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Abstract: 

 

We examine experimentally and theoretically the effect of frictional shakedown of a 
three-dimensional elastic rolling contact. Small oscillations of the local normal forces lead to 
incremental sliding processes within the area of contact. Consequently, this causes a 
macroscopic slip motion of the two contacting bodies. If the oscillation amplitude is 
sufficiently small, the frictional slip ceases after the first few loading periods and a safe 
shakedown occurs. Otherwise the slip motion is continued and the contact fails. 

Using the method of dimensionality reduction, we derive analytical shakedown limits on 
the parameter plane tangential loading-oscillation amplitude and compare them to results of 
numerical simulations with Kalker's program CONTACT. Both models show very good 
agreement with experimental data and allow an accurate prediction of the shakedown 
displacement and the maximum tangential load capacity in the shakedown state. 
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1. Introduction: 
 
Frictional contacts are crucial for the generation of solid detachable and non-detachable 

connections between technical components. Examples are bolted connections, interference fits 
and machining fixtures. The load capacity and thus reliability of these systems mainly 
depends on the properties of the tangential contact (Booker et al., 2004; Chung and Ip, 2000; 
Law et al., 2006; Li et al., 2000; McCarthy et al., 2005). Its capacity is in turn determined 

primarily by the macroscopic normal force NF  and the friction coefficient µ . According to 

Coulomb's law, such a connection fails if the applied tangential force TF  exceeds the 

maximum holding force: 

 ,maxT N
F Fµ= . (1) 

In many technical systems, the normal force either consists of a static part superposed 
with small oscillations, or the overall normal force is constant and there are only local 
oscillations of normal pressure. Both scenarios lead to a periodic incremental slip of the 
contact interface, even if the tangential force is far below the maximum holding force of 
Eq.(1). Some consequences of this effect are micro-slip (Hartwigsen et al., 2004) and fretting 
fatigue (Huq and Celis, 2002; Nowell et al., 2006) of the relevant components. However, it is 
also possible that the slip ceases after the first few loading periods (Antoni et al., 2007; 
Churchman and Hills, 2006). This is the case, if the initial displacement produces a residual 
force in the interface, which is sufficiently strong to prevent any further slip. Subsequently, 
the entire contact area will finally remain in a state of stick, even if the oscillation of the force 
is continued. 

Two practical possibilities exist, to prevent cyclic slip. One is a simple increase of the 
acting normal force. The other one is to enable a system response of the former described 
type, which raises the question of the necessary prerequisites for this to occur (Ahn, 2009). 
There is a strong analogy to the shakedown case in plasticity problems, where the deformed 
bodies only show plastic strain in the first few loading cycles and elastic response afterwards. 
Consequently, the well-known Melan theorem for plastic shakedown (Melan, 1936) was 
transferred to both discrete (Klarbring et al., 2007) and continuous systems (Barber et al., 
2008) with Coulomb friction as in Eq. (1). 

Thus, they demonstrated that a frictional system in which the contact is complete, what 
means that the contact area must not change during the loading cycle, will shakedown and 
monotonically reach a safe shakedown displacement if subjected to oscillating loads. One 
important requirement for this, is an uncoupled system, meaning that relative displacements in 
the interface do not influence the local normal forces. In case of coupled two dimensional 
discrete systems shakedown is also possible, if the friction coefficient in each node is less 
than a critical value, which depends on the coupling between adjacent nodes (Klarbring et al., 
2007). 

The intention of this study is to formulate an analytical expression for the shakedown 
limits of an uncoupled elastic rolling contact in which the contact area changes, due to the 
oscillation. In addition, we determine the shakedown displacement and examine the effect of 
the shakedown process on the maximum tangential load capacity. Finally we give an 
experimental proof for the findings. 

 
2. Model and Methods: 

 
Our starting point is a tangentially loaded Hertzian contact of an elastic sphere and a rigid 

flat substrate for which the theoretical foundations can be found, for example, in Johnson 

(1987) or Popov (2010). The elastic properties of the sphere *E  and *
G  as well as its radius 
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R  are chosen as effective quantities of a contact consisting of two elastic spheres with 

particular radii iR , shear moduli iG  and Poisson-ratios iν : 

 

1 1 1

* *1 2 1 2

1 2 1 2 1 2

1 1 2 2 1 1
,  ,  

4 4
E G R

G G G G R R

− − −
     − − − −

= + = + = +     
     

ν ν ν ν
. (2) 

The normal force NF  leads to the indentation depth: 

 
2/3

* 2

3

4
N

F
d

E R

 
=  
 

 (3) 

and the initial area of contact is delimited by the contact radius a Rd= . Assuming Coulomb 

friction with constant coefficient µ , a tangential loading TF  less than the maximum value of

N
Fµ , will lead to a slight rigid body displacement of the substrate, called the static 

displacement (Johnson, 1987; Popov, 2010): 

 

2/3
*

*
1 1 T

stat

N

FE
U d

G F
µ

µ

  
 = − −    

. (4) 

Slipping will only occur at the boundary region of the contact area, whereas the center region 
remains in a state of stick and is limited by the stick-radius (Johnson, 1987; Popov, 2010): 

 

1/3

1 T

N

F
c a

Fµ

 
= − 

 
. (5) 

For axially symmetric three-dimensional contacts, that satisfy the half-space approximation, 
these quantities can be determined using the principle of Ciavarella (1998) and Jäger (1998). 
We will restrict ourselves to uncoupled systems, meaning that variations in normal forces will 
not induce any tangential displacement and vice versa. This requires Dundurs' constant 0β =  

as it is the case for frictionless contacts, similar materials, incompressible materials or if one 
body is rigid and the other one is incompressible(Ahn, 2009). 

In the next step, the static tangential contact is superposed by a slight oscillatory rolling of 
the sphere with amplitude W , being the lateral movement of the sphere's center, as depicted 
in Fig. 1. This will lead to an increase of the displacement of the substrate U  in relation to

statU . 

 

 
Fig. 1: oscillating, elastic rolling contact with lateral movement of the center W and 

displacement of the substrate U  (left). Oscillation amplitude W as a function of time with 
oscillation period T (right). 

 
The overall macroscopic normal and tangential forces will both be kept constant. Thus, the 
pure rolling does not lead to any additional friction force or momentum, but changes both the 
contact area and the local normal forces, and this leads to changes in stick and slip areas. 
According to this, the problem setting is equivalent to a frictional contact with constant 
macroscopic forces, which is exposed to a seesaw movement or rocking of the contacting 
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bodies. In addition, the system is assumed to be quasi-static, meaning that we assume a 
constant µ  and neglect inertia effects. This is valid as long as the rolling is slower than the 

propagation speed of elastic waves within the body. 
 

2.1. Quasi-static incremental approach using MDR 

 
The method of dimensionality reduction (MDR) enables an exact mapping of uncoupled, 

rotationally symmetric tangential contacts with Coulomb friction without loss of essential 
properties (Heß, 2011; Popov et. al., 2013). Hence, we model the initial three-dimensional 
problem by introducing an equivalent one-dimensional elastic foundation of independent 
springs, as described in Popov and Psakhie (2007) and Heß (2011). Both, the radius of the 

foundation 1
21DR R=  and its normal and tangential spring stiffness *

z
k E x= ∆  and *

x
k G x= ∆  

are chosen according to the rules of Popov (Popov, 2012) with x∆  being the distance between 
adjacent springs. The physical background of these rules lies in the proportionality of the 
stiffness of a three-dimensional contact to the associated contact length instead of its contact 
area (Geike and Popov, 2007). Using this mapping, the influence of the oscillatory rolling on 
the tangential displacement of the substrate is simulated with a quasi-static incremental 
approach as described in Wetter (2012). Here an incremental rolling W∆  changes the normal 

deflection zu  of a spring at position x : 

 
( )

2

z

x W
u d

R

± ∆
= − . (6) 

Through a case distinction of the spring forces z z zf k u=  and x x xf k u= , the distribution of 

stick and slip can be identified. In turn this gives U  and xu  in the next time step: 

 stick-region: x z xf f u Uµ< ⇒ = , (7) 

  slip-region: z
x z x z

x

k
f f u u

k
µ µ≥ ⇒ = . (8) 

Apart from the numerical simulation, the model enables the derivation of the analytical 
shakedown limits as described in section 4.1. 

 
2.2. Three dimensional simulation 

 

As an alternative to the MDR model, we use the well-known CONTACT software 
package, based on the Kalker theory of rolling contacts (Kalker, 1990) to conduct a three 
dimensional quasi static simulation of the problem. This enables the determination and 
presentation of the two-dimensional contact properties, e.g. the distribution of stick- and slip, 
and the tangential displacement. In this case the exact parameters of the experimental setup as 
described in section 2.3 are being used for a mutual verification. We use 108 89×  quadratic 
discretization elements with a side length of , 0.11 x y mmδ δ =  and an incremental step size of 

0.11 W mm∆ =  to simulate the transient rolling of the sphere. 
 

2.3. Experimental setting 
 
We use the experimental setting depicted in Fig. 2. The sphere (1) is made of ST-52 steel, 

whereas silicone rubber serves as the substrate (2). Thus, the system is almost uncoupled as 
0β ≈ . Other important parameters are listed in Table1. The weight of the sphere acts as the 

normal force 1N
F m g=  and the tangential load is controlled by a single weight W W

F m g=
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which is connected to the substrate through a string. For minimization of external influences, 
the substrate is put on a low friction cross roller table. Its resistance force of 0.1 NRF =  

lowers the actual tangential force, which results to 
T W R

F F F= − . 

To maintain rolling of the sphere, a lever arm construction is used, which main bearing is 
located exactly on the same level as the contact point between sphere and substrate. As this 
point corresponds to the instantaneous center of motion, the oscillations of the lever-arm 
result in a pure rolling of the sphere. A high-precision linear drive is used for the back and 
forth motion of the lever arm and the displacement of the substrate U  is measured using a 
high resolution laser-vibrometer. 

 

 
Fig. 2:experimental setting: steel sphere (1), silicone rubber substrate (2), weight, drive (PI-M 
405-DG) and laser-vibrometer (Polytec OFV-5000). 

 
Table 1: properties of the experimental setting. 
characteristic properties 
R  = 40 mm 
µ  = 0.58 

E1/E2 = 206·103/5 MPa 

ν1/ν2 = 0.3/0.5 
FN  = 21.1 N 
a  = 4.53 mm 
d  = 0.51 mm 
 

With the drive's maximum speed of 1 W mm s=� , the highest excitation frequency is 

lower than 0.21 Hz. Since this is two orders of magnitude less than the lowest natural 
frequency of the system, which has been calculated as 22 Hz, the dynamical influences of the 
experimental setup are neglected. 

 
3. Experiments and Analysis: 

 

In the following, we normalize the tangential force TF , the oscillation amplitude W  and 

the displacement U  with the maximum holding force, the maximum tangential displacement 
(Hess, 2011) and the contact radius and get the following dimensionless counterparts: 

 
*

*,  ,  E
T T N G

f F F u U d w W aµ µ= = = . (9) 

Two important assumptions are that the tangential forces are below the maximum holding 
force, and that the oscillation amplitudes are smaller than the contact radius. In normalized 
variables this reads: 
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 1, 1Tf w≤ ≤ . (10) 

In other words,without the oscillatory rolling, no complete slidingwill occur and the center of 
the sphere will not be moved beyond the initial area of contact at any time. Thus, taken by 
itself, neither of the two factors leads to a failure of the contact. 

 
3.1. Shakedown and induced micro-slip 

 
Experimental and numerical results show that the oscillatory rolling causes incremental 

sliding processes in the area of contact. Depending on the actual direction of the rolling, the 
boundary area is released and the local maximum holding force of Eq. (1) is reduced on one 
side of the contact. As a result, partial slip occurs, which increases both the slip area of the 
contact and the displacement of the substrate, as depicted in Fig. 3 and Fig. 4. We only report 
the experimental results here (For specific details on the numerical results see Wetter (2012)). 

If Tf  and w  are below the shakedown limits, the system reaches a constant mean 

displacement, even if the oscillatory rolling is continued, as shown in Fig. 3. This refers to the 

constant time independent shakedown displacement sdu  (Klarbring et al., 2007). As one can 

see, some slight oscillations occur, that are caused by geometrical deviations of the 
experimental setting. 

In contrast, when the shakedown limits are exceeded, the oscillatory rolling causes a 
complete sliding of the contact. After a transient process, the accumulated slip in every period 
leads to a continuing displacement of the substrate as depicted in Fig. 4. This effect is referred 
to as ratcheting or induced micro-slip (Wetter, 2012). In the steady state, the mean velocity 
increases in line with both, increasing tangential force and oscillation amplitude. 

 

 
 

Fig. 3: displacement u  for different oscillation amplitudes w  and 0.24Tf =  in case of 

shakedown. 
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Fig. 4: displacement u  for different oscillation amplitudes w  and 0.88
T

f =  in case of 

induced micro-slip. 
 

3.2. Contact region after shakedown 

 
Both, the numerical model based on the MDR and the three-dimensional simulation using 

the CONTACT software package show, that the contact remains constant and sticks, after the 
system has reached the new equilibrium state. This corresponds to the shakedown theory, 
stating that the entire contact region must remain in a state of stick, even if the oscillation 

continues (Klarbring, 2007). Fig. 5 shows the normalized tangential spring deflection xu  

before (black line) and after shakedown for the MDR-model with the characteristic slip-radius 
b  and the stick-radius 

sdc . 

 

 
Fig. 5: displacement 

x
u  after shakedown for 0.24w =  and 0.56

t
f =  (MDR-model). 

 

 
Fig. 6: displacement x

u  after shakedown for 0.24w =  and 0.88
T

f =  (3-D CONTACT 

model). 
 
On basis of the MDR model, the radii can be derived directly by simple kinematic 

considerations. This is due to the independence of the degrees of freedom of the elastic 
foundation. The slip-radius 1b a w= −  delimits the region, outside of which the periodical 

release causes the tangential deflection to be zero, as shown in Fig. 5. In comparison to the 

static case, the stick radius after shakedown 1sd sdc a u w= − −  is decreased. Altogether, the 

tangential deflections in the contact region 0 | | 1x a≤ ≤  become: 

 0 | | sdx a c a≤ ≤ : 1
x sd

u u w= − − , (11) 

 | |sdc a x a b a< ≤ : ( )
2

1
x

u x a w= − − . (12) 
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As the macroscopic tangential force must match the overall local tangential force in the new 
equilibrium state, we get the following analytical relation by a simple integration of all the 
tangential spring forces in the contact region (Wetter, 2012): 

 
3

3 2
21 (1 )T sd sdf wu u= − − − . (13) 

This expression is the result of the MDR, which is based on the assumption of rotational 
symmetry of the contact region (Hess, 2011). Fig. 6 shows the tangential deflections in the 
contact region computed with the three-dimensional simulation. It turns out, that the 
distribution of tangential deflections is slightly elliptic or spindle-shaped. Consequently, we 
expect a small deviation in the relation between loading and oscillation amplitude of Eq.(13). 
Considering this, we introduce the mapping-parameter κ , such that: 

 
3

21 (1 )T sd sdf wu uκ= − ⋅ − − . (14) 

 
4. Results and Discussion 

 
Given the experimental and analytical models of the rolling contact, we will identify the 

analytical shakedown limits as described in section 4.1. Additionally, in section 4.2, we will 
describe the supercritical system response. 

 
4.1. Shakedown limits for the oscillating rolling contact 

 

Expression (14) enables the prediction of the shakedown displacement sdu  for a 

combination of Tf  and w  below the shakedown limits. The unknown mapping parameter is 

gained via comparison with the results of the experiments and the three-dimensional 
simulations. This indicates 1κ =  which finally yields the following expression for the relation 
of shakedown displacement, tangential force and oscillation amplitude: 

 
3

21 (1 )T sd sdf wu u= − − − . (15) 

Fig. 7 illustrates sdu  as a function of Tf  for different w . The solid lines show the analytical 

results of (15), whereas the experimental results are indicated by the error bars and marks. 
The asterisks depict the results for the three-dimensional simulation, where values for 
tangential forces close to the limit are not given, because the iterative solution procedure of 

Contact© lacks robustness in this case (Vollebregt, 2012). As depicted in Fig. 7, sdu  is 

increased compared with the static value ( )
2

31 1
stat T

u f= − − . It is also known that in the case 

that the oscillation stops sooner, the final displacement might differ from this theoretical 
shakedown value(Klarbring et al., 2007). In the experiments, the shakedown state was already 
reached after 10n ≈  rolling periods. 

The dotted line in Fig. 7 indicates the maximum displacement for different amplitudes 
which can be achieved, before the oscillation leads to a failure of the contact. In this case, the 
stick radius 

sdc  is zero, which in combination with Eq.(15) gives the maximum tangential 

force: 
 ,lim lim1

T
f w= − , (16) 

and the maximum displacement: 

 2
lim ,lim ,lim2 T Tu f f= − . (17) 
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Fig. 7: shakedown displacement of the substrate sd

u  as a function of the tangential force T
f  

for different oscillation amplitudes w . The oscillatory rolling causes an increase of the 
displacement by comparison with its static value stat

u . Analytical (solid lines), experimental 

(error bars and marks) and three-dimensional simulation (asterisks) results. 
 
Both, analytical (solid lines) and experimental (error bars and marks) are depicted in Fig. 

8 and Fig. 9. Since in the experiments, the maximum amplitude was identified by increasing it 
stepwise while 

Tf  was kept constant, Fig. 8 shows lim ,lim1
T

w f= − . For medium tangential 

forces, both limw  and limu show strong agreement with the theory. 

 

 
Fig. 8: maximum oscillation amplitude limw  as a function of the tangential force ,limT

f . 
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Fig. 9: maximum displacement limu  as a function of the tangential force ,limT

f . 

 
At this point, it should be emphasized, that these maximum values correspond to the exact 

analytical shakedown limits for the oscillating rolling contact. Thus, for a given oscillation 
amplitude, the maximum tangential force to achieve a safe shakedown can be identified and 
vice versa. Additionally, since ,lim 1Tf ≤ , it turns out that in the case of the oscillatory elastic 

rolling contact, shakedown is accompanied with a significant reduction of the tangential 
loading capacity. This effect must be considered in the design and construction of frictional 
contact systems under the influence of vibrations. 

 
4.2. Induced micro-slip of the rolling contact 

 

Induced micro-slip, also known as frictional ratcheting, occurs, if the actual tangential 
force or oscillation amplitude exceeds the shakedown limits given in Eq.(16). In this case, one 
side of the contact alternately sticks, while the other slips. This leads to an accumulated 
displacement of the substrate, referred to as walking (Mugadu et al., 2004). Due to the 
analogy to ratcheting in plasticity, this effect is also called frictional ratcheting. 

The displacement per period or incremental displacement u∆ , is an increasing function of 

Tf  and w , as depicted in Fig. 4. Numerical experiments using the model described in section 

2.1 show, that u∆  is proportional to the supercritical portion of the oscillation amplitude

limw w w∆ = − : 

 ( )limu w w∆ = ⋅ −λ . (18) 

Here the constant of proportionality λ  is a function of 
T

f . Using the experimental results and 

a linear regression analysis with statu as the regressor (Wetter, 2012) we approximate the 

incremental displacement as follows: 

 ( ) ( )( ) ( )
2

3
lim lim2 2 1 1stat Tu u w w f w w∆ ≈ ⋅ − = − − ⋅ − . (19) 

It must be noted that limw  also depends on 
T

f , as stated in equation (16). Fig. 10 shows u∆  

as a function of Tf  for different oscillation amplitudes. Again, the solid lines depict the 

analytical results whereas the error bars and marks indicate the experimental values. The 
results show qualitatively good agreement with those for the walking of a rocking punch, as 
examined by Mugadu et al. (2004). 

The micro-slip effect must not only have a negative impact, but can also be used for the 
generation of small displacements in case that an increase of the tangential loading is 
impossible or if high accuracy is needed as in MEMS-devices. Using Eq. (19) we can 
calculate this supercritical system response. 
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Fig. 10:incremental displacement ∆u  as a function of the tangential force Tf  for different 

oscillation amplitudes w  in case of induced micro-slip. Analytical (solid lines) and 
experimental (error bars and marks) results. 

 
5. Conclusions 

 
An oscillating rolling contact between a sphere and a flat substrate with constant normal and 
tangential loading has been considered. We assumed Coulomb type friction with a constant 
coefficient µ  and linear elastic material behavior. In addition, the system was assumed to be 

quasi-static and uncoupled, meaning that a variation in the normal force will not induce a 
displacement in the tangential direction and vice versa. 

It was shown, that slight oscillatory rolling of the sphere leads to an increased rigid body 
displacement of the substrate, due to oscillations of the normal pressure and contact area. 
Depending on both, the oscillation amplitude and tangential force, the displacement stops 
after a few periods or continues. The former case is referred to as shakedown and the latter as 
induced micro-slip or ratcheting.  

The results show, that shakedown also occurs in systems, where the contact is not known 
a priori and changes during the loading cycle. We derived the exact limits for both, the 
tangential force and the oscillation amplitude necessary to reach a safe shakedown of the 
system. It turned out, that the new equilibrium state after shakedown is accompanied with a 
reduced maximum tangential load capacity. Besides these shakedown limits, we can predict 
the rigid body displacement for the shakedown case and the incremental displacement in case 
of frictional ratcheting. Additionally, the comparison of experiment and theory shows, that the 
method of dimensional reduction (MDR) has proven to be a suitable instrument for the 
modeling of the oscillating rolling contact. 

One objective for further research in this area should be dynamic influences. For this 
purpose the inertia properties of the system and possibly visco-elastic material behavior must 
be taken into account. Especially for technical applications it would also be important to 
investigate the interaction of various parameters. For example, the oscillating rolling may be 
superimposed by varying normal and tangential forces. Additionally, contact geometries, 
different from the one considered in this work, should be examined. 
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Figure captions: 

 

Fig.1: oscillating, elastic rolling contact with lateral movement of the center W and 
displacement of the substrate U (left). Oscillation amplitude W as a function of time with 
oscillation period T (right). 
 
Fig. 2:experimental setting: steel sphere (1), silicone rubber substrate (2), weight, drive PI-M 
405-DG and laser-vibrometerPolytec OFV-5000. 
 
Fig.3: displacement u  for different oscillation amplitudes w  and 0.24Tf =  in case of 

shakedown. 
 
Fig. 4: displacementu  for different oscillation amplitudes w  and 0.88

T
f =  in case of 

induced micro-slip. 
 
Fig. 5: displacement 

x
u  after shakedown for 0.24w =  and 0.56

T
f =  (MDR-model). 

 
Fig. 6: displacement 

x
u  after shakedown for 0.24w =  and 0.56

T
f =  (3-D Contact©-model). 

 
Fig. 7: shakedown displacement of the substrate 

sd
u  as a function of the tangential force 

T
f  

for different oscillation amplitudes w . The oscillatory rolling causes an increase of the 
displacement by comparison with its static value statu . Analytical (solid lines), experimental 

(error bars and marks) and three-dimensional simulation (asterisks) results. 
 

Fig. 8: maximum oscillation amplitude limw  as a function of the tangential force ,limT
f . 

 
Fig. 9: maximum displacement limu  as a function of the tangential force ,limT

f . 

 
Fig. 10: incremental displacement ∆u  as a function of the tangential force Tf  for different 

oscillation amplitudes w  in case of induced micro-slip. Analytical (solid lines) and 
experimental (error bars and marks) results. 
 
Table captions: 

 

Table 1: properties of the experimental setting. 
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Highlights of the arcticle: 

 

• We examine a three dimensional elastic rolling contact with Coulomb friction 
• Slight oscillatory rolling leads to frictional shakedown or ratcheting 
• We derive the analytical shakedown limits and the shakedown displacement  
• Shakedown leads to a significant reduction of the tangential load capacity 
 

 

 


