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Abstract

Explicit expressions for the minimum free energy of a linear viscoelastic

material and Noll’s definition of state are used here to explore spatial energy

decay estimates for viscoelastic bodies, in the full dynamical case and in the

quasi-static approximation.

In the inertial case, Chirita et al. obtained a certain spatial decay inequality

for a space-time integral over a portion of the body and over a finite time interval

of the total mechanical energy. This involves the work done on histories, which

is not a function of state in general. Here it is shown that for free energies which

are functions of state and obey a certain reasonable property, the spatial decay
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of the corresponding space-time integral is stronger than the one involving the

work done on the past history. It turns out that the bound obtained is optimal

for the minimal free energy.

Two cases are discussed for the quasi-static approximation. The first case

deals with general states, so that general histories belonging to the equivalence

class of any given state can be considered. The continuity of the stress functional

with respect to the norm based on the minimal free energy is proved, and the

energy measure based on the minimal free energy turns out to obey the decay

inequality derived Chirita et al. for the quasi-static case.

The second case explores a crucial point for viscoelastic materials, namely

that the response is influenced by the rate of application of loads. Quite surpris-

ingly, the analysis of this phenomenon in the context of Saint-Venant principles

has never been carried out explicitly before, even in the linear case. This effect

is explored by considering states, the related histories of which are sinusoidal.

The spatial decay parameter is shown to be frequency-dependent, i.e. it de-

pends on the rate of load application, and it is proved that of those considered,

the most conservative estimate of the frequency-dependent decay is associated

with the minimal free energy. A comparison is made of the results for sinusoidal

histories at low frequencies and general histories.

Keywords: Saint Venant principle, Viscoelasticity, Spatial decay, Free energy,

Dissipation rate, state in viscoelasticity, residual stress decay

Dedication

This work was conceived in 1999 and brought near completion by 2003.

Giorgio Gentili was deeply involved in this research until his untimely death. He

is greatly missed. Work pressures on the other authors forced a postponement

of research on this topic, originally envisaged as lasting a few months but in the
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event it turned out to be nearly ten years. We now dedicate this work to the

memory of Giorgio and to his family.

1. Introduction.

The problem of establishing Saint-Venant principles has been an important

issue for bodies of different (even “arbitrary") shapes formed by a variety of

materials [3], both in statics and dynamics.

Formulations of the Saint-Venant principle for linear elastic bodies in terms

of stored energy go back to the pioneering work of Zanaboni [6]. Many other

results have been extensively studied in subsequent research (see e.g. [7, 3]). In

particular, early work of Toupin [8] yielded an exponential spatial decay estimate

of the stored energy for a cylindrical semi-infinite solid, although other forms of

the Saint-Venant principle have been stated [3, 4, 5]. Some results have been

given also for linear viscoelastic materials ([2] and references therein) for both

the inertial and the quasi-static case; for a systematic and in-depth discussion

of certain aspects of this topic, see [1], chapter 20.

It is well known that in linear elasticity the state of the material is known

by specifying either the strain and the tensor of elastic moduli or the stress and

the compliance tensor.

As far as linear viscoelastic materials are concerned, the prevailing view

was that the past strain history, the current strain and the relaxation function

replace the strain and the tensor of elastic moduli to specify a viscoelastic state.

However, in [9, 10, 53, 1] a different approach has been developed.

In these papers, Noll’s definition of state [11] has been applied to linear vis-

coelasticity. This definition is in effect the statement that two histories yield

the same state if the response of the material (i.e. either the stress response [10]

or the work done on deformation processes [14]) is the same under any contin-

uation of such histories. In this approach, the minimal information required to
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identify the state of a material is: (a) the pair formed by the current stress and

strain; and (b) the future stress in any continuation obtained by holding the

strain fixed at all times. This is the “minimal state" for a linear viscoelastic ma-

terial. It is worth noting that knowledge of the state variables may be obtained

experimentally. For example, a homogeneous sample of a material with a linear

viscoelastic response under small strains may be subjected to a relaxation test:

in this way the future stress under relaxation can be monitored. The strain

at the beginning of the test is also easily detectable, so that the two pieces of

information yield the state of the material under examination.

Dynamical processes corresponding to Noll’s definition of state may be con-

sidered to be a pair formed by the prescribed state (of the material point) and

the current value of the stress at that point. For our purposes, the dynam-

ical process may be represented by a triple, in which the first two items are

pairs formed by current value-past history of both the displacement field and

the related strain field, in which the past strain history is any element in the

equivalence class of the given state. The final item of the triple is the current

value of the stress.

A further property of viscoelastic materials must be borne in mind when

developing a consistent formulation of Saint-Venant principles in viscoelasticity.

There is more than one definition of free energy for viscoelastic materials [45, 46,

32, 37] An extensive comparison between different available definitions has been

presented in [10, 15]. Moreover, for a given definition, unlike in linear elasticity,

the free energy of a viscoelastic material after any deformation process starting

from a given state is not unique (see e.g. [32, 38, 42, 1]).

For the set of free energies which are functions of state in the sense of Noll,

the existence of both the maximal and the minimal element is ensured; the

minimum element represents the maximum recoverable work from a given state.
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An explicit expression for the isothermal minimum free energy of a linear

viscoelastic material has been given [12] for the case of scalar constitutive equa-

tions. A corresponding formula is given for general tensorial stresses, strains

and relaxation functions in [49]. A characterization in the frequency domain for

the state in the sense of Noll is also provided in [49], and the resulting expres-

sion for the minimal free energy is shown to be a quadratic form in a variable

characterizing the state in the abovementioned sense. More recent work on this

and related topics is presented in (see e.g. [13, 54, 55, 52, 53, 56, 57, 1, 16, 17,

18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27]).

In the light of the above discussion, two modifications will be made with

respect to the case of linear elastic materials: (i) the stored energy will be

replaced by a free energy, in particular, the minimal free energy, and also (ii) a

definition of linear viscoelastic state will be chosen based on Noll’s definition.

References [2, 49] form the basis of the present work, the general aims of

which are:

1. to utilize the explicit expression for the minimum free energy and its prop-

erties in obtaining spatial energy decay estimates for the fully dynamical

case;

2. to explore the quasi-static case for states of the material corresponding to

both general and sinusoidal histories.

The case of sinusoidal histories is interesting because for rate sensitive (in par-

ticular linear viscoelastic) materials the rate of application of disturbances (dis-

placements or tractions) on the boundary is expected to influence the spatial

decay of the effects of the disturbances themselves. The one-frequency analysis

does in fact yield results of this kind.

For both the inertial and quasi-static treatments, the analysis is carried out

for a general body shape as in [2]. For the inertial case, it is shown that an
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energy measure involving the minimum free energy rather than the work done

on histories obeys a spatial decay inequality that is stronger than that given in

[2].

For the quasi-static case, two "energy" measures are defined, a time and

space integral of a free energy, in particular the minimum free energy of the

material, and the stress × strain measure used in [2]. Under a certain assump-

tion on the relaxation properties of the material, the former is shown to be

not greater than the latter. For a general history, it is shown that the above

measures both obey the decay inequality derived in [2].

However, for sinusoidal histories, it is demonstrated, using arguments gen-

eralizing those in [8], that the decay parameters are frequency-dependent, i.e.

depend on the rate of load application, and vary in magnitude in such a way

that the minimum free energy measure decays more slowly than the stress ×

strain measure.

Various formulae are derived in Appendix 1 for the minimum free energy

and related quantities, for sinusoidal histories.

2. Relaxation functions, histories and states

A linear viscoelastic material is described by the classical Boltzmann-Volterra

constitutive equation relating the second order symmetric stress tensor T : R →

Sym and the second order symmetric strain tensor E : R → Sym:

T(t) = lG0E(t) +
∫ ∞

0

l̇G(s)Et(s)ds

= lG∞E(t) +
∫ ∞

0

l̇G(s)Etr(s)ds

Et(s) :=E(t− s), Etr(s) := Et(s)−E(t), s ∈ R++.

(2.1)

The quantity E(t) ∈ Sym is the instantaneous value of the strain and Et :

R++ → Sym denotes the past history. We refer to Etr as the relative strain
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history. The fourth order tensor l̇G : R++ → Lin(Sym) is assumed to be

integrable. One of its primitives, the relaxation function lG : R++ → Lin(Sym),

is a fourth order tensor defined as

lG(t) := lG0 +
∫ t

0

l̇G(s) ds (2.2)

where lG0 = lG(0) is the instantaneous elastic modulus. The material is assumed

to be a solid so that there exists the limit

lG∞ := lim
t→∞

lG(t) ∈ Lin(Sym) (2.3)

where lG∞ is the equilibrium elastic modulus, which is assumed to be positive.

It is also assumed that lG is non-negative on R. We require the property that

[49]

0 <
∣∣∣∣∫ ∞

0

s l̇G(s) ds
∣∣∣∣ <∞. (2.4)

The Fourier transform of l̇G(t), namely l̇GF (ω) = l̇Gc(ω) − i l̇Gs(ω), for real ω,

belongs to L2(R), according to our earlier assumptions. It is clear that l̇Gc(ω)

is even as a function of ω and l̇Gs(ω) is odd. The quantity l̇Gs(ω) therefore

vanishes at the origin. In fact, a consequence of our assumption of analyticity

of Fourier transformed quantities on the real axis of Ω is that it vanishes at least

linearly at the origin. The leftmost inequality in (2.4) implies that it vanishes no

more strongly than linearly. The rightmost inequality follows from the assumed

analyticity (and therefore differentiability) of l̇GF .

Thermodynamic properties of the linear viscoelastic materials imply that

[36, 37]

lG0 = lG>
0 , lG∞ = lG>

∞, l̇Gs(ω)E ·E < 0 ∀ E ∈ Sym ∀ ω ∈ R++. (2.5)
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By closing the contour on Ω(+), we have

1
2πi

∫ ∞

−∞

˙̄lGF (ω)
ω−

dω = ˙̄lGF (0) = lG∞ − lG0 (2.6)

giving

lG∞ − lG0 =
1
π

∫ ∞

−∞

l̇Gs(ω)
ω

dω. (2.7)

Equations (2.5)3 and (2.7) yield

lG0E ·E > lG∞E ·E ∀ E ∈ Sym \{0}. (2.8)

For simplicity, we let lG(t) be symmetric for all values of t. An important

consequence of (2.5)3 is [37]

l̇G(0)E ·E ≤ 0 ∀ E ∈ Sym \{0}. (2.9)

We assume further that

l̇G(t)E ·E < 0, ∀ E ∈ Sym \{0},∀ t ∈ R+. (2.10)

If the Graffi-Volterra functional, which we will use below, is required to be a

free energy, it is necessary to make the further assumption:

l̈G(t)E ·E ≥ 0, ∀ E ∈ Sym \{0},∀ t ∈ R+. (2.11)

This assumption is avoided in the present work, as will be noted in section 5.

We will allow the extra generality of inhomogeneity in some later sections,

so that lG may depend on x. This dependence is omitted except where explicitly

required.

Let us extend the integral in (2.1) to R by identifying l̇G with its odd ex-

tension while taking Et to be zero on R−. We now apply Parseval’s formula,
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noting that l̇GF (ω) = −2i l̇Gs(ω), to obtain[29, 1].

T(t) = lG0E(t) +
i

π

∫ ∞

−∞
l̇Gs(ω)Et+(ω)dω

= lG∞E(t) +
i

π

∫ ∞

−∞
l̇Gs(ω)Etr+(ω)dω

Etr+(ω) = Et+(ω)− E(t)
iω−

(2.12)

where Etr+ is the Fourier transform of Etr, defined in (2.1), as can be seen from

(A1.10). Relation (2.12)2 follows from (2.12)1 with the aid of (2.7). Alterna-

tively, by choosing Et on R− so that EtF (ω) is even in ω, we deduce that

T(t) = lG0E(t) +
1
π

∫ ∞

−∞
l̇Gc(ω)Et+(ω)dω

= lG∞E(t) +
1
π

∫ ∞

−∞
l̇Gc(ω)Etr+(ω)dω.

(2.13)

Further restrictions on the function Et are required because we need the result

dEt+(ω)
dt

= −iωEt+(ω) + E(t) (2.14)

obtained by differentiating the integral definition of Et+(ω) and carrying out

a partial integration. As well as belonging to L2(R+), we assume that Et ∈

L1(R+) ∩ C1(R+) and that its derivative also belongs to L1(R+) [35].

If we define the vector space

Γ :=
{
Et : R++ → Sym ;

∣∣∣∣∫ ∞

0

l̇G(s+ τ)Et(s) ds
∣∣∣∣ <∞ ∀ τ ≥ 0

}
(2.15)

the Boltzmann-Volterra equation (2.1) defines the linear functional T̃ : Sym×

Γ → Sym such that

T̃(E(t),Et) = lG0E(t) +
∫ ∞

0

l̇G(s)Et(s)ds (2.16)

Remark 2.1. Given the couple (E(t),Et) and the strain continuation defined
by E(t+ a) = E(t), ∀ a ∈ R+, it is easy to check that the related stress is given
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by

T(t+ a) = lG(a)E(t) +
∫ ∞

0

l̇G(s+ a)Et(s) ds (2.17)

It has been shown ([10], Proposition 2.2,(ii)) that l̇G ∈ L1 ensures that, for every
ε > 0, there exists a(ε,Et) sufficiently large such that∣∣∣∣∫ ∞

0

l̇G(s+ a)Et(s) ds
∣∣∣∣ < ε , ∀ a > a(ε,Et) (2.18)

Therefore, (2.18) can be thought of as an expression of the fading memory prop-
erty. It follows that lima→∞T(t+ a) = lG∞E(t). The equilibrium elastic mod-
ulus is positive definite so that

lG∞E ·E > 0, ∀ E ∈ Sym \{0}, (2.19)

The concept of the state of a linear viscoelastic material has been discussed

by various authors [38, 10, 9, 11]. We briefly recall some basic propositions.

Remark 2.2. According to the definition in [38] and [37], a process P of finite
duration d, is given by ĖP : [0, d) → Sym. Given the couple (E(t),Et) ∈
Sym× Γ, related to the strains E(τ), τ ≤ t, we associate with P the mapping

EP : (0, d) → Sym, EP (τ) = E(t) +
∫ τ

0

ĖP (s′) ds′, τ ∈ (0, d] (2.20)

The strains Ef (τ ′) = (EP ∗ E)(τ ′), τ ′ ≤ t + d are determined by Et and ĖP ,
defined to be

Ef (t+ d− s) = (EP ∗E)(t+ d− s) :=


EP (d− s) 0 ≤ s < d

E(t+ d− s) s ≥ d

(2.21)

Thus, Ef is related to the couple (EP (d), (EP ∗E)t+d).

Definition 2.1. Two histories Et1 and Et2 are said to be equivalent if for every
EP : (0, τ ] → Sym and for every τ > 0, they satisfy [39]

T̃(EP (τ), (EP ∗E1)t+τ ) = T̃(EP (τ), (EP ∗E2)t+τ ). (2.22)

As a consequence, it is easy to show that Et is equivalent to the zero history
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0† if ∫ ∞

τ

l̇G(s)Et+τ (s) ds =
∫ ∞

0

l̇G(s+ τ)Et(s) ds = 0 ∀ τ > 0 (2.23)

Equation (2.23) defines an equivalence relation on histories. Two histories Et1

and Et2 are said to be equivalent if their difference Et = Et1−Et2 satisfies (2.23)

[11].

Two couples (E1(t),Et1) and (E2(t),Et2) such that E1(t) = E2(t) and Et1−Et2

satisfies (2.23), are represented by the same state σ(t) in the sense of Noll

[11], and σ(t) may be thought as the “minimum" set of variables allowing a

well-defined relation between ĖP : [0, τ) → Sym and the stress T(t + τ) =

T̃(EP (τ), (EP ∗E)t+τ ) for every τ > 0.

In other words [10, 9], denoting by Γ0 the set of all the past histories of Γ

satisfying (2.23), and by Γ/Γ0 the usual quotient space, the state σ of a linear

viscoelastic material is an element of 3

Σ := Sym× (Γ/Γ0) (2.24)

The work done on the material by the strain history E(τ), τ ≤ t is

W̃ (E(t),Et) :=
∫ t

−∞
T(τ) · Ė(τ)dτ

=
1
2

lG0E(t) ·E(t) +
∫ t

−∞

∫ ∞

0

l̇G(s)Eτ (s) · Ė(τ)dsdτ .
(2.25)

It will be clear from the representation of W̃ (E(t),Et) in the frequency domain,

given below, that it is a non-negative quantity. We will restrict our considera-

3It is worth noting that, by virtue of (2.15) and Definition 2.1, the space of the states Σ
depends on the memory kernel l̇G characterising the material by means of (2.1). This property
distinguishes (2.24) from the usual fading memory spaces [40, 41]
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tions to histories such that W̃ (E(t),Et) <∞. One can show that [1]

W̃ (E(t),Et) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

Etr(s1) · lG12(|s1 − s2|)Etr(s2)ds1ds2

= S(t) +
1
2

∫ ∞

0

∫ ∞

0

Et(s1) · lG12(|s1 − s2|)Et(s2)ds1ds2

lG12(|s1 − s2|) =
∂

∂s1

∂

∂s2
lG(|s1 − s2|)

φ(t) :=
1
2

lG∞E(t) ·E(t)

S(t) := T(t) ·E(t)− 1
2

lG0E(t) ·E(t).

(2.26)

A frequency domain representation of (2.26) is given by [29, 43, 12, 1]

W̃ (E(t),Et) = φ(t) +
1
2π

∫ ∞

−∞
IH(ω)Etr+(ω) ·Etr+(ω)dω

= S(t) +
1
2π

∫ ∞

−∞
IH(ω)Et+(ω) ·Et+(ω)dω

(2.27)

where, for each given ω ∈ R, the fourth order tensor IH(ω) ∈ Lin(Sym) is

defined as

IH(ω) := −ω l̇Gs(ω); IH(∞) = − l̇G(0), (2.28)

The equivalence of the two forms of (2.27) follows from (2.7)2 and (2.12).

The properties of the work have been extensively studied in [10]. It is shown

in [49] that two couples (E1(t),Et1) and (E2(t),Et2) are equivalent, in the sense

of Definition 2.1, if and only E1(t) = E2(t) ≡ EP (0) and if∫ t+d

t

T̃(EP (τ − t), (EP ∗E1)τ ) · ĖP (τ − t)dτ

=
∫ t+d

t

T̃(EP (τ − t), (EP ∗E2)τ ) · ĖP (τ − t)dτ

(2.29)

holds for every EP : (0, d] → Sym and for every d > 0.
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3. Explicit expression for the minimum free energy

From a result in [49], based on a theorem of Gohberg and Krĕın [28], we

have that IH(ω) can be factorized as follows:

IH(ω) = IH+(ω) IH−(ω) (3.1)

with

IH+(ω) = IH∗−(ω) (3.2)

where the matrix functions IH(±) admit analytic continuations which are an-

alytic in the interior and continuous up to the boundary of the complex half

planes Ω∓, and are such that

det IH±(ζ) 6= 0 , ζ ∈ Ω∓ (3.3)

Similarly IH has a right factorization with corresponding properties [49]. The

factorization is unique up to a multiplication on the left of IH− by a constant,

unitary matrix ∈ Lin(Sym), and multiplication of IH+ on the right by the

inverse of this matrix. Properties of the factors are discussed further in the

context of (5.8) below. From (2.28)2, we have that IH±(∞) are non-zero and

IH+(∞) IH−(∞) = − l̇G(0) (3.4)

The notation for IH+(ω) and IH−(ω) follow the convention used in [12], i.e.

the sign indicates the half plane where any singularities of the tensor and any

zeros in the determinant of the corresponding matrix occur.

Consider now the second order symmetric tensor Pt(ω) = IH−(ω)Etr+(ω),

whose components are continuous by virtue of the properties of IH−(ω) and
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Etr+(ω). The Plemelj formulae [44, 1] give that

Pt(ω) : = IH−(ω)Etr+(ω) = pt−(ω)− pt+(ω)

Qt(ω) : = IH−(ω)Et+(ω) = qt−(ω)− qt+(ω)
(3.5)

where

pt(z) : =
1

2πi

∫ ∞

−∞

Pt(ω)
ω − z

dω , pt±(ω) := lim
α→0∓

pt(ω + iα)

qt(z) : =
1

2πi

∫ ∞

−∞

Qt(ω)
ω − z

dω , qt±(ω) := lim
α→0∓

qt(ω + iα)
(3.6)

Moreover, pt(z) = pt+(z) is analytic in z ∈ Ω(−) and pt(z) = pt−(z) is analytic

in z ∈ Ω(+). Both are analytic on the real axis (as indeed is Pt) by virtue of

the assumption at the end of section 7 on the analyticity of Fourier-transformed

quantities on the real axis and an argument given in [1]. Similar statements

apply to qt and Qt. It can be shown that

qt+(ω) = pt+(ω) (3.7)

The maximum free energy has the form

ψm(t) = φ(t) +
1
2π

∫ ∞

−∞
|pt−(ω)|2dω

= S(t) +
1
2π

∫ ∞

−∞
|qt−(ω)|2dω

(3.8)

Using an argument given in [49], section 7 (also [1], page 249), we can write

(2.12)2 in the form

T(t) = lG∞E(t)− i

π

∫ ∞

−∞

IH+(ω)
ω

pt−(ω)dω. (3.9)

It follows from a result in [49] (and [1], page 253) that for every viscoelastic ma-

terial with a symmetric relaxation function, a given couple (E,Et) is equivalent

to the zero couple (0,0†) if and only if pt− related to Etr by (3.5)-(3.6), is such
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that

pt−(ω) = 0 , ∀ ω ∈ R (3.10)

and E(t) = 0. A functional of (E,Et) which has the same value for all equivalent

couples will be referred to as a function of state. In particular, if the dependence

is only through (E,pt), then it follows from (3.10) that the quantity in question

is a function of state. This is true in particular for ψm.

The main developments in [49] are expressed in terms of the history Et

though the result (3.8)2 in terms of the relative history Etr is presented also.

The representation (3.8)1 has the advantage that it is explicitly positive. For

fluids, Etr is in any case the natural variable [54]; the quantity lG∞ = 0 and

(2.1)2 retains only the integral term.

From (2.27) and (3.8) we find that [49]

W (E(t),Et) = φ(t) +
1
2π

∫ ∞

−∞
[|pt+(ω)|2 + |pt−ω)|2] dω

W (E(t),Et)− ψm(t) =
1
2π

∫ ∞

−∞
|pt+(ω)|2 dω ≥ 0.

(3.11)

Also

W (E(t),Et) = S(t) +
1
2π

∫ ∞

−∞
[|qt+(ω)|2 + |qt−ω)|2] dω

W (E(t),Et)− ψm(t) =
1
2π

∫ ∞

−∞
|qt+(ω)|2 dω ≥ 0.

(3.12)

A free energy is a functional of the history and present value of the deformation,

obeying certain properties that have been proved to hold by Coleman [48] for

materials with fading memory, as a consequence of the second law of thermo-

dynamics. Recalling Remarks 2.1 on fading memory and 2.2 on the definition

of processes, a functional ψ̃ : Γ × Sym → R is said to be a free energy in the

sense of Graffi if it satisfies the following properties:
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P1 (integrated dissipation inequality)

ψ̃(EP (d),EP ∗Et)−ψ̃(E(t),Et) ≤
∫ d

0

T̃ (EP (τ),Eτ ∗Et)·ĖP (τ)dτ, (3.13)

for every pair of deformations E(t),EP (d), for every history Et, and for

every segment EP (·)−E(t) of duration d with EP (0) = E(t);

P2 for every deformation E(t) and for every history Et, the gradientof ψ̃(·,Et)

(e.g. with respect to the current value of the strain E(t)) at E(t) is equal

to the stress T̃ (E(t),Et);

P3 for every deformation E(t) and for every history Et,

ψ̃(E(t),E(t)†) ≤ ψ̃(E(t),Et) (3.14)

where E(t)† is the static history with value E(t);

P4 for every deformation E(t),

ψ̃(E(t),E†) = φ(t) (3.15)

The form of φ is given by (2.26). If t 7→ ψ(t) is differentiable, property (P1) can

be expressed in local form:

T(t) · Ė(t) ≥ ψ̇(t) (3.16)

which is essentially a statement that the rate of dissipation T(t) · Ė(t) − ψ̇(t)

corresponding to ψ(t) is non-negative. The quantity W̃ (E(t),Et) is, in some

circumstances, the maximum free energy,[15, 10]. It will be denoted by ψM .

In [15] it has been pointed out that there are two available definitions of free

energy in viscoelasticity. One is due to Coleman and Owen [32], and it has been

specialized to linear viscoelasticity in [15, 10], and the other one, structured in

P1÷P4 is due to Graffi (see e.g. [45, 46], [10, 15]). It is shown in [49] that the
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minimum free energy ψm, given by (3.8), is a free energy according to both of

the definition above.

The rate of dissipation corresponding to the minimum free energy is given

by (e.g. [49])

Dm(t) = T(t) · Ė(t)− ψ̇m(t)

=
1
2π

d

dt

∫ ∞

−∞
|pt+(ω)|dω = |K(t)|2

(3.17)

where

K(t) =
1
2π

∫ ∞

−∞
IH−(ω)Etr+(ω)dω. (3.18)

This can be shown with the aid of the relationships

d

dt
pt+(ω) = −iωpt+(ω)−K(t)

d

dt
pt−(ω) = −iωpt−(ω)−K(t)− IH−(ω)Ė(t)

iω

(3.19)

and

lim
|ω|→∞

ωpt±(ω) = iK(t)

1
2π

∫ ∞

−∞
pt±(−ω)dω = ∓1

2
K(t) =

1
2π

∫ ∞

−∞
pt±(ω)dω.

(3.20)

Certain relations which will be relevant in later sections are now derived. If

the explicit form of qt− is substituted into (3.8)2, the integration over ω can be

carried out and we obtain (see also [1], page 250 for analogous results in relation

to relative histories)

Q−(t) :=
1
2π

∫ ∞

−∞
|qt−(ω)|2dω =

i

4π2

∫ ∞

−∞

∫ ∞

−∞

At(ω1, ω2)
ω+

1 − ω−2
dω1dω2

At(ω1, ω2) := Ēt+(ω1) · IH+(ω1) IH−(ω2)Et+(ω2).

(3.21)

The notation in the denominator of the right-most integrand is discussed in [1].
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Also, in the same way, we obtain

Q+(t) :=
1
2π

∫ ∞

−∞
|qt+(ω)|2dω = − i

4π2

∫ ∞

−∞

∫ ∞

−∞

At(ω1, ω2)
ω−1 − ω+

2

dω1dω2 (3.22)

Relation (3.12) follows from (2.27)2, (3.21), (3.22) and the Plemelj formulae.

One can furthermore show that

R−(t) :=
i

4π2

∫ ∞

−∞

∫ ∞

−∞

Bt(ω1, ω2)
ω+

1 − ω−2
dω1dω2 = 0

Bt(ω1, ω2) := Ēt+(ω1) · IH+(ω2) IH−(ω1)Et+(ω2)

(3.23)

by integrating over ω2 for example and closing the contour on Ω(−). Also,

R+(t) := − i

4π2

∫ ∞

−∞

∫ ∞

−∞

Bt(ω1, ω2)
ω−1 − ω+

2

dω1dω2

=
1
2π

∫ ∞

−∞
Ēt+(ω) · IH(ω)Et+(ω)dω

= Q−(t) +Q+(t)

(3.24)

by virtue of (2.27)2 and (3.12). Relation (3.23) allows us to write (3.21) in the

explicitly convergent form

Q−(t) =
i

4π2

∫ ∞

−∞

∫ ∞

−∞

At(ω1, ω2)−Bt(ω1, ω2)
ω1 − ω2

dω1dω2 (3.25)

which is convenient for numerical evaluation. We can replace the (ω1 − ω2) in

the denominator by (ω+
1 −ω

−
2 ) which gives (3.21), or by (ω−1 −ω

+
2 ) which gives

the same result by way of (3.24) and (3.22). Relation (3.25) implies that the

quantity

ID(ω1, ω2) := i
( IH′+(ω1) IH−(ω2)− IH+(ω2) IH′−(ω1))

ω1 − ω2
(3.26)

is a non-negative kernel (in the sense that the integral, as given by (3.25), is

non-negative) . By using very localized choices of Et+(ω), we deduce that the

“diagonal elements” of ID(ω1, ω2) are non-negative. This is a statement about

ID(ω1, ω2) as a function on R×R. Using a prime to denote differentiation, we
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can write these diagonal elements as

ID(ω) := i( IH′+(ω) IH−(ω)− IH+(ω) IH′−(ω)) ≥ 0 ω ∈ R. (3.27)

Proposition 3.1. Let Q±, R+ ∈ L1((−∞, t)) for all finite times. Then∫ t

−∞
Q+(u)du := − 1

4π2

∫ ∞

−∞

∫ ∞

−∞

At(ω1, ω2)
(ω−1 − ω+

2 )2
dω1dω2

= − 1
4π2

∫ ∞

−∞

∫ ∞

−∞

{
At(ω1, ω2)
(ω+

1 − ω−2 )2
+

Bt(ω1, ω2)
(ω−1 − ω+

2 )2

}
dω1dω2

− 1
2π

∫ ∞

−∞
Ēt+(ω) · ID(ω)Et+(ω)dω

(3.28)

where ID is defined by (3.27).

Proof. Relation (3.28)1 follows immediately, by time differentiation, using (2.14)
and Cauchy’s theorem. Equation (3.28)2 can be verified similarly, on noting a
cancellation between the derivatives of the first and second terms. Relations
such as

1
2πi

∫ ∞

−∞

IH−(ω2)
(ω+

1 − ω−2 )2
dω2 = IH′−(ω1) (3.29)

are required.

Remark 3.1. The assumption that Q±, R+ ∈ L1((−∞, t)) implies of course
that the strain history vanishes in the distant past.

Remark 3.2. In consequence of (3.7) and (3.17), the quantity Q+ is the in-
tegral of Dm over past history, or the total dissipation up to the present time,
associated with the minimum free energy. It is not less than the total dissipation
corresponding to any other free energy.

Let us define

IM(ω) := lG0 + l̇GF (ω) = IR(ω) + i
IH(ω)
ω

(3.30)

and refer to it as the complex modulus tensor. Note that

IR(ω) = lG0 + l̇Gc(ω) = IR(−ω). (3.31)

This quantity is not required to be positive by thermodynamics. However, in
many situations, and in particular for relaxation functions given by sums or
integrals of decaying exponentials with positive coefficients/density functions,
it is a positive definite tensor [49, 59].
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Proposition 3.2. Let us assume that

F (t) :=
∫ t

−∞
T(u) ·E(u)du (3.32)

exists for all finite values of t. Then

F (t) =
1
2π

∫ ∞

−∞
Ēt+(ω) · IR(ω)Et+(ω)dω (3.33)

and is non-negative if IR ≥ 0 for all ω ∈ R.

Proof. Let E(u) = 0, u > t and we write

F (t) =
1
2π

∫ ∞

−∞
TF (ω) · ĒF (ω)dω (3.34)

by virtue of Parseval’s formula. Now

EF (ω) = Ēt+(ω)e−iωt. (3.35)

Writing (2.1)1 in the form

T(u) = lG0E(u) +
∫ u

−∞
l̇G(u− s)E(s)ds (3.36)

we see that the Faltung theorem gives, remembering that l̇G is a causal function
[58],

TF (ω) = IM(ω)EF (ω) (3.37)

so that
F (t) =

1
2π

∫ ∞

−∞
Ēt+(ω) · IM(ω)Et+(ω)dω. (3.38)

The result (3.33) follows from the requirement that F be real, or alternatively
from the oddness of IH(ω)/ω. The non-negativity of F follows immediately.

Differentiation of (3.33) with respect to t gives T(t) · E(t), with the aid of
(2.13), (2.14) and the relationship

1
2π

∫ ∞

−∞
Et+(ω)dω =

1
2
E(t), (3.39)

which follows from the fact that Et, defined on R, belongs to L1(R) and there
is a discontinuity at the origin [34]. The existence assumption on F implies in
particular that the strain history tends to zero in the distant past.
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4. Dynamical viscoelasticity

In this section, we derive certain spatial decay results for dynamical linear
viscoelasticity. Consider a regular open bounded region B which is occupied by
an anisotropic and inhomogeneous medium with relaxation tensor lG(x, t). It
is assumed that lG satisfies the thermodynamic restrictions outlined in section
2; and also that lG0(x) and lG∞(x) are continuous on B̄, the closure of B. The
boundary of B is denoted by ∂B. We further assume that the mass density ρ is
strictly positive, continuous and bounded on B̄. Let us set

ρ0 = ess inf̄
B
ρ(x) (4.1)

It is proved in [2] that

|T(t)|2 ≤ 2c0ψ(t), ψ = ψM

c0(x) = 2kmax (| lG∞(x)|, | lG∞(x)− lG0(x)|);
c0 = ess sup

x∈B
c0(x)

(4.2)

where k is introduced in (A1.6). The following result is now proved.

Proposition 4.1. The bound (4.2) holds for ψ = ψm and indeed for all free
energies because of the minimal property of ψm.

Proof. Relation (3.9) yields

|T(t)|2 ≤
(
| lG∞E(t)|+

∣∣∣∣ 1
iπ

∫ ∞

−∞

IH+(ω)
ω

pt−(ω)
∣∣∣∣)2

. (4.3)

Using |a+ b|2 ≤ (|a|+ |b|)2 ≤ 2(|a|2 + |b|2), for any a, b ∈ V, we obtain

|T(t)|2 ≤ 2| lG∞E(t)|2 + 2
∣∣∣∣ 1
iπ

∫ ∞

−∞

IH+(ω)
ω

pt−(ω)dω
∣∣∣∣2 . (4.4)

From (A1.4) and (2.5)2

| lG∞E(t)|2 = lG∞E(t) · lG∞E(t) ≤ | lG∞|( lG∞E(t) ·E(t)). (4.5)

Also∣∣∣∣ 1
iπ

∫ ∞

−∞

IH+(ω)
ω

pt−(ω)dω
∣∣∣∣2 =

1
π2

∫ ∞

−∞

IH+(ω)
ω

pt−(ω)dω ·
∫ ∞

−∞

IH+(ω)
ω

pt−(ω)dω

≤ 1
π2

∫ ∞

−∞

∣∣∣∣ IH+(ω)
ω

pt−(ω)
∣∣∣∣2 dω.

(4.6)
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From the identity

| IH+(ω)pt−(ω)|2 = IH(ω)pt−(ω) · p̄t−(ω) (4.7)

we have

1
π2

∫ ∞

−∞

∣∣∣∣ IH+(ω)
ω

pt−(ω)
∣∣∣∣2 dω =

1
π2

∫ ∞

−∞

IH(ω)
ω2 pt−(ω) · p̄t−(ω)dω. (4.8)

Recalling that IH(ω) is a real symmetric fourth order tensor, the function inside
the integral in (4.8) is real valued. Because of the positive definiteness of IH(ω)
we can use (A1.5). Thus (4.4), (4.5), (4.6) and (4.8) yield the following inequality
for the square of the magnitude of the stress T(t):

|T(t)|2 ≤ 2| lG∞|( lG∞E(t) ·E(t)) +
2
π

∫ ∞

−∞

tr( IH(ω))
ω2 dω

1
π

∫ ∞

−∞
|pt−(ω)|2dω.

(4.9)
Using (2.7)2 and (2.28)1 we deduce that

|T(t)|2 ≤ 2| lG∞|( lG∞E(t) ·E(t)) + 2 tr( lG0 − lG∞)
1
π

∫ ∞

−∞
|pt−(ω)|2dω

≤ 2c0ψm(σ(t))
(4.10)

where c0 is given by (4.2) and ψm by (3.8)1.

In what follows, for a given material point x and a time t, we consider a
state σ(t) (the dependence upon x is omitted for the sake of brevity). We
shall consider a dynamical (linear viscoelastic) process formed by the triple
{(u(t),ut), (E(t),Et),T(t)}, in which (E(t),Et) ∼ σ(t), E = 1

2[∇u + (∇u)>]
and the stress T(t) is assumed to satisfy the constitutive equation (2.1) and the
balance of linear momentum

∇ ·T(x, t) + b(x, t) = ρü(x, t), (x, t) ∈ B ×R+, (4.11)

where b(x, t) is the body force. We shall refer to the dynamical process just
introduced as being relative to the given state σ(t). There may be more than
one dynamical process relative to a given state, depending on whether or not
(2.23) has more than one solution.

It is assumed that the material is undisturbed for t ∈ R−−. Following [2],
with minor simplifications, we now define certain subsets of B̄. Let T be a given
positive time and let DT denote a subset of B̄ such that:

1. if x ∈ B then
u(x, 0) 6= 0 or u̇(x, 0) 6= 0; (4.12)

or
b(x, τ) 6= 0 for some τ ∈ [0, T ]; (4.13)
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2. if x ∈ ∂B then

s(x, τ) · u̇(x, τ) 6= 0 for some τ ∈ [0, T ] (4.14)

where
s(x, τ) := T(x, τ)n(x) (4.15)

the vector n being the unit outward normal on ∂B. Thus, DT represents the
support of the initial and boundary data and the body force. If the region B is
unbounded, then we assume that DT is a bounded region. Furthermore, let D∗T
be a bounded, regular region such that DT ⊆ D∗T ⊆ B̄.

Let the set Dr consist of all points of B̄ that can be reached by signals
propagating from D∗T with speeds less than or equal to the speed of propagation
r/T, r > 0, namely

Dr :=
{
x ∈ B̄ : D∗T ∩O(x, r) 6= Φ

}
(4.16)

where O(x, r) is the open ball with radius r and centre at x and Φ is the empty
set. We put

Br = B\Dr (4.17)

and denote by Sr the surface separating Dr and B. This surface is inside B̄,
with its boundary in ∂B.

The x dependence of various quantities will be understood rather than ex-
plicitly indicated in many formulae below.

We set the stage here for a dynamical Saint-Venant principle by introducing
the total mechanical energy contained in Br at time t; this is given by

I(r, t) :=
∫
Br

{
1
2
ρ|u̇(t)|2 + ψM (t)

}
dV (4.18)

where ψM (t) is defined in (2.25) and (2.26). The total mechanical energy is then
the sum of the kinetic energy in the dynamical (linear viscoelastic) process un-
der examination and of work done on such a dynamical process. Unfortunately,
different dynamical processes related to the same given state may produce dif-
ferent values of the work. This is the case because the work done on histories is
not in general a function of state (see e.g. [10]). Since there is no disturbance
of the medium before time t = 0 we have

ψM (t) =
∫ t

0

T(s) · Ė(s)ds, x ∈ Br. (4.19)

It is shown in [2] that

I(r, t) = −
∫ t

0

∫
Sr

s(τ) · u̇(τ)dSdτ (4.20)

where s is defined by (4.15) with the outward normal pointing into Br. We
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define also the energy measure

U(r, t) :=
∫
Br

{
1
2
ρ|u̇(t)|2 + ψ(t)

}
dV ≤ I(r, t) (4.21)

where ψ(t) is any free energy of the system, for example, the minimum free
energy ψm(t) given by (3.8). In general, we have

ψ̇(t) +D(t) = T(t) · Ė(t), D(t) ≥ 0 ∀ t ∈ R (4.22)

which is essentially (3.16). Using (4.19) and the integrated form of (4.22) in
(4.21), one obtains

I(r, t) = U(r, t) +
∫ t

0

DB(r, τ)dτ, DB(r, t) :=
∫
Br

D(x, t)dV ≥ 0. (4.23)

We shall refer to DB as the bulk dissipation. Following the developments in [2],
we have

∂

∂r
I(r, t) = −

∫
Sr

{
1
2
ρ|u̇(t)|2 + ψM (t)

}
dS (4.24)

and analogously

∂

∂r
U(r, t) = −

∫
Sr

{
1
2
ρ|u̇(t)|2 + ψ(t)

}
dS

=
∂

∂r
I(r, t) +DS(r, t)

DS(r, t) :=
∫ t

0

∫
Sr

D(x, t)dS ≥ 0,

(4.25)

where we assume sufficient smoothness in the displacement field u so that the
surface integrals exist. Furthermore,

∂

∂t
I(r, t) = −

∫
Sr

s(t) · u̇(t)dS. (4.26)

From (4.23), we have

∂

∂t
I(r, t) =

∂

∂t
U(r, t) +DB(r, t). (4.27)

Let

I∗(r1, t) :=
∫ t

0

I(r1, τ)dτ (4.28)

be the time integral over a finite interval of the total mechanical energy expended
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in any dynamical process relative to a given state and

U∗(r1, t) :=
∫ t

0

U(r1, τ)dτ, (4.29)

be the corresponding part without dissipation. It is possible to give precise
estimates of the spatial decay of these time integrated quantities according to
the following proposition.

Proposition 4.2. Let σ(t) be a given state and let us consider any dynamical
process {(u(t),ut), (E(t),Et),T(t)} relative to σ(t). Then

I(r, t) = 0, DS(r, t) = 0 ∀ r ≥ ct.

I∗(r, t) ≤
(
1− r

ct

)[∫ t

0

I(0, s)ds

−
∫ t

0

∫ r

0

DS

(
r′,

(
1− r′

ct

)
s+

r′

c

)
dr′ds

]
, ∀ r ≤ ct,

(4.30)

where c =
√
c0/ρ0. The energy measure U and the bulk dissipation in such a

process are such that the relations

U(r, t) = 0, DB(r, t) = 0 ∀ r ≥ ct

U∗(r, t) ≤
(
1− r

ct

)[∫ t

0

U(0, s)ds

− 1
ct

∫ t

0

∫ r

0

(t− s)DB

(
r′,

(
1− r′

ct

)
s+

r′

c

)
dr′ds

]
∀ r ≤ ct.

(4.31)

hold.

Proof. Applying Schwartz’s inequality (twice: to the integral and to obtain
|s|2 ≤ |T|2) and the arithmetic-geometric inequality to (4.26) we have that∣∣∣∣ ∂∂tI(r, t)

∣∣∣∣ ≤ 1
2

∫
Sr

[ε|u̇(t)|2 + ε−1|T(t)|2]dS (4.32)

where ε is an arbitrary positive number which will be assigned a value below.
Invoking Proposition 4.1, we deduce that∣∣∣∣ ∂∂tI(r, t)

∣∣∣∣ ≤ ∫
Sr

[
1
2
ε|u̇(t)|2 + ε−1c0ψ(t)]dS. (4.33)

Setting ε =
√
c0ρ0 and c =

√
c0/ρ0, it follows that∣∣∣∣ ∂∂tI(r, t)
∣∣∣∣+ c

∂

∂r
U(r, t) ≤ 0 ∀ t ∈ [0, T ] (4.34)

25



  

or, using (4.25) ∣∣∣∣ ∂∂tI(r, t)
∣∣∣∣+ c

∂

∂r
I(r, t) ≤ −DS(r, t) ∀ t ∈ [0, T ]. (4.35)

The term on the right is in general non-positive and may be non-zero. Equation
(4.35) differs from the partial differential inequality derived in [2] in that this
term is present. We wish to explore the constraints imposed on I(r, t) by (4.35)
and in particular, how they differ from those established in [2]. We also present
constraints on U(r, t). The technique used is essentially the same as in [2].

The inequality (4.35) is equivalent to following two simultaneous differential
inequalities:

1
c

∂

∂t
I(r, t) +

∂

∂r
I(r, t) ≤ −DS(r, t),

−1
c

∂

∂t
I(r, t) +

∂

∂r
I(r, t) ≤ −DS(r, t).

(4.36)

Before considering (4.36) in detail, we note that on using (4.27), they may also
be written in the form

1
c

∂

∂t
U(r, t) +

∂

∂r
U(r, t) ≤ −DB(r, t)

c

−1
c

∂

∂t
U(r, t) +

∂

∂r
U(r, t) ≤ DB(r, t)

c
.

(4.37)

Multiplying the two relations in (4.36) by arbitrary positive numbers and adding
them, we deduce that

1
κ

∂

∂t
I(r, t) +

∂

∂r
I(r, t) ≤ −DS(r, t), |κ| ≥ c. (4.38)

Similarly, (4.37) gives

1
κ

∂

∂t
U(r, t) +

∂

∂r
U(r, t) ≤ − 1

κ
DB(r, t), |κ| ≥ c. (4.39)

Let (r0, t0) be a point on the rt plane and we consider two lines through this
point with slopes c−1 and −c−1, where r is the independent variable. Next we
consider a line through (r0, t0) with slope κ−1 where |κ| ≥ c. This line intersects
the t axis between the points of intersection of the two lines just defined. We
choose κ ≥ c and utilise a line integral along this line to write

I(r, t0 +
r − r0
κ

) = I(r0, t0) +
∫ r

r0

dr′
(

1
κ

∂

∂t′
+

∂

∂r′

)
I(r′, t′) |

t′=t0+
r′ − r0
κ
(4.40)
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For r ≥ r0 we have

I(r, t0 +
r − r0
κ

) ≤ I(r0, t0)−
∫ r

r0

DS(r′, t0 +
r′ − r0
κ

)dr′ (4.41)

so that I(r, t) declines in value as r increases, within this region; while for r ≤ r0

I(r, t0 +
r − r0
κ

) = I(r0, t0)−
∫ r0

r

dr′
(

1
κ

∂

∂t′
+

∂

∂r′

)
I(r′, t′) |

t′=t0+
r′ − r0
κ

≥ I(r0, t0) +
∫ r0

r

DS(r′, t0 +
r′ − r0
κ

)dr′

(4.42)

which indicates that it increases in value as r decreases. The quantity I(r, t) is
non-negative and vanishes as t → 0+. Thus, if we let r0 → 0+ and t0 → 0+,
(4.41) becomes

I(r,
r

κ
) ≤ −

∫ r

0

DS(r′,
r′

κ
)dr′, r > 0 (4.43)

which implies that both sides vanish. Therefore

I(r, t) = 0, DS(r, t) = 0 ∀ r ≥ ct. (4.44)

which is (4.30)1. The second relation, which is not given in [2], is however not a
new consequence of the argument, since the first relation implies that all stresses
and displacements are zero on Br for r ≥ ct, which in turn gives that there can
be no dissipation in that region at such times.

Let us consider the integrated total mechanical energy I∗(r1, t) defined by
(4.28). From (4.44) we see that

I∗(r1, t) :=
∫ t

0

I(r1, τ)dτ =
∫ t

r1
c
I(r1, τ)dτ, (4.45)

Putting
τ =

(
1− r1

ct

)
s+

r1
c

(4.46)

we obtain

I∗(r1, t) =
(
1− r1

ct

)∫ t

0

I
(
r1,
(
1− r1

ct

)
s+

r1
c

)
ds (4.47)

Letting

r0 = r1, t0 =
(
1− r1

ct

)
s+

r1
c
, r = 0, κ =

ct

t− s
(4.48)

we deduce from (4.42) that

I(0, s) ≥ I
(
r1,
(
1− r1

ct

)
s+

r1
c

)
+
∫ r1

0

DS

(
r′,

(
1− r′

ct

)
s+

r′

c

)
dr′ (4.49)
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so that, replacing r1 by r the inequality (4.30)2 follows for r ≤ ct. A similar
line of reasoning can be applied to (4.39). Taking κ ≥ c we deduce analogously
to (4.44) that

U(r, t) = 0, DB(r, t) = 0 ∀ r ≥ ct. (4.50)

which is (4.31)1. Recalling (4.29), we see that (4.50) gives

U∗(r1, t) :=
∫ t

0

U(r1, τ)dτ =
∫ t

r1
c
U(r1, τ)dτ. (4.51)

Carrying through the argument, we find that (4.49) is replaced by

U(0, s) ≥ U
(
r1,
(
1− r1

ct

)
s+

r1
c

)
+
t− s

ct

∫ r1

0

DB

(
r′,

(
1− r′

ct

)
s+

r′

c

)
dr′

(4.52)
and inequality (4.31)2 holds.

It it worth noting that inequality (4.30)2 provides a stronger bound than
that given in [2] and is the central result of this section. The bound becomes
smaller as the dissipation rate increases.

In particular, if ψ is equal to the minimum free energy ψm thenD(t) = Dm(t)
given by (3.17). The quantity DB, given by (4.23), is a volume integral of this
quantity, while DS , defined by (4.25)3, is a surface integral of the quantity (see
(3.7))

1
2π

∫ ∞

−∞
|pt+(ω)|2 dω =

1
2π

∫ ∞

−∞
|qt+(ω)|2 dω = Q+(t) (4.53)

or in the more explicit form given by (3.22). The time integral of DS in (4.30)
is given by (cf (4.45), (4.47))∫ t

0

DS

(
r′,

(
1− r′

ct

)
s+

r′

c

)
ds =

(
1− r′

ct

)−1 ∫ t

r′
c
DS (r′, τ) dτ. (4.54)

The time integral on the right may be extended to −∞ by virtue of (4.44), and
the last term in (4.30) is a surface integral of a time integral over Q+, expressible
in two different forms as given by (3.28) and proved by Proposition 3.1.

Similarly, in (4.31), using (4.44), we have∫ t

0

(t− s)DB

(
r′,

(
1− r′

ct

)
s+

r′

c

)
ds =

(
1− r′

ct

)−2 ∫ t

r′
c

(t− τ)DB(r′, τ)dτ

=
(

1− r′

ct

)−2 ∫ t

r′
c

∫ τ

r′
c
DB(r′, u)dudτ.

(4.55)

The integrals can be extended to −∞ and this quantity is given by the volume
integral of a time integral over Q+, given as before by (3.28).
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5. Preliminary Results for the non-inertial case

Before considering the non-inertial case, we deduce in this section certain
inequalities which will be required. Consider the functional

ψG(t) = φ(t)− 1
2

∫ ∞

0

Etr(s) · l̇G(s)Etr(s)ds

= S(t)− 1
2

∫ ∞

0

Et(s) · l̇G(s)Et(s)ds.
(5.1)

This functional is non-negative by virtue of (2.10) and (2.26); ψG is also a free
energy in the sense of Graffi(see e.g. [15]), the Graffi-Volterra free energy, if
the relaxation tensor obeys (2.10) and the further condition (2.11). We will
not assume (2.11). The quantity ψG will be referred to as the Graffi-Volterra
functional. It can be shown [2] that

T(t) ·E(t) = ψG(t) +
1
2
d

dt

∫ ∞

0

Et(s) · lG(s)Et(s)ds (5.2)

giving

F (t) :=
∫ t

−∞
T(s) ·E(s)ds =

∫ t

−∞
ψG(s)ds+

1
2

∫ ∞

0

Et(s) · lG(s)Et(s)ds

≥
∫ t

−∞
ψG(s)ds ≥ 0

(5.3)

under the assumption that F exists.
We now consider free energies of the general form

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

Etr(s1) · lG12(s1, s2)Etr(s2)ds1ds2

= S(t) +
1
2

∫ ∞

0

∫ ∞

0

Et(s1) · lG12(s1, s2)Et(s2)ds1ds2
(5.4)

where lG12(s1, s2) ∈ Lin(Sym) has the properties

lG>
12(s1, s2) = lG12(s2, s1);

lG12(s1, s2) =
∂

∂s1

∂

∂s2
lG(s1, s2);

lG(0, s1) = lG(s1, 0) = lG(s1);

lG1(s1,∞) = lG2(∞, s2) = 0, ∀ s1, s2 ∈ R+

lG(s1,∞) = lG(∞, s2) = lG∞, ∀ s1, s2 ∈ R+

(5.5)

where φ(t) and S(t) are defined by (2.26). The two forms can be shown to
be equivalent with the aid of the given constraints on lG. Also, property P2
after (3.13) can be demonstrated. From the first form of (5.4) and (3.14), it
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follows that lG12 must be a positive-definite operator. We will assume that it is
a symmetric tensor so that, by (5.5)1 we have

lG12(s1, s2) = lG12(s2, s1) ∀ s1, s2 ∈ R+. (5.6)

It is further assumed that

| lG12(s1, s2)| <∞ ∀ s1, s2 ∈ R+ ⊗R+. (5.7)

It follows from the time domain representation of the minimum free energy
given in [1], chapter 11 (see also [53]) that it can be expressed in the form (5.4).
Similarly, the family of free energies derived in [55] and in [1], chapters 15, 16
can also be expressed in this form.

A restriction on the choice of the relaxation function lG(s) was considered in
[49] (see also [1]) in which it was assumed that its eigenspaces do not depend on
time. The factorization problem for the tensor relaxation function then reduces
to that for a scalar relaxation function [12] and allows explicit forms of the
minimum free energy to be written down. In particular, it was shown that,
under this assumption, IH±(ω) also have this property and that they commute.
It will be true if lG can be expanded as follows:

lG(s1, s2) =
6∑
k=1

Gk(s1, s2) IBk (5.8)

where IBk = Bk⊗Bk k = 1, ...6 are the projectors on the 6 constant eigenspaces
of lG and {Bk} are its normal eigenvectors, which constitute an orthonormal
basis of Sym. The quantities Gk are scalars. This is a special case of (A1.2).
The tensor lG12 also has property (5.8). Note that (5.8) implies (5.6).

Proposition 5.1. If lG12(s1, s2) is a positive semi-definite tensor for all s1, s2 ∈
R+ then

ψ(t) ≤ ψG(t), t ∈ R (5.9)

where ψG is the Graffi-Volterra functional (5.1) and ψ is given by (5.4).

Proof. Consider the identity

1
2

∫ ∞

0

∫ ∞

0

(
Et(s1)−Et(s2)

)
· lG12(s1, s2)

(
Et(s1)−Et(s2)

)
ds1ds2

=
1
2

∫ ∞

0

∫ ∞

0

Et(s1) · lG12(s1, s2)Et(s1)ds1ds2

+
1
2

∫ ∞

0

∫ ∞

0

Et(s2) · lG12(s1, s2)Et(s2)ds1ds2

−
∫ ∞

0

∫ ∞

0

Et(s1) · lG12(s1, s2)Et(s2)ds1ds2.

(5.10)

The left-hand side is non-negative by virtue of the positivity assumption on
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lG12. The first two terms on the right yield the integral terms in (5.1) and the
last term is the integral term in (5.4)2. Relation (5.9) follows immediately.

In particular, we have

ψm(t) ≤ ψG(t), t ∈ R. (5.11)

if the assumption of Proposition 5.1 hold. The same argument applies to the
family of free energies derived in [55]. It should be pointed out that if (2.11)
holds, relation (5.11) in fact follows from the minimum property of ψm and the
fact that it and ψG, now a free energy, have the Graffi properties P1-P4 [49].

If l̈G is not assumed to be non-negative, we rely on Proposition 5.1 to prove
(5.11). The question therefore arises: is lG12 a positive, semi-definite tensor
for the minimum free energy? The answer is in the affirmative for all cases
where explicit forms have been obtained, namely where the relaxation function
is a sum of decaying exponentials in the scalar case [12] and in the tensor
case under the assumption of time-independent eigenspaces as outlined before
(5.8); the answer is affirmative also for the case where the relaxation function is
completely monotonic, so that the Bernstein representation formula [31] allows it
to be represented as an integral over decaying exponentials with a non-negative
density function [59].

The quantity ψM , given by (2.26), has the form (5.4) but where lG12 is not
bounded on R+ ⊗R+. In fact [30]

lG12(|s1 − s2|) = −2δ(s1 − s2) l̇G(|s1 − s2|)− l̈G(|s1 − s2|), (5.12)

in terms of the singular Dirac measure. In this case, Proposition 5.1 does not
hold. In fact, we see that the left-hand side of (5.10) is non-positive if (2.11)
holds, since the delta-function term yields zero. Therefore

ψM (t) ≥ ψG(t). t ∈ R (5.13)

which is consistent with the fact that ψM is maximal, a property that holds
whenever the state of the material can be identified with the pair current strain-
past strain history.

For the remaining sections, we suppose that the relaxation tensor lG(t) sat-
isfies the condition (2.10) and that (5.9) holds.

6. The non-inertial case for general histories

We consider the region B and the subsets as defined in section 4, except that
u̇ is omitted from (4.12). Also, Dr is defined by (4.16) but interpreted simply
as the set of points within a distance r of D∗T . The parameter r ranges over the
interval [0, L].

In what follows, for a material point x and time t we consider a state σ(t).
Let us denote by the triple {(u(t),ut), (E(t),Et),T(t)} a quasi-static (linear vis-
coelastic) process, where (E(t),Et) ∼ σ(t), E = ∇u and the stress T(t) satisfies
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the constitutive equation (2.1) together with the balance of linear momentum:

∇ ·T(x, t) + b(x, t) = 0, (x, t) ∈ B ×R+. (6.1)

with body force b(x, t).
The total load and moment acting on S0 are denoted by R(t) and M(t).

The necessary conditions for the equilibrium of D0 are given by

R(t) =
∫
S0

s dS = −
∫
D0

b dV −
∫
∂D0\S0

s dS

M(t) =
∫
S0

x× s dS = −
∫
D0

x× b dV −
∫
∂D0\S0

x× s dS
(6.2)

where s is defined by (4.15) in which n is the normal on S0 pointing out of D0.
Necessary conditions for the equilibrium of Dr are∫

Sr

s dS = R(t),
∫
Sr

x× s dS = M(t) (6.3)

where n (in the definition of s) is in the increasing direction of r.
Saint-Venant’s principle deals with the difference in behaviour of the family

of stress fields yielding the same R(t) and M(t). This leads us to consider a
stress field that is the difference between any two members of this family, which,
in view of the linearity of the governing equations, will be characterized by null
global load and moment R(t),M(t), null body force and surface loads non-zero
only on ∂D0.

Thus, we consider the balance of linear momentum with no body forces

∇ ·T(x, t) = 0, (x, t) ∈ B0 × [0, T ], (6.4)

where
s(x, t) = 0, x ∈ ∂B0\S0, t ∈ [0, T ], (6.5)

and such that the overall balance of forces and moments hold:∫
S0

s dS =
∫
Sr

s dS = 0∫
S0

x× s dS =
∫
Sr

x× s dS = 0, t ∈ [0, T ].
(6.6)

We define the following "energy" measures on Br:

UE(r) =
∫ T

0

∫
Br

T(t) ·E(t) dV dt; Uψ(r) =
∫ T

0

∫
Br

ψ(t) dV dt ≤ UE(r) (6.7)

where ψ is any free energy obeying (5.9), in particular the minimum free energy.
The inequality follows from (5.3) and (5.9). The quantity T is for present
purposes any positive time.
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The quantity U(r) will indicate any one of these two measures.

We use the result of Berdichevskii [50] that, for all vector fields v on a
bounded domain Γ which satisfy the constraints∫

Γ

v dV = 0,
∫

Γ

x× v dV = 0, (6.8)

the inequality

b

∫
Π

|v|2 dS ≤
∫

Γ

E · lCE dV (6.9)

holds, where E = sym∇v ∈ Sym, Π is any surface such that Π ⊂ ∂Γ and b is a
constant depending on Γ,Π and the positive-definite tensor lC ∈ Lin(Sym).

Proposition 6.1. Let σ(t) be a given state and let {(u(t),ut), (E(t),Et),T(t)}
be any quasi-static process related to σ(t) such that (6.4) - (6.6) hold. Then

U(r) ≤ U(0)e−r/α, 0 ≤ r ≤ L− l

α =
4c0
β
, β = min

0≤r≤L−l
b(r), l > 0,

(6.10)

on such a process, where c0 is defined by (4.2) and b(r) is the optimal choice of
the constant in (6.9) for lC = lG∞, Π = Sr and Γ = Br.

Proof. We firstly change the displacement vector field by replacing u with

ũ = u0 + u (6.11)

where u0 is a rigid motion (translation and rigid rotation) chosen so as to satisfy
the equations ∫

Br

ũ dV = 0,
∫
Br

x× ũ dV = 0. (6.12)

It is shown in [8] that this is always possible. From (6.9), we have the inequality∫
Sr

|ũ|2 dS ≤ 1
b(r)

∫
Br

E · lG∞E dV (6.13)

This change in u does not alter E or T. Note that from (3.14) and (3.15),

1
2

∫ T

0

∫
Br

E · lG∞E dV dt ≤ Uψ(r) ≤ UE(r). (6.14)

Applying the divergence theorem to Br, we obtain from (6.7) that

U(r) ≤ UE(r) = −
∫ T

0

∫
Sr

s · ũ dSdt (6.15)
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and Schwartz’s inequality gives

U(r) ≤

(∫ T

0

∫
Sr

|T(t)|2 dSdt

)1
2
(∫ T

0

∫
Sr

|ũ(t)|2 dSdt

)1
2
. (6.16)

Relations (6.13) and (6.14) yield∫ T

0

∫
Sr

|ũ(t)|2 dSdt ≤ 2
b(r)

U(r) (6.17)

which, on substitution into (6.16), and squaring both sides, results in

U(r) ≤ 2
b(r)

∫ T

0

∫
Sr

|T(t)|2 dSdt. (6.18)

By virtue of Proposition 4.1, we deduce that

U(r) ≤ α

∫ T

0

∫
Sr

ψ(t) dSdt. (6.19)

where in fact ψ(t) could be replaced by T(t) ·E(t). Noting that

dU(r)
dr

= −
∫ T

0

∫
Sr

ψ(t) dSdt. (6.20)

we have the differential inequality

U(r) + α
dU(r)
dr

≤ 0 (6.21)

the solution of which yields (6.10). The quantity l in (6.10) must be taken to
be strictly positive if β is to be non-zero [2, 50].

This result was presented in [2] for U = UE , given by (6.7)1; see also [1],
page 458 for the case of a cylindrical body. Proposition 6.1 generalizes the
estimate to a family of energy measures involving a class of free energies with
the property required by Proposition 5.1. As noted earlier, the minimum free
energy is in this class for general categories of relaxation tensors.

The spatial decay of the states (i.e. the level of disturbance) of the material
points located inwards from the loaded boundary may also be explored. To this
end, we recall that in [49], Sect. 9, the following L2-norm is introduced in the
state space:

‖σ(x, t)‖2 := |E(x, t)|2 +
∫ ∞

−∞
|qt−(x, ω)|2dω, (6.22)

where qt− is defined by (3.5)2 and (3.6)2 . Proposition 9.2 in [49] shows the
equivalence of the norm defined by (6.22) and the norm based on the minimal
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free energy ψm. It is worth recalling that such an equivalence yields a different
way to get the coarsest possible L2-type norm in the state space. The mea-
sure Σ(r, t) for the state of the points encountered by moving from the loaded
boundary into the body may be defined as follows:

Σ(r, t) :=
∫ T

0

∫
Br

‖σ(x, t)‖2dV dt. (6.23)

From (6.22) and Proposition 9.2 in [49] it then follows that the measure Σ(r, t)
obeys the inequality (6.10). This ensures that any other measure of the state of
the points in Br finer than Σ(r, t) also decays at the same spatial rate as Σ(r, t).
This conclusion could not be drawn by exploring the decay of UE which may
not even induce a norm in the state space. We have proved the following result.

Proposition 6.2. The measure Σ(r, t) of the state of material points at time t
located in the region Br spatially decay according to

Σ(r, t) ≤ Σ(0, t)e−r/α, 0 ≤ r ≤ L− l

α =
4c0
β
, β = min

0≤r≤L−l
b(r), l > 0.

(6.24)

It is worth noting that the latter proposition leads to an important conclu-
sion.

Indeed, after dividing both sides of (6.24) by T vol(Br), the obtained result
is showing that an averaged (space-time) measure of the residual stress σ(x, t)
over the region Br is spatially decaying. This could not have been proved unless
a one to one relation between states (σ(x, t)) and free energy would not have
been established This proves that in linear viscoelastic solids not only we can
show a decay in energy, but also we have a stress measure that spatially decays
too at some very definite rate. In other words, at a sufficient distance from the
applied loads, the state of the material, and hence the residual stress inherited
from past histories, does not depend on the specific application of the tractions,
but only on the resultants. In general getting information on the stress decay
is the hardest part of a Saint-Venant’s-like result, being the decay of the energy
easier to obtain [51].

7. The non-inertial case for sinusoidal histories

We now consider states σω for the linear viscoelastic material such that the
equivalence class is represented by sinusoidal histories with frequency ω (for
a definition of such histories see Appendix 1). An equivalence class of such
histories may be defined using (2.23). It is easy to show that the equivalence
class so defined is a singleton and we denote the corresponding state by σm.

Such states in a body may be caused either by applied tractions or dis-
placements, or both, which are sinusoidal with frequency ω. In such cases, the
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spatial decay of energy measures will depend on the frequency. We seek here
to study this dependence. The energy measure U(r) introduced in the previous
section is replaced by U(r, ω), which can be either of the measures in (6.7). The
assumption that the material is undisturbed for t < 0 must now be dropped.

Proposition 7.1. Let {(u(t),ut), (E(t),Et),T(t)} be a quasi-static (linear vis-
coelastic) process related to the state σω, so that the histories ut, Et := 1

2 [∇ut+
(∇ut)>] are sinusoidal satisfying (6.4) - (6.6) over the interval (−∞, t]. Then

U(r, ω) ≤ U(0)e−r/αU (ω), 0 ≤ r ≤ L− l (7.1)

where α(ω) depends upon the load application frequency and the choice of mea-
sure from (6.7).

Proof. Let (E,Et) be given by (A2.1), where the amplitude C ∈ Sym contains
the space dependence, and let T be a multiple of π/ω. It follows from (5.3) and
(5.9) that, before taking the limit η → 0,∫ T

−∞
T(t) ·E(t)dt ≥

∫ T

−∞
ψG(t)dt ≥

∫ T

−∞
ψ(t)dt. (7.2)

Now ∫ T

−∞
T(t) ·E(t)dt =

1

1− e−2ηT

∫ T

0

T(t) ·E(t)dt (7.3)

with similar relations for other quantities. Then for any finite η we have∫ T

0

T(t) ·E(t)dt ≥
∫ T

0

ψ(t)dt. (7.4)

This relationship will therefore hold in the limit η → 0 since the integrals exist
and are continuous at η = 0. Thus we have, as in (6.7)

UE(r, ω) ≥ Uψ(r, ω). (7.5)

The measure U(r, ω) can be expressed in the form

1
T
U(r, ω) =

∫
Br

C̄(x) · IK(x, ω)C(x) dV. (7.6)

where IK : R×R3 7→ Lin(Sym) is a positive-definite tensor, the forms of which,
for the two measures, will be discussed later.

Rather than use Proposition 4.1 where the constant c0 does not depend on
the measure used, we follow the line of reasoning of Toupin [8] in his original work
on Saint-Venant’s principle in linear elasticity, to replace c0 with a parameter
that depends on the energy measure. Furthermore, we adopt a different form
of (6.13). The dependence on x will be indicated only when necessary.
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The tensor IK(x, ω) is Hermitean and thus has real eigenvalues which must
also be positive since IK is positive-definite. Let λUm(x, ω) and λUM (x, ω) be the
minimum and maximum eigenvalues. Then

λUm(x, ω)|C(x)|2 ≤ C̄(x) · IK(x, ω)C(x) ≤ λUM (x, ω)|C(x)|2 (7.7)

Also, from (A2.5),

1
T

∫ T

0

|T(t)|2dt = C̄(x) ·W(x, ω)C(x), W(ω) = 2 IM∗x, ω) IM(x, ω) (7.8)

Let µ2
M (x, ω) be the largest eigenvalue of the positive-definite tensor W(x, ω).

Then, for almost all points x ∈ B̄

1
T

∫ T

0

|T(t)|2dt ≤ µ2
M (x, ω)|C(x)|2 ≤ κU (ω)C̄(x) · IK(x, ω)C(x) (7.9)

where

κU (ω) = ess sup
x∈B̄

µ2
M (x, ω)
λUm(x, ω)

(7.10)

so that

1
T

∫ T

0

∫
Sr

|T(t)|2 dSdt ≤ κU (ω)
∫
Sr

C̄(x) · IK(x, ω)C(x) dS. (7.11)

Equation (7.9) replaces Proposition 4.1. From (7.6), we have

1
T

dU(x, ω)
dr

= −
∫
Sr

C̄(x) · IK(x, ω)C(x) dS. (7.12)

Let
ũ(x, t) = d(x)eiωt + d̄(x)e−iωt (7.13)

which yields (A2.1) (in the real frequency limit) provided that

C = sym∇d. (7.14)

Inequality (6.9) gives that

1
T

∫ T

0

∫
Sr

|ũ(t)|2 dSdt = 2
∫
Sr

|d(x)|2 dS

≤ 2
b(r, ω)

∫
Br

C̄(x) · IK(x, ω)C(x) dV
(7.15)

where b(r, ω) for any Sr, Br, depends on IK. It is greatest for the largest energy
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measure. Thus, we obtain∫ T

0

∫
Sr

|ũ(t)|2 dSdt ≤ 2
b(r, ω)

U(r, ω) (7.16)

by virtue of (7.6). Using (7.16) in (6.16), we obtain, instead of (6.18),

U(r, ω) ≤ 2
b(r, ω)

∫ T

0

∫
Sr

|T(t)|2 dSdt ≤ αU (ω)T
∫
Sr

C̄(x) · IK(x, ω)C(x) dS

(7.17)
where

αU (ω) =
2κU (ω)
β(ω)

, β(ω) = min
0≤r≤L−l

b(r, ω). (7.18)

Equation (7.11) has been invoked to provide the second inequality. Using (7.12),
we find that (6.21) is replaced by

U(r, ω) + αU (ω)
dU(r, ω)

dr
≤ 0 (7.19)

the solution of which yields (7.1).

We see that the larger the measure chosen for Uψ the faster the decay. The
choice of UE(r, ω) provides the most rapid decay, while Uψ(r, ω) falls off more
slowly. This means that the measure Uψm(r, ω) based on the minimal free energy
yields the most conservative estimate in terms of the frequency dependent spatial
decay of the energy. Indeed, for the given frequency of application of external
loads, more distance is required for the energy to decay to its asymptotic value.

Following the same reasoning of the previous section we may infer some infor-
mation about the decay of a suitable measure of the state of points encountered
moving from the loaded boundary (at the given frequency ω) into the body.

Proposition 7.2. Let σω(x) be the state of the point x at the prescribed fre-
quency ω and let ‖ · ‖ be the norm defined by (6.22). The measure

Σ(r, ω) :=
∫ T

0

∫
Br

‖σω(x)‖2dV dt (7.20)

of the state of material points located in the region Br spatially decays as in
(7.1) with U given by Uψm where U(r, ω) and U(0, ω) are replaced by Σ(r, ω)
and Σ(0, ω) respectively.

The forms of the tensor IK(ω) in (7.6) for the two choices of U in (7.5) are
given as follows. For U = UE , we determine from (A2.13) that

IKE(ω) = 2 IR(ω) (7.21)
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where IR is the Hermitean part of the complex modulus tensor, defined in (3.30).
For U = Uψm where the minimum free energy ψm is used, we have

IKψm(ω) = IB(ω) (7.22)

from (A2.24), (A2.23) and (3.27) in terms of the factors of IH. Note that (7.5)
gives that

2 IR(ω) ≥ IB(ω) ≥ 0 ∀ ω ∈ R

or

IR(ω) ≥ ID(ω)− ω IR′(ω)
≥ ω IR′(ω)− ID(ω) ∀ ω ∈ R.

(7.23)

It should be observed that for exponential models with non-negative coefficients
or density functions [49, 59], we have

ω IR′(ω) ≥ 0.

The rate of decay depends on the rate of application of the load as reflected in
the frequency. In the low frequency limit, IB(ω) tends to IR(ω) and we have

IKE(0) = 2 IR(0) = 2 lG∞; IKψm(0) = IR(0) = lG∞. (7.24)

Also, as ω gets larger, IKE(ω) increases to 2 lG0. Since IH′± tend to zero at large
ω, we have that IKψm(ω) tends to lG0 at large ω.

In the case of the exponential models referred to above, for example, we see
that IKE may increase reasonably smoothly. Though there may be complicated
behaviour at intermediate frequencies, particularly in IKψm

, both IKE and IKψm

are always non-negative. Broadly, therefore, as the rate of load application
increases, the larger UE , Uψm

become and, referring to the statement after
(7.19), the larger their rates of decay with r.

It must be noted however that the validity of the quasi-static approximation
comes into question in the high frequency limit.

While a precise comparison of the results for a general history given by (6.10)
and the results for a sinusoidal history is not possible, some observations can be
made. We compare the sinusoidal results for very low frequencies and the results
for a general history, since both involve the equilibrium modulus lG∞ (though
of course the sinusoidal history in the limit ω = 0 is not of great interest, being
in fact the stationary history). Inhomogeneity effects are neglected. We assume
that | lG∞| ≥ | lG∞ − lG0| in (4.2) and, remembering (A1.6), replace k| lG∞| by
tr lG∞. Thus α in (6.10) becomes

α =
8 tr lG∞

β
. (7.25)
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Let the eigenvalues of lG∞ be γ1 ≥ γ2 ≥ · · · ≥ γ6. Then

µ2
M (0) = 2γ2

1 . (7.26)

Also

λm(0) = nγ6

n = 2, U = UE

= 1, U = Uψ.

(7.27)

Then,

κ(0) =
2γ2

1

nγ6
. (7.28)

Now, from a comparison of (6.13) and (7.15), and noting the definition of β and
β(ω) in (6.10) and (7.18) , we find that

β(0) = nβ. (7.29)

Therefore

α(0) =
4γ2

1

n2γ6β
. (7.30)

Thus
α

α(0)
=

2n2γ6

γ2
1

tr lG∞. (7.31)

For the case of an isotropic solid, lG∞ has two distinct eigenvalues, 3λ + 2µ
with multiplicity one and 2µ with multiplicity five, where λ, µ are the Lamé
constants. In this case, we find

α

α(0)
=

6n2(1− 2ν)(2− 3ν)
(1 + ν)2

. (7.32)

where ν is the equilibrium Poisson’s ratio. For an incompressible medium, the
estimate (7.1) yields no decay. For ν ≤ 1/3, we see that (7.1) near ω = 0 gives
faster spatial decay than (6.10).

The exponential decay exhibited in (6.10) and (7.1) express the content of the
Saint-Venant Principle, which states that any solution of the problem specified
by (6.1) - (6.3) is well approximated by a solution of the relaxed Saint-Venant
problem, namely that for which the stress and moment on S0 are independent
of space coordinates, while obeying (6.2) and (6.3).

The forms of solutions of the relaxed problem are discussed in detail in
Chapter 20 of [1].

Acknowledgements

L. Deseri gratefully acknowledges financial support from the grant PIAPP-
GA-2013-609758-HOTBRICKS, “Mechanics of refractory materials at high tem-

40



  

perature for advanced industrial technologies", from the EU through the FP7
program. The Center for Nonlinear Analysis at Carnegie Mellon University
through the NSF Grant No. DMS-0635983 is also acknowledged. Both the
departments of Civil and Environmental Engineering and of Mechanical Engi-
neering at Carnegie Mellon University are gratefully acknowledged for their sup-
port and hospitality to L. Deseri during the Spring 2014. The Department of
Civil, Environmental and Mechanical Engineering DICAM from the University
of Trento is also gratefully acknowledged for the permission granted to L. Deseri
to actively be affiliated with Carnegie Mellon and with The Houston Methodist
Research Institute and to partially pursue his research there.

Appendix 1: Notation and basic assumptions for
a linear viscoelastic solid

Let Sym be the space of symmetric second order tensors acting on R3 viz.
Sym := {M ∈ Lin(R3) : M = M>}, where the superscript “>” denotes the
transpose. Operating on Sym is the space of fourth order tensors Lin(Sym).

It is well known that Sym is isomorphic to R6. In particular, for every
L,M ∈ Sym, if Ci, i = 1, ..., 6 is an orthonormal basis of Sym with respect
to the usual inner product in Lin(R3), namely tr(LM>), it is clear that the
representation

L =
6∑
i=1

LiCi , M =
6∑
i=1

MiCi (A1.1)

yields tr(LM>) =
∑6
i=1 LiMi. Therefore, we can treat each tensor of Sym as a

vector in R6 and denote by L ·M the inner product between elements of Sym,
viz.

L ·M = tr(LM>) = tr(LM) =
6∑
i=1

LiMi

and |M|2 = M ·M. Consequently [33] any fourth order tensor IK ∈ Lin(Sym)
will be identified with an element of Lin(R6) by the representation

IK =
6∑

i,j=1

KijCi ⊗Cj (A1.2)

and IK> means the transpose of IK as an element of Lin(R6). According to
(A1.2), the norm |IK| of IK ∈ Lin(Sym) may be given by

|IK|2 = tr
(
IKIK>

)
=

 6∑
i,j=1

KijKij

 .
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In the sequel we deal with complex valued tensors. Denoting by Ω the complex
plane and by Sym(Ω) and Lin(Sym(Ω)) respectively the tensors represented
by the forms (A1.1) and (A1.2) with Li,Mi,Kij ∈ Ω, then the norms |M| and
|IK| of M ∈ Sym(Ω) and IK ∈ Lin(Sym(Ω)) will be given respectively by

|M|2 =
(
M ·M

)
, |IK|2 = tr (IKIK∗) =

 6∑
i,j=1

KijKij

 , (A1.3)

where the overhead bar indicates complex conjugate and IK∗ = IK
>

is the
hermitian conjugate.

The following result will be required. For L ∈ Sym and the real symmetric
positive-definite tensor IK ∈ Lin(Sym)

IKL ·IKL ≤ |IK|L ·IKL (A1.4)

Also, for L ∈ Sym(Ω),

sup
L∈Sym(Ω)

IKL · L̄ ≤ tr(IK)|L|2. (A1.5)

Note that trIK is the sum of the (real) eigenvalues of IK. We have

trIK ≤ k|IK|. (A1.6)

where k > 1 depends on the dimensions of the normed space.

The symbols R+ and R++ denote the non-negative reals and the strictly
positive reals, respectively, while R− and R−− denote the non-positive and
strictly negative reals.

For function f : R → V, where V is a finite-dimensional vector space, in
particular in the present context Sym or Lin(Sym), let fF , denote its Fourier
transform viz. fF (ω) =

∫∞
−∞ f(s)e−iωsds. Also, we define

f+(ω) =
∫ ∞

0

f(s)e−iωsds, f−(ω) =
∫ 0

−∞
f(s)e−iωsds

fs(ω) =
∫ ∞

0

f(s) sinωs ds, fc(ω) =
∫ ∞

0

f(s) cosωs ds
(A1.7)

The relations defining fF and (A1.7) are to be understood as applying to each
component of the tensor quantities involved. Some constraint must be placed
on these components to ensure that the Fourier transforms exist. It is assumed
that all components of tensors in the time domain belong to L2(R) (or L2(R±)
in the case of f±) so that in the frequency domain, they belong to L2(R) [34, 35].
Further restrictions on the allowed function spaces will be imposed below.
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When f : R+ → V we can always extend the domain of f to R, by consid-
ering its causal extension viz.

f(s) =


f(s) for s ≥ 0

0 for s < 0
(A1.8)

in which case
fF (ω) = f+(ω) = fc(ω)− ifs(ω) (A1.9)

We shall need to consider the Fourier transform of functions that do not go
to zero at large times and thus do not belong to L2 for the appropriate domain.
In particular, let f(s) in (A1.8) be given by a constant a for all s. The standard
procedure is adopted of introducing an exponential decay factor, calculating
the Fourier transform and then letting the time decay constant tend to infinity.
Thus, we obtain

f+(ω) =
a

iω−

ω− = lim
α→0

(ω − iα)
(A1.10)

The corresponding result for a constant function defined on R− is obtained
by taking the complex conjugates of this relationship. Also, if f is a function
defined on R− and if lims→−∞ f(s) = b where the components of the function
g : R− → V defined by g(s) = f(s)− b belong to L2(R−), then

f−(ω) = g−(ω)− b

iω+ (A1.11)

Again, taking complex conjugates gives the result for functions defined on R+.
This procedure amounts to defining the Fourier transform of such functions as
the limit of the transforms of a sequence of functions in L2. The limit is to be
taken after integrations over ω are carried out if the ω−1 results in a singularity
in the integrand. Generally, in the present application, the ω−1 produces no
such singularity and the limiting process is redundant.

The complex frequency plane Ω will play an important role in our discussions.
We define the following sets:

Ω+ = {ω ∈ Ω : Imω ≥ 0} , Ω(+) = {ω ∈ Ω : Imω > 0} . (A1.12)

Analogous meanings are assigned to Ω− and Ω(−).
The quantities f± defined by (A1.7) are analytic in Ω(∓) respectively. This

analyticity is extended by assumption to an open set containing the real axis
and therefore to Ω∓. The function f+ may be defined by (A1.7) and analytic
on a portion of Ω+ if for example f decays exponentially at large times. Over
the remaining portion of Ω+, on which the integral definition is meaningless, f+
is defined by analytic continuation.
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Appendix 2: Sinusoidal histories

This topic is discussed in a more general context in [1], page 258.
Consider a current value and history of strain (E,Et) defined by

E(t) = Ceiω−t + C̄e−iω+t, Et(s) = E(t− s) (A2.1)

where C ∈ Sym is an amplitude and C̄ its complex conjugate, both of which
may depend on x in the present application.. Also

ω− = ω0 − iη, ω+ = ω̄−, ω ∈ R, η ∈ R++. (A2.2)

The quantity η is introduced to ensure finite results. The quantity Et+ has the
form

Et+(ω) = C
eiω−t

i(ω + ω−)
+ C̄

e−iω+t

i(ω − ω+)
. (A2.3)

The stress, given by (2.1), has the form

T(t) = lG0

{
Ceiω−t + C̄e−iω+t

}
+ T1(t),

T1(t) =
∫ ∞

0

l̇G(s)Et(s) ds

= l̇GF (ω−)Ceiω−t + l̇GF (−ω+)C̄e−iω+t

(A2.4)

or, in terms of the tensor complex modulus (3.30), we have

T(t) = IM(ω−)Ceiω−t + IM(−ω+)C̄e−iω+t. (A2.5)

Note that, in view of (2.5) and the remark after (2.8), we have IM> = IM, so
that

IM(−ω+) = IM(ω−) = IM∗(ω−) (A2.6)

where IM∗ is the Hermitean conjugate of IM. Alternatively, we find, from (2.12)
and (A2.3), that the stress has the form

T(t) = lG0E(t) + N(−ω−)Ceiω−t + N(ω+)C̄e−iω−t,

N(z) =
1
π

∫ ∞

−∞

l̇Gs(ω′)
ω′ − z

dω′, z ∈ Ω(+)
(A2.7)

and comparison with (A2.5) yields that

lG0 + N(z) = IM(−z), z ∈ Ω(+) (A2.8)

which can be shown to be equivalent to a “Dispersion Relation”, ([58] for exam-
ple). Using the relations IM(−z) = IM∗(z̄) (see (A2.6)) N∗(z) = N(z̄), z ∈
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Ω(+) together with (A2.8), we obtain

lG0 + N(z) = IM(z), z ∈ Ω(−). (A2.9)

The work W (t) done on the material to achieve the state (E(t),Et) is given by
(2.25). Equations (A2.1) and (A2.5) yield

W (t) =
1
2
[
C · IM(ω−)Ce2iω−t + C̄ · IM(−ω+)C̄e−2iω+t

]
+ C̄ · [ω− IM(−ω+)− ω+ IM(ω−)]C

ei(ω−−ω+)t

(ω− − ω+)

(A2.10)

where the symmetry of IM has been used. It will be observed that the last term
diverges in the limit η → 0, which is entirely reasonable from a physical point
of view.

The Fourier transform of the relative history Etr(s) = Et(s)− E(t), namely
Etr+(ω) has the form

Etr+(ω) = Et+(ω)− E(t)
iω−

= −C
ω−
ω−

eiω−t

i(ω + ω−)
+ C̄

ω+

ω−
e−iω+t

i(ω − ω+)
(A2.11)

using the notation (A1.10). The quantity T(t) ·E(t) has the form

T(t) ·E(t) = C · IM(ω−)Ce2iω−t + C̄ · IM(−ω+)C̄e−2iω+t

+ C̄ · ( IM(ω−) + IM(−ω+))Cei(ω−−ω+)t
(A2.12)

where the symmetry of IM has again been used. Thus, in the limit η → 0∫ T

0

T(t) ·E(t)dt = 2T C̄ · IR(ω)C. (A2.13)

Observe that the generalization of (3.2) to the complex plane is

IH+(ω) = IH∗−(ω̄). (A2.14)

From the properties IH(ω) = IH(ω̄) and IH(−ω) = IH(ω), it follows that we
can choose IH± such that

IH±(ω) = IH±(−ω̄) (A2.15)

giving
IH>±(ω) = IH∓(−ω). (A2.16)

If IH± commute (see the discussion before (5.8)) we have further that

IH±(ω) = IH∓(ω̄). (A2.17)
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Also [49] IH± are symmetric for all frequencies as are products of these factors
at the same or different frequencies.

The minimum free energy ψm(t) is given by (3.8). We evaluate the integrals
in (3.6) by closing the contours on Ω(+) to obtain

pt+(ω) = −
[

eiω−t

i(ω + ω−)
IH−(−ω−)C +

e−iω+t

i(ω − ω+)
IH−(ω+)C̄

]
(A2.18)

and
pt−(ω) = IH−(ω)Etr(ω) + pt+(ω)

The expression for ψm(t) can be obtained from (3.11)2 combined with (A2.10)
and (A2.18). From (A2.18) we obtain

1
2π

∫ ∞

−∞
|pt+(ω)|2dω = − ie

2iω−t

2ω−
C · IH∗−(ω+) IH−(−ω−)C

+
ie−2iω+t

2ω+
C̄ · IH∗−(−ω−) IH−(ω+)C̄

− 2iei(ω−−ω+)t

(ω− − ω+)
C̄ · IH+(−ω+) IH−(−ω−)C

(A2.19)

where (A2.14) - (A2.16) have been used. It will be observed that the last term
diverges in the limit η → 0. The quantity given by (A2.19) in the limit η → 0 is
in fact the total dissipation over history (its derivative is the rate of dissipation
(3.17) so this divergence is an expression of a physically obvious fact. Equation
(A2.19) can also be deduced from (3.22) and (A2.3). From (A2.10), (A2.19)
and (3.11)2 we obtain

ψm(t) = C · IB1(ω, η)C
e2iω−t

2ω−
+ C̄ · IB∗1(ω, η)C̄

e−2iω+t

2ω+

+ C̄ · IB2(ω, η)C
ei(ω−−ω+)t

ω− − ω+

(A2.20)

where

IB1(ω, η) = ω− IM(ω−)− i IH+(ω−) IH−(−ω−)
IB2(ω, η) = ω− IM(−ω+)− ω+ IM(ω−) + 2i IH+(−ω+) IH−(−ω−).

(A2.21)

This can also be shown by starting from (3.21), with the aid of (A2.8), (A2.9)
and judicious use of partial fractions. In the limit η → 0 we obtain (replacing
ω0 by −ω)

ψm(t) = C · IB1(ω)Ce−2iωt + C̄ · IB∗1(ω)C̄e2iωt + C̄ · IB2(ω)C (A2.22)
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where

IB1(ω) =
1
2

[
IM(−ω)− i

ω
IH+(−ω) IH−(ω)

]
IB2(ω) = IB(ω) = IR(ω)− ω IR′(ω) + ID(ω)

where ID is defined by (3.27). A prime denotes differentiation. If IH± commute
then IB1 simplifies to

IB1(ω) =
1
2

[
IM(−ω)− i

ω
IH2

+(−ω)
]
. (A2.23)

We have ∫ T

0

ψm(t)dt = T C̄ IB(ω)C. (A2.24)

Note that IB must be a non-negative quantity in general for all ω ∈ R. We
recall from (3.27) that ID is non-negative for all ω ∈ R.

The rate of dissipation is given by (3.17) and (3.18). Closing on Ω+, we find
that

K(t) = IH−(−ω−)Ceiω−t + IH−(ω+)C̄e−iω+t (A2.25)

and

D(t) = C · IH+(ω−) IH−(−ω−)Ce2iω−t + C̄ · IH+(−ω+) IH−(ω+)C̄e−2iω+t

+2C̄ · IH+(−ω+) IH−(−ω−)Cei(ω−−ω+)t (A2.26)

As η → 0, replacing ω0 by −ω we obtain

D(t) = C · IH+(−ω) IH−(ω)Ce−2iωt + C̄ · IH+(ω) IH−(−ω)C̄e2iωt

+2C̄ · IH(ω)C. (A2.27)

If IH± commute then the operators in the first two terms by IH2
−(ω) and IH2

+(ω)
respectively

One may check that (4.22) holds, using (A2.1), (A2.5), (A2.23) and (A2.27).
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