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Biaxial tensile tests of 6000 series aluminum alloy sheet with different density cube textures were con-
ducted using cruciform specimens. The specimens were loaded under linear stress paths in a servo-con-
trolled biaxial tensile testing machine. The plastic orthotropy remained coaxial with the principal
stresses throughout every experiment. Successive contours of plastic work in stress space and the direc-
tions of plastic strain rates were precisely measured and compared with those calculated using selected
yield functions. The Yld2000-2d yield functions with exponents of 12 and 6 were capable of reproducing
the general work contour trends and the directions of plastic strain rates observed for the test materials
with high and low density cube textures, respectively. Hydraulic bulge tests were also conducted and
the variation of thickness strain along the meridian directions of the bulged specimen was compared with
that calculated using finite element analysis (FEA) based on selected yield functions. Differences in the cube
texture density caused significant differences in the strain distribution of the bulged specimens, and were
in good agreement with the FEA results obtained using the Yld2000-2d yield functions. It is thus concluded
that the biaxial tensile testing method with a cruciform specimen is an effective material testing method for
accurately detecting and modeling the deformation behavior of sheet metals under biaxial tension.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction as finite element analysis (FEA), to minimize the time and cost re-
Lightening the weight of automotive bodies is effective in
reducing CO2 emissions. It is an important step towards the pres-
ervation of the Earth’s environment. Since aluminum alloy sheet
is lighter than steel sheet, it is regarded as a material candidate
for reducing the weight of automobiles. However, aluminum alloy
sheets are generally inferior in ductility to steel sheets and are
therefore difficult to use for the manufacture of automotive body
panels.

There are two countermeasures to enhance the use of alumi-
num alloy sheet for automotive body panels. One is to build an
appropriate texture into the aluminum alloy sheet to provide good
formability. For example, Yoshida et al. (2007) investigated the ef-
fect of aluminum alloy sheet texture on the forming limit strains
using a Marciniak–Kuczyński-type approach and a generalized
Taylor-type polycrystal model, and demonstrated that only a cube
texture component yields forming limits much higher than ran-
dom texture in the biaxial stretch range. The other countermeasure
is to improve the predictive accuracy of forming simulations, such
ll rights reserved.

: +81 42 385 7204.
ara).
quired in designing the tool geometry and forming conditions for
the manufacture of aluminum alloy body panels. In order to im-
prove the predictive accuracy of forming simulations, it is neces-
sary to use a material model that is capable of accurately
reproducing the deformation behavior of the material (Kuwabara,
2007; Banabic et al., 2010).

The crystallographic textures of rolled sheet metals have a sig-
nificant effect on the deformation characteristics and formability of
the material (Barlat, 1987; Kuwabara et al., 2002; Yoshida et al.,
2007). In sheet metal forming simulations, the difference in the
deformation characteristics of real sheet metals caused by the crys-
tallographic texture is expected to be reproduced by the yield func-
tions employed. Therefore, validation of this notion is crucial to
deepen our knowledge of the effects and limitations of yield func-
tions on the accuracy of forming simulations based on the phe-
nomenological theory of plasticity. Yoon et al. (2006) performed
cup drawing simulations of an aluminum alloy sheet to predict
the cup height profile and concluded that an accurate prediction
of the earing profile can be obtained only if the anisotropy of the
tensile properties (flow stresses and r-values) are captured very
accurately using the Yld2004-18p yield function proposed by
Barlat et al. (2005). Kuwabara et al. (1998) developed a biaxial
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Table 1
Mechanical properties of the test materials.

Texture Tensile direction [�] r0.2 [MPa] c* [MPa] n* a* r -value**

High 0 169 494 0.24 0.008 0.54
Cube 45 152 469 0.28 0.014 0.13
(HC) 90 163 485 0.25 0.007 0.55
Low 0 152 474 0.25 0.007 0.80
Cube 45 146 469 0.27 0.009 0.26
(LC) 90 145 466 0.26 0.007 0.70

* Parameters for Swift’s hardening law, r = c(a + ep)n, for the strain range of 0.002 6 ep
6 ep

B, where ep
B is the true plastic strain at the maximum load.

** Measured at a uniaxial nominal strain of 0.10.
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Fig. 1. Uniaxial true stress-true plastic strain curves for the test materials. The end
point of each curve corresponds to the maximum load point.
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Fig. 2. Cruciform specimen used for the biaxial tensile test (dimensions in mm).
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tensile testing method for sheet metals using a cruciform speci-
men, and demonstrated that it is necessary to select appropriate
yield functions for sheet metals used in the measurement to im-
prove the predictive accuracy of FEA simulations for hole expan-
sion (Hashimoto et al., 2010; Kuwabara et al., 2011) and shallow
shell drawing of automotive body panels (Moriya et al., 2010).

This study aims to clarify the accuracy of yield functions in or-
der to reproduce differences in plastic deformation behavior
caused by differences in crystallographic textures. Two types of
6016 aluminum alloy sheet are used, which have the same chem-
ical composition but different cube texture densities. An appropri-
ate yield function for each test material was first determined by
biaxial tensile tests with linear stress paths using cruciform speci-
mens. Hydraulic bulge tests were then conducted to apply large
biaxial plastic deformation to the test materials. The thickness
strain distribution along the meridian directions of the bulged
specimen was measured to investigate the effect of crystallo-
graphic texture differences on the deformation behavior of the alu-
minum alloys. Finally, FEA simulations of the hydraulic bulging
tests were conducted using an appropriate yield function deter-
mined from the biaxial tensile tests. The calculated thickness
strains were compared to the measured thickness strains to reveal
the effect of the yield functions on the accuracy of the FEA for the
hydraulic bulge test.

2. Test material

Two types of 6016-T4 aluminum alloy sheet (Al-1.0Si-0.5Mg-
0.1Mn (mass%), 0.9 mm thick) were prepared with different cube
orientation intensities at the 1/4 thickness position of 133 and 21
(at random), which are referred to as High Cube (HC) and Low Cube
(LC), respectively. The work hardening characteristics and r-values
in different directions from the rolling direction are listed in Ta-
ble 1. In order to reduce the effect of natural age hardening on
the experimental results as much as possible, the material was
aged at room temperature for two years prior to the experiments.

Fig. 1 shows uniaxial true stress-true plastic strain curves of the
test materials for different directions from the rolling direction.

3. Biaxial tensile test procedures and results

3.1. Experimental method

Biaxial tensile tests were performed using the cruciform speci-
men shown in Fig. 2 to determine the appropriate anisotropic yield
functions that are capable of reproducing the elastic-plastic defor-
mation behavior of the test materials. The geometry of the specimen
is similar to that used by Kuwabara et al. (1998, 2000, 2002). Each
arm of the specimen has seven slits, 30 mm long and 0.2 mm wide,
at 3.75 mm intervals to reduce the geometric constraint on the
deformation of the 30 � 30 mm2 square gauge section as much as
possible. The specimens were cut from as-received large flat rolled
sheet samples using laser machining so that the arms were parallel
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Fig. 3. Measured stress points comprising contours of plastic work compared with
the theoretical yield loci. Each symbol corresponds to a contour of plastic work for a
particular value of ep

0. The exponents M, selected for the Yld2000-2d yield function
were 6 for HC and 4 for LC with ep

0 ¼ 0:002, 12 for HC with ep
0 ¼ 0:040, and 6 for LC

with ep
0 ¼ 0:045.

Table 2
Measured stress values comprising work contours.

Texture High cube Low cube

ep
B

0.040 0.045

r0 [MPa] 233.76 223.26
rNx/rNy rx/r0 ry/r0 rx/r0 ry/r0

1:0 1.0000 0.0000 1.0000 0.0000
4:1 1.0477 0.2520 1.0936 0.2560
2:1 1.0430 0.5020 1.1229 0.5384
4:3 1.0350 0.7470 1.1142 0.8126
1:1 1.0096 1.0103 1.0264 1.0257
3:4 0.7618 1.0477 0.7765 1.0684
1:2 0.5074 1.0532 0.5123 1.0682
1:4 0.2456 1.0393 0.2508 1.0579
0:1 0.0000 0.9775 0.0000 0.9654
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to the rolling (RD) and transverse (TD) directions of the sheet. The
slits were also fabricated by laser machining. The RD, TD and thick-
ness direction of a specimen are defined as the x-, y- and z-axes,
respectively.

Biaxial tensile forces (Fx,Fy) were applied to the cruciform spec-
imen using a servo-controlled biaxial tensile testing machine
developed by Kuwabara et al. (1998). The nominal tensile stress
components (rNx, rNy) were in fixed proportions during each test;
rNx:rNy = 1:0, 4:1, 2:1, 4:3, 1:1, 3:4, 1:2, 1:4 and 0:1. The biaxial to-
tal strain components (ex,ey) were measured using two uniaxial
strain gauges (Tokyo Sokki Kenkyujo, YFLA-2) mounted on the cen-
terlines of the specimens at (x,y) = (±10 mm, 0) for the tests of
rNx:rNy = 4:1, 2:1, 4:3 and 1:1, and at (x,y) = (0,±10 mm) for the
tests of rNx:rNy = 3:4, 1:2 and 1:4. The true stress components
(rx, ry) were determined by dividing (Fx,Fy) by the current cross-
sectional area of the gauge section, which was determined from
measurements of the true plastic strain components ðep

x ; ep
yÞ with

an assumption of constant volume. rxy was assumed to be zero,
because ex and ey were measured on the centerlines of the speci-
men. For rNx:rNy = 1:0 and 0:1, standard uniaxial tensile speci-
mens (JIS 13 B-type) were used. The equivalent plastic strain rate
was 1 to 4 � 10�4 s�1.

According to the FEA of the cruciform specimen and the strain
measurement position shown in Fig. 2, the error of the stress mea-
surement was estimated to be less than 2% using selected isotropic
(von Mises) and anisotropic yield functions for the material models
(Hanabusa et al., 2010, 2011).

In this study, the concept of the contour of plastic work in the
stress space (Hill and Hutchinson, 1992; Hill et al., 1994) was used
to evaluate the work hardening behavior of the test materials un-
der biaxial tension. The stress–strain curve obtained from a uniax-
ial tensile test along the RD of the material was selected as a
reference datum for work hardening; the uniaxial true stress r0

and the plastic work per unit volume W0 corresponding to partic-
ular values of offset logarithmic plastic strains ep

0 were determined.
The uniaxial true stress r90 obtained from a uniaxial tensile test
along the TD and the biaxial true stress components (rx,ry) ob-
tained from biaxial tensile tests were then determined at the same
plastic work as W0. The stress points (r0,0), (0,r90) and (rx,ry)
plotted in the principal stress space comprise a contour of plastic
work corresponding to a particular value of ep

0. For a sufficiently
small value of ep

0 the corresponding work contour can be practically
viewed as a yield locus.

3.2. Experimental results

Fig. 3 shows the measured stress points that comprise the con-
tours of plastic work. All stress values comprising a work contour
are normalized by r0 corresponding to a specific value of ep

0. The
maximum values of ep

0 for which (rx,ry) could be measured for
all stress paths were 0.040 for HC and 0.045 for LC. Both HC and
LC exhibit differential work hardening; the normalized work con-
tours show a tendency to contract with an increase of ep

0, except
that the stress points for rNx:rNy =1:1 and 0:1 remain almost on
a single point. The shape of the work contours of HC is close to
the Tresca type with a sharp corner in the vicinity of equibiaxial
tension, while that of LC bulges more in the vicinity of the plane
strain tension region (rNx:rNy = 2:1 and 1:2) than HC. Table 2
shows the measured stress values comprising the work contours
for ep

0 ¼ 0:040 (HC) and 0.045 (LC).
The theoretical yield loci based on the von Mises (Von Mises,

1913), Hill’s quadratic (Hill, 1948), and the Yld2000-2d yield func-
tions (Barlat et al., 2003; Yoon et al., 2004) are superimposed in the
figure. The unknown parameters of the Hill’s quadratic yield func-
tion were determined using r0, r45, r90 and r0/r0, and those of the
Yld2000-2d yield function were determined using r0, r45, r90 and rb
and r0/r0, r45/r0, r90/r0 and rb/r0, where ra and ra are the r-va-
lue and tensile flow stress measured at an angle a from the RD,
respectively, and where rb and rb are the ratio of the plastic strain
increments, dep

y=dep
x , and the flow stress at equibiaxial tension,

rNx:rNy = 1:1, respectively. The values of r0, r45 and r90 used were
the same as those in Table 1, both for the Hill ‘48 and Yld2000-
2d yield functions. The values of r45/r0, r90/r0, rb/r0 and rb used
to determine the Yld2000-2d yield function correspond to those
comprising the work contours shown in the figure. The exponent
M of the Yld2000-2d yield function was determined, as will be ex-
plained later in the paper, to give the smallest standard deviation
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Fig. 4. Comparison of the directions of measured plastic strain rates with those of
the local outward vectors normal to the yield loci calculated using selected yield
functions.
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of the calculated yield locus from the corresponding work contour.
Consequently, for HC, M was determined to be 6 for ep

0 ¼ 0:002, and
12 for ep

0 ¼ 0:04. For LC, M was determined to be 4 for ep
0 ¼ 0:002,

and 6 for ep
0 ¼ 0:045. Thus, the Yld2000-2d yield function has the

best agreement with the work contours for both materials.
In order to validate the normality flow rule for the selected yield

functions, the directions h of the plastic strain rates were measured
for all linear stress paths and compared with those calculated using
the yield functions (the directions of outward vectors normal to the
theoretical yield locus). The results are shown in Fig. 4, where u is
the loading angle of a stress path from the x-axis in the principal
stress space, and both h and u are defined to be zero along the x-
axis and positive in the anti-clockwise direction. The Yld2000-2d
yield function again provides the closest agreement with the
measurement.

To obtain a more quantitative evaluation of the reproducibility
of the work contours and the directions of plastic strain rates using
the selected yield functions, the standard deviations, Sr and Sh,
were calculated using the following equations:

Sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P9
i¼1
ðr0i � riÞ2

8

vuuut
ð1aÞ

Sh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P9
i¼1
ðh0i � hiÞ2

8

vuuut
ð1bÞ

where ui (i: 1–9) is the loading angle of the ith stress point from the
x-axis in the principal stress space (see schematic in Fig. 5), ri is the
distance between the origin in the principal stress space and the ith
stress point, r0i is the distance between the origin in the principal
stress space and the intersection of the theoretical yield locus,
and the stress path in the direction ui, and hi and h0i are the mea-
sured and calculated directions of the plastic strain rates at the
stress point i, respectively.
Fig. 5 shows the variation of Sr and Sh with increasing ep
0. For HC,

the prediction using the Yld2000-2d yield function with M = 6 has
the closest agreement with the work contours and the directions of
plastic strain rates at the early stage of plastic deformation
ðep

0 � 0:01Þ. On the other hand, as ep
0 increases, the shape of the

work contours changes gradually to approach the Yld2000-2d yield
function with M = 12–14, while the variation of the directions of
plastic strain rates are small. For LC, the prediction using the
Yld2000-2d yield function with M = 4 has the closest agreement
with the work contours and the directions of plastic strain rates
for ep

0 � 0:01, while the optimum value of M that is capable of
reproducing the work contours, and the direction of plastic strain
rates approaches 6 with increasing ep

0.
The von Mises and Hill ‘48 yield functions are inferior to the

Yld2000-2d yield function with respect to reproducibility of the
test material deformation behavior.

4. Hydraulic bulge test procedures and results

4.1. Experimental method

Hydraulic bulge tests were performed and the thickness distri-
bution along the meridian directions of the bulged specimens was
measured to quantitatively evaluate the effect of the difference in
crystallographic texture on the deformation behavior of the test
materials.

Fig. 6 shows the experimental apparatus used for the hydraulic
bulge test. The diameter of the die opening was 150 mm, the die
profile radius was 8 mm, and the blank diameter was 220 mm.
The material flow-in was fixed at zero along the boundary of a
190 mm diameter using a triangular draw-bead. No lubricant
was used at the interface between the blank and die surface.

The true total strain components, ex and ey, along the RD and TD
of the original sheet were measured using a uniaxial strain gauge
(Tokyo Sokki Kenkyujo Co., YFLA-2) attached at a distance of
5 mm in each direction from the center of the blank. The radius
of curvature q at the top of the bulged specimen was measured
45� from the RD using a spherometer, as shown in Fig. 6. The gauge
length was 40 mm. The spherometer can move in the vertical
direction and rotate about the axis normal to the plane as shown
in Fig. 6, so that it is always in contact with the bulged specimen
at three points. The hydraulic pressure P was controlled so that
the equivalent plastic strain rate was kept approximately constant
(ca. 0.001 s�1) during each test. The measured data of ex, ey, q and P
were recorded every 0.1 s using a data logger.

The in-plane equibiaxial stress rb, at the top of the bulged spec-
imen was measured as

rb ¼
Pq
2t

ð2Þ

where t is the thickness at the top of the bulged specimen, deter-
mined using the equation

t ¼ t0expðezÞ ¼ t0expð�ex � eyÞ ð3Þ

based on the condition of constant volume, in which the elastic
strain components were neglected.

The strain gauges were replaced when |ez| � 0.15 and the bulge
test was continued until |ez| � 0.3 to measure the rb � |ez| curve.
The equivalent stress �r-equivalent plastic strain �e curve was deter-
mined using the equation

�r ¼ rb=k and �e ¼ kjep
z j; ð4Þ

where k is defined as the stress ratio rb/r0 measured at ep
0 ¼ 0:04

for HC and ep
0 ¼ 0:045 for LC.

A sheet specimen was bulged up to a height of 38 mm. It had an
array of 10 mm2 grids along the meridian directions 0, 45 and 90�
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from the RD, for the measurement of the radial and circumferential
plastic strains ðep

r ; ep
h Þ. After each bulge test, the thickness strain ep

z ,
was determined along the meridian lines as ep

z ¼ �ep
r � ep

h .

4.2. 2 Experimental result

Fig. 7 shows the �r� �e curve determined using Eq. (4) and the
curve approximated using Swift’s power law for the strain range
of �e � 0:3, the parameters of which are shown in Table 3. The work
hardening curve determined from the uniaxial tensile test in the
RD, which was approximated using Swift’s power law (see Table 1),
is also depicted in the figure for comparison. These work hardening
curves were used in the FEA as described in Section 5.
150

P

190

150

Fig. 6. Experimental apparatus for the hydraulic bulge test.
5. Finite element analysis of hydraulic bulge forming

FEA simulations of the hydraulic bulge test were carried out
using Abaqus/Standard Ver.6.9-1 (Abaqus Analysis, 2009). Fig. 8
shows the finite element mesh used for the analysis. One quarter
of a circular blank was analyzed due to the orthotropic anisotropy
of the material. The blank diameter was 190 mm and the nodal
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Fig. 7. Equivalent stress-equivalent plastic strain curves determined using the
hydraulic bulge test data and those approximated using Swift’s power law.

Table 3
Parameters for Swift’s power law shown in Fig. 7.

Texture k* c**[MPa] n** a**

HC 1.010 455 0.22 0.009
LC 1.026 426 0.23 0.007

* k � rb=r0, where r0 and rb are the uniaxial and equibiaxial stresses, respectively,
comprising the work contour for ep

0 ¼ 0:04 (HC) and 0.045 (LC).
** Parameters for Swift’s hardening law, r = c(a + ep)n, determined for the strain
range of 0:002 < ep < 0:30.

(a)

(b)

Pressure

Blank holding force 

Fig. 8. Schematic illustration of the FEA model for the hydraulic bulge test; (a) tool,
and (b) initial mesh division of a blank.

Table 4
Anisotropic parameters of the Yld2000-2d yield function used in the FEA.

Texture High cube Low cube

ep
0

0.040 0.045

Exponent 12 6
a1 0.9418 0.9405
a2 1.0082 1.0041
a3 0.9243 0.8923
a4 1.0181 1.0315
a5 1.0095 0.9978
a6 0.9610 0.8949
a7 0.8045 0.7312
a8 1.3614 1.3304
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displacement along the periphery of the blank was assumed to be
zero, because the radial position of the draw-bead in the die used
in the experiment was also 95 mm. 4-node shell elements, S4R,
were used. The increment of element division was 2.5� in the cir-
cumferential direction and 1 mm in the radial direction for the
range of radial coordinates 30 mm6 R 6 95 mm. Mesh division
was automatically performed in the range of R 6 30 mm. A sur-
face-to-surface contact condition of the blank to the die was se-
lected with a blank holding force of 30 kN and a friction
coefficient of 0.3. A bulge height of 38 mm was selected, the same
as the experiment.

The yield functions used in the FEA were the von Mises (Von
Mises, 1913), Hill’s quadratic (Hill, 1948), and the Yld2000-2d yield
functions (Barlat et al, 2003; Yoon et al., 2004), as shown in Fig. 3.
The exponent of the Yld2000-2d yield function was chosen to be 12
for HC and 6 for LC, which gave the smallest Sr at ep

0 ¼ 0:04 and
0:045, respectively. Table 4 shows the anisotropic parameters of
the Yld2000-2d yield function used in the FEA.

6. Results and discussion

Fig. 9 shows the measured thickness strain along the meridian
lines, 0, 45 and 90� from the RD for the bulged specimens with a
bulge height of 38 mm, compared with those calculated by FEA
using selected yield functions. In Fig. 9(a), the equivalent stress-
equivalent plastic strain curve used in the FEA was determined
by approximating the measured uniaxial curve rx-ep

x , using Swift’s
power law (see Table 1), while in Fig. 9(b), the curve was deter-
mined by approximating the �r� �e curve obtained from the
hydraulic bulge test using Eq. (4) with Swift’s power law (see
Table 2).

Comparison of the experimental results between HC and LC
clarified that jep

z j at the top of the bulged specimen is larger for
LC than for HC, and jep

z j at the periphery (near die profile) is larger
for HC than for LC. This difference in thickness strain distribution
between HC and LC can be qualitatively explained from the differ-
ence in the shapes of the work contours, as shown in Fig. 3. The dif-
ference in flow stresses between the top (equibiaxial tension) and
the periphery (plane strain tension) is smaller for HC than for LC;
therefore, the plane strain elongation at the periphery is acceler-
ated more for HC than for LC. Accordingly, the thickness reduction
at the periphery becomes larger for HC than for LC. Thus, the differ-
ence in crystallographic texture causes the relative difference in
the magnitude of flow stress between the equibiaxial tension and
plane strain tension and, consequently, causes the difference in
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Fig. 9. Measured thickness strain along the meridian lines of bulged specimens compared with those calculated using FEA with selected yield functions.
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the thickness distribution along the radial direction of the bulged
specimen for the two materials.

Comparison of the reduction in the experimental and calculated
thickness indicates that the Yld2000-2d yield function is capable of
reproducing the experimental tendency with good accuracy for
both materials, and has closer agreement with the experimental
results than other yield functions, regardless of the work hardening
laws used in the FEA. In contrast, both the von Mises and Hill’s qua-
dratic yield functions overestimate and underestimate the thick-
ness reduction at the top and periphery, respectively, which
results in a large deviation from the experimental results. The dif-
ference in thickness between the top and periphery is in the order
of Hill ‘48 > Von Mises > Yld2000-2d. This is in accordance with the
order for the difference of flow stress between equibiaxial tension
(at the top) and plane strain tension (at the periphery) with each
yield function. The results in Fig. 9 correspond with those in
Fig. 3. Thus, it is concluded that the biaxial tensile testing method
with cruciform specimens is effective for characterization of the
deformation behavior of sheet metals in the first quadrant of the
principal stress space. In this study, the appropriate yield functions
were determined using the biaxial tensile testing method. We suc-
cessfully improved the predictive accuracy of the FEA simulations
using the determined yield functions for the stretch-forming of
the test materials.

Comparing the FEA results in Fig. 9(a) and (b) shows that the re-
sults calculated using the Yld2000-2d yield functions shown in
Fig. 9(b1) and (b2) are in closer agreement with the measurement
than those in Fig. 9(a1) and (a2). Thus, the work hardening equa-
tion to be used for the FEA should be determined from the biaxial
stress test that closely reproduces the stress states that occur in ac-
tual sheet forming operations.

Isotropic hardening was assumed in the FEA; however, as
shown in Fig. 3, the assumption of isotropic hardening does not
correctly reproduce the work hardening behavior of the test mate-
rials. As one method to numerically reproduce the differential
work hardening behavior shown in Fig. 3, a model can be used in
which the parameters of the Yld2000-2d yield function change as
a function of ep

0 or the plastic work, W0. However, the biaxial tensile
testing method using a cruciform specimen is not useful for that
purpose, because the maximum plastic strain applied to the cruci-
form specimen is several percent at most, which is far below that
applied to the bulged specimen. Ishiki et al. (2008, 2011) and Ena-
tsu and Kuwabara (2011) proposed an alternative biaxial testing
method that is capable of applying much larger plastic strain to a
sheet specimen. A tubular specimen is fabricated by bending an
original sheet sample and welding the bent sheet edges to each
other, and an axial force and internal pressure are applied to the
tubular specimen using a servo-controlled tube bulge testing ma-
chine. Thus, biaxial stress-strain curves under an arbitrary stress
ratio, up to much larger strain range than those attained using a
cruciform specimen, can be measured. More accurate FEA simula-
tions could be obtained using such a material model that is capable
of accurately reproducing the work hardening behavior up to a
higher strain range. We have begun preliminary tube bulge tests
using aluminum alloy sheet and have been successful in measuring
biaxial stress-strain curves up to over 10% strain (Yanaga et al.,
2012), of which the experimental and material modeling results
will be published in the near future.
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7. Conclusions

(1) Biaxial tensile tests of 6000 series aluminum alloy sheets
with different density cube textures (HC and LC) were con-
ducted using cruciform specimens. The difference in crystal-
lographic texture was clearly detected as the difference in
the plastic deformation behavior from biaxial tensile tests;
the shapes of the work contours and the directions of the
plastic strain rates were in good agreement with those cal-
culated using the Yld2000-2d yield function. The appropri-
ate value of the exponent M, for the Yld2000-2d yield
functions changed with increasing ep

0; the value of M
increased from 6 (ep

0 ¼0.002) to 12 (ep
0 ¼0.040) for HC, and

from 4 (ep
0 ¼0.002) to 6 (ep

0 ¼0.045) for LC.
(2) The thickness strain distribution along the meridian lines on

the bulged specimens were measured and compared with
those calculated using FEA. The FEA results based on the
Yld2000-2d yield function, which had better reproducibility
of the biaxial tensile test results than other yield functions,
are in closer agreement with the measured thickness strain
distribution for both materials.

(3) It is thus concluded that the biaxial tensile testing method
using a cruciform specimen is an effective material testing
method to accurately detect and model the deformation
behavior of sheet metals under biaxial tension. Therefore,
the determination of an appropriate yield function based
on the biaxial tensile test is useful to improve the predictive
accuracy of FEA for aluminum alloy sheet forming processes.

(4) For the improvement of the accuracy of FEA, the work hard-
ening equation used for the FEA should be determined from
the biaxial stress test that closely reproduces the stress state
occurring in the actual sheet forming operation.
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