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The present paper deals with the derivation of a higher order theory of interface models. In particular, it is
studied the problem of two bodies joined by an adhesive interphase for which “soft” and “hard” linear
elastic constitutive laws are considered. For the adhesive, interface models are determined by using
two different methods. The first method is based on the matched asymptotic expansion technique, which
adopts the strong formulation of classical continuum mechanics equations (compatibility, constitutive
and equilibrium equations). The second method adopts a suitable variational (weak) formulation, based
on the minimization of the potential energy. First and higher order interface models are derived for soft
and hard adhesives. In particular, it is shown that the two approaches, strong and weak formulations, lead
to the same asymptotic equations governing the limit behavior of the adhesive as its thickness vanishes.
The governing equations derived at zero order are then put in comparison with the ones accounting for
the first order of the asymptotic expansion, thus remarking the influence of the higher order terms and of
the higher order derivatives on the interface response. Moreover, it is shown how the elastic properties of
the adhesive enter the higher order terms. The effects taken into account by the latter ones could play an
important role in the nonlinear response of the interface, herein not investigated. Finally, two simple
applications are developed in order to illustrate the differences among the interface theories at the
different orders.
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1. Introduction Interface models have the very attractive feature that the stress

defined on the corresponding points of the two bonded surfaces,

Interface models are widely used for structural analyses in sev-
eral fields of engineering applications. They are adopted to simu-
late different structural situations as, for instance, to reproduce
the crack evolution in a body according to the cohesive fracture
mechanics (Barenblatt, 1962; Needleman, 1990), to study the
delamination process for composite laminates (Corigliano, 1993;
Point and Sacco, 1996, 1998), to simulate the presence of strain
localization problems (Belytschko and Black, 1999; Moés and
Belytschko, 2002; Ortiz et al., 1987) or to model the bond between
two or more bodies (Frémond, 1987; Xu and Wei, 2012). Interfaces
are mostly characterized by zero thickness even when the physical
bond has a finite thickness, as in the case of glued bodies. This
physical thickness of the adhesive can also be significant, as in
the case of the mortar joining artificial bricks or natural blocks in
the masonry material.
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on with n unit vector normal to the interface, assumes the same
value, [on] = 0, and it is a function of the relative displacement, [u]:

on — [ul, )

where the brackets [] denote the jump in the enclosed quantity
across the interface.

As a consequence, the interface constitutive law is assumed to
relate the stress to the displacement jump. This constitutive rela-
tionship can be linear or it can take into account nonlinear effects,
such as damage, plasticity, viscous phenomena, unilateral contact
and friction (Alfano et al.,, 2006; Del Piero and Raous, 2010;
Parrinello et al., 2009; Raous, 2011; Raous et al., 1999; Sacco and
Lebon, 2012; Toti et al., 2013). As a consequence, different interface
models have been proposed in the scientific literature. Moreover,
interface models are implemented in many commercial and
research codes as special finite elements.

Interface models can be categorized into two main groups. In
the first group, the interface is characterized by a finite stiffness,
so that relative displacements occur even for very low values of
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interface stresses; in such a case, the interface is often named in
literature as “soft”:

[u] =f(on), [on] =0. )

On the contrary, in the second group of models, interfaces are char-
acterized by a rigid response, preceding the eventual damage or
other inelastic phenomena; the interface is called “hard” and for
the linear case it is governed by the equations:

[u]=0, [on]=0. 3)

The interface models in the first group are widely treated in litera-
ture, as they are governed by smooth functions and, consequently,
they can be more easily implemented in finite element codes;
moreover, inelastic effects can be included as in a classical contin-
uum material. In this instance, the numerical procedures and
algorithms are derived and implemented as an extension of the
ones typical of continuum mechanics.

The models in the second group are less studied in literature;
they are governed by non-smooth functions when nonlinearities
are considered and they require the use of quite powerful mathe-
matical techniques; moreover, finite element implementations
are more complicated (Dumont et al., 2014).

A rigorous and mathematically elegant way to recover the gov-
erning equations of both soft and hard interfaces is represented by
the use of the concepts of the asymptotic expansion method. This
method was developed by Sanchez-Palencia (1980) to derive the
homogenized response of composites; it is based on the choice of
a geometrically small parameter (e.g. the size of the microstruc-
ture) and on the expansion of the relevant fields (displacement,
stress and strain) in a power series with respect to the chosen
small parameter. This technique was successfully used to recover
the plate and shell theories (Ciarlet, 1997; Ciarlet and
Destuynder, 1987) or the governing equations of interface models
(Geymonat and Krasucki, 1997; Klarbring and Movchan, 1998;
Lebon et al., 1997; Licht and Michaille, 1996; Marigo et al., 1998).

When the thickness of the bonding material, ¢, is not so small,
higher order terms in the asymptotic expansions with respect to ¢
should be considered in the derivation of the interface governing
equations. Previous studies have established that, if the stiffness of
the adhesive material is comparable with the stiffness of the
adherents, then various mathematical approaches (asymptotic
expansions (Abdelmoula et al., 1998; Benveniste, 2006; Benveniste
and Miloh, 2001; Geymonat et al., 1999; Hashin, 2002; Klarbring
and Movchan, 1998; Lebon et al., 2004), I'-convergence techniques
(Caillerie, 1980; Lebon and Rizzoni, 2010; Licht, 1993; Licht and
Michaille, 1997; Serpilli and Lenci, 2008), energy methods (Lebon
and Rizzoni, 2011; Rizzoni and Lebon, 2012)) can be used to obtain
the model of perfect interface at the first (zero) order in the asymp-
totic expansion. At the next (one) order, it is obtained a model of
imperfect interface, which is non-local due to the presence of tan-
gential derivatives entering the interface equations (Abdelmoula
et al., 1998; Hashin, 2002; Lebon and Rizzoni, 2010, 2011; Rizzoni
and Lebon, 2012, 2013).

The aim of this paper is the derivation of the governing equa-
tions for soft and hard anisotropic interfaces accounting for higher
order terms in the asymptotic expansion, being the zero order
terms classical and well-known in the literature. While the terms
computed at the order one for hard interfaces (Eq. (64)) have been
derived previously (Lebon and Rizzoni, 2010, 2011; Rizzoni and
Lebon, 2013), the terms computed at the order one for soft inter-
faces (Eq. (56)) represent a new contribution. A novel asymptotic
analysis is presented based on two different asymptotic methods:
matching asymptotic expansions and an asymptotic method based
on energy minimization. In the first method, the derivation of the
governing equations is performed by adopting the strong

formulation of the equilibrium problem, i.e. by writing the classical
compatibility, constitutive and equilibrium equations. The second
method relies on a weak formulation of the equilibrium problem
and it is an original improvement of asymptotic methods proposed
in Lebon and Rizzoni (2010), because the terms at the various
orders in the energy expansion are minimized together and not
successively starting from the term at the lowest order. The
asymptotic analysis via the energy method is useful to ascertain
the consistency and the equivalence with the method based on
matched asymptotic expansions. Indeed, a main result of the paper
consists in showing that the two approaches, one based on the
strong and the other on the weak formulation, lead to the same
governing equations. In addition, the derivation of the boundary
conditions for an interface of finite length is straightforward via
the energy method, while these conditions have to be specifically
investigated using matched asymptotic expansions (Abdelmoula
et al., 1998). Finally, the weak formulation is the basis of develop-
ment of numerical procedures, such as finite element approaches,
which can be used to perform numerical analyses in order to eval-
uate the influence and the importance of higher order effects in the
response of the interface.

Another original result of the paper is a comparison of the equa-
tions governing the behavior of soft and hard interfaces obtained at
order zero with the ones obtained at the first order in the asymp-
totic expansions. The influence of the higher order terms and of the
higher order derivatives on the interface response is also high-
lighted and their dependence on the elastic properties of the adhe-
sive is determined. Notably, the effects taken into account by the
higher order terms in the asymptotic analysis could play an impor-
tant role in the nonlinear response of the interface, herein not
investigated.

The analysis of the regularity of the limit problems and of the
singularities of the stress and displacement fields near the external
boundary of the adhesive are not considered in this paper. For the
model of soft interface computed at order zero, these questions are
considered in Geymonat et al. (1999). Finally, it should be empha-
sized that the present analysis considers planar interphases of
constant thickness. Thin layers of varying thickness have been con-
sidered in Ould Khaoua (1995) and higher order effects in curved
interphases of constant thickness have been studied in Rizzoni
and Lebon (2013) only for the case of a hard material.

The paper is organized as follows. In Section 2, the problem of
two bodies in adhesion is posed, the rescaling technique is intro-
duced and the governing equations of the adherents and of the
adhesive are written, together with the matching conditions. In
Section 3, the interface equations are derived for both the two
cases of an adhesive constituted of a soft and a hard materials,
and higher order terms in the asymptotic expansion are consid-
ered. In Section 4, the variational approach to the derivation of
the governing equations of the interface is presented. Section 5 is
devoted to the comparison between the lower and the higher order
for both soft and hard interface models. Finally, two analytical
examples are presented, the shear and the stretching of a two-
dimensional composite block, and the main results are discussed.

2. Generalities of asymptotic expansions

A thin layer B® with cross-section S and uniform small thickness
£ < 1 is considered, S being an open bounded set in R* with a
smooth boundary. In the following B° and S will be called inter-
phase and interface, respectively. The interphase lies between
two bodies, named as adherents, occupying the reference configu-
rations Q% c R®. In such a way, the interphase represents the adhe-
sive joining the two bodies ©° and Q°. Let S. be taken to denote
the plane interfaces between the interphase and the adherents
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and let Q° = QF US’ U B’ denote the composite system comprising
the interphase and the adherents.

It is assumed that the adhesive and the adherents are perfectly
bonded in order to ensure the continuity of the displacement and
stress vector fields across S7.

2.1. Notations

An orthonormal Cartesian basis (0, iy, i, i3) is introduced and let
(x1,X2,x3) be taken to denote the three coordinates of a particle.
The origin lies at the center of the interphase midplane and the
X3-axis runs perpendicular to the open bounded set S, as illustrated
in Fig. 1.

The materials of the composite system are assumed to be
homogeneous and linearly elastic and let a.,b® be the elasticity
tensors of the adherents and of the interphase, respectively. The
tensors a.,b’ are assumed to be symmetric, with the minor and
major symmetries, and positive definite. The adherents are sub-
jected to a body force density f: Q% — R® and to a surface force
density g: T — R’ on I c (9Q7\S7)U(9Q° \S"). Body forces
are neglected in the adhesive.

On Iy = (9% \S%)u (097 \ $?)\ I';, homogeneous boundary
conditions are prescribed:

=0 on TI% 4)

where u® : Q° - R® is the displacement field defined on Q°. I';, I
are assumed to be located far from the interphase, in particular
the external boundary of the interphase B’ , i.e. S x (—&/2,¢&/2), is
assumed to be stress-free. The fields of the external forces are
endowed with sufficient regularity to ensure the existence of equi-
librium configuration.

2.2. Rescaling

In the interphase, the change of variables p: (x1,x;,X3) —
(z1,22,23) proposed by Ciarlet (1997) is operated, which is such
that:

X3

n=x, =X, =, (5)

resulting
8 _90 98 _0 & _,48
0Z4 - 0X1 ’ 02 n 0Xo ’ 0Z3 - OX3 ’

(6)

Moreover, in the adherents the following change of variables
P : (x1,X2,X3) — (21,22,23) is also introduced:

Z1=X1, 2 =X, 23:x3:i:%(1—8)7 (7)

where the plus (minus) sign applies whenever x € Q° (x € Q° ), with
o0 0 0 0 8 @)
0Z1 o 0Xq ’ 02y a 0Xy ’ 0Z3 a 0X3 ’

After the change of variables (5), the interphase occupies the
domain

1
B:{(zl,zz,zg)eR3:(zl,zz)eS,\23\<§} (9)

and the adherents occupy the domains Q. =Qf +1(1-¢)is, as
shown in Fig. 1(b). The sets S.={(z1,2:,23) €R’:(z1,2)
€ S,z; = +1} are taken to denote the interfaces between B and Q,
and Q=Q, UQ UBUS, US_ is the rescaled configuration of the
composite body. Lastly, I'; and I'y indicates the images of I'; and
I'; under the change of variables, and f=fop'andg:=gop’
the rescaled external forces.

2.3. Kinematics

After taking @ =wop ! and W =u?op ! to denote the
displacement fields from the rescaled adhesive and adherents,
respectively, the asymptotic expansions of the displacement fields
with respect to the small parameter ¢ take the form:

(X, Xp,%3) = w0 + eu' + &2u? + o(&?), (10)
U(21,25,23) = W0 + et + 202 + 0(&?), (11)
W¥(z1,25,23) = 0’ + eu' + 20 + o(¢?). (12)

2.3.1. Interphase
The displacement gradient tensor of the field @ in the rescaled
interphase is computed as:

70 10 i1 1 2
H o 87] O um.3 + uot,[i uoc.S +e uot,/i uot,3
- 0 ug, ol ul, 2
33 3.8 33 3.8 33

where o = 1,2, so that the strain tensor can be obtained as:

+0(&?), (13)

e(®) =gl &% +ce! +0(e?), (14)

with:

N 0 o s

e = {] - ZAO“'S} = Sym(1Y @ is), (15)
JUy3 U3z

Sym (a’o(t,/i> 3 (”3 ot ”I;+31>
Vo) 19

= Sym(ﬁﬁ @i + 0 @1, +uf! ®i3)7

(a) (b) (o

Fig. 1. Geometry of the assembled composite system.

7///
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where Sym(-) gives the symmetric part of the enclosed tensor and
k=0,1.

2.3.2. Adherents
The displacement gradient tensor of the field u® in the adher-
ents is computed as:

[, ul, ul
_ o.p o3 o.p o3
H_{ vl

o _ + 0(&%), (17)
ug,/ﬁ ug; “%./; Us 3

so that the strain tensor can be obtained as:

e(@’) =¢'e ! + e +ce' +0(&?), (18)
with:
e'=0, (19)
=k 15k =k
ék _ S.ym (uoz‘/f> 2 <u3.zx + uocj)
pa,va,) (20)
- Sym(ﬁf‘1 e +uheh+ule ig),
k=0,1.

2.4. Stress fields

The stress fields in the rescaled adhesive and adherents,
6t =cop ! and 6° = 6 o p~! respectively, are also represented as
asymptotic expansions:

6° = 6° + eo' 4+ 0(&?), (21)
6° = 6° + &6 + 0(&?), (22)
6° =6° +eo' 4+ 0(&%). (23)

2.4.1. Equilibrium equations in the interphase
As body forces are neglected in the adhesive, the equilibrium
equation is:

divé® = 0. (24)

Substituting the representation form (22) into the equilibrium
Eq. (24) and using (6), it becomes:

0= &?1.54 + 8_16-1{;33 =& 6-103,3 + 6?@(1 + 6-1’13,3 + 863@1,& + 0(8)7 (25)
where o = 1,2. Eq. (25) has to be satisfied for any value of ¢, leading
to:

(3'?33 =0, (26)
Gi1+0h, + 053 =0, (27)
wherei=1,2,3.

Eq. (26) shows that 69 is independent of z; in the adhesive, and
thus it can be written:

[63] =0, (28)
where [.] denotes the jump between z; =] and z3 = — 1.
In view of (28), Eq. (27) when i =3 can be rewritten in the

integrated form

[5;3] = —6'?3.1 - 683,2- (29)

2.4.2. Equilibrium equations in the adherents
The equilibrium equation in the adherents is:

dive® +f = 0. (30)

Substituting the representation form (23) into the equilibrium
Eq. (30) and taking into account that it has to be satisfied for any
value of ¢, it leads to:

dive® +f =0, (31)
dive' = 0. (32)

2.5. Matching external and internal expansions

As a perfect contact law between the adhesive and the adher-
ents is assumed, the continuity of the displacement and stress vec-
tor fields is enforced. In particular, the continuity of the
displacements gives:

&y E _ 3¢ 7 1 —_qmé 7 1
u(x,iz>_u<z,iz>_u<z,iz , (33)
where X := (X1,X2), Z:= (21,22) € S. Expanding the displacement in
the adherent, u?, in Taylor series along the x;-direction and taking
into account the asymptotic expansion (10), it results:

(% +5) = u(x,0%) + Sus (%, 04) 4 -
u (x,iz> = W(X,07) £ 5 0} (%,0°) +

= u’(x,0%) + eu' (X,0%) ﬂ:%
Substituting the expressions (11) and (12) together with formula

(34) into the continuity condition (33), it holds true:

uy(X,0%) + - -- (34)

w(x,0%) + eu' (%, 0%) igug(x 0%) 4o — 00 <2,ﬂ:%>
+ e 74t =0 L + e 741 +--- (35
T2 B 2 2
After identifying the terms in the same powers of ¢, Eq. (35) gives:
u’(x,0%) = @° (i,i%) =u (ii%), (36)
g (05 4 Lu0 (% 0F SYS. sl 1
u' (x,0 )ijuB(x,O )=1u z,ij =u Z’if . (37)

Following a similar analysis for the stress vector, analogous results
are obtained:

% (X, 0%) = 6% <z j:%) = ags(z,%), (38)
Tre iy ol 0 oty alfs o1 (51

0;5(X,0 )1501-3_3(&0 ) =03 Z,:I:i =03 Z,:I:j ) (39)
fori=1,2,3.

Using the above results, it is possible to rewrite Egs. (28) and
(29) in the following form:

o3l =0, i=1,2,3,
[[0;3” = —0'(1)3.1 - 033,2 - <(O'g3_3)>, (40)

where [[f]] :=f(X,07) — f(X,07) is taken to denote the jump across
the surface S of a generic function f defined on the limit configura-
tion obtained as ¢ — 0, as schematically illustrated in Fig. 1(c),
while it is set ({f)) := 1 (f(%,0") +f(X,07)).

All equations written so far are general in the sense that they
are independent of the constitutive behavior of the material.

2.6. Constitutive equations

The specific constitutive behavior of the materials is now intro-
duced. In particular, the linearly elastic constitutive laws for the
adherents and the interphase, relating the stress with the strain,
are given by the equations:
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o° = a*(e(w), (41)
6° = b’ (e(%)), (42)
where aj, by, are the classical elastic constants of elasticity of the

adherents and of the interphase, respectively.
The matrices l(JE’ (with j,I = 1,2,3) are introduced, whose com-
ponents are defined by the relation:

) ;
(), = bju 43)

In view of the symmetry properties of the elasticity tensor b’, it
results that fo’ = (Kf{) ,withj,1=1,2,3.

3. Internalf/interphase analysis

In the following, two specific cases of linearly elastic material
are studied for the interphase. One, called “soft” material, is char-
acterized by elastic moduli which are linearly rescaled with respect
to the thickness ¢; the second case, called “hard” material, is char-
acterized by elastic moduli independent of the thickness &. The two
cases are relevant for the development of interface laws classically
used in technical problems. Indeed, models of perfect and imper-
fect interfaces, which are currently used in finite element simula-
tions, are known to arise from the hard and the soft cases,
respectively, at the first (zero) order of the asymptotic expansion
(Benveniste, 2006; Caillerie, 1980; Klarbring, 1991; Lebon and
Rizzoni, 2010).

3.1. Soft interphase analysis

Assuming that the interphase is “soft”, one defines:
b® = ¢b, (44)

where the tensor b does not depend on &. Accordingly to position
(43), it is set:

KL = by (45)

ki *

Taking into account relations (14) and (22), the stress-strain law
takes the following form:

6° +e6' =b(e " + &% +o(e). (46)

As Eq. (46) is true for any value of ¢, the following expressions are
derived:

& =be"),

1 A0 (47)
¢' =b(e").

Substituting the expression (45) into (47),, it results:

69 = bjuéy' = Kiyéiy'. (48)
and using formula (15), it follows that:

6%; = K¥a9, (49)

for j = 1,2, 3. Integrating Eq. (49) written for j = 3 with respect to
z3, it results:
6°%i; = K [0°], (50)

which represents the classical law for a soft interface.
Analogously, substituting the expression (45) into (47),, and
using formula (16) written for k = 0, one has:

6'ij = K% + K¥a% + KVul, (51)

forj=1,2,3.
On the other hand, taking into account formula (49), written for
j=1,2, the equilibrium Eq. (27) explicitly becomes:

(1) -+ (), + @), ~o0 52
and thus, integrating with respect to z3 between —1 and 1, it gives:
[6'1] = —IC! [0°] | —KC? [0°] . (53)

It can be remarked that, because of Eq. (26), the stress components
6%, with i = 1,2, 3, are independent of z;. Consequently, taking into
account Eq. (49) written for j = 3, the derivatives i1?, are also inde-
pendent of z3; thus, the displacement components @) are linear
functions of z;. Therefore, Eq. (53) reveals that the stress compo-
nents ¢}, with i = 1,2, 3, are linear functions of zs, allowing to write
the following representation form for the stress components:

&]i3= [&]i3]23+<&]i3>7 (54)
where (f)(z) := 3 (f(z,3) +f(z,—3)). Substituting Eq. (51) written for

j =3 into expression (54) and integrating with respect to z; it
yields:

(6'i;) = K2 @), + K*[u'], (55)
where the sum over « = 1,2 is performed. Combining Egs. (53)-(55),
it results:

1

_ 1 O 1 . 1 §
5! )i — K3t A 1¢! 300\ 0 4 R 7¢E
G (Z,i2>13 K[ 2) + 5 (K £ K )u_a(z,2>+2(l<

+ K", <i, - %) (56)

3.2. Hard interphase analysis

For a “hard” interphase, it is set:
b* =b, (37)

where the tensor b does not depend on ¢, and K" is still taken to
denote the matrices such that K’k’i := byju.

Taking into account relations (14) and (22), the stress—strain
equation takes the following form:
6° +e6' =b(e7e ! 1%+ gé!) +o(e). (58)

As Eq. (58) is true for any value of ¢, the following conditions are
derived:

0=be"),
6% = b(&).

Taking into account Eq. (15) and the positive definiteness of the
tensor b, relation (59); gives:

(59)

W) =0= [0° =0, (60)

which corresponds to the kinematics of the perfect interface.
Substituting the expression (16) written for k = 0 into (59),, one

has:

6% = KV + K¥0% + K¥al, (61)

for j = 1,2,3. Integrating Eq. (61) written for j = 3 with respect to
z3, it results:

' = (K2 (&°i3 - 1(“3{1?1). (62)
Recalling the Eq. (61) written for j = 1,2, the equilibrium Eq. (27)

explicitly becomes:

(K"aS +KaG + KAy )+ (K705 + K7 + KR )

+ (6'1i3)'3 =0, (63)



4142 R. Rizzoni et al./International Journal of Solids and Structures 51 (2014) 4137-4148

and thus, integrating with respect to z; between —1/2 and 1/2 and
using (62), it gives:

(6] = (—K"a, - K@)

- (4(“”{19,, —K*(KP) (&°i3 - l(ﬁ3ﬁf;f))d. (64)

It can be noted that, in Eq. (64) higher order effects occur related to
the appearance of in-plane derivatives, which are usually neglected
in the classical first (zero) order theories of interfaces. These terms,
which are related to second-order derivatives and thus, indirectly,
to the curvature of the deformed interface, model a membrane
effect in the adhesive.

4. Asymptotic analysis via an energy approach

In this section, an energy based approach is proposed to asymp-
totically analyze the limit behavior of the interphase as ¢ — 0. This
analysis is of great interest for at least three reasons. First, the aim
is to prove the consistency and the equivalence of the two asymp-
totic approaches, one based on matched asymptotic expansions,
considered in the previous section, and the other based on a vari-
ational formulation and illustrated in this section. Next, the energy
approach allows to derive in a very straight way the boundary con-
ditions when a finite length of the interface is considered. These
conditions are not obvious and they have to be specifically studied
using matched asymptotic expansions (Abdelmoula et al., 1998).
Finally, variational formulations are the basis of development of
numerical procedures, such as finite element approaches, which
can be used to perform numerical analyses in order to evaluate
the influence and the importance of higher order effects in the
response of the interphase.

The energy approach is based on the fact that equilibrium con-
figurations of the composite assemblage minimize the total
energy:

E(u) = /QE Gai(e(u)) -e(u) —f-u) dVy — . g - udAy

bC( e(u)) - e(u) dVy, (65)

Bz»

in the space of kinematically admissible displacements:

Vi={ueHQ R’ :u=0 on T}, (66)

where H(Q%;R®) is the space of the vector-valued functions on the
set Q°, which are continuous and differentiable as many times as
necessary. Under suitable regularity assumptions, the existence of
a unique minimizer wé in V® is ensured (Ciarlet, 1988, Theorem
6.3-2.).

Using the changes of variables (5)-(8), the rescaled energy takes
the form:

g, u’) : = / Gai(e(ﬁS))-e(ﬁS)—f-ﬁS) av, - | g-udaA,
Q.

Fg
+ /B % (841(33 () - @

+ sl(“”( ) : ﬁfﬁ) dv,. (67)

+21<*3( ) i

4.1. Soft interphase

Substituting position (44), (45) and the expansions (11), (12)
into the rescaled energy (67), it is obtained:

Es(ﬁ",ﬁg)z/gi Gat(e(ﬁg))-e(ﬁ")ff-W) dv,f/rgg-ﬁs da,

o[ () w

of ~E
+ 2K (i) -uéﬁ) dv,
(

281(“3( ) -0

=80@°, 0% +¢ '@, a', a, a'") + o(e), (68)
where:
) = /Qi Gai(e(uo)) cem®) —f u°> av, - /rgg a’ dA,
+ /B K (69 - 6, dv,, (69)
£ @, a',a,a) :/Q (@.(e() -e(u') ~f-u) v, - [ gu'ds,
X p
+ /B (K>(@%) -0+ K**(8%) 65, ) dV,. (70)

The two energies £° and &!, defined in Eqs. (132) and (148), respec-
tively, are minimized with respect to couples (w', ), i =0,1,2 in
the set:

V= {(ﬁ,ﬁ) € H(Qi;R3) x H(B;R*) :u=0o0n T,

(=) u(e=(0) ) 25} 7

The minimization of the energy functionals is performed using
the classical rules of calculus of variations; specifically, the Euler-
Lagrange differential equations for the two energies are
determined:

o Euler-Lagrange equation for the energy &°:
/Q (a-(e(u®)) -e(y)) — £ -7]) dV,
g 1| dA, + / K*@%) -3 dV, =0, (72)
g

where #|,#| € V are perturbations of u®, a°, respectively;
o Euler-Lagrange equations for the energy £':

| (a(e@) e~ F-a dv. - [ gl da,
Q, Ig

n / K (ﬁg) |5 dV, =0, (73)
B

/' a.(e(a') (i) v + |

B
/ K3,¢

where (1|,1|) € V are perturbations of (!, a') in (73) and of (u®, a°)
in (74), respectively.

(K>(@h) + K>(@%)) - il dv,

'II »dV2 =0, (74)

In view of the arbitrariness of the perturbations, Eqs. (72) and (73)
are identical, therefore it is sufficient to consider only the minimi-
zation of the highest order energy to derive all the Euler-Lagrange
equations governing the problem.

Notably, the fact that the same equations are obtained (cfr. (72)
and (73)) is at the base of the equivalence between the asymptotic
method based on energy minimization and the asymptotic method
based on the strong formulation and matching asymptotic expan-
sions. A similar situation will occur in the case of a hard material,
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where the six Euler-Lagrange equations reduce to three equations
(see Egs. (93)-(95) below).

From (73), using standard arguments, the following equilibrium
equations are obtained:

div(a.(e(®))+f=0 inQ., (75)
a.(ew)n=g on I, (76)
a.(e(®)n=0 on agi\(rguruusi), (77)

(K?a%), =0 inB, (78)

a.(e(?))i; =K”u% on S, (79)

where n is taken to denote the outward normal. Egs. (75)-(77) are
the equilibrium equations of the adherents, with the suitable
boundary conditions. Eq. (78) shows that K**4% does not depend
on z3 in B. This result together with condition (79) imply the conti-
nuity of the traction vector, and thus Eq. (28) is reobtained. Integra-
tion of Eq. (78) with respect to z; and use of (79) give again
relationship (49) and then (50), up to substituting u® with @® which
are equal at the surfaces S*.

Conversely, it can be remarked that Eq. (78) can be also
obtained by the combination of Eq. (49), written for j =3, and
(28). Note also that Egs. (36) and (38) together with (41) and
(49), written for j = 3, imply (79).

On use of the divergence and Gauss Green theorems, Eq. (74)
yields the equilibrium equations:

div(a.(e(@'))) =0 inQ., (80)

a.(e')n=0 on Iy, (81)
a.(e@))n=0 ondQ.\ (T;ul,US), (82)
KPal; + (K? +K*)ad, =0 inB, (83)
a.(e(m"))i; = K*al + K?a® on S* (84)

up to a term on the lateral boundary of B, which will be discussed in
Section 5.4. Egs. (80)-(82) are the equilibrium equations of the
adherents at the higher (one) order, with the suitable boundary
conditions.

Egs. (83), (84) are equivalent to Egs. (51) and (56), up to the
continuity conditions (37), (39) and the constitutive equation of
the adherent (41), thus providing the interface laws (56). To show
it, note that in view of (78), @° can be written in the useful form:

[w](2)z; + (°)(2), (85)

where the condition @° = @ on S* has been also taken into account.
Integrating Eq. (83) with respect to z3 gives:

a’ (2 23) =

KPul + (K? + K**)u’, = ¢(z), inB, (86)

with ¢ independent of z; and to be determined. Substituting (85)
into (86) and integrating with respect to z; between —1/2 and
1/2 allow to determine ¢(z):

K[ + (K” + K% @ , = ¢(z), zinS. (87)

Eliminating ¢ from (86) and (87) and rearranging the terms give:

KPa} = K®[0'] - (K” + K**)[0] 25, (Z,23) in B. (88)
Substituting the latter result into Eq. (84), using the definition of
(u%), simplifying and introducing the notation 6! := a. (e(u")), rela-
tion (84) leads to Eq. (56).

The converse equivalence, which ensures that the equations
determined via strong formulation can lead to the one recovered
via variational approach, can also be proved.

On the basis of the above results, the two approaches, the
matching expansions method and the energy based formulation,
are equivalent, leading to the same governing equations.

4.2. Hard interphase

For “hard” interphase, one can proceed as done for the case of a
soft interphase, substituting position (57) and the expansions (11),
(12) into the rescaled energy (67); then, it is obtained:

gﬁ(ﬁﬂ,ﬁﬂ):/ (%ai(e(ﬁﬁ))-e(ﬁ”)—fﬁ”) dv,— | g u’dA,
Q.
1 —17733 o3 Y&
+/BZ( K3 (@) - i 4 2K (@) - i
+ K (W) - @ ﬁ) dv,

=& + 8@, 0%, a") + ¢ '@, al, o', a', a?) + o(e),

(89)
where
£ :/B %K”( %) -a% dv,, (90)
0/=0 0 o1y . 1 u®) -e(a®) —f-a®
E(u,u,u)._/Q: <2ai(e(u ))-e@®) —f u)dVz
g u'dA, + / (KP@%) - uly
JTg
+ K @%) - ul) dv,, (91)
@l al a4, 6
:/ (ar(e®)) -em)—f-u')dv,- [ g-u'dA,
+ l_g

+ /B (l(”(ﬁ%) i +%K33(ﬁ_13) ‘ﬁg> dv,
' ) 1 .
+A (K“%ug) aly + K@) -al, + 2u“/f( ) -u%) dV,. (92)
Minimizing these three energies in the set V defined as in (71) gives

six Euler-Lagrange equations, which can be reduced to the follow-
ing three independent equations:

JASCORTE 2 (93)
B
33 A
| @stew et ~Fap v~ [ gonda s [ (1€ b
K25 a5 + K (@%) - Al,) Vs = 0, (94)
| astew) e av s [ (k@) +K2G@,) i av,
38441 ap
+/B(I( (@) + K (@ )) il ;dv; =0, (95)

with (#],#|) perturbations in V. From Eq. (93) and the arbitrariness
of #], it results:

K?@%)=0 inB, (96)
K®@%) =0 ons", (97)
implying @% = 0 in B, which is exactly (60).

Using the divergence theorem and the arbitrariness of 7,7 € V

n (94), Eqs. (75)-(77) are reobtained. Moreover, the following
additional conditions are recovered:

KPal; + (K? + K*)a%, =0 inB, (98)

a.(e())i; = K?u} + K2’ onS*, (99)

and a term on the lateral boundary of B, which vanishes because
4% =0 in B. For the same reason, Eq. (98) implies that @;; = 0 in
B, i.e. &' admits a representation of the form:
[w'](2)z; + (u')(2),

i'(2,25) = (100)
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where the continuity condition @' = @' on S* has been taken into
account. Recalling that the terms on the right-hand side of
Eq. (99) do not depend on zs;, the jump of stress vector across B
vanishes, i.e.

o) o (e )

which is just the continuity of the stress vector at the order zero (cf.
Eq. (28)). Deriving expression (100) with respect to z; and substitut-
ing into (99), the following condition is obtained:

(101)

@ = (k%) (a: (e(@)is - K785, (102)
which allows to determine the displacement jump at the order 1,
i.e. the Eq. (62) is recovered.

Using the divergence theorem and the arbitrariness of |,#| € V
in the stationary condition (95), Eqgs. (80)-(82) are reobtained. In
addition, the following equations are recovered:

KPud; + (K2 + K*)ah, + K¥a%, =0 in B,
a.(e(@"))i; = K’} + K”u!,

(103)

on S, (104)

and a term on the lateral boundary of B, which will be discussed in
Section 5.4. Using a procedure similar to the one adopted in Egs.
(86)-(88), Eq. (103) gives:

1(33ﬁ_23:l(33[ﬁ2}—((K“3+K3‘“)[ﬁ1]a+K“ﬁﬁ?xﬁ)zg, (z,z3)inB. (105)

Substituting the latter result into Eq. (104), evaluated at z3 = +1,
gives the two relations:

T 1 ) A _
a.(e(u'))is =K» (W] 3 <K3“[u1]_1+l(“ﬁu%ﬁ> +K?(@') , onS*.(106)
which, subtracted each other, give in turn:

[6"is] = - (K’[@'], + K¥8%,) onS*. (107)
with 6! := a,(e(u")). In view of expression (102), the latter formula
leads exactly to Eq. (64).

The converse equivalence, which ensures that the equations
determined via strong formulation can lead to the one recovered
via variational approach, can also be proved for the zero and one
order.

5. Overall response of the interface and concluding remarks
5.1. Comparison of interphase laws

In Table 1 the comparison of the equations governing the soft
and the hard interphase models at the different levels is reported.
In the upper part of the table, the references to the equations aris-
ing from the two different approaches (i.e., the matching and the
energy approaches) at the various orders are summarized. Then,
the equations governing the interphase laws at the orders zero
and one are indicated.

The aim of the table is to illustrate the similarities and the
differences between the soft and the hard interphase laws.

As for the similarities, the equilibrium equations for the adher-
ents do not change in the two cases, being (75)-(77) at order zero
and (80)-(82) at order one. Another common fact is the presence of
jumps in the displacement and stress vector fields at the higher
(one) order.

On the other hand, the interphase laws for soft and hard cases
are quite different. In the soft case for the higher (one) order, the
jumps in the stress and displacement vector fields (see Eq. (56))
depend on the first derivatives of the in-plane displacement at
the lowest (zero) order, while in the hard case the same jumps
are functions of the first and second derivatives of the in-plane dis-
placement. Furthermore, in the case of the soft interphase, the rela-
tion between the stress vector and the displacement jump (see Eq.
(64)) involves terms of the same order, both at the first (zero) and
higher (one) order. On the contrary, this does not occur for the hard
interphase, where the stress vector at higher (one) order depends
only on terms at the lowest (zero) order.

It can be remarked that at the level minus one, no constitutive
equations are written for the soft interphase; analogously, at level
one, no constitutive equations are written for the hard interphase.
Indeed in this second case, constitutive equations could be written
if further terms were considered in the asymptotic development.

5.2. Soft interface

Using the matching relations (38) and (39), the interface laws
calculated at order zero and order one can be rewritten in the final
configuration represented in Fig. 2(c) as follows:

6°(-,0)iz = K*[[u’]], (108)
' (-,0%)i; = K ([[ulﬂ + <<u.°3>>) +%(K°‘3 TK*)u(,07)
+%(1(“3 +K**)u’(-,07) q:%ag(.,oi)ig,. (109)

Eq. (108) is the classical imperfect (spring-type) interface law char-
acterized by a finite stiffness of the interphase. Eq. (109) allows to
evaluate the stress vector at the higher (one) order which depends
not only on displacement jump at the higher (one) order but also on
the displacement and stress fields evaluated at the first (zero) order
and their derivatives.

The stress field in the interface can be obtained from Eq. (22), by
taking into account the response at the orders zero and one given
by (108) and (109), respectively. Finally, it results:

0 (,07)ia ~ K [[u”]] & (K ([ 0] + (u%) )
1 o3 300\ 440 -+ 1 o3 300\ 440 — 1 0 e
5 (K F KUl (,07) 45 (K2 £ K*)ul, (,07) F565(,0)is ). (110)
It can be remarked that the latter relation improves the classic
interface law at order zero by linearly linking the stress vector
and the relative displacement via a higher order term, involving
the in-plane first derivatives of the displacement. Moreover, the
stress vector is no longer continuous, as it occurs at the lowest
(zero) order; indeed, inspection of (110) clearly shows that the

Table 1
Synthesis of the asymptotic analysis.
Kind of interface Soft Hard
Constitutive equation level —1 - Eq. (59),
Constitutive equation level 0 Eq. (47), Eq. (59),
Constitutive equation level 1 Eq. (47), -
Interphase laws Order 0 Eq. (50) [Eq. (78) and (79)] Eq. (60) [Egs. (96) and (97)]
Interphase laws Order 1 Eq. (56) [Eq. (83) and (84)] Eq. (64) [Egs. (103) and (104)]
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Fig. 2. Deformed configurations of composite blocks with soft and hard adhesive
undergoing shear.

stress vector takes different values on the top and the bottom of the
interface.

5.3. Hard interface

Using the matching relations (36)-(39) the interface laws
calculated at order one can be rewritten in the final configuration
represented in Fig. 1(c) as follows:

[[u’]] =0, (111)
0] = ~(K*) " (0% K uS, ) — ((u)), (112)
([6° i5]] =0, (113)
[lo" is]) = (—K"ul + K*(K) ' (0% ~ K u%)) (6% k). (114)

Egs. (111) and (113) represent the classical perfect interface law
characterized by the continuity of the displacement and stress vec-
tor fields. Eqs. (112) and (114) are imperfect interface conditions,
allowing jumps in the displacement and in the stress vector fields
at the higher (one) order across S. In fact, these jumps depend on
the displacement and the stress fields at the first (zero) order and
on their first and second derivatives.

The constitutive law for the hard interface written in terms of
jumps in the displacement and in the stress from the final config-
uration (Fig. 2(c)) can be obtained from Eq. (10) with (111) and
(112), and from Eqgs. (21), (113) and (114), respectively, leading to:

) = —&(0) " (0% + 1w ) — (),

[6° is)) = e((fl(“/’uﬂj FREKD?) (0'01 - l(/“u_‘;;))l — (6% i3>>> .(116)

(115)

5.4. Emerging forces at the adhesive-adherent interface boundary

Integrating by part the last term of the weak form of the equi-
librium Eq. (74), stresses arise on the boundary 0S x {—1,1}. The
resultant of these stresses can be considered as a force applied at
boundary of interface S, and it can be evaluated as:
2 = K (K) (6%3)n,,

Foorr = eKC*(0%)n (117)

where Eq. (49) is used.

Analogously, after integrating by part the last term of Eq. (95),
the following emerging force arises:

Fhard = '9([(3/;(‘3,13) + ng(ﬁ.?x)> ﬁn/j

-1

o -1 .0, ),
_ 3(1(3‘(1(33) (6%3) + (K — K*(K*) K/B)uf’ﬁ) n,.  (118)
The presence of these forces is not directly taken into account by
the interface laws. Therefore, in order to satisfy the equilibrium
Eqs. (74) for a soft interface and (95) for a hard interface, additional
terms have to be introduced in the expansions of the stress or of the
displacement fields. In particular, in Le Dret and Raoult (1995), the
authors have inserted in the expansion of the displacement at order
one in the adherent a term denoted as w'. The introduction of this
term yields the further condition
d'n=F onaSx{-1/2,1/2}, (119)
with n = n,i,, and F = fl F dz; given by (117) and (118) in the soft
and the hard case, respectively.

5.5. Formal equivalence between soft and hard theories

It is well known that, at order zero, it is possible to recover from
the soft interface model the hard interface model by infinitely
increasing the stiffness of the interphase material. The question
is if it is possible to obtain the same result at order one.

To this end, let us denote 1 := u° + ¢u! and & := 6° + ¢6!. These
fields are approximations of #i¢, 6¢ at the first order.

Using the interface laws (50) and (55), for the soft interphase, it
results:

] = (K2) (6°i3 +&(6'3) + eK™ <ﬁ$>)

— (K®)™ ((&i3> +.91<13<ﬁa>) +o(e), (120)
It is now shown that this interface law is general enough to describe
the interface laws prescribing the displacement jump in the case of
a hard interface, after a suitable rescaling of the matrices K¥ and up
to neglecting higher order terms in ¢. Indeed, to simulate the case of
a hard interface, the matrices K’ with &-'K¥ and the relations:

&(0is) = £(6° + £(61))is = & 6°i3 + o(& )
1

6'3+o( 2 (121)

g(l,) = e(@%, +e(l)) = e’ +o(6?) = g, + 0(&?), (122)
are substituted into (120) to obtain:
] = (K2 (a&i3 te 1(‘“3111) +o(e?), (123)

which, formally, is the interface law governing the displacement
jump for the hard case.
Note that replacing K” with ¢K? in (123) and taking into account
the discontinuity of the traction vector yield back (120).
Analogously, in view of (67) and (72) the following general rela-
tion holds true for the hard case:
[613) = el (K*) ' (65 — KPu )

— K"y (124)

To simulate the soft case, we substitute K¥ with eK? in (124) to get:
[615] = —eK**(K*) " (G5 — eKPu,,) , — eK™u
— K (K®) ' (613) , + o(6?), (125)

which is formally equivalent to the relation governing the traction
jump in the soft case.
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5.6. Other form of the soft interface law

The hard interface law is often written in terms of jumps in the
displacement and in the stress, whereas the soft interface law is
written as a relation between stress vector and jump in the dis-
placement. In this section, the soft interface law is rewritten in
terms of jumps, as done for the law of a hard interface. For this
purpose, the conditions (56) written on S* and on S~ are added
together to obtain:

B = () ((0") + K° (@), (126)

On the other hand, subtracting the two conditions (56) gives:

[61is) = —K*(@%),,. (127)
The two conditions (126) and (127) taken together are equivalent to
conditions (56) and they show that the soft interface laws at order
one prescribe the jumps in the displacement and in the stress vector
fields.

5.7. Condensed form of the hard interface law

In this section, a condensed form of the hard interface law is
proposed, i.e. a form which summarizes the interface laws at
orders zero and one in only one couple of equations. To this end,
after taking into account Egs. (11), (60) and (62), the jump of
displacement in the rescaled adhesive results:
[0 ~ —e(K?) ' (&gig - 1(3.3&;). (128)
Analogously, after taking into account Eqs. (22), (61) and (64), the
jump of the interface stress in the rescaled adhesive results:

[6%i5] ~ o (KW, - K*))

o

~ oK + K (K2) (6% - KPu)) (129)

‘1.
This implicit formulation could be more useful for a numerical
implementation.

5.8. Examples

To conclude this Section and to remark the differences among
the zero and one order interface models and among the soft and
hard constitutive laws, two examples are reported.

The first one is the shear of a composite block. Due to its sim-
plicity, the closed form solution for a block with an interphase is
available and directly comparable to the approximated solution
obtained with the interface laws calculated in this paper. An even
simplified version of this example was given in Lebon and Rizzoni
(2010) only for the case of a hard interface, and it is reproposed
here because it allows a direct and interesting comparison of the
two cases of soft and hard interfaces.

The second example is the stretching of a two dimensional solid
composed of two identical adherents separated by a soft or a hard
interface. By using the interface laws proposed in this paper, the
(average) elastic modulus of the solid is calculated by taking into
account the presence of the adhesive up to the first order.

5.8.1. Shear of a composite block

The shear test of a composite body is considered in the plane
(X2,X3). Two elastic isotropic rectangular blocks Q° and Q°, with
the same length and heights h_ and h, respectively, are joined
by a thin elastic isotropic glue and subjected to a pure shear stress
T on the boundary, so that the resulting stress tensor is

¢ = 1(i; ® i3 + i3 ® ip). The displacement is assumed to be equal
to zero on the lower edge of Q°. The Lamé constants of the three
different materials are A_,u_ and 4., u, for the two adherents,
and 4, u for the glue.

The solution for a block with an interphase of finite thickness &
in terms of displacements is given by

i (X3 +h+9) in Q°,
L3 +5) +he in B,
(s =5 +ge+-he in Q.

w=uji,, uj= (130)

For the soft case, i.e. considering / = &/, u = ¢fi, the problem at the
order zero is given by Eqgs. (75)-(77) and Eq. (108) which it is writ-
ten as

[fuz]] =

A straightforward calculation gives the following solution at the
order zero in terms of displacements

0 (U] 0
u’ =udi,, uz{

(131)

=i

L +h) in Q°,

. . . .0 (132)
IX?,‘I’ES‘FI’I, an+7

and the solution ¢° = 7(i, ® i3 + i3 ® i) in terms of stress. This solu-
tion corresponds to the shearing of the two adherents given by the
amounts 7/, h*, and a sliding of the upper adherent (+) of the
amount t//t in the direction of the applied load (cf. Fig. 2). The
sliding is clearly due to the spring-type response of the adhesive
interface, mimicking the shear deformability of the interphase.

The problem at order one is given by Eqs. (80)-(82) and
Eq. (109) which, in view of (136), it is written as

1/7 T
6'(-,0%)i, = KP([[u’ +—<—+—>i . 133
(09 ([ +5 TR 2); (133)
with
o 0
K*=|l0p o0 (134)
0 0 2+

A solution in terms of displacements to the problem at order one is

o ) 0 in Q°,

u =1u,l u, =
212, 2 1( ¢ T : 0
_E(I+I in Q,

and the corresponding solution in terms of stress is ¢! = 0. This
solution corresponds to the rigid body motion obtained by sliding
the upper adherent in the direction opposite to the shear load of
the amount 7/2(1/pu, +1/4_). The superposition of the two solu-
tions at the orders zero and one, i.e. u® + eu’, gives back the exact
solution (130) in the adherents up to the substitution f = pe!.
For the hard case, i.e. considering 4 = 7, it = [, the problem at the
order zero is given by Eqs. (75)-(77) and Eqgs. (111), (113) which
prescribe a vanishing jump of the displacement and stress vectors
at the interface. The corresponding solution in terms of displace-
ments is

(135)

in Q°,

T (%3 4 h
g {"(X3+ : (136)

0 0:
wW=ui, u)=
’ T T ; 0
#+x3+#7h, in Q,

and the solution in terms of stress is 6° = 7(i, ® is + i3 ® i). This
solution corresponds to the shearing of the two adherents and to
a perfect interface behavior of the adhesive (cf. Fig. 2).

The problem at order one for the hard interface is given by
Egs. (80)-(82) and Eqs. (112), (114) which take the form
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-G )

[¢" i3] = (138)

A solution in terms of displacements is

o —uli, @:{0 e (139)
oi(Eep)

and the corresponding solution in terms of stress is ¢! = 0. This

solution corresponds to the rigid body motion obtained by sliding
the upper adherent in the direction of the load of the amount
t/i—1/2(1/u1, +1/u_). The superposition of the two solutions at
the orders zero and one, i.e. u® + eu’, gives back the exact solution
(130) in the adherents up to the substitution ft = u. The deformed
configurations of the composite blocks at the different orders and
for the two cases of a soft and a hard adhesive are compared in
Fig. 2. It can be noted that the two cases differ for the sliding of
the upper adherent of the amount t/p. This rigid body motion
reproduces the shear deformation of the interphase, which is cap-
tured at the order zero in the case of a soft adhesive and at the order
one in the case of a hard adhesive.

5.8.2. Stretching of a composite block with identical adherents

The two-dimensional block considered in the previous example
is now subjected to a tensile load q on the upper and lower bound-
ary, so that the resulting stress tensor is ¢° = q(i; ® i3). The origin
is fixed in order to prevent rigid body motions of the block. The two
adherents are assumed to be composed of the same elastic isotro-
pic material, i.e. 2 =4, = A, u =u, = [i.

First, a soft isotropic adhesive is considered, with Lamé
constants 1 = &1, U = gL

It is convenient to introduce the Young’s modulus and the
Poisson’s ratio of the adherents, E = ji(31+2f)/(A+f) and
v = 1/(2A+ fu), respectively, and the rescaled Young's modulus
and the Poisson’s ratio of the adhesive, E = (34 +21)/( + )
and v = 7/(24 + [u), respectively.

The problem at the order zero is given again by Eqs. (75)-(77)
and by Eq. (108). The solution in terms of stress is 6° = q(i3 ® i3).
The corresponding solution in terms of displacements is

q

u, O(X2,%3) = —q= x212 + (E

it d W)k

2F 1-v)

(xz,xg) € Qi. (140)

This solution corresponds to a mode I-type (opening) deformation
of the adhesive, described by the jump

+V)(1-2v)

CE (1)

superimposed to a uniform stretching of the adherents.

The “macroscopic” response of the block composed of the two
identical adherents and the soft interface at the order zero is

ud(xy,h") —ul(xy, —h")) - i3

(141)

q=£ !

(h" +h") (142)
with
E = E (143)

il

0_
(1+7)(1-27)

<1 + (lfi')(hﬁrh’))

the homogenized elastic modulus of the block at the order zero.

The problem at order one is given by Eqgs. (80)-(82) and
Eq. (109) which, in view of (134), (140), and of the relations

00 [t 000
K®=]0 0 0|, k¥*=|0 0 (144)
7200 070
it is written as
. E E1-7v .
f%ﬁﬂz2a+wﬁﬂlﬁﬁ<ﬁjﬁ%%mmwym
E 299
T w)“ (145)

The solution in terms of stress is a!
solution in terms of displacements is

=0, and the corresponding

NV
ul(x,x3) = (F -k + P, (,%) € 02 (146)

—t = —
2 E (1-v

i.e., a mode I-type (opening) deformation of the adhesive described
by the jump

() 1= -2+

(147)

The field @¢ := u? + eu! is an approximated solution in the adher-
ents to the original equilibrium problem of the block composed
by the adherents and the elastic interphase, and it gives the
approximated macroscopic response formally analogous to (142)
but with E? substituted by the approximated “homogenized” elastic
modulus

E—F I
<1+h++h = v( (1+v)(1—2V)+2W—1+\7>>

(148)

N

A hard isotropic adhesive is considered next, with Lamé constants
J=J,pu=p and Young’s modulus and Poisson’s coefficient, E, ¥,
defined as for the soft case. The problem at the order zero for the
hard case is given by Eqs. (75)-(77) and Eqs. (111), (113) which pre-
scribe perfect interface conditions. The corresponding solution in
terms of stress is again ¢° = q(is ® i3), and the solution in terms
of displacements is just a uniform stretching of the adherents
W) (x2,X3) = —inZiz s, (x0,x3) € Q0. (149)
E

The response of the block at the order zero is just described by the
Young's modulus of the adherents, E := E.

The problem at order one for the hard interface is given by Eqgs.
(80)-(82) and Eqgs. (112), (114) which now take the form

] = <g 1+v)(1-2v) 7g+% : 2vy >i3

E 1-v) E 1-9) (150)

A solution in terms of stress is ¢! = 0, and the corresponding solu-
tion in terms of displacements is just a relative displacement along
the x3-axis of the two adherents of the amount given by the jump
(150)

L 1 /q+v)(1-2y) q q 2V .
s =5 (- E Ao
(%2,X3) € Q) (151)

By considering the approximated solution uf:=uf+ eu}, the
macroscopic response is described by the following homogenized
elastic modulus

B !
<1+ - (—<%(1+v)(1 —zv)+2vv-1+v>>

(152)
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The two moduli (148) and (152) formally coincide up to the substi-
tution of ¢E with E.

6. Conclusion

Higher order theories of interface models have been obtained
for two bodies joined by an adhesive interphase for which “soft”
and “hard” linear elastic constitutive laws have been considered.
In order to obtain the interface model, two different methods were
applied, one based on the matched asymptotic expansion tech-
nique and the strong formulation of the equilibrium problem,
and the other based on the minimization of the potential energy,
i.e. on the weak formulation of the equilibrium problem. First
and higher order interface models have been derived for soft and
hard adhesives and it is shown that the two approaches, strong
and weak formulations, lead to the same asymptotic equations
governing the behavior of the interface, geometrical limit of the
adhesive as its thickness vanishes.

The governing equations derived at zero order have been com-
pared with the ones accounting for the first order of the asymptotic
expansion. Approximated constitutive law for soft and hard inter-
faces have been proposed, obtained by superimposing to the law
calculated at the order zero the law calculated at the order one,
rescaled with &. The result is the constitutive law for a soft interface
given by Eq. (110), and the constitutive law for a hard interface
given by Eq. (115) and (116).

The asymptotic method based on energy minimization allows
to calculate the expressions of emerging forces at the adhesive-
adherent interface boundary, whose presence is not directly taken
into account by the interface laws.

Finally, two simple applications have been developed in order
to illustrate the differences among the interface theories at the dif-
ferent orders. Both applications, based on a homogenous deforma-
tion on the adherents, show that the two cases of soft and hard
adhesive differ for the fact that the deformation of the adhesive,
described by a relative sliding in the example with shear and by
a relative opening in the example with stretching, is captured at
the order zero and order one in the case of a soft adhesive and at
the order one in the case of a hard adhesive.
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