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This paper deals with the effective behaviour of elastic materials periodically reinforced by linear slender
elastic inclusions. Assuming a small scale ratio ¢ between the cell size and the characteristic size of the
macroscopic deformation, the macro-behaviour at the leading order is derived by the homogenization
method of periodic media. Different orders of magnitude of the contrast between the shear modulus of
the material p, and of the reinforcement f, are considered.

’ée}_"";ordsij ol A contrast fi,/ 11, of the order of ? leads to a full coupling between the beam behaviour of the inclusions
B:;r;noiﬁiorl;ate”a and the elastic behaviour of the matrix. Under transverse motions, the medium behaves at the leading

order as a generalized continuum that accounts for the inner bending introduced by the reinforcements
and the shear of the matrix. Instead of the second degree balance equation of elastic Cauchy continua
usually obtained for homogenized composites, the governing equation is of the fourth degree and the

Homogenization
Generalized continua
Micromorphic media

Second gradient media

description differs from that of a Cosserat media.

This description degenerates into, (i) the usual continua behaviour of elastic composite materials when
O(tm/ ) = &, (ii) the usual Euler-Bernoulli beam behaviour when O(um/p) < &3.

The constitutive parameters are derived and can be computed or estimated from simplified geometries.
Simple criteria are given to identify the appropriate model for real reinforcements under given loadings.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the behaviour of reinforced materials is of inter-
est in engineering mechanics of hand-made fiber oriented materi-
als encountered in aeronautics (mat of carbon or glass fibers, etc.),
in civil engineering (pile foundations massif, embankments of rein-
forced earth, etc.), or in the domain of natural materials studied in
biomechanics (bones, vegetal tissues, etc.).

These materials belong to the wider class of composites media on
which numerous studies aim at establishing the relation between
the constituents, the local morphology and the global behaviour.
This is justified by the fact that phenomena in heterogeneous media
can be upscaled and formulated in terms of macroscopic behaviour,
provided that the condition of scale separation is fulfilled. This latter
condition requires a medium morphology sufficiently regular to be
described by a representative elementary volume much smaller in
size than the characteristic size of the phenomena (Auriault,
1991). In the literature, these conditions are systematically satis-
fied, implicitly or explicitly. Among the works on upscaling, let us
mention the variational approaches, e.g. Hashin (1983), and the
asymptotic methods of homogenization of periodic media (San-
chez-Palencia, 1980). For elastic constituents, the homogenization
limited to the leading order proves that the macro-behaviour of
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composites is that of elastic equivalent Cauchy media where the
elastic tensor can be determined as soon as the microstructure is
known (Léné, 1978). Descriptions accounting for the higher terms
introduce so-called “non-local” correctors (Gambin and Kroner,
1989; Boutin, 1996). The “non-local” denomination expresses that
the stress state does not depend only on the strain state in an ele-
mentary representative volume but takes into account the strain
gradient, or equivalently the strain in the neighbour representative
volumes. In this sense the stress-strain relation is “non-local”. In
those previous works it was shown that the leading order descrip-
tion strictly applies for homogeneous macro-strain, whereas in
other cases the effective behaviour involves higher gradients of
strain (double gradient in most cases i.e., the curvature). Thus, in
the range of loading where homogenization applies, composites ap-
pear as Cauchy media with small perturbations induced by the cor-
rectors, i.e., “slightly non-local” generalized media. As is the case for
Cosserat’s media or micromorphic media (Eringen, 1968) the funda-
mental difference with Cauchy media lies in the existence of an
intrinsic finite length, related to the cell size of the composite.
Numerous works are devoted to this topic and for a recent revue
the reader may refer to Forest (2006).

In above mentioned results, the non-local effects in 3-D compos-
ites (made of constituents of properties of the same order) appear as
correctors and not at the leading order. Conversely, in 1-D (homoge-
neous) beam theory, the curvature effect dominates. This leads to
think that it should be possible to obtain non-local effects at the
leading order in 3-D composite made of soft matrix and stiff parallel
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beams in finite concentration. This is the question investigated in
this paper. Such a topic has been sparsely investigated in the litera-
ture. Through asymptotic method (Caillerie, 1980) studied the effect
of a single stiff beam in a soft medium, and (Pideri and Seppecher,
1997a; Pideri and Seppecher, 1997b) then (Bellieud and Bouchitté,
2002) showed through a mathematical study that the energy of par-
allel beams in a soft matrix includes bending terms. For the same
kind of material (Sudret and De Buhan, 1999; de Buhan and Hassen,
2008) developed a “multiphase model” based on a phenomenologi-
cal approach that accounts for shear and bending effects. Auriault
and Bonnet (1985) studied the dynamics of composites with non-
connected soft inclusions. More recently, in the frame work of the
homogenization of discrete media (Caillerie et al., 1989), different
kinds of generalized media at the leading order were identified in
reticulated media according to their morphology (Hans and Boutin,
2008). Among the earlier applications in the engineering field, let us
mention the numerical works of Postel (1985) and the phenomeno-
logical attemps of Makris and Gazetas (1992) at describing the
behaviour of massif of pile foundations.

The present contribution aims at deriving through asymptotic
homogenization, the effective behaviour of elastic materials peri-
odically reinforced by linear slender elastic inclusions. With a sys-
tematic use of the scaling and of the 1D geometry of the inclusions,
the analysis is performed for finite concentration of fiber at differ-
ent magnitudes of the contrast between the shear modulus of the
material u, and of the reinforcement ,. According to the asymp-
totic method, the contrast is weighted by the powers of the scale
ratio ¢ between the cell size and the characteristic size of the mac-
roscopic deformation.

A contrast i, = tpe® leads to a generalized continuum charac-
terized at the leading order by a full coupling between the beam
behaviour of the inclusions and the elastic matrix behaviour. In-
stead of the second degree differential equation of elastic Cauchy
continua, the governing equation is of the fourth degree and differs
from that of Cosserat media. This general situation degenerates
either into the usual continua behaviour of elastic composite mate-
rials when O(um/pp) = ¢, or into the usual Euler-Bernoulli beam
behaviour when O(um/t,) < €. Those results are established
through formal expansions and the convergence is not handled
here (on this point cf. Bellieud and Bouchitté, 2002).

The paper is divided into six sections. The elements necessary
for the study concerning beam model and asymptotic approach
are given in Section 2. Section 3 presents the macro-behaviour of
the reinforced material for a stiffness contrast of &2 in the specific
case of transverse shear. The general macroscopic constitutive
law is established in Section 4 for the same contrast. Larger or
weaker contrasts are investigated in Section 5. Section 6 is devoted
to the practical applications of the results. The discussion empha-
sizes the domain of validity of the different descriptions and their
possible extensions.

2. Derivation of beam model through asymptotic method

A beam is a slender cylindrical body (of section S, of any form)
of axial dimension L much larger than the typical dimension of sec-
tion h (Fig. 1(a)). This geometry naturally introduces:

o the small parameter ¢ = h/L, inverse of the slenderness, used in
the expansions,

o the distinction between directions (i) in the axis (unitary vector
a,) and (ii) in the plane (a,; « = 2,3) of the section. In the paper,
greek indices run from 2 to 3; latin from 1 to 3.

Through asymptotic method (Trabucho and Viano, 1996) have
shown that these geometrical features enable to move from the
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Fig. 1. Cylindrical beam of section of any form. (a) Dimensions. (b)
Section notations.

3-D constitutive law of the material to the 1-D beam behaviour.
This approach enables to handle statics and dynamics of homoge-
neous, heterogeneous or anisotropic beams. This section recall the
developments strictly necessary for the sequel, and only homoge-
neous straight beams made of isotropic elastic material are
considered.

2.1. Specificity of the beam’s kinematic and appropriate space
variables

The geometry of straight, homogeneous, unloaded beam sug-
gests that the phenomena vary along the axis according to L and
within the section according to h. Moreover, generally, a beam is
not loaded by external tangential forces on its contour I" (other
cases will be studied in further sections). These two facts constrain
the kinematic: denoting the motion by u, the stress tensor by ¢ and
the normal of boundary I" of the straight beam by n =n, - a,, one
has:

(@-n)-a; =01, =0 on I where gy, = U(Uix, + Uyy,)

Here and in the following, the derivative according to a given vari-
able, for instance x,, is denoted by ,,, the second derivative accord-
ing to x, and xy, by x.x,,. .-

Since uy 5, = O(uy/h) and u,x, = O(u,/L), the vanishing of 51, on
I’ requires:

o(%) - o(%) i.e. O(u;) = £0(u,)

This means that the transverse motions are associated with a nor-
mal motion of one order less. To respect this physical condition,

the motions are rescaled in the following form:
u =&y + Uyd, so that O(u;) = O(u,) (1)

As the pertinent dimensionless space variables are (x;/L,Xx2/h,x3/h),
the appropriate physical space variables reads (xq,y2,y3), where
Vo = (Lh)x, = £ x, (Fig. 1(b)). For quantity ¢ expressed in function
of (x1,y+) the gradient operator V = §,.a; - that applies on ¢(x) -
becomes:

Vo = (0 +&'0,,8,)0  with @(x1,y)

and the integrals are modified as (ds = dy,dys; dy =dyr):

/5 @(x)dS = & /S o(x1,y)ds; / @x)dI' = 8/ @(x1,y)dy
B Jr r

In this paper we use the following conventions:
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o |S| = [dxadxs; |S'| = [idy,dys = £72|S],
o I, = [; (%) dxodxs; I, = [; (v,) dy,dys = £,
o the local problems are set on the “natural” y-frame originated at

the center of “mass” of the beam section S, and orientated along
its principal axis of inertia. Thus:

y,ds =0; / Voypds =0 for o+ p
JSp Js,

2.2. Formulation of the problem

2.2.1. Reduced strain and stress tensors
The specificity of the axial direction leads to decompose any
symmetric tensor A into:

A=Ai(ai R0+ 0 ®a0)/2 =At @41 + (A @ a1 + 81 @A) +As

where, for strain (A = ¢) or stress (A = g), the three reduced tensors
are respectively:

e A, =Aq;: the scalar axial strain or stress,

e A= A1,a,: the 2D vector of the strain or stress exerted out of the
plane of the section,

o As=Aup(ay ® ap+a; ® ay)[2: the 2D second rank tensor of the

strain or stress in the plane of the section.

Considering motions in the form (1), the reduced strain tensors
are of different order:
en = &lly; € = [(Uy, + Usx )/2]ay;
e =& [(Uny, +Upy,)/2)(0 @ a5 + 05 © 45)/2 (2)

The stress and strain tensors are related by the linear isotropic elas-
ticity of the material:

g =2ue + /tr(e)l; where 4, u stands for Lame coefficients
Thus, denoting [y =a, ® @ + a3 ® ds:

On = 2[4ey + A(tr(es) + €n);
s = 2es + A(tr(es) + en)ls

gy = 2ey;

(3)

Consequently, g, is of zero order while ¢, and g contains terms of
order ¢ and ¢. B

Using the Young modulus E=2u(1+v) and the Poisson ratio
v =A[2(4+ u), we also have:

1oy ler

1 _Vzvtr(g)l]3 e= % [(1+v)g — vtr(a)]]

IS}

so that e, and g, are known as soon as tr(e;) and tr(gs) are
determined:

e — 2% {LIM tr(gs) — tr(gs)}s
On = % [—Etr(gs) + (1 - V)tr(gs)] (4)

For instance, in the case of in plane motion: e, =0 and o, = vtr(gs).

2.2.2. Local balance equations and variational formulations
Here, zero body and surface forces are assumed. The momen-
tum balance @(g) =0, reads:

(Gitx, + € 'Oy, )0 =0

The specificity of a; direction leads to split the balance and bound-
ary conditions (g -n=0) into:

e a scalar equation along a; driving the vector stress gy, the axial
gradient of the scalar g, being a forcing term, with homoge-
neous boundary conditions:

a; direction:

Onx, + gfldivy(gt) =0 in Sp (5)
g-n=0 onrl 6)

The equivalent variational formulation is established classi-
cally as:

Yw;, C' scalar defined on S,

/ Gn,xlwlds = 871/ Ot -@y(wl)ds

Sp Sp

e a vectorial equation in the plane (a,,as) governing the in plane
stress tensor gs, the axial gradient of vector g; being a
forcing term, with homogeneous boundary conditions:
(ay,as) directions:

Gy, +67'divy(g5) =0 inS, @)
gs-n=0 onTl (8)

whose equivalent variational formulation reads:

VYws, in plane C! vector defined on Sp

/ Ty, - Weds = &7 / Ts : &y(Ws)ds

Sp Sp

2.2.3. Global balance equations of the section

The balance equations of global forces, are derived by integrat-
ing (5) and (7) over S,. Using the divergence theorem and the
boundary conditions (6)-(8) give:

divy(gt)ds:/gtﬂdyzo and my(os)dS:/gs-gdy:Q
r r—

S S =

Thus, inverting y,-integration and x;-derivate, provides the follow-
ing balance equations over the section (valid when the beam is free
of any surface or volume loading):

along g : {/ Gnds} =0; alonga,,as: {/ gtds} =0 (9
Sp X Sp X

Three global momentum equilibrium equations can also be estab-
lished. Again, axial and in-plane directions must be distinguished.

First, multiply (5) by y, and integrate over Sp:
/ VyOnx ds + &7 / y,divy(ar)ds =0
Sp Sp

Integrating the second integral by part and applying the divergence
theorem yields:

divy(y,0y)ds — / Oy - 4y ds = / ¥y, (0 -n)dy — / a¢ - a,ds
r S

SP SP P
and the integral over I" vanishes because of the free boundary con-
dition (6). Finally, inverting y,-integration and x;-derivate leads to

the two momentum of momentum balance equations:

along a, : {/ yaands}
Jsp

The global momentum of momentum balance in direction a; is
established by taking the vectorial product of (7) by the position
vector y = y,d, and integrating over the section:

—g! / O a,ds =0
Js,

X1

Y X Oinds+&" [ yxdivy(gs)ds
Sy Sy -

= [ yxOds+e'a {/ eliﬁyiaﬁy,y;ds} =0
Sp

Sp
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where € is the third rank tensor expressing the vectorial product.
Integrating by part, then using the divergence theorem and the
symmetry of g, and finally the free boundary condition (8), gives:

/ €1m/fy“6/}",,v7y7.d.§: —/ E]w;ﬂ/;g(ds-‘r\/Ffla/;yao'/}»),nyd'y

Sp Sp
= Jr= => —

Consequently:

{al-/yxatdS} =0
S

X1
To sum up, denoting by Na; and T =T,a, the normal and shear
forces, and by M = M,a, and M;a; the bending and torsion momen-
tum, respectively, the balance equations of beams free of surface or
volume loading are:

o.ds;
Sp

along a; : N, =0, N=

Miy, =0, Mi=a;- | yxads

Sp

along a,: My, —¢'T=0, M= [ youds;

Sp

I.Xl = 97 I = Qtds

SP
To go further it is necessary to relate the forces and the momentum
to the motion. This is achieved by means of asymptotic expansions,
the main steps of the process are presented in Appendix A.

2.3. Beam description in presence of body and contact forces

2.3.1. Unloaded beam

The unloaded beam description at the leading order is split into
sets of uncoupled equations (for bi-symmetric section) relating
forces and momentum to motions. The results can be written with
the unscaled variables x; by the inverse change of variable x; = £y,.
This leads to consider the physically observable quantities Q! = &'Q’
instead of the scaled quantities Q, and to express the parameters in
the system x; (i.e., practically, with the same units in the section
and in the beam axis). Furthermore, there is no constraint on the
relative order of magnitude of the uncoupled, hence independent,
mechanisms. For this reason, the exponent specifying the order
may be omitted (while keeping in mind that this is only the leading
order description). Finally, one obtains the usual Euler-Bernoulli
beam description in the absence of inner or external loading:

e Normal force N and mean vertical motion U;
Ny, =0; N=E|Sp|Ui,

e Transverse forces T,, momentum M, and mean transverse
motion U,

Ma,x] -T, = 07 Ta.x] = O§ M, = _EIOLUOL,X]Xl
e Torsion momentum M; and in-plane rotation of the section Q2
Ml.xl = 0? Ml = ,uItQ,xl

2.3.2. Loaded beam

Let us examine body forces b = big; - such that div(g)=bin S, -
and contact forces f=fia; - such that f=¢ -n=(g¢- g)@1 +0s-non
I' - that can be applied while being compatible with a beam
behaviour. First, they should not brake the axial/transerve scale
separation so that they may be expressed as b(x1,V), f{X1,»). Sec-
ond, they should be small enough not to disturb the leading kine-

matic of the section. This happens if b and f are of the orders:

by =eb;, fy =&} b,=eb, f,=¢f (10)

Indeed, in that case, the problems remain identical up to the fourth
one (see Appendix A). Only the equilibrium is modified by b and f
which averaged values on S, and I act as sources. Denoting:

i+2 i i+1 ' s
B :/Spbjds; Fit :/rfjd/

C4

.=
Sp

Giz/yxffd% G=a -/XdeV
r r

y,bids, Ci=a;- | yxDbds;
S

the balance equations become (the uncoupling of bending and tor-
sion requires that b} and f? respect the bi-symmetry of the section):
3 3 3
Ny, =Bi+F
4 4 4 4
Ma.x] - Taz = Ca + Gaz;

5 5 (5
Mi, =G +G

4 4 4
Ta.x] = Ba +Fc<

With the unscaled variables, the loaded beam description reads
(dropping the exponents since the order of magnitude of the com-
pression, bending and torsion mechanisms are independent):

U= (Ul + Xocux.xl )Q1 +U,a, + Qay x (Xocgzx)

Ny, = [ bidxydxs +/f1dxr; N =E[Sp|U1x
r

Sp

Moc‘)q -T, :/ szbl dXZdX3 + / Xxf1 er; M, = _EIQcUx.xlx,
Sy r
Ton — / b, dx,dxs + / Fudx;
Sp r

1\/11‘x1 = €lup </ Xab/ngZdX3 + /Xo(f/;er>; M] = ‘LLI[QM
JI

Sp

Smaller magnitudes of b and f leave the leading order unchanged
and such a situation can be treated as unloaded beam; conversely,
larger amplitudes are incompatible with a beam model.

3. Transverse behaviour of periodic parallel beams in a soft
matrix

This section aims (i) to identify the conditions in which fiber rein-
forced materials behave as generalized continua and (ii) to derive
the relevant modelling. The medium is made of a matrix (indexy,)
in which a periodic lattice of parallel identical homogeneous straight
beams (index,) is embedded with a perfect contact (Fig. 2(a)). The
characteristic dimension L along the beam axis is much larger than
the lateral dimension ¢ of the period (Fig. 2(b)) of area S=S,U S,
and boundary 8S; the typical size of the beam section h is of the same
order than ¢ so that the fibers are in finite concentration. This intro-
duces the scale parameter ¢ = ¢/L. The materials (,,,;,) are isotropic
elastic. Obviously, the contrast between the elastic properties of
the matrix and of the beam materials plays a crucial role:

e Without matrix, the beams clamped at their extremities are
governed by bending.

o If (mp) materials are identical, one has a homogeneous medium
governed by shear.

3.1. Contrast of beam-matrix stiffness

Section 2.3 suggests that, at the leading order of the upscaled
description, the bending will survive when the contact forces
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exerted by the matrix on the beam are of the order f; = &2f2 or
smaller, and conversely, that the action of the matrix on the beam
only remains when contact forces are O(¢?) or larger. Hence, denot-
ing the variables in the matrix and in the beams by ante-exponent
M P respectively, a description including both effects may be ob-
tained when:

fi=Poo-n=—("g-n)-a;=€f} onrl

Thus, under transverse motions the shear stress in the matrix
(M@ -n) - a; = O(, Uy, ) is smaller by two order than the zero or-
der reference stress on the beam O(ft,u,, ). The motion continuity
on I, imposes ™Mu,=0(u,), and the estimate u,Uyy, =
£20(14, Uy, ) imply:

Iy = 14,0(e%), and additionally 7, = 4,0(¢%)

The stiffness contrast has to be integrated in the asymptotic pro-

cess. In this aim, we rescale the elastic coefficients of the matrix,
taking those of the beam as reference:

/

I = W,0(6%) = W%, im = 2,0(€%) = i &*  so that

Moy = O(H,), 2y = O(iyp)

and the stresses in both materials are written in the form below:
Pa = jptr(Pe)l+2p,0e; Mo = (i tr("e)l + 210, "e]

The general constitutive law under general motions will be de-
rived in Section 4. To focus on the key point, this section deals with
dominating transverse macroscopic motions varying macroscopi-
cally according to the axial direction only. Because of the plane
geometry of the period, the quantities only depend locally on the
variables y, (Fig. 3). The motions of both constituents are rescaled
in the form:

L1

oS

Sm

Fig. 3. Fiber reinforced material section. Notations.

(b)

Fig. 2. Studied fiber reinforced material. (a) Periodic lattice of parallel identical homogeneous straight beams embedded in a matrix. (b) Period dimensions.

q=m,p (11)

This enables to extend to the matrix the formulation developed for
the beam and to express the balance equations and the perfect con-
tact conditions at the beam/matrix interface as :

a; direction:

qﬂ(X],yd) = 8(qu1)gl + quzxgod

100, + & 'divy(‘ay) =0 inS; q=m,p (12)
"o.-n=Fo.-n onTl (13)
’”ul = pul (14)
(az,as) directions:

101y, + & 'div,(0) =0 inS; g=m,p (15)
"g,-n=Pg;-n onTl (16)
muzga = pumga (17)

3.2. Homogenized transverse behaviour

The motions are sought in the form of S-periodic expansions in
power of &. According to the scaling (11) the terms of the balance
equation and the boundary condition in axial and in-plane directions
jump from a factor ¢2, and as the contrast of elastic properties is also
&%, it is sufficient to expand %u, and %u, in the even powers of ¢, i.e.:
qE — ZSZi [quiigi + 8("uf"“g1 )]

i-0

q=mp; "i(x.y,) S-periodiciny, (18)

The expansions of the stresses are:

PGy = Jpeudij + 21,05 = &' (o) +Paf + e(Pay) + & (Pay) + -
"oy = & (Imeudij + 2Uey) = e("ay) + & ("0F) + - -

3.2.1. Local problems in the beam and matrix

The analysis here below shows that because of the contrast of
stiffness, the problems in the beam and those in the matrix are
of different nature. As a matter of fact, the stiff beam imposes its
motion to the soft matrix (then governed by problems of Dirichlet
type) and in turn, the matrix imposes its stresses onto the beam
(then governed by problems of Neumann type).

Since g is at the most of order ¢, the presence of the soft matrix
leaves unchanged the resolution of the first and second problems
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(Appendix A.2) within the beam. Thus, disregarding the torsion at
this order (which is consistent with a macro-rotation of the same
order than the macro-distorsion) and the mean vertical motion
Ul(x;) (because the compression kinematics is independent of
the purely transverse kinematics on which we focus here):

Pyl = U0 = U2(x1>a1, Py’

Pl =rel =0, Pg'=rg"=0

=-y-US a; and

7)-¢%) reads:

= Wy ("u°) + 2 divy (Mu®)Is

In the matrix, the leading order problem ((15)-¢% (1
div,("g!)=0 inS, with™g]
my0 =y° onr
myu®  y-periodic on 9S

of which the solution ™u® = U°(x;) means that the matrix follows the
unlform translation of the beam section. It follows that "g! =0
then Mg = 0. Thus, the resolution of the third problem in the | beam
(Appendlx A.2) is unchanged giving the usual bending kinematic
and stress state:

Pu? =yUY,  EHPUR (%) + Q' (x1)ay x Y

oLX1 X1
. 1_pgl .
pg 7[(1]@(11*\)11(_)/ 7)(1)(1) pg _po-ngl ®a; fo n_f Py 7x1x1

At the next order, since g} =0, the problem in the matrix is

((12)-g; (14)-¢):
divy("g7) =0 inS, with"gf = w,["uj, + UM]
"up =Pup=-y-US onrl

myl  y-periodic on S

From linearity the solution of this problem, where the forcing term
results from the beam motion on I, is (1, are the particular solu-
tions for UJ, =1):

mul = (1/2),(y)U5,
(1/2)grad, (y,)Uy, ; ™0i=0; ™g?=0

Xy n ’ Zs

m,,1 m .
u = u1Q17

= :u/m [goc +

3.2.2. Global beam-matrix balance

The global balance equation along g, is derived by integrating
((12)-¢) over both S, and S, and summing. Using the divergence
theorem one obtalns (remind that "¢} = 0):

/pG‘]”ldS—i-/th ndy+/ (= )dy+/ mgZ. ndy =0
Sp r s

With the stress continuity ((13)-¢') and the periodicity, the inte-
grals on I" and oS vanish. Introducing the expression of P¢}, consis-
tently with the fact that the mean axial motion U? is taken to be
null, we are left with the trivial equation:

Oz/po—}l_xlds_ EUxm-/yds:O
Sp Sp

Now, multiplying ((12)-¢) by y,, integrating over S, and S, and
using the stress continuity ((13)-¢!) give the momentum balance
equations according to in-plane directions a,:

{ yx("aﬁ)dS} f/"gf-gudsf/ mg? . a,ds
Jsp o IS JSm

+ / V,("a? -mydy = 0 (19)
aS

Then, introducing the previous expressions of g} and ™g?, dividing
by S’ one obtains:

E,l
2 <1710 P po 110
<gt 'g05> iumclzy U/fxl - S Uax]xlxl

where, here and in the sequel, the mean value is denoted by (-), for
instance:

(gf):l, /”atds-s-/ mgds |;
IS'] Sn

(0" =+ / Pgds + / mgkds

= IS Sno

and:

. 11
Cllﬁ = {axlf + 27 LSYagrady(W/f) 'ﬂd"/}

Finally, the global equilibrium in directions a, is established by
integrating ((15)-¢2) over both S, and Sy, using the divergence the-
orem, the stress continuity ((16)-¢?) and the periodicity:

<gt2>.x1 =0

Recall that the physically observable stresses are g2 = ¢2¢? and not
a?. Coming back to the unscaled physical variables and parameters
expressed in the system xi(x,=¢&y,) since &, =y, and

&l,,,/S' = Ip+/S one obtains:

1 1 0 Eply 0 1 «1p
( ) Cla 2 U/Ex] S Utx X1X1X1 o C]oc = Zlumcloc (20)
(@), =0 (21)

3.3. Discussion and physical interpretation

Egs. (20) and (21) define the macroscopic behaviour of the rein-
forced material under macroscopic transverse motions Ug(xl)ga.
The balance equations (without body forces) includes:

o A classical shear contribution related to the distorsion Ugm. The
elastic coefficients only depend on the local geometry and on
the elastic parameters of the matrix. It is shown in Section 4.2.1
that they coincide with those given by the usual homogeniza-
tion approach in the case of infinitely rigid reinforcements
(Léné, 1978).

e A non-classical bending contribution related to the derivative of
the curvature U? - 1he bending inertia parameter is exactly
that of the beam (d1v1ded by the section). Conversely to usual
composites, where higher gradient terms appear as correctors
(Boutin, 1996), here the bending effect arises at the leading
order.

3.3.1. Generalized inner bending continua

The macroscopic behaviour differs from the description of com-
posites usually derived by homogenization (e.g. Léné, 1978; San-
chez-Palencia, 1980; Postel, 1985). Here we obtain a generalized
medium where the macroscopic variable is the translation U°
and the mean stress tensor (gz> = (0%) ® a1 + a1 ® (G%) combines
at the same order local and non-local terms related respectively
to the strain tensor e,(U°) and its second gradient. The behaviour
can be seen either as the one of the reinforced matrix loaded by
the body transverse forces induced by the bended beam (namely
the gradient of the momentum, T = M, ), i.e., with simplified obvi-
ous notations:
[CU-,X1],x1 = % [MJ‘I].X] ., M= E1U~X1X1
or also as the one of the beam loaded by shear force induced by the
reinforced matrix:

[T],, = S[CU, T-M, =0, M=EIUy;,

Ly

The reinforced media differs essentially from Cosserat media since
no out of plane rotation appears in the macro kinematic of the cell.



C. Boutin, J. Soubestre/ International Journal of Solids and Structures 48 (2011) 517-534 523

Note that, as the rigid beam “imposes” its motion to the soft matrix,
the stiffnesses of the beam in bending and of the matrix in shear are
combined “in parallel”. Thus, the internal mechanism drastically
differs from that of Timoshenko beams, where the bending and
shear stiffnesses are somehow combined “in series”.

Description (20) and (21) is similar to results derived by the
phenomenological approach (Sudret and De Buhan, 1999), to the
mathematical analysis of energy (Bellieud and Bouchitté, 2002)
and to the behaviour of reticulated media made of beams regularly
interconnected by tiny beams (Hans and Boutin, 2008). It provides
a generalization of the work of (Pideri and Seppecher, 1997), which
consider infinitesimal concentration of cylindrical fibers with ex-
tremely high modulus. Those latter assumptions lead to bending
effects but neglect the stiffenning due to fibers in the effective
shear behaviour of the reinforced matrix. Further, the extremely ri-
gid fibers avoid any kinematics involving non-uniform vertical mo-
tion. Such a restriction to in plane motions is overcomed in the
present approach, as presented in Section 4.

3.3.2. Macroscopic stress tensor and mean surface forces

By construction (g %) is the mean of the symmetric stresses, and
thus is a symmetric tensor. In the case of uniform strain, it reduces
to the Cauchy stress classically obtained for composites. Con-
versely, for inhomogeneous strain, the macroscopic stress does
not match the usual concept of Cauchy stress tensor in the sense
that, on a surface oriented by p (different of the cell surface i.e.,
p # a1), the average T(p) = ¢*T(p) of the stresses acting on this sur-
face differs from <62> ‘p= 32<0'2) -p as proven here below. By def-
inition of (g?) as the mean value of g? on S we have:

(@) a1 =(a}) =T(a)
However, for in plane orientation p, expression (19) provides:

(6% -4, = {{a?) - a,}a
/yoc Gt n) }

:{|: yozpo-
Sp

Considering rectangular ba51c cell S=|ha, x l3a3| the last integral
can be transformed into (taking for instance a, = a,):

1 L2 ,
S/ Gt y2dy lz 13 / [ Qt(y2113/2)

Is/2
—mgﬂyb—b/ﬂ~gﬂ@@h+1/lﬂub/mmgﬂb/zya

—(=hL/2)"ai(~L/2,ys)] 'de}’3}

The first RHS integral vanishes because of the stress y;-periodicity.
The second integral simplifies to give the average of the stresses
acting on the a,-oriented boundary of the cell:

p 1 ol3/2
S / nydy = /%/2

Consequently:

"gl(l/2.,y3) - Gadys = T(ar) - a4

(@*) - a, =T(a,) + # 1(ax)

[ v.oaiyas
Js,

X1

To sum up, the macroscopic balance equations apply to the sym-
metric stress tensor averaged on the cell section. However, the
non-zero divergence of the stress in the cell makes that the classical
Cauchy interpretation does not apply to this tensor.

3.3.3. Energy and boundary conditions
The higher order of differentiation in the equilibrium equations
modifies the nature of the boundary conditions. These latter can be

identified through the energy at the macroscale. Consider an infi-
nite layer of reinforced material of height H along g, take the sca-
lar product of (21) by a field test U° and integrate over the height.
One obtains, after two integrations by part:

O:A?fn

:_/ [1C1’3U2X]U° ~ Eploo g0
0

L Uldx,

Uﬂﬂﬁﬂﬁfww

2 Xy S o.X1 X1 X1
and
M g0 0 o Bl 0
o 2C U/‘MUIXXl S Uocxl)q oX1 X, dX1
_ E,l H
SR ST 22
0

The elastic energy (LHS of (22)) accounts for both shear and bending
deformations and balances the work (RHS of (22)) produced at the
boundaries (normal *a;) by the mean surface stress
(¢2) - a; = (6?) = T(ay) submitted to the motion U° and by the beam
momenta E””“ ng » submitted to the beam section rotations U3, .
Hence, accordmgly with the fourth degree differential equation,
two boundary conditions must be specified at each extremities, in
terms of displacement or stress as in usual media but also in rota-
tion or momentum as for beams. By construction of the macro-
scopic modelling, the interpretation of these latter conditions is
directly linked to the actual conditions imposed on the fibers. An
illustration of the influence of the type of boundary conditions is gi-
ven in Section 6.4.

4. Homogenized constitutive law of periodic parallel beams in a
soft matrix

The study is here extended to macro kinematic U = Uj(x1,X,)a;.
Since U; and U, may be of the same order, the reduced strain ten-
sors no more respect the orders given by (2). Hence the axial and
in-plane problems differ at each order and it is necessary to con-
sider full expansions:

U= Zs’g" = Zgiu}gj ie, u = Zs"uﬁ; Uy = Ze"u; (23)
i=0 i=0 i=0 i=0

Therefore, the set of balance equations becomes: a; direction:

qgn,xl + diVx(th) + Sfldivy(qgt) =0 in Sq; q=m,p (24)
(az,a3) directions:
"0uy, +divy("0s) +&7'divy("05) =0 inS;; g=m.p (25)

4.1. Leading order of motions

4.1.1. In the beam

Two independent problems govern respectively Pa,~!, Pula,
andPg;"', Pu?. They are given by (25-16) and (24-13) both at order
(e2—¢):

divy(Pg;") =0 inS,
pg;1 = Z,upgsy(i'yo) + ’lpdivy(pﬂo)gs

Pg;l.ﬂzg onl

divy(Pg;') =0 inS, with?g,' = u,("u}, )a,

Pg;l-n=0 onTl
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The solution is a rigid in-plane motion of the section and an out of

plane translation:
Puf = Uy(®) + 57 ()@ x yl,, "ui= Uj(x) and

1=0, Pg'=

o

We again assume that the macro-rotation is of the same order than
the macro-distorsion and therefore we disregard the torsion at this
order by taking &' =0.

4.1.2. In the matrix

Similarly, two independent problems govern respectively
mg,!, mula, and ™g!, ™ud. They are given by (25-17) and (24-
14) both at orders (& — °):

div,("g!) =0 in’S,
mgl = 24, eq("u0) + A, divy ("u®)ls
m0 =U% onT

myd  y-periodic on S

divy("g{) =0 inS, with"ag! =, ("}, )a,

myd = U on Tl

myd  y-periodic on 9S

It is obvious that the matrix motion is homogeneous and identical
to that of the beam:

muO _ pHO _ QO(K) and mg—l _ 97 m

IS

=0

4.2. Leading order of the beam and matrix stresses

4.2.1. In the axial direction

The governing problem in the beam is defined by (24-13) at or-
ders (¢! — &%), i.e., using the results of the previous order:
{ div,(Pa?) =0 inS, with?a? =, (vul, + (U5, + U2, ] e,

Pg® n=0 onTl

and in the matrix by (24-14) at orders (¢! — &'), giving with the pre-

vious results
div,("g?)=0 inS, with "g? =, (mu} [U?xi + U“]D
mul =Pul onrI
myl  y-periodic on S

This is the sequence of problems already solved in Section 3.2.1 ex-

cept that now the forcing term ey (U°) = (1/2)[U},, + U, Ja, in-
cludes UO‘Xy. Consequently:

pu% = —ZX‘th(QO) +Ul(x); Ped=

=, (¥)ewxa(U

0; Pg?=0

)+ UL ®); 07 =240, [0, + (1/2)grady (¥,)]ewa(U°)
By construction, ¥/, only depends on the geometry of the period.
Further, since the imposed displacements on I" correspond to a zero
inner deformation of the beam (Pe? = 0), r,, are the solutions that
would be obtained by usual homogenization of composites — with
this geometry and under out of plane distorsion - in the case of
an infinitely rigid body occupying S, (Léné, 1978). For a bi-symmet-
ric cell, the solutions , respect the following properties:

l//ot(yw.y/f) = _l//a((_ycuy/f); l//a(ycuy/f) = ‘//34( o _y/f) (26)

4.2.2. In-plane directions
The in-plane governing problem in the beam is defined by
(25)-(16) at orders (e~ — &%), i.e., using the previous results:
div,("g%) =0 in,
P00 = 21ty ey (") + a(U°)] + 5 [divy () + divi(U)] s
Pgl-n=0 onrl

The solution is derived by building an in-plane motion Pv! where
the local plane stress is identical to the plane stress induced by
the 3-D motion U°, i.e.:

2/1ye5(U°) + pdivi(U°)Ls = 244,85 (P¥") + Zpdivy (PY1)s
Observing that:
ey(ex(U°)y) = ex
we must have:
)~DU(1)‘X1 L= zlupgSJ’(pyl - ESX(QO %) Wi

The left hand side isotropic term due to the axial gradient of the ver-
tical component can be written as v, U?.x, 2,859 (y) + Zpdivy (y)Ls]
and finally:

(U%) and  divy(ex(U?) -y) = U

Xy

)+ Y) + Apdivy (P — e (U

P! = e (U°) -y + VUl y

From the same reasoning than in Appendix A.2 (third problem), it

follows that:
ey(Pula, +°v')=0 and ?g? =0

Consequently, Pula, + P! is a rigid in-plane motion of the section,
and:

—ey (V') = —ex(U%) - v,

ey(u') = Ul s (27)

The in-plane strain field in the beam is:
Pel = ey (Pu') +ex(U’) = —ey (V') + ex(U°) =
= v, U9, I

1x25

ey (VpyUiy,)

and the isotropic elasticity relations (4) lead to the normal stress
and strain:

I’e —U?x;

Pg0 = E,U8

1.x1

4.2.3. In the whole section
Accounting for the above results, (25-14) at orders (&'
the constraint (27), give:

@y(’"gﬁ) =0

"2 = 240 e (M) + e (U°)] + Jpy [divy (") + div(UO)

—¢')and

in Sy,

ey(Pu') = —en(U%) — Ul I in'S,

my 1 _ pyyl
u,="*u, onrl

Myl y-periodic on S

This is a 2D elastic problem in which the forcing terms are gx(UO)
and U0 »+ The existence and uniqueness of a zero mean value solu-
tion is established from Stampaccia theorem in a similar way as
Levy and Sanchez-Palencia (1983). Consider the convex K of the
in-plane motions u = u,a, within S(™u in Sy, Pu in Sp) such that:

K= {g, C',S-periodic; ey(u) = —ew(U°) — VU], I in Sp; / uds = Q}
= = - s

Noticing that the balance of "g? simplifies into:

divy("g’3) =0 inSm; " = 2ueq(Mu") + 2y divy("u')Ls
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we have for any field v of K:

0= [ divy("g%?)- (v~ "u")ds

= —/5 mg'? - ey(v—"u')ds - /F(mg’ﬁ -n) - (v—Pul)dy

By construction gsy(y—”g1)=g in S, (including I" =9S,), so that
v —"Pu! is an in-plane rigid body motion of the form A+ Ba; x y.
Thus, the last integral representing the virtual energy £” in the sec-
tion S, becomes:

/_\-/’"Q’?-Qd"/fBgl : /('"Q’?-ﬂ) x ydy = &
r - JI 7 -

By considering the limit case of a composite where the inclusion
(index i) becomes infinitely rigid compared to the matrix (Léné,
1978) has shown that:

&=0

The physical reason lies in the fact that, as the stresses in both
materials are of the same order (¢ = O(u,,™u/l) = O(u;'u/l)), the elas-
tic energy in the inclusion, £ = O(y;('u/l)?), becomes negligible
compared to the energy of the matrix, £™ = O(u,,(™u/1)*), when
the inclusion tends to be rigid: £ /6™ = O(u,,/;) — 0. Besides, the
divergence theorem applied to div,("g’?) (with the periodicity)

and to div,(™g'2) x y provide (see Section 2.2.3):

div,("gds = [ "o -ndy — 0
Sm - r —

div,("g?) xyds = [ ("% -n) xydy =0
JSm - - rues -

so that the vanishing of & implies:
[ g% mxydy =0 (28)
s -

Finally, we are left with the problem:

YweK A(Mu',v-"u')=0;

Awv) = [ 24w+ e + Zydivy w)div, (v ds

m

where the solution u' in S is unique since A is a bilinear symmetric
coercive form. By linearity, the solution (of non zero mean value)
reads:

1a; = o U%) + v X (y)US,, + Ujas
U; a5 = D (Y)ews(U”) + X (VU7 ,, + Uz 85

where the 2D in-plane fields @* and Y = ®**= @??+ $>3, are
respectively the particular zero mean value solutions for e (U°) =
(ay® ap+a; ® a,)[2 and U?»X1 = 1. By construction, ®** depends
on the period’s geometry of and on v,, As the imposed displace-
ments on I" correspond to a zero inner deformation of the beam
section (Pe? =0 when U?‘X1 =0), @* are the same solutions that
would be obtained by standart homogenization of composites -
with this geometry and under e, (U°) - in the case of an infinitely
rigid body occupying S, (Léné, 1978). In accordance with the con-
straint (27), ®** consist, within Sp, into a rigid body motion (of
translation ¢*# and rotation 0*#) and the deformation field associ-
ated to the imposed unit strains, i.e.:

Qaﬁ = 91[3 + ngl X X - (yocg/i +y/ig1)/2 in Sp

In the case of bi-symmetric cells, the solutions ®** respect the follow-
ing properties of symmetry (no summations on repeated indices and
o # B):

PPV ¥g) = D7 (Vs Vp)i B Vo Vp) = —P7 (Vo =)

(I)Z“Q’WYﬂ) = _¢§fx(_y17y/f)§ @gx(wa’/f) =DV, )

PV Vp) = P (Yo ¥p) PV V) = =P Vo, —¥p) (29)

and consequently 0** =0, and ¢*/ = $**=0.
The in-plane stress state in the matrix is given by:
"2 = (200, (s (D7) + SurSpn) + Sy (divy (D7) + 5y (U°)
2 Ve (PM) 4 20 (Vpdivy (@) + 1)0,5]U9 (30)

1.
Finally, the normal stress is:
maR =20, U7, + A [divy (Mu') + div, (U°)]
= 2p,U3, + 2y divi (U°)] + A [vpdivy (@) U7

1.x¢

+divy (87)ey; (U°))
To sum up, the leading order of the stress in the matrix reads:

mgz _ C’( gX(QO)

=

and can be formulated with the usual 6 x 6 matricial notation:

"ot oy o o ¢ 0 0 exi(U%)
a3, oy oy 0 0 | exl
"o | _ | ch o o o 0 0 || eas(U)
"% ¢y ¢y oy 00 exs3(U°)
me2, 0 0 0 0 o 2 ex3(U0)
meg2, 0 0 0 0 cof ex2(U°)

where, without summation on repeated indices:

Ol = [l 4+ vpdivy ()] + 24855 ¢ = 23,1 + divy (7))

o = Ton[1 + divy (@7)] + 2000, 355 + €5 ()];

Chy = A1+ Vpdivy ()] + 2445, vp€5(T)

s = 241 +2e23(@7)]; =20, [1+ (1/2)y,, ] (31
i =22, divy (27); 5 = 2445, Vpe23 (D)

Cr = 2l divy(97) + 215,€40(9P)]; - €35 = 2pip,e03(™)

oL
A3 __

VA . /
C3 = tm¥ay,:  Ciz = Um¥sy,

This ends the resolution within the matrix. In the beam, the
leading stress and the first order displacement are given here be-
low. Conveniently, in-plane rotation of the section is decomposed
into the in-plane rotation w0 inherent to U° and the additional
torsion term PQO%(x):

¢’ = EUl, a1 0 a4
Pu' = U'(x) - 2y - ex(U%)ar — y - ex(U°) — vpyUs
+PUL(X) + [P0 (x) + P2 (0))ar x y

PUL(X) = ™ euy(U°) + vpop™ U,

PO (x) = —(1/2)curl (U°) - ¢y = (U3, — US,,)/2
PQ(x) = 0" ey (U°) + 1,007, — (U3, —U3,,)/2

4.3. Global axial balance at the leading order - First order of the beam
stresses

4.3.1. In the axial direction
The next order field in the beam is governed by (24)-(13) at or-
ders (¢2 — &'). As Pg? = 0 and "g! = 0, one obtains :
("‘7?1)%l +divy(Pg{) =0 inS,
pgt1 = :up(pu%.yu + [pu},xq +pu;,x1])g1
Pgl . n=0 onTl

Here (?67),, acts as a source term and [Puj, +Pu}, ] as forcing
term. The condition of compatibility of the source is established



526 C. Boutin, J. Soubestre/ International Journal of Solids and Structures 48 (2011) 517-534

by integrating the balance equation on S,. This provides the axial
balance equation at the leading order:

I

Thus, the source term vanishes. Now, the determination of Pu? is
performed in two steps.

First, the forcing term related to Pu' — PQ%x)a; x y can be di-
rectly integrated and provides a first contribution Pv? (disregarding
the integration constant) to Pu?:

= \S;\("O'g)’xl =0 ie.: [E U”]] u =0 (32)

X1

Vi = -2y -ex(U' +7U))
+ {2y gradifen(U%) -y +y - [ex(U)],, -y + v 1°US,.  } /2

Consequently Pu' — PQ%x)a; x y does not create any out of plane
stress in the section.

Second, the problem related to PQ%x)a; x y is identical to the

wrapping problem in the beam, see Appendix A.3. It results that
the second contribution to Pu? reads W(X)PQS‘]. Finally, summing
both contributions and including the integration constant, give:
P = PUR(X) +7V3 + w(y)P 2, (33)
and the stress Pg! is exclusively due to the vertical gradient of tor-
sion PQ) :
Pel = (1/2)[grad,(w) +ar x yP Q%5 "ol =21,%e} (34)
The properties (61) (Appendix A.3) of the wrapping stresses vector
{ = u(grady(w) +a; x y) yield to the vanishing of the mean value of
Pgl and the skew symmetry of fs,, y®Palds:

/ Pgids =0
Sp

ly®Po! +Po! ®ylds=0 hence

y-Palds=0
Js, Jsy

Denoting by [, the “wrapping inertia” 7, (=
section, cf. Section A.3):

I;, for circular beam

Ty = /5 V2(Wy, +¥,)ds = /s Y3(=wy, +y3)ds
P P
one has:

y®Palds =y, 7P [a ® a3 — a3 ® @] (36)
Sp :

4.3.2. In-plane directions
The problem in the beam defined by (25)-(16) at orders
(e° —¢"), simplified by the results Pg? =0, Pg? =0 and "g' =0,
takes the form:
divy(*gj) =0 in$,
Pay = 2440y (PU%) + €5 (PU")] + Ap[divy (Pu?) + divi(Pu")]Ls
Pgl.n=0 onrl
The resolution is close to the one developed for Pg?. Recalling that

€4(&%) =y.ls and noticing that the in-plane field gradsx(y _;X(UO)
v) has the following plane strain:

-gsx(Qo) X)) = ZESx(Esx(QO) -X)

the plane stress induced by Pu! is re-expressed as the plane stress of
the in-plane motion Pv2, i.e.:

ey (grady(y

2,85 (Pu') + Zpdivy(Pul)]ls =
v=enU') y+ VU, Y —

_(1/2)[@“(,2:9(( )

It follows that:

2# o8y (PV7) + Apdivy (PV)s
Vplewa (U°)] 4, &
¥) + vplyPgrads (U3, )]
ey ("8, +7v{) =0 and Pg; =0
Then Pu2ga, + Pv? is a rigid in-plane motion of the section, and:
Puia, = =PV + Uz (x)a, + Q' (x)ar x y (37)
The in-plane strain field in the beam is:
Pe; = ey (") + ex(U') = —ey ("v;) +en(u)
= uy<vpr1 0~ 29 eoa(U0)] )
= —Vp(Uiy, — 2Valeoa(U%)] ks = =VpPUi, Is

The isotropic elasticity leads to the normal component that ends the
determination of both stress and strain states (Pe! and "gl are given

by (34)):
1 1 1 1 1 1
e, = pul.xl? Pel =g ®a - Vp!S]pul.xl +re wm +a @Pe
1 1 1 1 1 1
Po, =Efuy,; Po =Poqi@a +70; @ a1 + a1 @70,

4.4. Global momentum equilibrium at the leading order

4.4.1. Axial direction

The global balance results from (24-13) at orders (& — &2). As
mgl = 0, one obtains:

(Poy) 5, +divy(Pal) +divy(Paf) =0 in S,

divy("g?) =0 in S,

Po¢-n="g;-n onl

In a similar way than in Section 3.2.2, the normal (scalar) global bal-
ance equation is established:

{/ Polds| +divy /”ofds] =0 ie.,from(35-a):

Sp X1 Sp

E, S, |U}X =0 (38)
PIs X

This equality is identical to the axial balance at the previous order. It
leads to identical result shifted of one order and hence can be dis-
regarded. Following again Section 3.2.2, the momentum (vectorial)

global balance equation reads:
+div, + / ("a? - n)ydy
s -

{ / Pglyds
Sp = X

=[S'|(a?) (39)

1
@) =5, < /S Po2ds + /5 mgfds> (40)

As Mg?, Pgl and Po] are already known, the relation (39) provides
the mean stress (g?). Notice that according to expression (36):

/ y®Palds
S,

div,

y®’a} ds} = p, Jcurl, (PQ5, a)

Sp

4.4.2. In-plane directions
The global balance is established from (25-16) at orders (&' — &2).
Using the results Pg! = 0 and '”g] =0, the problem takes the form:
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(Pal),, +divy(Pg?) =0 inS,
div,("g?) =0 in S,
Pg;-n="gg-n onl

Consider first y x div,(4¢?) and integrate on S, Making the usual
integral transformations (Section 2.2.3) with the divergence theo-
rem, the stress tensor symmetry and the stress continuity on I,
one obtains with the help of (28):

yx ("g?-nydy =0

Jos ™

{ y x po’ds} =-
Js, M

This result associated to the skew symmetry of the tensor y @ g
(35-b) proves that:

0 and from (36) Q% , =0 (41)

Jsp

y ®”gtds} =0

X1

Considering now y ® div, (“¢?) and integrating on S leads, with the
divergence theorem and the stress continuity on I, to:

/Pg§d5+/ "gids = | y® ("gZ n)dy+
JSp Sm J oS

y®ePa, ds}
JSp x
and, accounting from (41) the tensorial equality that defines the

mean stress (g?) reads:

o) =50 [ye ey (42)

4.4.3. Mean normal stress

The mean normal stress (¢2) remains to determine. For this, we
have to come back to the linear problem governing Pg? :

("ai), +divy(Pg?) =0 in Sp;

Pa? =2t ey (PUP) + e (PU?)] + Ap[divy (Pu?) + divy(Pu?)]ls

Pay-n="gi-n onl
The solution is decomposed in three parts associated to the forcing
terms (i) of “bending” induced by Pu?, (ii) related to the confining
exerted by ™g?, and (iii) of torsion associated to *g!.

For the “bending” contribution (denoted with ante index )

associated to the Pu-forcing terms (taking mg2 —0 and
Fal],, = 0), we have:

| Petas= [yera-may -0
Sp r

With this result, the integration of relation (4) on S, provides:

pb 2 pb a2
/ o.ds =E, exds
S S

thus / tr(**g?)ds = 0
Sp =

Further P’e2 = Pu?, , and according to (33):

Pufy, =0, — 2y - [ew(U' +PU)],, + {2y - grady([en(U°) -y,,)

+Y - (€U gy, Y+ VoYUl /2 + WP QS
After integration, the Pu?-forcing contribution is (recall that
fs,, wds = 0, see Appendix A):

+EP tx[U +2U2x1x1x1]/2

1.% 1.X1 XXy

/ Phg2ds = Ey|S,|PU;
SP

+ vPEP(IpZ + 1;3)/2U1 X1X1X1

For the “confining” contribution (ante index ), taking [g}], =0
and Pu? = 0 (then e = 0), we have:

/ Pogds = /FX®('"g?-ﬂ)d"/; and "o} = vytr(*g?)

Jsp

Combining both results with the expression of "g?2 yields (dimen-
sionless moduli DY, are O(1)):

/SPCO' ds = Vp/y "g? - ndy = Vo i (DY UY 1x T + DY ex(U°)]
P
Finally, for the torsion contribution, (ante index ), taking "g2? = 0
and Pu® = 0, then P'e2 = 0 and P g2 = v,tr("*g2), we have:

[ s [ yeral),ds

SP SP

then from (35-c)

/ tr(”fgi)d5=[ y-”QEdS} =0
JS, - Jsy

X1
so that the torsion contribution vanishes: @ ]5 Pig2ds = 0. To sum
up:

1 I, Iy +1;

2 _ 0 0 p3 0
m SppO'ndS |:2|S/|(U1x1x£x7 ZUa,x7x1x1)+vP 2|5/‘ U1x1x1x1
| |
|57 U%xl +D/“U(1)x1 +D/10;/fexa/f(uo)

4.5. Global in-plane equilibrium at the leading order
4.5.1. Axial direction
The global balance results from (24)-(13) at orders (&! — &%)
(Po7) 5, +divy(Pa?) +divy(Pa?) =0 in’S,
("07) x, +div("0?) +divy("a?) =0 in Sy
Pg?-n="gi-n onT

The integration and the usual transformations give the normal bal-

ance at the second order:
+ divy / Pgds + / molds| =
Sp Sm

{/ ”Gﬁder/ mg2ds
Js, Sm

(02) , +dive((a?)) =0

X1

This equation generally provides a corrector of the leading and first
order Egs. (32) and (38). Nevertheless, when U, is independent of x;,
the two previous equations become trivial and the normal balance
is governed by the present equation. Two momentum balance equa-
tions could also be established. However, in any case, they consti-
tute the first corrector of (39) and are not necessary for the
leading order description.

4.5.2. In-plane directions
The global balance is driven by (25)-(16) at orders (&2 — &) with
"g'=0:

Pat,, +divk(Pa?) +divy(Pg3) =0 in'S,
"aty, +divi("g3) + divy("gg) =0 in Sp
Pgd.n= "gi-n onrl

The compatibility of the source term gives the leading order of the
in-plane macroscopic balance:

V ngds+/ mg2ds +di/x{/ "dis+/ mgﬁds} =0
JSp JSm S Smo

(67) , +divc((g?)) =0

X1

4.5.3. Equilibrium with body forces
If the medium is submitted to body forces b = &2b?, the only
modification occurs in the balance equations of g that become:
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(62),, +dive((a?)) = (b})
(62),, +divy((g2)) = (b})a,

That is, in the usual compact form:

div,((g*)) = (b*)

4.6. Synthesis: macroscopic description

The above results extend the description (20) and (21) limited
to purely transverse kinematic. As the first order axial balance does
not introduce any information compared to the leading order it is
disregarded. After coming back to the physical unscaled quantities
(Q =¢€2Q?%) and parameters (Am,tm Ipw|Spl,|S|), the complete
description is summarized as follows:

U) = U0) + 2020 + - = U0 + 0" () + -

(@)(0) = (8")X) + (02 () + - = (8% (%) + (&)%) + -
divy((g®)) = 0

@) =5 U@ 0a

div,((8%) = (B)

(@) =C: e+ BT, aea -5

|S‘ 1.x1

Ipp +1
§: - {2|S|<[U1X1+U2X]:|X1X;(+[U1Xy}X1X1:|)+vp P22|5|P3

[ lxl]x,xl}al @

HEEUY, +UY o, (@1 @0, +8,@01)

S’ = w,Jplar ® curl,(°QS, ay) + curl, (P25, a1) @ ay]

The non-zero components of the macroscopic elastic tensor

({ij} = {11,22,33,23}) and the wrapping inertia coefficient are given

below where ¢, have the same expression than c}j except that
, I, are replaced by Am, tm:

Ch = @ {/ cfyds + vy LYaCZ/fnﬂdV}

Co’ﬁ ‘S‘/yf)(c;]ionad’y

Clx = ‘S| / yotclé ‘)ds
Ip :J / Y2 (Wy, —¥,)ds = —/ Y3(Wy, —ys)ds
S| Js, S

The macroscopic behaviour is that of a generalized medium and
comments made in Section 3.3 also apply here. The kinematic var-
iable is the translation U and the mean stress @2) combines at the
same order, (i) local terms related to the strain tensor e,(U°) and Q}Xl,
and (ii) non-local terms related to the second gradient of the strain
tensor. This leads to decompose the mean stress tensor (G %) into the
“Cauchy” tensor related to the reinforced matrix and the “non-Cau-
chy” tensors S and S’ related to the beam. Following the reasoning
of Section 3.3.2 we have: (¢°) - a; = T(a;) while (¢?) - a, = T(a,)—
(S-a,+ S -a,). Tensor S arises from the bending, the Poisson effect
under inhomogeneous compression, the effect of inhomogeneous
confining, S’ is due to the wrapping under torsion. Note that, be-
cause of (41):

(43)

divi(S') = 0

The formulation can be simplified in two ways:

o From the leading order balance equation U? g = = 0. Thus, the
second and higher derivatives of US vanish in (o 2) (in presence
of constant body force along x;, the third and higher derivatives
vanish).

o for bi-symmetric cell, the symmetry (26) of Y, (29) of &*/,
implies from the expression of the local stresses (31), that
Ch=CP =C=C5=0.

Because of the large contrast in stiffness and of the parallel ori-
entation of fibers, either the strain tensor components are all of the
same order and the normal stress is of two orders higher than the
other stress components, or conversely, the stress tensor compo-
nents are all of the same order and the normal strain is of two or-
ders smaller than the other components.

In the first case, the leading order description is:

U(x) = U)(x)a; + -+ -
[(6)ul,, =0

[(6%)si + Sil , = (B3); (&

(0)(x) = (a*)(x) + (G*)(X) + -
(0% = EpSS U?)q

Lo,

|S| axlxlxl

)i + Sy = Cgiexij(u ) — i Ep &

The corresponding energy formulation for a infinite layer of rein-
forced material of height H along a; combines terms of different or-
der of magnitude and reads:

/0{ LY, 4 S edl)

Sp
- [t v+

EM

ex(U’) +

Illlﬁ

7 }dx]

(8 +S) @) U+

E [Pa UO UO :|H
0

S 0LX1X7 = 0LX]

H .
+/0 (B°) - Uodx,
(44)

Hence, the boundary conditions are expressed in terms of displace-
ment and stress for the components in the axial direction a,, and,
for the in-plane components, in terms of mean stress and transverse
motion and rotation and momentum (these latter conditions being
related to the actual conditions imposed on the fibers).

In the second case, the leading order description is:

U = US@)a, + B3@a +-: (@)K = (6 + -
div,((a?) + ) = (b')
(@%) +8' = C: edUjas) + @ ® iE, |‘S"|‘ ui,,

I
B IgT{ US iy (@1 @0, + @, @ @) — Uy, @4 ®g1}

The corresponding energy formulation reads:

[{a2@, 7 jew): caw) s B, 7

Jo Vs Pin) #3880 2 &EF 6 Py

ElL, _ s S
B )TR = [ O30+ (@) 48)-00)

E plpa U o Eplps U° U2 o B . uod
S o.X1 X1 ,<x1+ S ( X xl) 1.x + <_ > -Uraxy
o Jo
Thus, the boundary conditions for any direction of the components
are expressed in terms of mean stress and transverse motion and
rotation and momentum.
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5. Models for other beam/matrix stiffness contrasts
5.1. Very soft matrix or matrix as stiff as the beam

A change in the order of magnitude of the stiffness of the matrix
is directly reflected in the order of magnitude of the stress in the
matrix.

Consequently, if the contrast is increased to have extremely soft
matrix with g/, < 0(&?), following the arguments of Section 2.3,
the beam at the leading order works as in absence of matrix. The
medium will behaves as an assembly of parallel beams and the
constitutive law will be given by set (43) disregarding the matrix
contribution C : e, (U°).

Conversely; if the contrast is decreased so that u,/u, = 0(1) i.e.,
a matrix as stiff as the beam material, the classical homogenization
results apply and the model is a Cauchy elastic media. The elastic
tensor (orthotropic because of the cell geometry) differs from C
since the stresses and strains in the matrix and in the beam are
of the same order. The local deformation in the beam does not re-
spect the usual beam kinematics. The non-local terms are masked
at the leading order and would only appear in the correctors as
studied in Boutin (1996).

It remains to investigate the intermediate contrast i, = upe.

5.2. e-Soft matrix

A contrast u, = p,0(¢) imposes to consider full expansions in
power of ¢ as (23), and the balance equations are (24) and (25)
while the expansion of the stresses in the matrix is now (using
the rescaled coefficients p, = /¢, 4, = im/€):

2m 2

"Gi = &(Ameukdij + 2L, 5) = a +&" a +&"oj + -

5.2.1. Leading order of motions and stresses in the beam and the
matrix

The problems driving the leading order of motions are un-
changed (although the stress in the matrix is one order higher).
As for the leading order of stresses, one obtains the same sequence
of problems and the solution only differs by the order of "a. Thus,
with the same notations: B

°(x)
le ()_‘) [ (X)etxot( )]al+¢ﬁ(y) ( )JVTO/) 1.x

Pg1=0
Pg =E,U7, a1 @
mg?=0
"ai =24, [0+ grady (,)]ens(U°)

S
m._‘ -

Top = 2145 (8o (D) + 0 Opy) + Iy (ley(@"Hfsm) Sup)@xin(U°)
+ (20805 (1) + Ay (v (T) + 1) ]US .
moL= [2/1;,1+2;,1dlvy(7)]U1_X1 + 2 [dlvy(gxﬁ)ga/i(go)+diVX(Q0)] (45)

5.2.2. Global axial balance at the leading order and first order of stress
in the beam

In the axial direction the fields are governed by (24-13) at orders
(&2 — &), with Pg? = "g? = 0. Here ™g] # 0 and one obtains:

(I’J?I)VX1 +divy(Pal)=0 in§,

divy("g!) =0 in S,

gl -n="g{-n onrl
The condition of compatibility of the source term (°gy), is estab-
lished by integrating the balance equation on S, and S, and by using

the continuity and periodicity condition on I and 8S. This leads to
the same leading order axial balance equation:

&

Thus, the source term vanishes and the problem is reformulated in a
more compact form:

div,(%g})=0 inS;, q=m,p

4g!-n continuous on I'

igl -n y-periodic on oS

—1S,[P09], =0 ie.: [EU, ], =0

X1 1. ] X1

X1

The leading order description does not need the fields within the
beam. Taking the scalar product of the balance equation by y, inte-
grating and making the usual transformations give:

/ Pglds + / "glds = / ("a{ - n)ydy
Sp Sm o

In the in-plane directions the problem defined by (25-16) at orders
(e° — &), simplified by the results Pg? =0, Pg? =0, and ™g? =0,
takes the form:

divy(‘’g{) =0 inS;, q=m,p
igl-n continuous on I’
igl-n y - periodic on §S

As above, the resolution in the beam is unnecessary. Taking the ten-
sorial product of the balance equation by y, integrating and making
the usual transformations gives:

/Pg;ds+/ "glds= [ y® ("al n)dy
S Smo a5~ B

i.e,, the same expression of the mean stress (shifted of one order see
(42)) as for a £2-contrast.

Finally, proceeding as for a ¢2-contrast, the mean normal stress
in the beam is deduced from the linear problem governing ?g!:

divy(*g;) =0 in§,
POy = 24,0y ("u?) + e (Pul)] + Ap[divy (Pu?) + dive(Pu') ks
ng .H:mgg -n onTl
The solution is decomposed in two parts associated with the forcing

induced by Pu' and ”‘g;. Both problems have been solved in Sections
4.3.2 and 4.4.2. Combining the contributions yields:

1 S|

= / Polds = Vpﬂm(D/111] 1 + D es(U°)) + Ep -2 U} x]

IST Js, Ny

and, at the first order, the unscaled expression of mean normal
stress in the section reads:

(Ghy = ¢ /”(ﬂds+/ mglds
IS S

11770
=CUi,, +

" Sp
+ Cllew (U°) + E, ||5‘| U; X

5.2.3. Global balance and constitutive law at the leading order
In the axial and in-plane directions, the global balance results
from (24)-(13) and (25)-(16) both at orders (¢ — &2). These two

sets can be expressed in the compact form:
div,(1g") + div,(‘g?) =0 inS;, q=m,p
g% .n continuous on I’

g% .n y-periodic on 8S
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Integrating on Sg leads - with the help of the divergence theorem
and the stress continuity on I' - to the following macroscopic
description (including body force b' = eb'):

div((g%)) =0 (46)
(@°) = a1 ® ¢4E, % Ui, (47)
div,((@")) = (b") (48)
(@) =C: el +a ®glfp%l7%,xl

For this intermediate contrast, the leading order behaviour is that of
an elastic Cauchy media, where the elastic tensor is the same than
for a &2-contrast. The non-local (bending, ...) effects are of one
smaller order, then masked. However the local deformation in the
beam still respects the Euler-Bernoulli beam kinematics.

6. Application to real media

This section deals with the practical applications of the theoret-
ical results. This question is treated with the example of a periodic
reinforced layer made of by-symmetric squared cells of area S = ¢2,
with fiber of section S, =h? ie. a surface concentration of fiber
c=5p/S= (h/¢)?. The medium is assumed of infinite lateral exten-
sion, of finite height H > ¢ along the fibers and submitted to trans-
verse shear U°(x;) = Ug(xl )a, for which the non-local effects are
necessarily present in the case of &2-contrast (conveniently, the
motion is supposed along a, and U3 is denoted U to save notations).
In addition to the geometric lengths ¢ and H, we are able to define
independently two physical lengths, namely the macroscopic
length related to the phenomena and the intrinsic length related
to the microstructure.

6.1. Macroscopic length and relevant description

Real media are of finite geometrical dimensions and constituted
by cells of finite size. This mismatch between the reality and the
ideal conditions of homogenization stipulating that the scale ratio
should tend to zero implies that:

e The homogenized descriptions are only approximations of the
actual behaviour.

e An argument has to be proposed to identify the relevant
description for a real media, i.e., the appropriate scaling of a
finite stiffness contrast (indeed if ¢ — 0, the generalized media
would only exist for infinitely soft matrix!).

The answer to this question lies in the assessment of the mac-
roscopic length L. This latter is evaluated by a dimensional analysis
at the macroscopic scale:

-o(i2)

This estimate is consistent with the asymptotic expansion since the
increment of the macroscopic variable on one cell, ¢9, U, has to be of
order ¢ compared to its current value, U. This implies the equality:
20U = 0(eU) = O(¢U|L), leading to (49) (Boutin and Auriault, 1990).

In a given material, the assessment of the physical macro-length
L enables to quantify the actual finite scale ratio & = ¢/L for the con-
sidered phenomena. Then, the known finite stiffness contrast of the
real media can be equalized to the physical scale ratio ¢ at a partic-
ular power. This latter power - replaced by a close integer -
supplies unambiguously the physical scaling consistent with the real
problem in consideration.

Performing homogenization with this particular scaling consists
in replacing the actual finite value & by a mathematical ¢ that one
makes tend to zero. Doing so, by construction, the relative orders of
magnitude of the physical terms are kept identical whatever the
cell size is, and consequently for both the real cell (finite ¢) and
the continuous model (infinitesimal ¢) obtained at the limit. Final-
ly, the real structure can be considered as an imperfect realization
(for the small mathematical value ¢ = &) of the homogenized con-
tinuous model built with the proper scaling. The smaller ¢ is, the
better would be the continuous approximation.

Thus, in real cases it is possible to define physically the appro-
priate continuous macro-description, provided that the macro-
length L is reliably estimated.

6.2. Intrinsic length versus stiffness contrast

The generalized media description (20) and (21) includes the
other descriptions as degenerated cases. The leading order govern-
ing equation, valid in the absence of body forces or for perturba-
tions from equilibrium in the presence of body forces, reads:

1 E,l
Cg 2 UJ‘1X1 - ﬁ U,X1X1X1X1 =0 (50)
Rewritten in a dimensionless form and accounting for the neglected
term O(¢) (relatively to the leading terms) one has:

Ul 21U 2E,l
BP0, = 51
£ =0 e (51)

where £ is the intrinsic length of the generalized media. Assuming a
small amount of reinforcements C}~2u, and Iy/|S|=h?/
(12¢%) = c?¢?/12. Consequently:

~ EP _ — .
L~ (c 20 thus £=0(¢) when E, = 0(u,,);
L> 0(¢) when E, > O(4,,)

The formulation (51) enables to relate the nature of the behaviour
to (£/L)%: if (£/L)* = O(¢) then the bending term is negligible at
the leading order and the effective behaviour is governed by shear,
if (L/£)* = O(e) the shear is negligible and the behaviour is gov-
erned by bending, if (£/L)*> = O(1) both terms are of the same order
and the behaviour is that of a generalized media. This classification
is consistent with that based on the stiffness contrast since:

L£\*> ¢ E o 2 Ep
<f> T, 0,

6.3. Mapping of the relevant macroscopic modeling

It is of interest to identify the relevant modelling from the
known geometrical lengths ¢ and H and the intrinsic length £. This
is performed by mapping the domain of validity of the different
behaviours according to the two dimensionless parameters
h* = Log(H/¢) and k™ = Log(L/¢). Following the assumptions of this
study, H> ¢ then h* >0 and E, > un, then k* > 0.

The general solution of (50) reads:

U=ax;+b+d,exp(x;/L)+d_exp(—x1/L)

then, without specifying the boundary conditions (that determine the
coefficients a, b, d,, d_ see next section), three main situations arise:

o if H < VL, the terms exp(+x; /L) are different of zero but neg-
ligible, then

L:O( U] ) LUE) U0 d

¢=/(/H
U] U] /
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Consequently, this case is reached when:

H< \/gﬁ i.e. when 3h™ < 2k

Now, as H < V&£ is equivalent to ¢/& < VL, one derives the
following estimate of the stiffness contrast:

@2 — Ot By < B

This scaling shows that in the domain 3h* < 2k* the macro-

scopic behaviour is governed by bending at the leading order.

e if H=0(L), these lengths are the macroscopic size of the three
terms of U(ax; and exp(+x;/L£)) so that:

L=0H)=0(£) and &=/¢/H=¢/L whenh" =0(k")

Since H = O(£) is equivalent to ¢/¢& = O(L) the stiffness con-
trast reads:

@2 — O(4t, /Ep) = O()

Consequently, when h* = O(k*) the material behaves as a gen-
eralized medium.

e if £ < VEH, the terms d, exp(x;/£) and d_ exp(—x; /£) introduce
boundary layers of thickness £ at both extremities (decreasing
as exp(—x1/L) close to x; =0 and as exp([x; — H]/L) close to
x1=H). Outside of these boundary layers, the terms
exp(£x,/L) are negligible. Consequently, two regions behave
differently in the medium.

- Within the boundary layers L = O(£), &= ¢/£ and the mate-
rial respond as a generalized medium. Thus, this situation
occurs when £ < \/¢/LH, i.e., 3k* < 2h*,

- Between the two boundary layers L = O(H), ¢ = ¢/H. Thus, in
the inner region, the inequality £ < vZH is equivalent to
L < VEl/E, that is:

(%) — Ot /Ey) > &

meaning that the material responds as a classical Cauchy
medium. As mentioned above, n,/E,=0(1), leads to
L = 0(¢). In that case, £ is a microscopic size and the mecha-
nisms within this thin layer are not correctly described by the
generalized media.

h*= Log(H/t)

531

The Fig. 4 presents the different situations in the plane (h*; k*).
The effective domain of validity of the generalized media lies in be-
tween the two lines 3h* < 2k* and 3k* < 2h*. For a given matrix
and a reinforcement modulus, k* = cste corresponds to an identical
amount of fiber concentration c. Consequently, the reinforced
materials on a vertical line of the plane (h*; k*) have identical axial
modulus, but different transverse behaviours, varying from domi-
nating bending to generalized media and Cauchy media when
¢/H decreases. In other words, the apparent transverse deformabi-
lity varies with the cell size.

As an example, consider a pile foundation massif constituted by
a weak modulus soil (um, =4 x 10°Pa) reinforced by cylindrical
concrete piles (E,=4x10Pa) of 12m of diameter
(I, ~1 x 107" m*), regularly spaced of 4m (S=16m?) in two
orthogonal directions. The intrinsic length is £ ~ 8 m. If the thick-
ness of the layer is H = 10 m, the reinforced soil behaves as a gen-
eralized medium (with & ~ 0.5), if H is about 30 m the reinforced
soil behaves as an elastic Cauchy medium (with €~ 0.1) except
on both extremities over a length of about 8 m. The same vertical
modulus would be obtained for piles of 0.30m of diameter
(I, ~4 x 10~*m*), regularly spaced of 1m (S=1m?). However
the intrinsic length will be £ ~2m and for H=10m the rein-
forced soil will behave as an elastic Cauchy medium (with & ~ 0.1).

6.4. Influence of the boundary conditions

As seen in Section 3.3.3 the boundary conditions cannot be for-
mulated in term of the macroscopic motions and stress tensor only,
but require also the conditions imposed to the fibers. They can be
clamped into a rigid basement so that the section rotation U’ van-
ishes, or they can be free of momentum, then curvature U” van-
ishes. As an example, when the layer is fixed at x;=0 and
submitted to an imposed transverse displacement on x; = H, one
obtains by integrating (50):

o fibers clamped at both extremities:
Uxy) = a{)q - m [cosh(x; /L) — cosh((x; — H)/L) + cosh(H/L) — l]}

o fibers clamped on x; = H, free of momentum on x; = 0:

Ux) = a{x1 - m sinh(x; /L)}

Wy
Cauchy media ; @
3 Y O Fo108
£=108 and 4 :
Cauchy L-boundary layer é‘ : General-lzed
T ) V// . . media \(g o
M = O(é’?) 2
5 — o(1) e w
2 E:{O:z ””””””””””” E=102
14 FLmaTTT T . -7 £=101
Dominating bending
Hor F
o SO0(&)
0 T : .
0 1 2 3 k= Log(L/t)

Fig. 4. Mapping of the macroscopic behaviours according to the two parameters h* = Log(H/¢) and k™ = Log(L/¢).
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o fibers free of momentum at both extremities:

UX1) = ax,

In the first two cases, the previous analysis applies. Conversely,
in the last case, the reinforced material behaves as a classical med-
ium even if H = £, because the particular boundary conditions
avoid the inner bending.

6.5. Remark on inner torsion

Note finally that the geometry of fiber reinforced materials offer
the possibility of unusual loading of the material. For instance, in
case of large fibers (like pile foundations) a torsion Q(x) could be
applied to each pile without acting on the matrix. Conversely to
the above analysis (where the inner kinematic results from U°),
such a situation would introduce an additional degree of freedom
implying the macroscopic field of inner torsion, independent and
complementary to U°. Although, in other composites, similar load-
ing would involve a layer of the size of the elementary representa-
tive volume, the fiber facilitates the penetration of the imposed
torsion. The study of this mechanism is not detailed here.

7. Conclusion

Through asymptotic homogenization, we have derived the
effective behaviour of elastic materials periodically reinforced by
fiber for different orders of magnitude of the contrast between
the shear modulus of the matrix and of the fiber.

A contrast pim/u, = 0(&?) leads to a full coupling between the
beam behaviour of the fibers and the elastic behaviour of the ma-
trix. Under macroscopic transverse motions, the medium behaves
at the leading order as a generalized continuum that accounts for
the inner bending within the fibers and the shear of the matrix.
Non-local terms also appear on axial stresses along fibers, under
inhomogeneous axial and lateral confining, and, in the case of
non-symmetric cell, because of wrapping under torsion and Pois-
son effect. The description degenerates into the classical behaviour
of elastic composites for stiffer matrix and the usual Euler-Ber-
noulli beam behaviour for softer matrix.

The constitutive parameters can be computed rigorously, or
also be simply estimated from the self consistent approach
(Christensen and Lo, 1979; Hashin, 1983), with an excellent
approximation for weak concentrations of fibers. For instance,
considering bi-symmetric cells (e.g. circle in a square):

1 U 1 ]
1+C<l+m> (l —'u—p<l +m>>}

()
M, 1-c

Simple criteria based on the comparison between the geometric
data - size of the cell ¢, overall dimension of the media H - and the
physical lengths - intrinsic length £ ~ /E,I,/(|S|i,,,) and macro-
scopic length L - enable to identify the appropriate model for real
reinforced media. Provided that the intrinsic length of the material
is larger than the size of the cell, the analysis shows that in general
the actual response is influenced by the non-local effect at least on
a boundary layer of the size of the intrinsic length.

The unidirectional morphology treated in this paper is not an
absolute requirement. 3-D cells could also be considered for fibers
periodically heterogeneous along their axis, or for fibers oriented in
the three orthogonal directions. However, in this latter case, to
keep the inner bending effect at the macroscale (in the three
orthogonal directions of fibers) the fibers must necessarily be fully

C33 ~ 24ty

Ciz = Ci3 ~ 2/,

embedded in the matrix without fiber-fiber connexion. Intercon-
necions between orthogonal fibers would drastically increase the
interaction forces at the contact, preventing the bending mecha-
nism to occur as described in Section 2.3. This situation would lead
to classical composite description (cf. also Bellieud and Bouchitté
(2002)).

In quasi statics, using complex modulus in the Fourier domain,
the results can be extended to viscoelastic constituents or to elastic
fibers embedded in a viscous matrix. Extension to weakly com-
pressible matrix, dynamic loadings and wave propagation may also
be considered.

Appendix A. Derivation of beam behaviour through asymptotic
expansions

The beam behaviour attained at large slender ratio, i.e., small &,
is determined by seeking for the variables in the form of expan-
sions in power of ¢ (Trabucho and Viano, 1996). The kinematic con-
dition (1) imposes to formulate the expansions as:

o
gl +Z£'u' a, ie.,
i=0

glui —

i
NgE
M8

1

o0
x+1 1+1 2 :
=0

I
—_

"MS‘C"

A.1. Appropriate asymptotic expansions

Inserting the reduced strain and stress tensors (2) and (3) into
the balance and boundary Egs. (5)-(8) yield to scaled problems ex-
pressed in function of u; and u,. The axial balance contains terms
in ¢! and ¢ (in &° as for the boundary condition), and the in-plane
balance contains terms in ¢ 2 and ¢° (in ¢! and ¢ as for the bound-
ary condition). Since the terms of the equations “jump” from a fac-
tor €2, it is sufficient to expand the components u; according to the
even powers of ¢. Thus, the appropriate expansion reads:

821[u21a +8( 21+1a1)] i.e.,

=
Il

Nt M

Il
o

82i+] 21+1 Z (53)

i=0

Consequently, the axial () and in-plane (s) - respectively out of
plane (;) - reduced strain and stress tensors (2) and (3) are ex-
panded in odd - respectively even - powers of &:

e = e Z 8212?141; e = Z SZiQtZi; e, = SZSZieIZIHl (54)
i=—1 i=0 i=0
o =) &gty on=ey &lai"  (55)

g =¢ Z 821021+]
i——1 i—0 i——1

Expansions (53)-(55) indicate that the reference value (i.e., of zero
order) of the displacements, strains and stress are respectively,
w, ud,, .

A.2. Asymptotic solution

The solution is derived by introducing expansions (55) in (5)-
(8). Separating the terms of different orders leads to a series of
problems. The first non-trivial equations expressed with x; pro-
vides the leading order of the beam description. It results from
the even or odd expansions of the reduced tensors (54) and (55),
that the axial and the in-plane problems (5)-(8) are separated by
one order. Thus, the resolution is achieved by treating alternatively
the equilibrium of the section, then the axial equilibrium, and so on.
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The first problem (Egs. (7) and (8), order ¢ 2 — ¢~ !) deals with

o, ! and u° = ufa,.
divy(g;") =0 in,
g;''n=0 onTl

with g1 = 2peq (u°) + Adivy (u°)ls

The equivalent variational formulation is:

s %y(Ws)dS =0

Yws vector C'defined on S, / ol
S,

Taking for the virtual field ws = u°it turns out that:

[a(divy (u°
Js,

)2 + 24y (1) : ey (u°))ds =

The posmveness of the Lame constants implies that e, (u % =0 (and
dlvy(u )=0). Therefore u° is a rigid motlon of the section in its
plane, i.e., a translation U° and a rotation Q@ 'a;:

W =uas; U= Uy +Q Ma xy],

Moreover since gy(go) =0 then g;' =0 and ¢,' = divy (u) = 0.
Therefore: o

e'=0 g'=0

The translation U° and the rotation Q' (of order —1 to respect the
scaling of the zero order motion Q~'h = 0(1)) are two independent
kinematics. They appear at the same order because the assumption
of zero order transverse motion does not distinguish translation and
rotation. Nevertheless, physically, their relative order of magnitude
may differ. Without restricting the generality of the further devel-
opments, we will consider that the rotation is of lesser order than
the translation i.e., Q7' =0, and leave the treatment of the section
rotation for higher orders.

The second problem (Eqs. (5) and (6), order ¢! — £°) deals with
ul and ¢?. As o' = 0, we have:
{ div,(¢%) =0 inS,

with o = p(u,, +Uj, )

a®-n=0 onr

This problem admits the
formulation:

following equivalent variational

Vw;scalar C'defined ons,, / a? - grad,(wy)ds =0
Sp

Choosing wy = uj +y- U5, yields:

/ (ullgrad, (ul) + U2, [)ds = 0, then, grad,(u) + U, =0
Sp -

and by integration the solution is:
u' =uja, uj=-y-US +Ui(x)
e =0 0a)=0, eO:g, a’=0

At the leading order, the out of plane motion of the section consists
into (i) a rigid out of plane rotation (of vector U° x ay) and (ii) a
uniform vertical translation U a; i.e., the usual kmematlcs of the
Euler-Bernoulli beam. Although their relative magnitude may phys-
ically differ, we will treat them conjointly, considering them to be of
identical order for convenience.

The third problem (Egs. (7) and (8), order &° — &) concerns o
and u?. As a? =0, it takes the form: N

divy(g!) =0 in,

g} = 2puesy (u?) + Aldivy (u?) + u%,xl]!s

gl-n=0 onT
Noticing that the plane strains of the particular fields y and
& =y,y-3Iyl*a, are:

ey(y) =Lk

the plane isotropic stress induced by u}, = —y-US , +Uj,, canbe
re-expressed as the plane stress resulting from the particular in-

plane motion v2:

and ey (&) = Yl

;“u} X1 I = ( -y Ul X1Xq )I
= 2p1eq (V%) + )dlvy( s = (1+ 2)divy (V)]s
V - v(yUle - V“U?txlx])

Consequently, g! may be rewritten as:
g} = 2puey (U +v?) + Adivy (u® + v?)I

Setting ws = u? + v2 in the variational formulation associated to ol
(cf. Section 2.2.2):

vwsvector C'defined on Sp, /g} esy(Ws)ds =0
RN
provides:
/ Adivy (@ +v?)] + 2pes (0 + V) - e (1 +V2)ds = 0
Sp - -

Consequently, eq,(u® +v?) = 0, then u? + v*

0 u is a rigid in-plane motion
of the section, and:

w = —v(yUj, — &UYxix1) + U (%) + Q' (x1)a x y (56)
Moreover, by construction:

23 = Ssy(ﬂz) = _gsy(yz) = _Visu},xﬁ el!l = u},xl?

thus e' = [a; ®a; — VLJuy,, (57)

Now, since eq (u® +v*) =0, then g! =
the constitutive elastic law:

0. Hence o] is deduced from

oy =Eu;, =E(-y U, +Ul,); ¢ =0laoaq (38)

The fourth problem (Egs. (5) and (6), order & — &%) concerns the ax-
ial balance of g2:

Ohy, +divy(a?) =0 inS,
o2-n=0 onrl

with o7 = p[ui, +u;

0.Xq

la,

Here g}, acts as a source term. Following Section 2.2.3, three non-
trivial balance equations of the section are established and comple-
mented by the relations between (i) normal force and longitudinal
strain, and (ii) transverse momentum and curvature. The uncou-
pling of compression and bending mechanisms is obvious when
the beam behavioural laws are expressed in the “natural” y-frame
of the section. Reminding that, as the scaling makes the y-derivative
of quantity of order i to be of orderi — 1, in a similar way, the y-inte-
gral over the section of a quantity of order i is of order i + 2- and of
order i+ (2 +j) if multiplied by ¥/, - one obtains:

Ny, =0, N°= /S ohds = E[S,|Uj (59)
P
Mi -1 =0 M= [ alyds = -ELUS,, (60)
P

The derivation of u2, not necessary for the leading order behaviour,
is reported in Section A.3.

The fifth problem (Eqgs. (7) and (8), order &2 — &%) expresses the
balance of g? under the forcing term gz, .

ai,, +divy(g?) =0 inS,
a@-n=0 onrl

As above, according to Section 2.2.3 two non-trivial balance equa-
tions are deduced:
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a2
EI sz X1X1Xq

T, =0 T;‘:/Qf-gadS—
SP

M3, =0; Mj= | v x a2] - ards = ul, Q]

P

The torsion law relating M; to @', is valid for sections having two
orthogonal axis of symmetry. Non bi-symmetric sections introduce
a torsion-bending coupling as shown in the next section.

A.3. Wrapping and torsion

We determine here u? and the expression of M3. The global axial
balance of the section (59) 1mp11es U}, .. =0 which simpliﬁes the
expressions (58) of ¢}, (56) of u? and (57) of divy(u u?). Thus, the
fourth problem (Egs. (5) and (6), order ¢ — ¢2), after simplifying
by u, is rewritten as:

2y 7x1x1x1 + divy(grady(u?)) =0
(i, +uz,) -n,=0 onrl

inS,

with w2, =veu),  + U2, +Q\ (@ xy),

Bxixixq

The solution u3 of this linear problem is the sum of the contribu-
tions of each forcing term.
The problem related to U3,
and the solution is —U? -y.
The problem related to Q1 is new. The solution reads
w(y)Q (x1),, where the wrappmg function w(y) is solution of
(the zero mean value condition provides the unicity):

Ayw)=0 inS,
=0 onl

is identical to that treated for U!

divy (grad,(w) + a; ><y)
(grad, (w )+a1 xy)-n
fs,, wds = 0 (unicity)

Note that for circular section w=0 since (a; xy)-n=0 on I'. Be-
sides for any section, as the wrapping stresses vector
{=pu(grad(w)+a, x y) is of free divergence with free boundary
condition, one has for any C' function f;

0= fdivy,({)ds = —/ grad,(f) -gds+/f§ - nds
Sp S r
- / grad,(f) - {ds
Js, T -

Taking f=y,, and f=y,y; one deduces the following properties:

{ds =0;

Sp

e l{+{xylds=0; y-lds=0 (61)
Sp - S
The problem related to U , ,, via the Poisson effect, introduces a
vector of particular solutions, whose components y,(y, V) are asso-
ciated to UJ, ,, SO that the solution reads y-US , . . Moreover
x(y,v) can be decomposed into two vectors #(y), 0(v) independent
of the Poisson ratio:

Ay v) =1 +vny) +voy)

where the functions #,, and 0,, are solutions of (the zero mean value
provides the unicity):

_2.VO¢ + A,V(ny) =0 in SIJ
grad,(n,) -n=0 onTl
j'sp n,ds = 0 (unicity)

)=0 inS,
+¢&)-n=0 onrl
(unicity)

2y, + Ay(0,
(grady, (0 1)
&%$:

The solutions w, 7, 0, only depend on the section’s geometry. In case
of two orthogonal axis of symmetry (then the principal axis of iner-
tia y,, y3) the following properties are satisfied:

W(_youy/i) = _W(youy/i); W( o _y/I) = _W(yowy/i)
Xo{(f.)/auy/}) = 7Xm(ycuy[3); X;{(yw 7y/)‘) = Xa(yivY[f)

M; is derived by replacing 62 by its expression:
M3 :/S €10y ToydlS
P

:/ 610myo"l't[l'y/‘ .Qe‘lxlxl +W‘y/‘Q-,1X1 + Vé%ug-,xlxl?ﬁ +Q-,1X1 (21 XX)ﬂ]dS

Sp

In general, their is a coupling between the torsion and bending
mechanisms via the Poisson effect (and, in case of inhomogeneous
body forces, the contribution of U} xx Would also lead to a coupling
with compression). Now, if the section presents two orthogonal axis
of symmetry:

[[vywds= [vyias=o

and from (62) : / Valy,ds = /ydxy_yﬁds =0
Jsp s

In that bi-symmetric case, the bending term vanishes and it only re-
mains the uncoupled law:

M; = /S (@ - (y x grady(w)) +y3 +y3)ds| 2}, = ul, 2,
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