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The identification of stress intensity factors (SIFs) from full-field displacement measurements by the
optic method is accelerating rapidly following the development of precise digital cameras and image cor-
relation algorithms. Nevertheless, as only surface displacements are available, most of the identification
methods used up to now have been restricted to problems that are invariant with respect to the normal
direction of the free surface and must rely on the plane elasticity hypothesis. The problem of SIFs iden-
tification is tackled here in a full three-dimensional framework by first deriving a data completion
method in elasticity to determine the elastic displacement field inside the solid on the basis of surface
displacements. The method solves the Cauchy problem for the Lamé operator after which usual numer-
ical methods for computing SIFs and energy release rates can be used. Numerical applications in three-
dimensional elasticity are described first for a cracked specimen subjected to 3D loadings and, secondly,
for a heterogeneous specimen in a quasi-plane situation.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The development of digital image correlation (DIC) techniques
has led to using the full-field displacement on a plane surface pro-
vided by these techniques for determining the parameters of linear
fracture mechanics. The use of full-field displacement has received
considerable attention since the pioneering work of McNeill et al.
(1983, 1987) and then those of (Hild and Roux, 2006; Ju et al.,
2006; Yoneyama et al., 2007; Yates et al., 2010). The problems
tackled are quasi-plane problems Fig. 1, which are situations where
the geometry and the applied loads are invariant in the direction
parallel to the (rectilinear) crack front. The analysis is generally
conducted within the plane stress framework by using correlation
techniques that try to fit the actual measured in-plane displace-
ment fields with analytical or numerical fields, or compute inde-
pendent paths or interaction integrals.

Extending the application of fracture mechanics parameter
identification from DIC displacement field to truly 3D situations
has attracted increasing attention for three mains reasons. The first
is that it can deal with more complicated experiments or in-service
structures that have non-directionally invariant geometries and
are subjected to truly 3D loads. The second is that even for qua-
si-plane situations it is known that boundary layer effects exist
ll rights reserved.

drieux), Thouraya.Baranger@
for moderately thin structures, especially for bi-materials (Rosakis
and Ravi-Chandar, 1986; Sinha et al., 1997; Li et al., 2000). In this
case, the estimated fracture mechanics parameters can differ sig-
nificantly from those averaged through-the-thickness if surface
fields and the assumption of plane stress are used. The last reason
is that from the theoretical standpoint, Leblond (2003), demon-
strated numerically by Noda and Kagita (2004), the singularity of
surface fields is not the same as for the bulk fields and is therefore
different from the r1=2 classical form for the displacement field. It
can therefore be expected that fitting the displacement fields with
the ’’wrong’’ asymptotic form can lead to a supplementary error on
SIFs (Stress Intensity Factors) and fracture parameters.

To achieve our goal, we propose in this paper to first numeri-
cally extend the tangential surface displacement field, provided
on a part of the external boundary, within the entire solid, and then
use standard numerical procedures to compute the fracture
mechanics parameters along the crack front such as SIFs or elastic
energy release rates.

The paper first recalls the basic notions and computational
methods in linear fracture mechanics, pointing out several ’’bound-
ary layer or surface effects’’ identified in the literature from both
computational and experimental viewpoints. Next, a quick review
is given of the numerical procedures used for SIFs identification
from full field (in-plane) displacements. The procedure used to ex-
tend the surface displacement field and based on the solution of a
Cauchy problem by energy gap functional minimization, is then
described. Finally, two 3D examples illustrating the method are
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Fig. 1. Examples of quasi-plane problems.
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presented: the first is a 3D loading on a simple homogeneous
cracked specimen; the second is a quasi-plane problem but for a
bi-material CT specimen.

2. Stress intensity factors and energy release rates in linear
fracture mechanics

2.1. Preliminaries

Let us consider the general three-dimensional problem for a
cracked solid X n C, where C is the stress-free crack surface. We de-
note the displacement field by u;r is the Cauchy stress tensor and
e is the linearized strain tensor.

2.1.1. Cracks in two dimensions
If the solid and the crack geometry are invariant in the z direc-

tion, and if the loading has the same property, then the problem
can be viewed as a plane problem. The singular asymptotic
stress-field solution of Williams (1957), based on the Airy function
in polar coordinates for plane elasticity is written as:
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The displacement field u is obtained by integrating the strain de-
duced via the elastic constitutive equation for isotropic solids,
where E is the Young modulus and m is the Poisson ratio:

u ¼ KIuI þ KIIuII ð4Þ
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where �v ¼ v for plane strain and �v ¼ v=ð1þ vÞ for plane stress. The
solution is completed, under the plane strain condition by the
expression of stress rzz normal to the plane:

rzz ¼ mðrrr þ rhhÞ ð7Þ

Under plane stress conditions the solution is completed by the
expression of strain component ezz normal to the plane:

ezz ¼ �
m
E
ðrrr þ rhhÞ ¼ �
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Consider a plate �h
2 6 z 6 h

2, the plane stress elasticity equations
are only an approximation of the full 3D equations. Here it is
straightforward to observe that the calculus of the normal dis-
placement field and the other components of the strain tensor, i.e.:
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lead to non-bounded displacements in the vicinity of the crack tip,
and non zero transverse shear stresses, except on midplane z ¼ 0.

Another standpoint in linear fracture mechanics theory is the
energetic approach where the severity of the loading on the solid
is measured by Griffith’s energy release rate G, which is simply de-
fined for a linear crack in two dimensions by the opposite of the
derivative with respect to crack length l of the equilibrium values
of the potential energy of the solid:

G ¼ � @
@l W

pot
eq ðl; PÞ ð10aÞ
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u2KAðlÞ

R
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8<
:
where P stands for the loading applied to the solid, Wpot

eq is its poten-
tial energy at equilibrium, / is the elastic strain energy density and
KA the space of kinematically admissible displacement fields (which
depend on crack length). The link with the SIFs is given in this two-
dimensions setting by the following Irwin’s formula (Irwin, 1957;
Bui, 1978; Leblond, 2003):
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with E ¼ E for the plane strain conditions and E ¼ E=ð1� m2Þ for the
plane stress conditions.

2.1.2. Three-dimensional Cracks
For 3D cracks, excepting points on the external surface, the gen-

eral asymptotic elastostatic solution is described as a combination
of the three mode fields in each plane containing the normal vector
N to the tangent plane of the crack surface and the normal vector n
to the crack front c, parametrized by the curvilinear abscissa s as
shown in Fig. 2a and b (see Bui, 1978, 2006; Leblond, 2003).

The mode I and II fields are the strain modes acting in the plane
(N;n), with KIðsÞ and KIIðsÞ being functions of abscissa s, whereas
the mode III field is the anti-plane field, such that:

rrs ¼
KIIIðsÞffiffiffiffiffiffiffiffiffi

2pr
p sin

h
2

ð12Þ

rhs ¼
KIIIðsÞffiffiffiffiffiffiffiffiffi

2pr
p cos

h
2

ð13Þ

us ¼ KIIIðsÞ
4ð1þ vÞ

E

ffiffiffiffiffiffiffi
r

2p

r
sin

h
2

ð14Þ

For 3D cracks, the virtual extension of the crack is no longer a
scalar and is described by the positive scalar normal celerity func-
tion cðsÞ defined on the crack front c. In this extension, each geo-
metrical point MðsÞ on the crack front is translated in direction
nðsÞ by an amount of cðsÞ as shown on Fig. 2b. So that, for example,
the variation of the crack area is:

djRj ¼
Z

c
cðsÞds ð15Þ



Fig. 2. Crack front and some definitions.

S. Andrieux, T.N. Baranger / International Journal of Solids and Structures 50 (2013) 1523–1537 1525
The energy release rate GðcÞ in the extension defined by cðsÞ is
therefore the directional derivative:

GðcÞ ¼ �lim
h!0
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h i

ð16Þ

For sufficiently regular cracks and loading, the energy release rate
GðcÞ can be represented by a linear form acting on the normal celer-
ity, where gðsÞ is the local energy release rate defined as follows:

GðcÞ ¼
Z

c
gðsÞcðsÞds ð17Þ

and the Irwin formula again provides a link with the local SIFs:
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Fig. 3. Definition of sub-domains for the virtual crack extension method.
2.2. Invariant volume and surface integrals for the computation of
energy release rates and SIFs

Various methods have been proposed to compute the SIFs and
the energy release rate on the basis of knowledge of the displace-
ment field throughout the solid, obtained by the numerical resolu-
tion of the direct elastostatic problem. An initial family of methods
is directly related to the asymptotic behavior of these fields around
the crack tip:
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where �m ¼ m stands for plane strain conditions and �m ¼ m=ð1þ mÞ for
plane stress conditions. And a displacement correlation method is
necessary in order to extract the SIFs. Therefore a least-squares
method can be used. In plane (nðsÞ;NðsÞ), once a segment ½0; rm�
has been selected along the crack lips, where r ¼ 0 corresponds to
the crack front, the SIFs can be computed by the following formula,
(see Galenne et al., 2005):
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Corresponding procedures for SIFs evaluation by using full-field dis-
placements have been designed in the same way, but as will be de-
scribed in Section 4, higher order terms of the solution to the
Williams’ series must also be used. Another family of methods is
based on the computation of invariant integrals on surfaces or
volumes surrounding the crack tip. They are first intended to com-
pute the global elastic energy release rate for a uniform normalized
normal celerity along the crack front and are based on Rice’s path-
independent integral J (Rice, 1968):

G ¼ J �
Z
C
½un � #� rniui;n�dC ð21Þ

where C is any closed surface surrounding the crack front and # the
outward unit normal at C. The virtual extension method is used to
compute the local energy release rate gðsÞ and also to insure better
robustness and stability of the results for finite element computa-
tions. In (Destuynder and Jaoua, 1981; Destuynder et al., 1983) a
virtual extension C1 vector field hðxÞ is introduced with the property
in each plane (nðsÞ;NðsÞ) to be normal to the crack front c at s, such
as:

hðxn; xN; sÞ ¼ cðsÞnðsÞ for ðxn; xNÞ 2 X1

hðxn; xN; sÞ ¼ 0 for ðxn; xNÞ 2 X2
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v1 and v2 are two regular curves so that Ci=vi � ½0;1� for i ¼ 1;2 are
regular surfaces enclosing the crack front as shown in Fig. 3, X1 is
the interior domain enclosed by curve v1 in the (nðsÞ;NðsÞ) plane,
X2 is the exterior domain of curve v2 and X12 is the domain delim-
ited by the two curves, v1 and v2.

The energy release rate can be expressed by the following do-
main invariant integral:

GðcÞ ¼ �
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� �
dX ð23Þ

The determination of the local energy release rate gðsÞ requires
solving Eq. (17). Different discretizations along the crack front can
be used for the normal celerity functions cðsÞ and the local release
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rate gðsÞ, Galenne et al. (2005). This approach is known as G-Theta
method.

An elegant computation method for the SIFs can then be de-
duced in two dimensions by noting that the energy release rate
G is a quadratic form acting on displacement fields: G ¼ GðuÞ. Then,
by considering the associated bilinear form BGðu;vÞ, obtained by
the polarization equation:

BGðu;vÞ ¼
1
4
ðGðuþ vÞ � Gðu� vÞÞ ð24Þ

and by using Irwin formula, it is clear that the bilinear form can be
expressed with the SIFs corresponding to fields u and v:
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1
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Then, by selecting the singular fields uI and uII for the v fields,
we obtain the formula for the separate computation of the SIFs
associated with u:

KIðuÞ ¼ EBGðu;uIÞ; KIIðuÞ ¼ EBGðu;uIIÞ ð26Þ

The domain-integral expression of BG is known as the interac-
tion integral (similar definition and results can be derived from
the path-independent integral J). The method is also referred to
as the auxiliary fields method in (Bui, 1983).

3. Three dimensional effects in linear fracture mechanics

Parsons and Hall (1989), performed a numerical study of the
simple problem of an edge crack in a plate under tension with
thickness h. The results showed that the in-plane stress, rij with
ði; jÞ ¼ ðr; h), were nearly constant through the thickness with the
normal stresses falling by approximately 25% at the free surfaces.
The out-of-plane stress component r33 varied considerably
through the thickness. The results also showed that at the center
of the plate, very close to the crack tip, the stress field was a plane
strain field, as expected. Further away from the crack, r � 0:33h
the field was a plane stress. Very close to the crack tip, the plane
strain predominated except in a boundary layer near the free
surfaces.

Rosakis and Ravi-Chandar (1986), showed that the size of the
three dimensional effect on the surface fields extended approxi-
mately to a radius equal to half the thickness h of the solid.

Sinha et al. (1997), investigated mixed mode for interfacial
cracks in a PMMA/ Al specimen subject to three point bending by
experimental interferometric means coupled with finite element
analysis. For dominant tensile stress conditions, plane stress condi-
tions were not established along the bond line, even far away from
the crack tip. At other polar directions (65� to 135�) plane stress
conditions were encountered at distances greater than 0:3h. How-
ever, there was a significant reduction of these strong 3D effects for
dominant shear stress conditions.

For notches, Li et al. (1985), extensively studied the effect of fi-
nite thickness of the plate. For small quarter-elliptical corner
cracks in elastic plates subjected to tension, Zhang and Guo
(2007), used finite element analysis to demonstrate that strong
3D effects exist within a radial distance of the crack tip ranging
from 4:6a to 0:7a, a and c being respectively the minor and major
semi axes, for an aspect ratio c=a ranging from 0.2 to 1.

For semi-elliptical surface cracks, it is known that the asymp-
totic form or the stress singularity of the elastic solution at the
point where the crack front intersects with the free surface is dif-
ferent from the r1=2 ordinary form. The actual exponent is Poisson
ratio and Mode dependant. It varies in the range 0.332–0.5 for the
Mode I solution, and in the range 0.5–0.646 for the mode II and III
solutions, for Poisson ratios varying from 0 to 0.5. Noda and Kagita
(2004) reviewed existing solutions and proposed a method based
on the body force method with a highly singular fundamental solu-
tion for accurately computing stress intensity factors along the
crack front of semi-elliptic and rectangular cracks.

4. SIFs determination from digital image correlation

4.1. SIFs determination methods with digital image correlation

Let us assume that a surface displacement field um, obtained by
various means, is available on a part M of the surface of the solid.
The two-dimensional M domain can be chosen to include the crack
tip or not. The mode I and II SIFs can be computed by least-square
methods over the domain M by minimizing the least-square error
between the actual field um and an elastic field uðfqgÞ described by
a finite set of parameters fqg, always including the SIFs:

fpg ¼ ArgMin
fqg

Z
M
kuðfqgÞ � umk2dM ð27Þ

uðfqgÞ ¼
Xn

i¼1

qiU
iðxÞ; n P 2; U1 ¼ uI; U2 ¼ uII; q1 ¼ KI;

q2 ¼ KII ð28Þ

Different choices can be made for the other fields describing the
approximate field uðfpgÞ for n > 2: Yoneyama et al. (2007) and Ju
et al. (2006) use the solution of the Williams series up to order 10,
while Yates et al. (2010), use it up to order 15 by adding, as done by
McNeill et al. (1987), a rigid body displacement field to the Wil-
liams solution. Hild and Roux (2006), completed this description
with linear fields associated with a homogeneous strain field. The
optimal set of parameters fpg is then solution of the following lin-
ear system:

½A�fpg ¼ ffg with Aij ¼
Z

M
U i � U jdM; f i ¼

Z
M

U i � umdM

ð29Þ

Yoneyama et al. (2007), did not fix the position of the crack tip a pri-
ori, so that the minimization problem was no longer a quadratic one
and did not result in a linear system as in (29). Moreover, the crack
position parameters appeared in all the expressions of the Ui func-
tions, thus leading to strong coupling between all the parameters.
The determination of the crack tip location could also be performed
by using hyper-singular fields that correspond to the derivative of
the fields with respect to the crack tip position. The equation for
the crack tip location was obtained by canceling the contribution
of these fields in the fitting of the measured fields far from the pos-
sible crack tip location (Hamam et al., 2007; Limodin et al., 2010).

Other methods use domain or contour integrals by inserting
measured or estimated displacement fields by image correlation
into the formula (21), Huntley and Field (1988). This requires com-
puting the stress field. Other authors prefer to use interaction inte-
grals usually employed in post-processing numerical computations
(Réthoré et al., 2005, 2008) and as described in Subsection 2.2.

4.2. Estimation of errors on SIFs for plane stress field-based
identification

In 3D situations, the solution varies from plane stress at the sur-
face to plane strain in the symmetry plane of the structure for qua-
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si-plane problems. Therefore initial insight into the question of the
approximation caused by the choice of plane fields for the u field
can be gained by examining the following problem which provides
bounds on the error on the identified SIFs. Let us assume that the
real field um corresponds to a plane strain field whose SIFs are de-
noted by Km

I ;K
m
II

� �
,

um ¼ Km
I uI

D þ Km
II uII

D; ui
D � uið�m ¼ mÞ i ¼ I; II ð30Þ

What is the error in the approximate SIFs obtained by the least-
squares method with plane stress fields as the fitting target (as
usually used in the methods described in the literature)? We shall
restrict ourselves to the simplest method where only the singular
fields are incorporated in the approximation (28), so that:

n ¼ 2; Ui ¼ ui
S � ui i ¼ I; II ð31Þ

If the domain M is a disk centered at the crack tip, then the linear
system simplifies it into a diagonal one because of the orthogonality
of the mode I and mode II fields for plane stress fields and plane
strain fields. The solution is therefore simply:

Ki ¼
R

M ui
S � ui

DdMR
M ui

S � ui
SdM

; i ¼ I; II ð32Þ

For M-domains that are disks centered on the crack tip, ratios KI=Km
I

and KII=Km
II do not depend on the radius of the domain used for iden-

tification, and depend only on the Poisson ratio. After several te-
dious calculations, the error ratios can be obtained in closed-form:
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157� 280mþ 125m2 ð33Þ
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The error ratios vanish for a null Poisson ratio, because the plane
strain field and plane stress field coincide, while they reach their
maximum for incompressible materials. Fig. 4 displays the two er-
ror ratios EIðmÞ and EIIðmÞ as a function of the Poisson ratio. It can
be seen that the errors behave very differently for the two fracture
modes: The mode II error decreases monotonically, whereas the
mode I error has a non-monotonic and more extended variation.

By using Irwin’s formula, an error on the energy release rate can
also be derived from the previous errors on the SIFs. It depends on
the Poisson ratio but also on the mix factor g defined as the ratio of
the mode-II SIFs over the mode-I SIFs: g ¼ Km

II =Km
I :

g
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ðm;gÞ � 1 ¼ 1
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Fig. 4. Error between SIFs computed with plane strain field and that computed with
plane stress field, as a function of the Poisson ratio m.
This error function is plotted in Fig. 5. Due to the different behaviors
on the errors for Mode I and Mode II, the function has a complex
form and generally underestimates the value of G except for a low
mix factor and a Poisson ratio close to zero. The maximum error
reaches �46% for g ¼ 0 and m ¼ 0:5.
5. Computing SIFs and energy release rates from full field
surface displacements

Here the aim is to relax the limitations due to the assumption of
plane displacement fields for the computation of SIFs and energy
release rates from tangential surface measurements in quasi-plane
problems, and thus address truly 3D situations. To achieve this we
propose computing these quantities from 3D fields that will have
been extended into the solid from the surface displacement fields
usually measured by DIC on stress free parts of the boundary of
the 3D solid.

The method proposed here has two steps. First, a numerical
expansion is performed in order to obtain the mechanical fields
within the whole solid, from the full-field surface displacement
on a part Cm, up to the remaining boundary of the solid Cu. The
problem is formulated as a variant of the well known Cauchy prob-
lem for the Lamé operator: provided the tangential displacement
field and complete stress traction field are given on Cm and are
compatible, it is possible to determine the displacement field with-
in the solid. In experiments with full-field measurements, the part
where the displacements are measured is generally free of stress
and only the tangential displacement can be identified via image
correlation with single DIC device. Strictly speaking, the Cauchy
data for the Lamé operator has three components of displacement
and surface traction fields on Cm.

To obtain the displacement field in the solid, it might be prefer-
able to directly compute the elastic solution of the mechanical
problem but the true detailed boundary conditions of the solid
are almost never known. Only global forces and moments or aver-
aged displacement are available so that additional assumptions are
necessary in order to derive a well-posed elastostatic problem. Fur-
thermore, the Cauchy problem can be posed in the region of inter-
est, namely the vicinity of the crack, a far smaller region than the
complete solid.

The Cauchy problem is solved by using repeated resolutions of
well posed forward problem. The second step is then to compute
the quantities of interest (SIFs and/or energy release rates) as de-
scribed in Section 2.

This procedure requires meshing part of the solid containing the
crack, but if the precise location of the crack front is not available
then the energy release rates can nevertheless be determined with-
out this information if the G-Theta method is employed. Only the



Fig. 6. Domain where the Cauchy problem is posed when the precise location of the
crack front is unknown.

Fig. 7. Definition of the three parts Cm;Cb and Cu of the boundary.
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crack plane and a cylindrical surface surrounding the crack front
must be known beforehand. In this situation, the interior part of
the cylinder is not introduced in the model shown in Fig. 6, and
the cylindrical surface is obviously a part of the boundary Cu.
6. A data completion method for extending surface fields into
an elastic solid

The method must now produce a 3D equilibrium elastic dis-
placement field within the solid, provided that the displacement
field and the surface traction field are known on part of the bound-
ary, and the distribution of the elastic properties of the material
constituting the solid is given. This problem is known as a Cauchy
problem for the Lamé operator. The Cauchy problem for elliptic
operators has been extensively studied for the Laplace operator
used to model the stationary heat equation for homogeneous sol-
ids. However, more recently, the Lamé operator has proved inter-
esting for modeling linearized elasticity. The different methods
proposed include front propagation methods Bui (1994), moment
methods Hon and Wei (2001), fixed point algorithms (Kozlov
et al., 1992; Marin and Johansson, 2010b,a), evanescent regulariza-
tion (Cimetière et al., 2001; Delvare et al., 2010), quasi-reversibility
approaches Bourgeois (2005), conformal mapping and Tikhonov
regularization (Berntsson and Elden, 2001), boundary element
methods by Marin and Lesnic (2002) and direct approaches based
on matrix rearrangement Bryan and Caudill (2005). Very few
authors have dealt with this 3D problem, either due to the com-
plexity of extending their methods to 3D situations, or computa-
tional cost. Nevertheless, using the method of fundamental
solutions Marin (2005) dealt with three-dimensional isotropic lin-
ear elasticity. In Kadri et al. (2011) the authors identified three-
dimensional interface crack via Steklov–Poincaré approach.
Whereas, Andrieux and Baranger (2008a, 2012) identified contact
area and emerging crack front in 3D framework via energy ap-
proaches. Much work has focused on only homogeneous and iso-
tropic media. The present formulation aims at both greater
generality in order to deal with more realistic applications, and
more computational efficiency in order to deal with large 3D situ-
ations. It extends the method given in (Andrieux et al., 2006;
Baranger and Andrieux, 2011) for the Cauchy problem for the La-
place operator.
6.1. Statement of the Cauchy problem for the Lamé operator.

An elastic three-dimensional solid X is considered, the bound-
ary of which is separated into three non-overlapping parts Fig. 7.
1. On the first part, denoted by Cm, the surface traction Tm and the
displacement field Um are known (measured),

2. On the second part, Cb, the usual boundary conditions are
known (combination of surface traction and displacement field
components); these boundary conditions will be denoted gen-
erally by:
Bu ¼ b ð36Þ
3. On the third part, Cu, the external forces Tu and the displace-
ment Uu are unknown; both have to be identified.

Provided that the Hooke tensor A of the elastic material forming
the solid is known, even if it depends on space, with the usual
properties insuring the existence and uniqueness of a classical lin-
ear elasticity problem, then the Cauchy problem is the following.

Cauchy problem for the Lamé operator. Given: surface traction
field Tm and displacement field Um on Cm, vector b of the usual
boundary conditions on Cb. Find the surface traction Tu and dis-
placement Uu such that an elastic displacement field u exists and
satisfies the following equilibrium:

divðA : eðuÞÞ ¼ 0 in X

A : eðuÞ � n ¼ Tm; u ¼ Um on Cm

Bu ¼ b on Cb

A : eðuÞ � n ¼ Tu; u ¼ Uu on Cu

8>>><
>>>:

ð37Þ

The boundary conditions on Cm and Cu of the solid boundary
can be non-linear, as when involving contact and friction. The only
requirements for the application of the Cauchy approach for the
Lamé operator is that the linear elasticity assumption is satisfied
throughout the solid. Existence and uniqueness for the Cauchy
problem have been studied extensively for the Laplace operator
and more recently for the Lamé operator. Existence is conditioned
by a compatibility condition involving the data (Um; Tm). This con-
dition is an implicit one but it has been shown that the pairs of
compatible data are dense in the space ðH1=2ðCmÞÞ3 � ðH�1=2ðCmÞÞ3

of all possible data pairs (Fursikov, 2000). This is the reason why
in most applications, the data are assumed to be compatible, espe-
cially when originating from possibly noisy measurements: each
arbitrarily small neighborhood of the data pair contains a compat-
ible data pair. A notable exception is the work of Cimetière et al.
(2001), in which the compatibility condition is explicitly tackled
in the discrete problem. If the data is assumed to be compatible,
then the Cauchy problem has a unique solution for the Lamé oper-
ator with homogeneous and isotropic coefficients (Dehman and
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Robbiano, 1993; Ang et al., 1998). The Cauchy Problem formulated
here can be seen as an identification problem, namely the identifi-
cation of unknown boundary conditions on Cu, provided overspec-
ified boundary conditions on Cm are available: this is therefore an
inverse problem, sometimes also known as a data completion
problem.

For the applications concerned here, only tangential displace-
ment fields are usually measured on surface Cm because single dig-
ital camera devices and image correlation techniques are involved.
The Cauchy problem is thus slightly modified and takes the follow-
ing non classical form (Andrieux and Baranger, 2008b).

Incomplete Cauchy problem for the Lamé operator. Given: surface
traction field Tm and tangential displacement field Um

t on Cm and
vector b of usual boundary conditions on Cb. Find the surface trac-
tion Tu and displacement fields Uu such that an elastic equilibrium
displacement field u exists and satisfies.

divðA : eðuÞÞ ¼ 0 in X

A : eðuÞ � n ¼ Tm; ut ¼ Um
t on Cm

Bu ¼ b on Cb

A : eðuÞ � n ¼ Tu; u ¼ Uu on Cu

8>>><
>>>:

ð38Þ
6.2. Solving the Cauchy problem for the Lamé operator by
minimization

In line with (Andrieux and Baranger, 2008a,b), and extending
the method of Andrieux et al. (2006), for the Laplacian operator,
the general method for solving the Cauchy problem is to derive a
functional of the unknown fields on Cu, say (s; t), where (possibly
local) minima provide the desired pair of fields (Tm;Um) or (Tm;Um

t ).
Building this functional requires two steps.

First, the two following elastic displacement fields u1 and u2 are
defined, as functions of (b;Um; s) and (b; Tm; t) respectively. They
correspond to the solutions of two well-posed classical mixed elas-
ticity problems.

divðA : eðu1ÞÞ ¼ 0 in X

u1 ¼ Um on Cm

Bu1 ¼ b on Cb

A : eðu1Þ � n ¼ s on Cu

8>>><
>>>:

divðA : eðu2ÞÞ ¼ 0 in X

A : eðu2Þ � n ¼ Tm on Cm

Bu2 ¼ b on Cb

u2 ¼ t on Cu

8>>><
>>>:

ð39Þ

Since whenever the two fields u1 and u2 coincide, then (s; t) is a
solution (Tu;Uu) of the Cauchy problem, the second step consists in
introducing a functional measuring the gap between the two fields.
Here, the choice of this functional is the error in the semi-norm of
elastic energy:

Jðu1;u2Þ ¼
1
2

Z
X

A : eðu1 � u2Þ : eðu1 � u2ÞdX ð40Þ

The inverse problem is then formulated via the minimization of the
energy error functional:

Find ðs; tÞ that minimize Eðs; tÞ
with Eðs; tÞ � Jðu1;u2Þ ¼ 1

2

R
X A : eðu1 � u2Þ : eðu1 � u2Þ

u1 ¼ u1ðb;Um; sÞ; u2 ¼ u2ðb; Tm; tÞ solution of ð39Þ

2
64 ð41Þ

The justification of the formulation lies in the following proper-
ties, (Andrieux and Baranger, 2008a):

- E is a positive convex quadratic function,
- If a pair of fields (s; t) satisfies E ¼ 0 then:
1. u2 ¼ u1 þ R, where R is a solid body displacement field
2. u1 solves the Cauchy problem.
For computational purposes, an alternative form of the func-
tional can be derived involving only surface integrals, by exploiting
the equilibrium properties of the ui fields. The functionalE is also
given by:

Eðs; tÞ ¼ 1
2

Z
Cm

ðA : eðu1ðsÞÞ � n� TmÞ � ðUm � u2ðtÞÞdC

þ 1
2

Z
Cu

ðs� A : eðu2ðtÞÞ � nÞ � ðu1ðsÞ � tÞdC ð42Þ

This last expression is used in the computations and avoids any
domain integration. It involves both surfaces Cm and Cu.

Although the problem is quadratic and could in principle be
solved directly via a linear system of equations (the first order opti-
mality condition for J), a direct optimization method should be pre-
ferred, using only the gradients of the function. The gradient has to
be computed by an adjoint method because of the implicit depen-
dence of the u1 and u2 fields with respect to the variables, and the
relatively high cost of evaluating the function itself (Chavent,
1991; Griewank, 1993). Going back to the minimization algorithm
for the discretized E function, each iteration of the algorithm in-
volves the solution of four linear systems: two direct problems
and two adjoint-problems. In order to optimize the computational
cost, the Trust Region Method (TRM) is adopted. See Baranger and
Andrieux (2008) for details on the numerical aspects of the
method.

Once the data completion problem is solved, the elastic dis-
placement field within the entire structure is determined on the fi-
nite element mesh that was used for the computation of fields u1

and u2. When convergence is reached, u1 equals u2, and in the
applications field u1 is used as the ’’true’’ elastic field in the solid,
matching the surface measurements. Afterwards usual numerical
methods for computing the SIFs and the energy release rates
(Galenne et al., 2005) described above in Section 2 can be
employed.

6.3. Noisy Cauchy data and regularization

In real situation, Tm and Um are measured or approximated, con-
sequently they are noisy and therefore regularisation has to be ad-
dressed. Hereafter we denote by Tmd and Umd the noisy Cauchy
data, which are known with a noise rate a such as 0 < a < 1.

The Cauchy problem solution of the optimization problem (41),
is obtained when the functional reaches its minimum. This method
has provided promising results in several situation, however as
other methods, it becomes unstable in the case of noisy data, and
results blow up. During the optimization process, the error reaches
a minimum before increasing very fast leading to a numerical
explosion, while, the energy functional (42) asymptotically reaches
a minimal threshold. This latter is as a function of the noise rate a.
In order to overcome this numerical instability, in Rischette et al.
(2011) an adequate stopping criteria was developed for the data
completion method. This stopping criteria depends on the noise
rate and was derived by using a priori errors estimates of the for-
ward problems (39), for more details see Rischette et al. (2011).
This criterion is given by:

jEj � Ej�1j 6
a

1� a

� �2
kTmdk2

Cm
þ kUmdk2

Cm

� �
ð43Þ

where Ej and Ej�1 are two successive energy function values taken at
the iterations j and j� 1, respectively. Hereafter, only the measured
displacement field Umd is noisy, the surface traction field Tm ¼ 0 is
known exactly and is free of noise. Hence the above stopping crite-
rion becomes:

jEj � Ej�1j 6
a

1� a

� �2
kUmdk2

Cm
ð44Þ



Fig. 8. The solid studied with a crack under mixed Mode-I, II, III loading.
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This regularising stopping criteria allows us to avoid instability and
then numerical explosion when the noise rate remains reasonable:
less than 10%. This regularisation method is used hereafter to con-
trol sensitivity to noise.

7. Numerical illustrations

The procedure proposed was tested on numerical data obtained
from FE computations. No noise was added to the data but the
meshes used for producing the reference solution and computing
the fracture mechanics parameter via the solution of the Cauchy
problem were different in order to eliminate the inverse problem
crime. The difference between the two interpolations of the data
in the two models nevertheless introduced a form of (small) noise
into the problem. It is noteworthy that the measurement surface
does not meet the crack intersection with the external surface of
the solid. Since displacement discontinuity is likely to occur on
the crack surface, usual correlation techniques that rely on regular-
ity assumptions on the displacement fields are not appropriate for
dealing with this kind of situation. They must be restricted to parts
where the regularity assumptions are valid. Some authors have
developed special methods in order to include the possibility of
discontinuous displacement across a line (see Section 4), but they
usually require knowledge of the position of the crack front, which
is sometimes very difficult to achieve, or which necessitates elab-
orated non linear algorithms when crack position seeking is
incorporated.

7.1. 3D loaded cracked specimen

We consider the solid shown in Fig. 8. One of the lateral bases
(x ¼ 0) of the solid is clamped. On the opposite side (x ¼ 30), dis-
Fig. 9. Geometry
placements are prescribed (uniform displacement in the x and y
directions, and rotation is prescribed around the x axis which leads
to affine prescribed displacement in the y and z directions). The
loads applied lead to a mix of Modes I, II, III and the mixity coeffi-
cient varies along the crack front. The Cauchy data consist in dis-
placement measurements on a well-defined area around the
crack, as shown in Fig. 8. The surface traction on this area are equal
to zero. The data completion problem is defined only on the part of
this solid which is illustrated in Fig. 9. The crack front is considered
to be known.

Fig. 9a depicts the data completion domain, with the boundary
Cm of the Cauchy data and the boundary Cu where the displace-
ments and surface traction have to be identified. Fig. 9b shows
the associated FE mesh. The isotropic material has the following
properties: E ¼ 2:081011 Pa and m ¼ 0:3. The identified Stress
Intensity Factors and energy release rates are evaluated by using
field u1 obtained after convergence of the minimization problem
(41) defined above. Fig. 9b shows the meshed domain. Three cases
were studied:

Case 1: we use full displacement data (ux;uy and uz) taken on the
patch defined by the area on the face located at z ¼ 4.
Case 2: idem Case 1 except that we consider that only tangential
displacement components ux and uy are known.
Case 3: we use tangential displacement data taken on two iden-
tical patches located on the top and bottom sides, at z ¼ 0 and
z ¼ 4, respectively.

The mesh has 12704 nodes whereas the data are given on 259
nodes for each patch.

Fig. 10 show a comparison between reference and identified
values. Fig. 10a and b show displacement magnitude on Cu and
Fig. 10c and d show Mises Stress on Cu. Fig. 10h show the displace-
ment and Mises stress, respectively, on the sub-domain around the
crack where stress intensity factors and energy release rate are
computed. We notice a good agreement with the reference values.

Fig. 11 shows the results obtained in case 1 and Fig. 12 shows
the corresponding relative errors. Very good agreement can be
seen between the values identified for SIFs and the exact ones
(computed from the prescribed loading conditions and a finer
mesh, different from that used for solving the Cauchy problem).
The variation of Mode II and Mode III SIFs along the crack front
(through the thickness of the specimen) is perfectly identified.

Fig. 13 shows the results obtained in cases 2 and 3, Fig. 14
shows the corresponding relative errors. Here, for case 2, a slight
degradation of the identification results can be seen for mode I
and quite considerable degradation observed for mode III. A phys-
ical explanation of this latter degradation is the fact that mode III is
and mesh.



Fig. 10. Reference and identified displacement magnitude (mm) and Mises stress (Pa) for the case 1.
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mainly related to the out-of-plane displacement field. Thus, using
only tangential displacements on one side of the specimen leads
to poor evaluation of the out-of-plane component of the displace-
ment fields, and thus to imprecise determination of the SIFs of
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Fig. 11. Identified SIFs KIi;KIIi and KIIIi (Pa:m1=2) along the crack front using full displacement field (ux;uy;uz) on Cm. Index e indicates exact (reference) values.
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(a) Local energy release rate g(z) computed along the crack
front by mean of the Irwin formula and the identified displace-
ment field.
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Fig. 15. Comparison of the exact and identified gðzÞ (Pa:m): index e denotes exact value, index i indicates identified one and indexes 1, 2 and 3 indicate case 1, 2 and 3,
respectively.
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mode III. Furthermore, these results required far more iterations in
the minimization process used to solve the data completion step of
the procedure than those of case 1. This was due to the same rea-
son: controlling the out-of-plane displacement field is much more
difficult.

When increasing the amount of data, and if the information is
arranged geometrically by using both faces of the mock-up (case
3), then even with only tangential data, good agreement can be ob-
tained again between the exact and identified values for the same
computational cost. The SIFs are computed here by the least-
square fitting method on the discontinuities of the displacement
across the crack (20) over a segment of length 1.5. A global view
on the results is given by the examination of the elastic energy re-
lease rate along the crack front, obtained from the SIFs by using the
Irwin formula. Fig. 15a shows the local energy release rate identi-
fied as a function of the space variable through the thickness gðzÞ
obtained in the three cases defined above and compared to the ex-
act one. Fig. 16a and b show, respectively, the relative error of the
local energy release rate computed by Irwin formula and G-Theta
method.

Again, the results for case 2, where tangential displacements on
only one side of the specimen are available, are far less accurate
than the results obtained in the other cases. The global energy re-
lease values (that is the integration over the thickness of gðzÞ) are
summarized in Table 1.

The local energy release rates gðzÞ can also be computed directly
by the G-Theta method, thereby avoiding the computation of the
SIFs. This method can be used when the precise location of the
crack front is unknown, see Section 5. Fig. 15b gathers the local
elastic release rate curves for the three cases studied. The functions
are computed with an interpolation by Legendre polynomials up to
order 7 (see Galenne et al., 2005).

The results for cases 1 and 3 are very accurate, and for reasons
already given, case 2 is quite far from the reference values. The
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Fig. 16. Comparison of the exact and identified gðzÞ (Pa:m): index i indicates identified one and indexes 1, 2 and 3 indicate case 1, 2 and 3, respectively.

Table 1
Global energy release rates. Comparison between the three cases and the exact
computation: Ge ¼ 16093Pa:m.

Global G ðPa:mÞ Case 1 Case 2 Case 3

Identified 16153 14342 16105
Relative error �0.37% 12.2% �0.074%
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results are very similar to those obtained with SIFs computations
and the Irwin formula and no clear conclusion can be given with
respect to the respective merits of the two methods.

7.2. Bi-material CT specimen

The next application is devoted to a Compact Tension specimen
(CT), constituted with two distinct elastic materials, and for which
Fig. 17. Geometry an
the crack is slightly shifted from the geometrical symmetry plane,
as shown in Fig. 17a. The tangential displacements are detected by
patches arranged on the upper surface and on one of the side sur-
faces of the specimen, as depicted in Fig. 17b.

The specimen is loaded by prescribing divergent horizontal dis-
placements on lines A and B. It has a thickness of 20mm. The mate-
rials have Poisson ratios of m1 ¼ 0:2 m2 ¼ 0:4, respectively, and the
ratio of the Young moduli is five. The crack is located in the less
stiff material (material 2).

The Cauchy problem is solved on a sub-domain surrounding the
crack tip line, as shown on Fig. 18a and b. Cm is the part where tan-
gential displacement is given together with zero surface traction
(the patches); Cu is the part where the displacement and surface
traction are reconstructed, while the other faces are free of surface
traction. The Cm part contains 481 nodes, and the Cu one contains
341 nodes. The data completion problem is solved with 12 global
d Cauchy data.



Fig. 18. Geometry of the sub-domain where the Cauchy problem is solved.
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Table 2
Global energy release rates.

Global
GðPa:mÞ

Fitting method
with one term

Fitting method
with two terms

Fitting method with
three terms

Reference 6.431 7.227 8.827
Identified 6.741 7.563 8.641
Relative

error
�4:82% �4:64% 2:1%
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iterations of the process described in 6.2, which requires the reso-
lution of 48 3D-elastic problems (four solutions per iteration: two
direct problems and two adjoint problems) with the same stiffness
matrix. In this case, the vicinity of the interface to the crack, leads
to a form of the displacement jump across the crack that is signif-
icantly different from its classical asymptotic form (variation as
r1=2), even very close to the crack tip. The computation of the SIFs
must take this specific feature into account as poor evaluation of
the SIFs would result in fitting the actual jump with only the sin-
gular part of the theoretical displacement field. To deal with this
issue, we add the second and third terms of the Williams’ series
in the fitting procedure which then read as (for one component
of the displacement jump denoted by [u]):

ðK;A;BÞ ¼ ArgMin
k;a;b

R rm

0 ½u� � k
ffiffiffi
r
p
� ar � br

ffiffiffi
r
p� �2

dr

½u� ¼ K
ffiffiffi
r
p
þ Ar þ Br

ffiffiffi
r
p

8<
: ð45Þ
where rm is the length of the segment where the displacements are
fitted. This problem has a closed form solution for the expression of
the identified stress intensity factor, which is the

ffiffiffi
r
p

component K
of the displacement jump:

Kð3Þ ¼ 450
r2

m

Z rm

0
½u�

ffiffiffi
r
p

dr � 1260

r5=2
m

Z rm

0
½u�rdr þ 840

r3
m

Z rm

0
½u�r

ffiffiffi
r
p

dr

ð46Þ
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A similar expression can be obtained when using only the two first
terms of the Williams series.

Kð2Þ ¼ 50
r2

m

Z rm

0
½u�

ffiffiffi
r
p

dr � 60

r5=2
m

Z rm

0
½u�rdr ð47Þ

Obviously, the values of the computed SIFs are different and will be
denoted by an index 1, 2 or 3 depending on the number of terms of
the series used in the fitting procedure.

It can first be seen that for Mode I and Mode II the corrections
brought about by the addition of new terms of the Williams series
in the fitting procedure are significant and that it can be considered
that convergence is obtained with three terms in the series. Next,
Fig. 19 shows that very good precision is obtained in the recon-
struction of the SIFs through the thickness. Table 2 gathers the re-
sults for the global release rate G (which is a virtual propagation
celerity uniformly distributed through the thickness). The same re-
marks apply as for the SIFs.

The global energy release rate value can be compared with the
value GPS obtained by directly exploiting the surface displacement
fields with the plane stress assumption, which is the usual method
when using full field measurements on a quasi-plane specimen
(see Subsection 4.1). The computed value of GPS ¼ 7:62Pa:m then
exhibits an error (underestimation) up to 13:7%. This result can
be explained first by the error of the ’’plane part’’ on the global re-
lease rate (related to the two first SIFs in the Irwin formula (11),
and secondly with a smaller influence, by the existence of a non
vanishing SIF of the Mode III. Both effects are clearly seen to lead
to an underestimation of the global release rate G. Another effect
that leads to a supplementary error, but is hardly considered as
an over or underestimation, is the fact that the singularity of the
surface field for 3D situation is known to be different from the clas-
sical r1=2 one (see Sections 1 and 3). These three sources of error
indicate that strong three-dimensional effects are encountered in
this quasi-plane situation.

As mentioned previously, when the precise location of the crack
front is not known, the energy release rate can nevertheless be
evaluated by a similar method but with an adapted domain for
the extension of the displacement field into the solid, excluding a
zone around the crack front, as depicted in Fig. 20.

For the case with the same material constants in materials 1
and 2, for example, the identified global energy release rate is
Gi ¼ 21:84Pa:m for a reference value of Gr ¼ 22:29Pa:m, thus lead-
ing to a �2% error. The estimation by the plane stress Rice integral
computed for surface displacement only is GPS ¼ 23:64Pa:m, that is
to say an error of 6:1%.
Fig. 20. Zoom on the domain used for the data completion problem when the crack
front is unknown.
8. Conclusion

In this paper we addressed the question of determining the
quantities of 3D linear fracture mechanics in a structure by using
surface displacement field measurements. The method relies on
the extension of these fields inside the (elastic) solid. This approach
makes it possible to deal with truly three-dimensional situations
(geometry and loading) and overcome the imprecision encoun-
tered with quasi-plane situations, where boundary layer effects
can disqualify the simple analysis of surface fields by usual meth-
ods based on the plane stress assumption. A short study of these
phenomena and on the estimation of errors made with this kind
of analysis was performed. The precision of the results are quite
satisfactory but it should be recalled that they are obtained by
comparison with synthetic data where no noise is added, apart
the interpolation noise. Numerical experiments reported else-
where (Andrieux et al., 2006; Andrieux and Baranger, 2008a;
Andrieux and Baranger, 2008b; Baranger and Andrieux, 2011;
Andrieux and Baranger, 2012; Kadri et al., 2011) have nevertheless
shown that with the precision currently obtained in DIC devices
and DIC techniques (rate noise less than 5%), there is no need for
any regularisation except an ad hoc stopping criterion. It should
be noted that in this paper, only tangential displacements on a part
of the external boundary are used because this situation is encoun-
tered when the measurements involve only one DIC. With stereo-
scopic devices involving two cameras, the full displacement field is
available, and the same approach can be used without modifica-
tions. This situation is more favorable for the first step of the meth-
od (data completion problem) because of the increase in the
quality and amount of data. Forthcoming work will include exper-
iments with DIC measured data and an additional regularisation
procedure acting on the identified data of the Cauchy problem.
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