n on C

8><>:
In a similar way than in Section 3.2.2, the normal (scalar) global bal-
ance equation is established:Z

Sp

pr1
nds

" #
;x1

þ divx

Z
Sp

pr1
t ds

" #
¼ 0 i:e:; fromð35-aÞ :

Ep
jS0pj
jS0j

U1
1;x1

" #
;x1

¼ 0 ð38Þ

This equality is identical to the axial balance at the previous order. It
leads to identical result shifted of one order and hence can be dis-
regarded. Following again Section 3.2.2, the momentum (vectorial)
global balance equation reads:Z

Sp

pr1
nyds

" #
;x1

þ divx

Z
Sp

y� pr1
t ds

" #
þ
Z
@S
ðmr2

t � nÞydc

¼ jS0jhr2
t i ð39Þ

hr2
t i ¼

1
jS0j

Z
Sp

pr2
t dsþ

Z
Sm

mr2
t ds

 !
ð40Þ

As mr2
t , pr1

t and pr1
n are already known, the relation (39) provides

the mean stress hr2
t i. Notice that according to expression (36):

divx

Z
Sp

y� pr1
t ds

" #
¼ lpJ

0
pcurlxðpX0

;x1
a1Þ
4.4.2. In-plane directions
The global balance is established from (25–16) at orders (e1 � e2).

Using the results pr1
s ¼ 0 and mr1 = 0, the problem takes the form:
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ðpr1
t Þ;x1
þ divyðpr2

s Þ ¼ 0 in Sp

divyðmr2
s Þ ¼ 0 in Sm

pr2
s � n ¼ mr2

s � n on C

8><>:
Consider first y� divyðqr2

s Þ and integrate on Sq. Making the usual
integral transformations (Section 2.2.3) with the divergence theo-
rem, the stress tensor symmetry and the stress continuity on C,
one obtains with the help of (28):Z

Sp

y� pr1
t ds

" #
;x1

¼ �
Z
@S

y� ðmr2
s � nÞdc ¼ 0

This result associated to the skew symmetry of the tensor y� pr1
t

(35-b) proves that:Z
Sp

y� prtds

" #
;x1

¼ 0 and from ð36Þ pX0
;x1x1
¼ 0 ð41Þ

Considering now y� divyðqr2
s Þ and integrating on Sq leads, with the

divergence theorem and the stress continuity on C, to:Z
Sp

pr2
s dsþ

Z
Sm

mr2
s ds ¼

Z
@S

y� ðmr2
s � nÞdcþ

Z
Sp

y� pr1
t ds

" #
;x1

and, accounting from (41) the tensorial equality that defines the
mean stress hr2

s i reads:

hr2
s i ¼

1
jS0j

Z
@S

y� ðmr2
s � nÞdc ð42Þ
4.4.3. Mean normal stress
The mean normal stress hr2

ni remains to determine. For this, we
have to come back to the linear problem governing pr2

s :

ðpr1
t Þ;x1
þ divyðpr2

s Þ ¼ 0 in Sp;

pr2
s ¼ 2lp½esyðpu3Þ þ esxðpu2Þ� þ kp½divyðpu3Þ þ divxðpu2Þ�Is

pr2
s � n ¼ mr2

s � n on C

8>><>>:
The solution is decomposed in three parts associated to the forcing
terms (i) of ‘‘bending’’ induced by pu2, (ii) related to the confining
exerted by mr2

s , and (iii) of torsion associated to pr1
t .

For the ‘‘bending’’ contribution (denoted with ante index b)
associated to the pu2-forcing terms (taking mr2

s ¼ 0 and
½pr1

t �;x1
¼ 0), we have:Z

Sp

pbr2
s ds ¼

Z
C

y� ðpbr2
s � nÞdc ¼ 0; thus

Z
Sp

trðpbr2
s Þds ¼ 0

With this result, the integration of relation (4) on Sp, provides:Z
Sp

pbr2
nds ¼ Ep

Z
Sp

pbe2
nds

Further pbe2
n ¼ pu2

1;x1
, and according to (33):

pu2
1;x1
¼ pU2

1;x1
� 2y � ½etxðU1 þ pU1

s Þ�;x1
þ f2y � gradxð½etxðU0Þ � y�;x1

Þ

þ y � ½esxðU0Þ�;x1x1
� yþ mpjyj2U0

1;x1x1
g=2þwðyÞpX0

;x1x1

After integration, the pu2-forcing contribution is (recall thatR
Sp

wds ¼ 0, see Appendix A):Z
Sp

pbr2
nds ¼ EpjS0pjpU2

1;x1
þ EpI0pa½U

0
1;x1xaxa

þ 2U0
a;xax1x1

�=2

þ mpEpðI0p2 þ I0p3Þ=2U0
1;x1x1x1

For the ‘‘confining’’ contribution (ante index c), taking ½pr1
t �;x1
¼ 0

and pu2 = 0 (then pce2
n ¼ 0), we have:Z

Sp

pcr2
s ds ¼

Z
C

y� ðmr2
s � nÞdc; and pcr2

n ¼ mptrðpcr2
s Þ
Combining both results with the expression of mr2
s yields (dimen-

sionless moduli D0ij11 are O(1)):Z
Sp

pcr2
nds ¼ mp

Z
C

y � mr2
s � ndc ¼ mpl0m½D

011
11 U0

1;x1
þ D0ab

11 exabðU0Þ�

Finally, for the torsion contribution, (ante index t), taking mr2
s ¼ 0

and pu2 = 0, then pte2
n ¼ 0 and ptr2

n ¼ mptrðptr2
s Þ, we have:Z

Sp

ptr2
s ds ¼

Z
Sp

y� ½pr1
t �;x1

ds

then from ð35-cÞZ
Sp

trðptr2
s Þds ¼

Z
Sp

y � pr1
t ds

" #
;x1

¼ 0

so that the torsion contribution vanishes: 1
jS0 j

R
Sp

ptr2
nds ¼ 0. To sum

up:

1
jS0j

Z
Sp

pr2
nds ¼ Ep

I0pa
2jS0j

ðU0
1;x1xaxa

þ 2U0
a;xax1x1

Þ þ mp
I0p2 þ I0p3

2jS0j
U0

1;x1x1x1

"

þ
jS0pj
jSj U2

1;x1

#
þ D011

11 U0
1;x1
þ D0ab

11 exabðU0Þ
4.5. Global in-plane equilibrium at the leading order

4.5.1. Axial direction
The global balance results from (24)–(13) at orders (e1 � e3):

ðpr2
nÞ;x1
þ divxðpr2

t Þ þ divyðpr3
t Þ ¼ 0 in Sp

ðmr2
nÞ;x1
þ divxðmr2

t Þ þ divyðmr3
t Þ ¼ 0 in Sm

pr3
t � n ¼ mr3

t � n on C

8><>:
The integration and the usual transformations give the normal bal-
ance at the second order:Z

Sp

pr2
ndsþ

Z
Sm

mr2
nds

" #
;x1

þ divx

Z
Sp

pr2
t dsþ

Z
Sm

mr2
t ds

" #
¼ 0

hr2
ni;x1
þ divxðhr2

t iÞ ¼ 0

This equation generally provides a corrector of the leading and first
order Eqs. (32) and (38). Nevertheless, when U1 is independent of x1,
the two previous equations become trivial and the normal balance
is governed by the present equation. Two momentum balance equa-
tions could also be established. However, in any case, they consti-
tute the first corrector of (39) and are not necessary for the
leading order description.

4.5.2. In-plane directions
The global balance is driven by (25)–(16) at orders (e2 � e3) with

mr1 = 0:

pr2
t;x1
þ divxðpr2

s Þ þ divyðpr3
s Þ ¼ 0 in Sp

mr2
t;x1
þ divxðmr2

s Þ þ divyðmr3
s Þ ¼ 0 in Sm

pr3
s � n ¼ mr3

s � n on C

8><>:
The compatibility of the source term gives the leading order of the
in-plane macroscopic balance:Z

Sp

pr2
t dsþ

Z
Sm

mr2
t ds

" #
;x1

þ divx

Z
Sp

pr2
s dsþ

Z
Sm

mr2
s ds

" #
¼ 0

hr2
t i;x1
þ divxðhr2

s iÞ ¼ 0
4.5.3. Equilibrium with body forces
If the medium is submitted to body forces ~b

2
¼ e2b2, the only

modification occurs in the balance equations of r2 that become:
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hr2
ni;x1
þ divxðhr2

t iÞ ¼ hb
2
1i

hr2
t i;x1
þ divxðhr2

s iÞ ¼ hb
2
aiaa

That is, in the usual compact form:

divxðhr2iÞ ¼ hb2i
4.6. Synthesis: macroscopic description

The above results extend the description (20) and (21) limited
to purely transverse kinematic. As the first order axial balance does
not introduce any information compared to the leading order it is
disregarded. After coming back to the physical unscaled quantities
(eQ 2
¼ e2Q 2) and parameters (km,lm, Ipa, jSpj, jSj), the complete

description is summarized as follows:

UðxÞ ¼ U0ðxÞ þ e2U2ðxÞ þ � � � ¼ U0ðxÞ þ eU2
ðxÞ þ � � �

hriðxÞ ¼ hr0iðxÞ þ e2hr2iðxÞ þ � � � ¼ hr0iðxÞ þ h~r2iðxÞ þ � � �

divxðhr0iÞ ¼ 0

hr0i ¼ Ep
jSpj
jSj U0

1;x1
a1 � a1

divxðh~r2iÞ ¼ h~b
2
i

h~r2i ¼ C : exðU0Þ þ Ep
jSpj
jSj
eU2

1;x1
a1 � a1 � S� S0

S¼�Ep
Ipa

2jSj ð½U
0
1;xa
þU0

a;x1
�;x1xa

þ½U0
a;xa
�;x1x1
�Þþmp

Ip2þ Ip3

2jSj ½U
0
1;x1
�;x1x1

� 

a1�a1

þEp
Ipa

jSj ½U
0
1;xa
þU0

a;x1
�;x1x1
ða1�aaþaa�a1Þ

S0 ¼ lpJ p½a1 � curlxðpX0
;x1

a1Þ þ curlxðpX0
;x1

a1Þ � a1�

The non-zero components of the macroscopic elastic tensor
({ij} = {11,22,33,23}) and the wrapping inertia coefficient are given
below where cij

kl have the same expression than c0ijkl except that
k0m; l0m are replaced by km, lm:

Cij
11 ¼

1
jS0j

Z
Sm

cij
11dsþ mp

Z
C

yacij
abnbdc

� �
Cij

ab ¼
1
jS0j

Z
@S

yacij
bdnddc

C1b
1a ¼

1
jS0j

Z
@S

yac1b
1dndds

J p ¼
jS0j
jSj

Z
Sp

y2ðw;y3
� y2Þds ¼ �

Z
Sp

y3ðw;y2
� y3Þds

ð43Þ

The macroscopic behaviour is that of a generalized medium and
comments made in Section 3.3 also apply here. The kinematic var-
iable is the translation U and the mean stress h~r2i combines at the
same order, (i) local terms related to the strain tensor ex(U0) and U1

;x1
,

and (ii) non-local terms related to the second gradient of the strain
tensor. This leads to decompose the mean stress tensor h~r2i into the
‘‘Cauchy’’ tensor related to the reinforced matrix and the ‘‘non-Cau-
chy’’ tensors S and S0 related to the beam. Following the reasoning
of Section 3.3.2 we have: h~r2i � a1 ¼ Tða1Þ while hr2i � aa ¼ TðaaÞ�
ðS � aa þ S0 � aaÞ. Tensor S arises from the bending, the Poisson effect
under inhomogeneous compression, the effect of inhomogeneous
confining, S0 is due to the wrapping under torsion. Note that, be-
cause of (41):
divxðS0Þ ¼ 0

The formulation can be simplified in two ways:

� From the leading order balance equation U0
1;x1x1

¼ 0. Thus, the
second and higher derivatives of U0

1 vanish in hr2i (in presence
of constant body force along x1, the third and higher derivatives
vanish).
� for bi-symmetric cell, the symmetry (26) of wa, (29) of Uab,

implies from the expression of the local stresses (31), that
C23

11 ¼ C23
ii ¼ C13

12 ¼ C12
13 ¼ 0.

Because of the large contrast in stiffness and of the parallel ori-
entation of fibers, either the strain tensor components are all of the
same order and the normal stress is of two orders higher than the
other stress components, or conversely, the stress tensor compo-
nents are all of the same order and the normal strain is of two or-
ders smaller than the other components.

In the first case, the leading order description is:

UðxÞ ¼ U0
i ðxÞai þ � � � ; hriðxÞ ¼ hr0iðxÞ þ h~r2iðxÞ þ � � �

hr0i11

� �
;x1
¼ 0; hr0i11 ¼ Ep

Sp

S
U0

1;x1

h~r2iai þ S
0
ai

� �
;xi
¼ h~b2

ai; h~r2iai þ S
0
ai ¼ Cij

aiexijðU0Þ � di1Ep
Ipa

jSj U
0
a;x1x1x1

The corresponding energy formulation for a infinite layer of rein-
forced material of height H along a1 combines terms of different or-
der of magnitude and reads:Z H

0
Ep

Sp

S
ðU0

1;x1
Þ2 þ 1

2
exðU0Þ : C : exðU0Þ þ EpIpa

S
ðU0

a;x1x1
Þ2

� 

dx1

¼ Ep
Sp

S
ðU0

1;x1
ÞU0

1 þ ððh~r
2i þ S0Þ � a1Þ � U0 þ EpIpa

S
U0

a;x1x1
U0

a;x1

� �H

0

þ
Z H

0
h~b

2
i � U0dx1

ð44Þ

Hence, the boundary conditions are expressed in terms of displace-
ment and stress for the components in the axial direction a1, and,
for the in-plane components, in terms of mean stress and transverse
motion and rotation and momentum (these latter conditions being
related to the actual conditions imposed on the fibers).

In the second case, the leading order description is:

UðxÞ ¼ U0
aðxÞaa þ eU2

1ðxÞa1 þ � � � ; hriðxÞ ¼ h~r2iðxÞ þ � � �

divxðhr2i þ S0Þ ¼ h~b
2
i

hr2i þ S0 ¼ C : exðU0
aaaÞ þ a1 � a1Ep

jSpj
jSj
eU2

1;x1

� Ep
Ipa

jSj U0
a;x1x1x1

ða1 � aa þ aa � a1Þ � U0
a;xax1x1

a1 � a1

n o
The corresponding energy formulation reads:Z H

0
Ep

Sp

S
ðeU2

1;x1
Þ2þ1

2
exðU0Þ : C : exðU0ÞþEpIpa

S
ðU0

a;x1x1
Þ2

�
þEpIpa

S
ðU0

a;xax1
ÞeU2

1;x1x1



dx1¼ Ep

Sp

S
ðeU2

1;x1
ÞeU2

1þððh~r
2iþS0Þ �a1Þ �U0

�
þEpIpa

S
U0

a;x1x1
U0

a;x1
þEpIpa

S
ðU0

a;xax1
ÞeU2

1;x1

�H

0
þ
Z H

0
h~b

2
i � U0dx1

Thus, the boundary conditions for any direction of the components
are expressed in terms of mean stress and transverse motion and
rotation and momentum.
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5. Models for other beam/matrix stiffness contrasts

5.1. Very soft matrix or matrix as stiff as the beam

A change in the order of magnitude of the stiffness of the matrix
is directly reflected in the order of magnitude of the stress in the
matrix.

Consequently, if the contrast is increased to have extremely soft
matrix with lm/lp 6 O(e3), following the arguments of Section 2.3,
the beam at the leading order works as in absence of matrix. The
medium will behaves as an assembly of parallel beams and the
constitutive law will be given by set (43) disregarding the matrix
contribution C : ex(U0).

Conversely, if the contrast is decreased so that lm/lp = O(1) i.e.,
a matrix as stiff as the beam material, the classical homogenization
results apply and the model is a Cauchy elastic media. The elastic
tensor (orthotropic because of the cell geometry) differs from C
since the stresses and strains in the matrix and in the beam are
of the same order. The local deformation in the beam does not re-
spect the usual beam kinematics. The non-local terms are masked
at the leading order and would only appear in the correctors as
studied in Boutin (1996).

It remains to investigate the intermediate contrast lm = lpe.

5.2. e-Soft matrix

A contrast lm = lpO(e) imposes to consider full expansions in
power of e as (23), and the balance equations are (24) and (25)
while the expansion of the stresses in the matrix is now (using
the rescaled coefficients l0m ¼ lm=e; k0m ¼ km=e):

mrij ¼ eðk0mekkdijþ 2l0meijÞ ¼ mr0
ij þ emr1

ij þ e2mr2
ij þ � � �
5.2.1. Leading order of motions and stresses in the beam and the
matrix

The problems driving the leading order of motions are un-
changed (although the stress in the matrix is one order higher).
As for the leading order of stresses, one obtains the same sequence
of problems and the solution only differs by the order of mr. Thus,
with the same notations:

mu0¼ pu0¼U0ðxÞ
u1¼U1ðxÞþ ½waðyÞetxaðU0Þ�a1þUabðyÞexabðU0Þþ� ðyÞU0

1;x1

pr�1¼0
pr0¼ EpU0

1;x1
a1�a1

mr0¼0
mr1

t ¼2l0m½aaþgradyðwaÞ�etxaðU0Þ
mr1

sab¼ ½2l0mðeabðUfgÞþdafdbgÞþk0mðdivyðUfgÞþdfgÞdab�exfgðU0Þ
þ ½2l0meabð� Þþk0mðdivyð� Þþ1Þdab�U0

1;x1

mr1
n¼ ½2l0mþk0mdivyð� Þ�U0

1;x1
þk0m½divyðUabÞexabðU0ÞþdivxðU0Þ� ð45Þ
5.2.2. Global axial balance at the leading order and first order of stress
in the beam

In the axial direction the fields are governed by (24–13) at orders
(e0 � e1), with pr0

t ¼ mr0
t ¼ 0. Here mr1

t – 0 and one obtains:

ðpr0
nÞ;x1
þ divyðpr1

t Þ ¼ 0 in Sp

divyðmr1
t Þ ¼ 0 in Sm

pr1
t � n ¼ mr1

t � n on C

8><>:
The condition of compatibility of the source term ðpr0

nÞ;x1
is estab-

lished by integrating the balance equation on Sp and Sm and by using
the continuity and periodicity condition on C and @S. This leads to
the same leading order axial balance equation:Z

Sp

pr0
nds

" #
;x1

¼ jS0pj pr0
n

� �
;x1
¼ 0 i:e: : ½EpU0

1;x1
�;x1
¼ 0

Thus, the source term vanishes and the problem is reformulated in a
more compact form:

divyðqr1
t Þ ¼ 0 in Sq; q ¼ m; p

qr1
t � n continuous on C

qr1
t � n y-periodic on @S

8><>:
The leading order description does not need the fields within the
beam. Taking the scalar product of the balance equation by y, inte-
grating and making the usual transformations give:Z

Sp

pr1
t dsþ

Z
Sm

mr1
t ds ¼

Z
@S
ðmr1

t � nÞydc

In the in-plane directions the problem defined by (25–16) at orders
(e0 � e1), simplified by the results pr0

t ¼ 0, pr0
s ¼ 0, and mr0

s ¼ 0,
takes the form:

divyðqr1
s Þ ¼ 0 in Sq; q ¼ m; p

qr1
s � n continuous on C

qr1
s � n y� periodic on @S

8><>:
As above, the resolution in the beam is unnecessary. Taking the ten-
sorial product of the balance equation by y, integrating and making
the usual transformations gives:Z

Sp

pr1
s dsþ

Z
Sm

mr1
s ds ¼

Z
@S

y� ðmr1
s � nÞdc

i.e., the same expression of the mean stress (shifted of one order see
(42)) as for a e2-contrast.

Finally, proceeding as for a e2-contrast, the mean normal stress
in the beam is deduced from the linear problem governing pr1

s :

divyðpr1
s Þ ¼ 0 in Sp

pr1
s ¼ 2lp½esyðpu2Þ þ esxðpu1Þ� þ kp½divyðpu2Þ þ divxðpu1Þ�Is

pr1
s � n ¼ mr1

s � n on C

8><>:
The solution is decomposed in two parts associated with the forcing
induced by pu1 and mr1

s . Both problems have been solved in Sections
4.3.2 and 4.4.2. Combining the contributions yields:

1
jS0j

Z
Sp

pr1
nds ¼ mplmðD

011
11 U0

1;x1
þ D0ab

11 exabðU0ÞÞ þ Ep
jS0pj
jS0j

U1
1;x1

and, at the first order, the unscaled expression of mean normal
stress in the section reads:

h~r1
ni ¼

e
jS0j

Z
Sp

pr1
ndsþ

Z
Sm

mr1
nds

" #

¼ C11
11U0

1;x1
þ Cab

11exabðU0Þ þ Ep
jSpj
jSj U1

1;x1
5.2.3. Global balance and constitutive law at the leading order
In the axial and in-plane directions, the global balance results

from (24)–(13) and (25)–(16) both at orders (e � e2). These two
sets can be expressed in the compact form:

divxðqr1Þ þ divyðqr2Þ ¼ 0 in Sq; q ¼ m;p

qr2 � n continuous on C

qr2 � n y-periodic on @S

8>><>>:
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Integrating on Sq leads – with the help of the divergence theorem
and the stress continuity on C – to the following macroscopic
description (including body force ~b1 ¼ eb1):

divxðhr0iÞ ¼ 0 ð46Þ

hr0i ¼ a1 � a1Ep
jSpj
jSj U0

1;x1
ð47Þ

divxðh~r1iÞ ¼ h~b1i ð48Þ

h~r1i ¼ C : exðU0Þ þ a1 � a1Ep
jSpj
jSj
eU1

1;x1

For this intermediate contrast, the leading order behaviour is that of
an elastic Cauchy media, where the elastic tensor is the same than
for a e2-contrast. The non-local (bending, . . .) effects are of one
smaller order, then masked. However the local deformation in the
beam still respects the Euler–Bernoulli beam kinematics.
6. Application to real media

This section deals with the practical applications of the theoret-
ical results. This question is treated with the example of a periodic
reinforced layer made of by-symmetric squared cells of area S = ‘2,
with fiber of section Sp = h2, i.e., a surface concentration of fiber
c = Sp/S = (h/‘)2. The medium is assumed of infinite lateral exten-
sion, of finite height H > ‘ along the fibers and submitted to trans-
verse shear U0ðx1Þ ¼ U0

aðx1Þaa for which the non-local effects are
necessarily present in the case of e2-contrast (conveniently, the
motion is supposed along a2 and U0

2 is denoted U to save notations).
In addition to the geometric lengths ‘ and H, we are able to define
independently two physical lengths, namely the macroscopic
length related to the phenomena and the intrinsic length related
to the microstructure.
6.1. Macroscopic length and relevant description

Real media are of finite geometrical dimensions and constituted
by cells of finite size. This mismatch between the reality and the
ideal conditions of homogenization stipulating that the scale ratio
should tend to zero implies that:

� The homogenized descriptions are only approximations of the
actual behaviour.
� An argument has to be proposed to identify the relevant

description for a real media, i.e., the appropriate scaling of a
finite stiffness contrast (indeed if e ? 0, the generalized media
would only exist for infinitely soft matrix!).

The answer to this question lies in the assessment of the mac-
roscopic length L. This latter is evaluated by a dimensional analysis
at the macroscopic scale:

L ¼ O
jUj
jU;x1 j


 �
ð49Þ

This estimate is consistent with the asymptotic expansion since the
increment of the macroscopic variable on one cell, ‘@x U, has to be of
order e compared to its current value, U. This implies the equality:
‘@xU = O(eU) = O(‘U/L), leading to (49) (Boutin and Auriault, 1990).

In a given material, the assessment of the physical macro-length
L enables to quantify the actual finite scale ratio ~e ¼ ‘=L for the con-
sidered phenomena. Then, the known finite stiffness contrast of the
real media can be equalized to the physical scale ratio ~e at a partic-
ular power. This latter power – replaced by a close integer –
supplies unambiguously the physical scaling consistent with the real
problem in consideration.
Performing homogenization with this particular scaling consists
in replacing the actual finite value ~e by a mathematical e that one
makes tend to zero. Doing so, by construction, the relative orders of
magnitude of the physical terms are kept identical whatever the
cell size is, and consequently for both the real cell (finite ‘) and
the continuous model (infinitesimal ‘) obtained at the limit. Final-
ly, the real structure can be considered as an imperfect realization
(for the small mathematical value e ¼ ~e) of the homogenized con-
tinuous model built with the proper scaling. The smaller ~e is, the
better would be the continuous approximation.

Thus, in real cases it is possible to define physically the appro-
priate continuous macro-description, provided that the macro-
length L is reliably estimated.

6.2. Intrinsic length versus stiffness contrast

The generalized media description (20) and (21) includes the
other descriptions as degenerated cases. The leading order govern-
ing equation, valid in the absence of body forces or for perturba-
tions from equilibrium in the presence of body forces, reads:

C12
12

1
2

U;x1x1 �
EpIp

jSj U;x1x1x1x1 ¼ 0 ð50Þ

Rewritten in a dimensionless form and accounting for the neglected
term O(e) (relatively to the leading terms) one has:

jUj
L2 � L2 jUj

L4 ¼ OðeÞ; L ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2EpIp

C12
12jSj

s
ð51Þ

where L is the intrinsic length of the generalized media. Assuming a
small amount of reinforcements C12

12 	 2lm and Ip/jSj = h4/
(12‘2) = c2‘2/12. Consequently:

L 	 ‘c
ffiffiffiffiffiffiffiffiffiffiffiffi

Ep

12lm

s
; thus L ¼ Oð‘Þ when Ep ¼ OðlmÞ;

L
 Oð‘Þ when Ep 
 OðlmÞ

The formulation (51) enables to relate the nature of the behaviour
to ðL=LÞ2: if ðL=LÞ2 ¼ OðeÞ then the bending term is negligible at
the leading order and the effective behaviour is governed by shear,
if ðL=LÞ2 ¼ OðeÞ the shear is negligible and the behaviour is gov-
erned by bending, if ðL=LÞ2 ¼ Oð1Þ both terms are of the same order
and the behaviour is that of a generalized media. This classification
is consistent with that based on the stiffness contrast since:

L

L


 �2

	 ‘
2c2

L2

Ep

12lm
¼ Oðe2Þc2 Ep

lm
6.3. Mapping of the relevant macroscopic modeling

It is of interest to identify the relevant modelling from the
known geometrical lengths ‘ and H and the intrinsic length L. This
is performed by mapping the domain of validity of the different
behaviours according to the two dimensionless parameters
h* = Log(H/‘) and k� ¼ LogðL=‘Þ. Following the assumptions of this
study, H > ‘ then h* > 0 and Ep P lm then k* P 0.

The general solution of (50) reads:

U ¼ ax1 þ bþ dþ expðx1=LÞ þ d� expð�x1=LÞ

then, without specifying the boundary conditions (that determine the
coefficients a, b, d+, d� see next section), three main situations arise:

� if H 6
ffiffiffi
~e
p

L, the terms expð�x1=LÞ are different of zero but neg-
ligible, then
L ¼ O
jUj
jU;x1 j


 �
	 jUðHÞ � Uð0Þj

jU;x1 j
	 H and ~e ¼ ‘=H
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Consequently, this case is reached when:
H 6

ffiffiffiffi
‘

H

r
L i:e: when 3h� 6 2k�

Now, as H 6
ffiffiffi
~e
p

L is equivalent to ‘=~e 6
ffiffiffi
~e
p

L, one derives the
following estimate of the stiffness contrast:

‘

L


 �2

¼ Oðlm=EpÞ 6 ~e3

This scaling shows that in the domain 3h* 6 2k* the macro-
scopic behaviour is governed by bending at the leading order.
� if H ¼ OðLÞ, these lengths are the macroscopic size of the three
terms of U(ax1 and expð�x1=LÞ) so that:
L ¼ OðHÞ ¼ OðLÞ and ~e ¼ ‘=H ¼ ‘=L when h� ¼ Oðk�Þ

Since H ¼ OðLÞ is equivalent to ‘=~e ¼ OðLÞ the stiffness con-
trast reads:

‘

L


 �2

¼ Oðlm=EpÞ ¼ Oð~e2Þ

Consequently, when h* = O(k*) the material behaves as a gen-
eralized medium.ffiffiffip
� if L 6 ~eH, the terms dþ expðx1=LÞ and d� expð�x1=LÞ introduce
boundary layers of thickness L at both extremities (decreasing
as expð�x1=LÞ close to x1 = 0 and as expð½x1 � H�=LÞ close to
x1 = H). Outside of these boundary layers, the terms
expð�x1=LÞ are negligible. Consequently, two regions behave
differently in the medium.
– Within the boundary layers L ¼ OðLÞ; ~e ¼ ‘=L and the mate-

rial respond as a generalized medium. Thus, this situation
occurs when L 6

ffiffiffiffiffiffiffiffi
‘=L

p
H, i.e., 3k* 6 2h*.

– Between the two boundary layers L = O(H), ~e ¼ ‘=H. Thus, in
the inner region, the inequality L 6

ffiffiffi
~e
p

H is equivalent to
L 6

ffiffiffi
~e
p
‘=~e, that is:
 �2
‘

L
¼ Oðlm=EpÞP ~e

meaning that the material responds as a classical Cauchy
medium. As mentioned above, lm/Ep = O(1), leads to
L ¼ Oð‘Þ. In that case, L is a microscopic size and the mecha-
nisms within this thin layer are not correctly described by the
generalized media.
Fig. 4. Mapping of the macroscopic behaviours according t
The Fig. 4 presents the different situations in the plane (h*; k*).
The effective domain of validity of the generalized media lies in be-
tween the two lines 3h* 6 2k* and 3k* 6 2h*. For a given matrix
and a reinforcement modulus, k* = cste corresponds to an identical
amount of fiber concentration c. Consequently, the reinforced
materials on a vertical line of the plane (h*; k*) have identical axial
modulus, but different transverse behaviours, varying from domi-
nating bending to generalized media and Cauchy media when
‘/H decreases. In other words, the apparent transverse deformabi-
lity varies with the cell size.

As an example, consider a pile foundation massif constituted by
a weak modulus soil (lm = 4 � 106 Pa) reinforced by cylindrical
concrete piles (Ep = 4 � 1010 Pa) of 1.2 m of diameter
(Ip 	 1 � 10�1 m4), regularly spaced of 4 m (S = 16 m2) in two
orthogonal directions. The intrinsic length is L 	 8 m. If the thick-
ness of the layer is H = 10 m, the reinforced soil behaves as a gen-
eralized medium (with ~e 	 0:5), if H is about 30 m the reinforced
soil behaves as an elastic Cauchy medium (with ~e 	 0:1) except
on both extremities over a length of about 8 m. The same vertical
modulus would be obtained for piles of 0.30 m of diameter
(Ip 	 4 � 10�4 m4), regularly spaced of 1 m (S = 1 m2). However
the intrinsic length will be L0 	 2 m and for H = 10 m the rein-
forced soil will behave as an elastic Cauchy medium (with ~e 	 0:1).

6.4. Influence of the boundary conditions

As seen in Section 3.3.3 the boundary conditions cannot be for-
mulated in term of the macroscopic motions and stress tensor only,
but require also the conditions imposed to the fibers. They can be
clamped into a rigid basement so that the section rotation U0 van-
ishes, or they can be free of momentum, then curvature U00 van-
ishes. As an example, when the layer is fixed at x1 = 0 and
submitted to an imposed transverse displacement on x1 = H, one
obtains by integrating (50):

� fibers clamped at both extremities:
o the tw
Uðx1Þ ¼ a x1 �
L

sinhðH=LÞ ½coshðx1=LÞ � coshððx1 � HÞ=LÞ þ coshðH=LÞ � 1�
� 

� fibers clamped on x1 = H, free of momentum on x1 = 0:
Uðx1Þ ¼ a x1 �
L

coshðH=LÞ sinhðx1=LÞ
� 

o parameters h* = Log(H/‘) and k� ¼ LogðL=‘Þ.
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� fibers free of momentum at both extremities:
Uðx1Þ ¼ ax1
In the first two cases, the previous analysis applies. Conversely,
in the last case, the reinforced material behaves as a classical med-
ium even if H ¼ L, because the particular boundary conditions
avoid the inner bending.

6.5. Remark on inner torsion

Note finally that the geometry of fiber reinforced materials offer
the possibility of unusual loading of the material. For instance, in
case of large fibers (like pile foundations) a torsion X(x) could be
applied to each pile without acting on the matrix. Conversely to
the above analysis (where the inner kinematic results from U0),
such a situation would introduce an additional degree of freedom
implying the macroscopic field of inner torsion, independent and
complementary to U0. Although, in other composites, similar load-
ing would involve a layer of the size of the elementary representa-
tive volume, the fiber facilitates the penetration of the imposed
torsion. The study of this mechanism is not detailed here.

7. Conclusion

Through asymptotic homogenization, we have derived the
effective behaviour of elastic materials periodically reinforced by
fiber for different orders of magnitude of the contrast between
the shear modulus of the matrix and of the fiber.

A contrast lm/lp = O(e2) leads to a full coupling between the
beam behaviour of the fibers and the elastic behaviour of the ma-
trix. Under macroscopic transverse motions, the medium behaves
at the leading order as a generalized continuum that accounts for
the inner bending within the fibers and the shear of the matrix.
Non-local terms also appear on axial stresses along fibers, under
inhomogeneous axial and lateral confining, and, in the case of
non-symmetric cell, because of wrapping under torsion and Pois-
son effect. The description degenerates into the classical behaviour
of elastic composites for stiffer matrix and the usual Euler–Ber-
noulli beam behaviour for softer matrix.

The constitutive parameters can be computed rigorously, or
also be simply estimated from the self consistent approach
(Christensen and Lo, 1979; Hashin, 1983), with an excellent
approximation for weak concentrations of fibers. For instance,
considering bi-symmetric cells (e.g. circle in a square):

C23
23 	 2lm 1þ c 1þ 1

3� 4mm


 �
1� lm

lp
1þ 1

3� 4mm


 � !" #
;

C12
12 ¼ C13

13 	 2lm 1þ 2c
1� c

1� lm

lp

2c
1� c

 !" #
Simple criteria based on the comparison between the geometric

data – size of the cell ‘, overall dimension of the media H – and the
physical lengths – intrinsic length L 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EpIp=ðjSjlmÞ

p
and macro-

scopic length L – enable to identify the appropriate model for real
reinforced media. Provided that the intrinsic length of the material
is larger than the size of the cell, the analysis shows that in general
the actual response is influenced by the non-local effect at least on
a boundary layer of the size of the intrinsic length.

The unidirectional morphology treated in this paper is not an
absolute requirement. 3-D cells could also be considered for fibers
periodically heterogeneous along their axis, or for fibers oriented in
the three orthogonal directions. However, in this latter case, to
keep the inner bending effect at the macroscale (in the three
orthogonal directions of fibers) the fibers must necessarily be fully
embedded in the matrix without fiber–fiber connexion. Intercon-
necions between orthogonal fibers would drastically increase the
interaction forces at the contact, preventing the bending mecha-
nism to occur as described in Section 2.3. This situation would lead
to classical composite description (cf. also Bellieud and Bouchitté
(2002)).

In quasi statics, using complex modulus in the Fourier domain,
the results can be extended to viscoelastic constituents or to elastic
fibers embedded in a viscous matrix. Extension to weakly com-
pressible matrix, dynamic loadings and wave propagation may also
be considered.
Appendix A. Derivation of beam behaviour through asymptotic
expansions

The beam behaviour attained at large slender ratio, i.e., small e,
is determined by seeking for the variables in the form of expan-
sions in power of e (Trabucho and Viano, 1996). The kinematic con-
dition (1) imposes to formulate the expansions as:

u ¼
X1
i¼0

eiui ¼
X1
i¼1

eiui
1a1 þ

X1
i¼0

eiui
aaa i:e:;

u1 ¼
X1
i¼0

eiþ1uiþ1
1 ; ua ¼

X1
i¼0

eiui
a

A.1. Appropriate asymptotic expansions

Inserting the reduced strain and stress tensors (2) and (3) into
the balance and boundary Eqs. (5)–(8) yield to scaled problems ex-
pressed in function of u1 and ua. The axial balance contains terms
in e�1 and e (in e0 as for the boundary condition), and the in-plane
balance contains terms in e�2 and e0 (in e�1 and e as for the bound-
ary condition). Since the terms of the equations ‘‘jump’’ from a fac-
tor e2, it is sufficient to expand the components ui according to the
even powers of e. Thus, the appropriate expansion reads:

u ¼
X1
i¼0

e2i½u2i
a aa þ eðu2iþ1

1 a1Þ� i:e:;

u1 ¼
X1
i¼0

e2iþ1u2iþ1
1 ; ua ¼

X1
i¼0

e2iu2i
a ð53Þ

Consequently, the axial (n) and in-plane (s) – respectively out of
plane (t) – reduced strain and stress tensors (2) and (3) are ex-
panded in odd – respectively even – powers of e:

es ¼ e
X
i¼�1

e2ie2iþ1
s ; et ¼

X
i¼0

e2ie2i
t ; en ¼ e

X
i¼0

e2ie2iþ1
n ð54Þ

rs ¼ e
X
i¼�1

e2ir2iþ1
s ; rt ¼

X
i¼0

e2ir2i
t ; rn ¼ e

X
i¼�1

e2ir2iþ1
n ð55Þ

Expansions (53)–(55) indicate that the reference value (i.e., of zero
order) of the displacements, strains and stress are respectively,
u0

a; u0
a;x1

; lu0
a;x1

.

A.2. Asymptotic solution

The solution is derived by introducing expansions (55) in (5)–
(8). Separating the terms of different orders leads to a series of
problems. The first non-trivial equations expressed with x1 pro-
vides the leading order of the beam description. It results from
the even or odd expansions of the reduced tensors (54) and (55),
that the axial and the in-plane problems (5)–(8) are separated by
one order. Thus, the resolution is achieved by treating alternatively
the equilibrium of the section, then the axial equilibrium, and so on.
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The first problem (Eqs. (7) and (8), order e�2 � e�1) deals with
r�1

s and u0 ¼ u0
aaa.

divyðr�1
s Þ ¼ 0 in Sp with r�1

s ¼ 2lesyðu0Þ þ kdivyðu0ÞIs

r�1
s � n ¼ 0 on C

(

The equivalent variational formulation is:

8ws vector C1defined on Sp;

Z
Sp

r�1
s : esyðwsÞds ¼ 0

Taking for the virtual field ws = u0it turns out that:Z
Sp

½kðdivyðu0ÞÞ2 þ 2lesyðu0Þ : esyðu0Þ�ds ¼ 0

The positiveness of the Lame constants implies that esy(u0) = 0 (and
divy(u0) = 0). Therefore u0 is a rigid motion of the section in its
plane, i.e., a translation U0 and a rotation X�1a1:

u0 ¼ u0
aaa; u0

a ¼ U0
a þX�1½a1 � y�a

Moreover since esy(u0) = 0 then rs
�1 ¼ 0 and r�1

n ¼ kdivyðu0Þ ¼ 0.
Therefore:

e�1 ¼ 0; r�1 ¼ 0

The translation U0 and the rotation X�1 (of order �1 to respect the
scaling of the zero order motion X�1h = O(1)) are two independent
kinematics. They appear at the same order because the assumption
of zero order transverse motion does not distinguish translation and
rotation. Nevertheless, physically, their relative order of magnitude
may differ. Without restricting the generality of the further devel-
opments, we will consider that the rotation is of lesser order than
the translation i.e., X�1 = 0, and leave the treatment of the section
rotation for higher orders.

The second problem (Eqs. (5) and (6), order e�1 � e0) deals with
u1

1 and r0
t . As r�1

n ¼ 0, we have:

divyðr0
t Þ ¼ 0 in Sp with r0

t ¼ lðu1
1;ya
þ U0

a;x1
Þaa

r0
t � n ¼ 0 on C

(

This problem admits the following equivalent variational
formulation:

8w1scalar C1defined onSp;

Z
Sp

r0
t � gradyðw1Þds ¼ 0

Choosing w1 ¼ u1
1 þ y � U0

;x1
yields:Z

Sp

ðlkgradyðu1
1Þ þ U0

;x1
k2Þds ¼ 0; then; gradyðu1

1Þ þ U0
;x1
¼ 0

and by integration the solution is:

u1 ¼ u1
1a1; u1

1 ¼ �y � U0
;x1
þ U1

1ðx1Þ
e0

t ¼ 0; r0
t ¼ 0; e0 ¼ 0; r0 ¼ 0

At the leading order, the out of plane motion of the section consists
into (i) a rigid out of plane rotation (of vector U0

;x1
� a1) and (ii) a

uniform vertical translation U1
1a1; i.e., the usual kinematics of the

Euler–Bernoulli beam. Although their relative magnitude may phys-
ically differ, we will treat them conjointly, considering them to be of
identical order for convenience.

The third problem (Eqs. (7) and (8), order e0 � e) concerns r1
s

and u2. As r0
t ¼ 0, it takes the form:

divyðr1
s Þ ¼ 0 in Sp

r1
s ¼ 2lesyðu2Þ þ k½divyðu2Þ þ u1

1;x1
�Is

r1
s � n ¼ 0 on C

8><>:
Noticing that the plane strains of the particular fields y and
na ¼ yay� 1

2 kyk
2aa are:
esyðyÞ ¼ Is and esyðnaÞ ¼ yaIs

the plane isotropic stress induced by u1
1;x1
¼ �y � U0

;x1x1
þ U1

1;x1
can be

re-expressed as the plane stress resulting from the particular in-
plane motion v2:

ku1
1;x1

Is ¼ kðU1
1;x1
� y � U0

1;x1x1
ÞIs

¼ 2lesyðv2Þ þ kdivyðv2ÞIs ¼ ðlþ kÞdivyðv2ÞIs

v2 ¼ mðyU1
1;x1
� naU0

a;x1x1
Þ

Consequently, r1
s may be rewritten as:

r1
s ¼ 2lesyðu2 þ v2Þ þ kdivyðu2 þ v2ÞIs

Setting ws = u2 + v2 in the variational formulation associated to r1
s

(cf. Section 2.2.2):

8wsvector C1defined on Sp;

Z
S
r1

s : esyðwsÞds ¼ 0

provides:Z
Sp

k divyðu2 þ v2Þ
� �2 þ 2lesyðu2 þ v2Þ : esyðu2 þ v2Þds ¼ 0

Consequently, esy(u2 + v2) = 0, then u2 + v2 is a rigid in-plane motion
of the section, and:

u2 ¼ �mðyU1
1;x1
� naU0

a; x1x1Þ þ U2ðx1Þ þX1ðx1Þa1 � y ð56Þ

Moreover, by construction:

e1
s ¼ esyðu2Þ ¼ �esyðv2Þ ¼ �mIsu1

1;x1
; e1

n ¼ u1
1;x1

;

thus e1 ¼ ½a1 � a1 � mIs�u1
1;x1

ð57Þ

Now, since esy(u2 + v2) = 0, then r1
s ¼ 0. Hence r1

n is deduced from
the constitutive elastic law:

r1
n ¼ Eu1

1;x1
¼ Eð�y � U0

;x1x1
þ U1

1;x1
Þ; r1 ¼ r1

na1 � a1 ð58Þ

The fourth problem (Eqs. (5) and (6), order e � e2) concerns the ax-
ial balance of r2

t :

r1
n;x1
þ divyðr2

t Þ ¼ 0 in Sp with r2
t ¼ l½u3

1;ya
þ u2

a;x1
�aa

r2
t � n ¼ 0 on C

(

Here r1
n;x1

acts as a source term. Following Section 2.2.3, three non-
trivial balance equations of the section are established and comple-
mented by the relations between (i) normal force and longitudinal
strain, and (ii) transverse momentum and curvature. The uncou-
pling of compression and bending mechanisms is obvious when
the beam behavioural laws are expressed in the ‘‘natural’’ y-frame
of the section. Reminding that, as the scaling makes the y-derivative
of quantity of order i to be of order i � 1, in a similar way, the y-inte-
gral over the section of a quantity of order i is of order i + 2- and of
order i + (2 + j) if multiplied by yj

a – one obtains:

N3
;x1
¼ 0; N3 ¼

Z
Sp

r1
nds ¼ EjS0pjU

1
1;x1

ð59Þ

M4
;x1
� T4 ¼ 0; M4

a ¼
Z

Sp

r1
nyads ¼ �EI0aU0

a;x1x1
ð60Þ

The derivation of u3
1, not necessary for the leading order behaviour,

is reported in Section A.3.
The fifth problem (Eqs. (7) and (8), order e2 � e3) expresses the

balance of r3
s under the forcing term r2

t;x1
.

r2
t;x1
þ divyðr3

s Þ ¼ 0 in Sp

r3
s � n ¼ 0 on C

(

As above, according to Section 2.2.3 two non-trivial balance equa-
tions are deduced:
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T4
;x1
¼ 0; T4

a ¼
Z

Sp

r2
t � aads ¼ �EI0aU0

a;x1x1x1

M5
1;x1
¼ 0; M5

1 ¼
Z

Sp

½y� r2
t � � a1ds ¼ lI0tX

1
;x1

The torsion law relating M5
1 to X1

;x1
is valid for sections having two

orthogonal axis of symmetry. Non bi-symmetric sections introduce
a torsion-bending coupling as shown in the next section.

A.3. Wrapping and torsion

We determine here u3
1 and the expression of M5

1. The global axial
balance of the section (59) implies U1

1;x1x1
¼ 0 which simplifies the

expressions (58) of r1
n, (56) of u2, and (57) of divy(u2). Thus, the

fourth problem (Eqs. (5) and (6), order e � e2), after simplifying
by l, is rewritten as:

2y � U0
;x1x1x1

þ divyðgradyðu3
1ÞÞ ¼ 0 in Sp

ðu3
1;ya
þ u2

a;x1
Þ � na ¼ 0 on C

(

with u2
a;x1
¼ mnb

aU0
b;x1x1x1

þ U2
a;x1
þX1

;x1
ða1 � yÞa

The solution u3
1 of this linear problem is the sum of the contribu-

tions of each forcing term.
The problem related to U2

a;x1
is identical to that treated for U1

1

and the solution is �U2
;x1
� y.

The problem related to X1
;x1

is new. The solution reads
wðyÞX1ðx1Þ;x1

where the wrapping function w(y) is solution of
(the zero mean value condition provides the unicity):

divyðgradyðwÞ þ a1 � yÞ ¼ DyðwÞ ¼ 0 in Sp

ðgradyðwÞ þ a1 � yÞ � n ¼ 0 on CR
Sp

wds ¼ 0 ðunicityÞ

8<:
Note that for circular section w = 0 since (a1 � y) � n = 0 on C. Be-
sides for any section, as the wrapping stresses vector
f = l(grady(w) + a1 � y) is of free divergence with free boundary
condition, one has for any C1 function f:

0 ¼
Z

Sp

f divyðfÞds ¼ �
Z

Sp

gradyðf Þ � fdsþ
Z

C
f f � nds

¼ �
Z

Sp

gradyðf Þ � fds

Taking f = ya, and f = yayb, one deduces the following properties:Z
Sp

fds ¼ 0;

Z
Sp

½y� fþ f� y�ds ¼ 0;

Z
Sp

y � fds ¼ 0 ð61Þ

The problem related to U0
;x1x1x1

via the Poisson effect, introduces a
vector of particular solutions, whose components va(y,m) are asso-
ciated to U0

a;x1x1x1
so that the solution reads v � U0

;x1x1x1
. Moreover

v(y,m) can be decomposed into two vectors g(y), h(y) independent
of the Poisson ratio:

vðy; mÞ ¼ ð1þ mÞgðyÞ þ mhðyÞ

where the functions ga and ha are solutions of (the zero mean value
provides the unicity):

�2ya þ DyðgaÞ ¼ 0 in Sp

gradyðgaÞ � n ¼ 0 on CR
Sp

gads ¼ 0 ðunicityÞ

8<:
2ya þ DyðhaÞ ¼ 0 in Sp

ðgradyðhaÞ þ naÞ � n ¼ 0 on CR
Sp

hads ¼ 0 ðunicityÞ

8<:
The solutions w, g, h, only depend on the section’s geometry. In case
of two orthogonal axis of symmetry (then the principal axis of iner-
tia y2, y3) the following properties are satisfied:
wð�ya; ybÞ ¼ �wðya; ybÞ; wðya;�ybÞ ¼ �wðya; ybÞ
vað�ya; ybÞ ¼ �vaðya; ybÞ; vaðya;�ybÞ ¼ vaðya; ybÞ

ð62Þ

M5
1 is derived by replacing r2

t by its expression:

M5
1¼
Z

Sp

�1abyar2
tbds

¼
Z

Sp

�1abyal½v;yb
�U0

;x1x1x1
þw;yb

X1
;x1
þmnc

bU0
c;x1x1x1

þX1
;x1
ða1�yÞb�ds

In general, their is a coupling between the torsion and bending
mechanisms via the Poisson effect (and, in case of inhomogeneous
body forces, the contribution of U1

1;x1x1
would also lead to a coupling

with compression). Now, if the section presents two orthogonal axis
of symmetry:Z

S
yaybycds ¼

Z
S

yakyk
2ds ¼ 0;

and from ð62Þ :

Z
Sp

yan;yb
ds ¼

Z
S

yavc;yb
ds ¼ 0

In that bi-symmetric case, the bending term vanishes and it only re-
mains the uncoupled law:

M5
1 ¼ l

Z
Sp

ða1 � ðy� gradyðwÞÞ þ y2
2 þ y2

3Þds

" #
X1
;x1
¼ lItX

1
;x1
References

Auriault, J.L., Bonnet, G., 1985. Dynamique des composites élastiques périodiques.
Arch. Mech. 37 (4–5), 269–284.

Auriault, J.L., 1991. Heterogeneous media. Is an equivalent description possible? Int.
J. Eng. Sci. 29 (7), 785–795.

Bellieud, M., Bouchitté, G., 2002. Homogenization of soft elastic material reinforced
by fibers. Asymp. Anal. 32 (2), 153–183.

Boutin, C., Auriault, J.L., 1990. Dynamic behaviour of porous media saturated by a
viscoelastic fluid. Int. J. Eng. Sci. 28 (11), 1157–1181.

Boutin, C., 1996. Microstructural effects in elastic composites. Int. J. Solids Struct. 33
(7), 1023–1051.

de Buhan, P., Hassen, G., 2008. Multiphase approach as a generalized
homogenization procedure for modelling the macroscopic behaviour of soils
reinforced by linear inclusions. Eur. J. Mech. A/Solids 27 (4), 662–679.

Caillerie, D., 1980. The effect of a thin inclusion of high rigidity in an elastic body.
Math. Meth. Appl. Sci. 2, 251–270.

Caillerie, D., Trompette, P., Verna, P., 1989. Homogenization of periodic trusses. In:
Congres IASS Madrid, vol. 2. pp. 7139–7180.

Christensen, R.M., Lo, K.H., 1979. Solutions for effective shear properties in three
phase sphere and cylinder model. J. Mech. Phys. Solids 27, 315–330.

Eringen, A.C., 1968. Mechanics of micromorphic continua. In: Kröner, E. (Ed.),
IUTAM Symposium. Springer-Verlag, Berlin, pp. 18–35.

Forest, S., 2006. Milieux continus généralisés et matériaux hétérogènes. Presses de
l’Ecole des Mines. ISBN:978-2911762673.

Gambin, B., Kröner, E., 1989. High order terms in homogenized stress–strain
relation of periodic elastic media. Pys. Stat. Solids (b) 151, 513–519.

Hans, S., Boutin, C., 2008. Dynamics of discrete framed structures – unified
homogenized description. J. Mech. Mater. Struct. 33 (7), 1023-1.

Hashin, Z., 1983. Analysis of composite materials. J. Appl. Mech. 50,
481–505.

Levy, T., Sanchez-Palencia, E., 1983. Suspension of solid particles in a Newtonian
fluid. J. Non Newtonian Fluid Mech. 13, 63–78.

Léné, F., 1978. Comportement macroscopique de matériaux élastiques comportant
des inclusion rigides ou des trous répartis périodiquement. C.R. Acad. Sci. IIB
286, 75–78.

Makris, N., Gazetas, G., 1992. Dynamic pile-soil-pile interaction. Part II. Earth. Eng.
Struct. Dyn. 21, 145–162.

Pideri, C., Seppecher, P., 1997a. Un résultat d’homogénéisation pour un matériau
élastique renforcé périodiquement par des fibres élastiques de très grande
rigidité. C.R. Acad. Sci. IIB 324 (7), 475–481.

Pideri, C., Seppecher, P., 1997b. A second gradient material resulting from the
homogenization of an heterogeneous linear elastic medium. Continuum Mech.
Thermodyn. 9, 241–257.

Postel, M., 1985. Réponse sismique de fondations sur pieux. PhD thesis, Ecole
Centrale de Paris, Paris.

Sanchez-Palencia, E., 1980. Non Homogeneous Media and Vibration Theory.
Springer-Verlag, Berlin.

Sudret, B., De Buhan, P., 1999. ‘‘Modélisation multiphasique de matériaux renforcés
par inclusions linéaires. C.R. Acad. Sci. IIB 327, 7–12.

Trabucho, L., Viano, J.L., 1996. Mathematical Modelling of Rod. North-Holland,
Amsterdam.


	Generalized inner bending continua for linear fiber reinforced materials
	Introduction
	Derivation of beam model through asymptotic method
	Specificity of the beam’s kinematic and appropriate space variables
	Formulation of the problem
	Reduced strain and stress tensors
	Local balance equations and variational formulations
	Global balance equations of the section

	Beam description in presence of body and contact forces
	Unloaded beam
	Loaded beam


	Transverse behaviour of periodic parallel beams in a soft matrix
	Contrast of beam-matrix stiffness
	Homogenized transverse behaviour
	Local problems in the beam and matrix
	Global beam-matrix balance

	Discussion and physical interpretation
	Generalized inner bending continua
	Macroscopic stress tensor and mean surface forces
	Energy and boundary conditions


	Homogenized constitutive law of periodic parallel beams in a soft matrix
	Leading order of motions
	In the beam
	In the matrix

	Leading order of the beam and matrix stresses
	In the axial direction
	In-plane directions
	In the whole section

	Global axial balance at the leading order – First order of the beam stresses
	In the axial direction
	In-plane directions

	Global momentum equilibrium at the leading order
	Axial direction
	In-plane directions
	Mean normal stress

	Global in-plane equilibrium at the leading order
	Axial direction
	In-plane directions
	Equilibrium with body forces

	Synthesis: macroscopic description

	Models for other beam/matrix stiffness contrasts
	Very soft matrix or matrix as stiff as the beam
	ε-Soft matrix
	Leading order of motions and stresses in the beam and the matrix
	Global axial balance at the leading order and first order of stress in the beam
	Global balance and constitutive law at the leading order


	Application to real media
	Macroscopic length and relevant description
	Intrinsic length versus stiffness contrast
	Mapping of the relevant macroscopic modeling
	Influence of the boundary conditions
	Remark on inner torsion

	Conclusion
	Derivation of beam behaviour through asymptotic expansions
	Appropriate asymptotic expansions
	Asymptotic solution
	Wrapping and torsion

	References


