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a b s t r a c t 

This study is devoted to the effective elastic properties of nanoporous media containing spherical 

nanovoids. Nanocomposites materials are strongly dependent on their nanometric characteristic lengths. 

This size effect cannot be directly modeled using the classical homogenization schemes based on the 

Eshelby inclusion problem. However recent studies have extended the continuum mechanics and well- 

known micromechanical models to the nanoscale. In this paper, it is shown that these models can be re- 

placed in a unified framework using the morphologically representative pattern-based approach of Stolz 

and Zaoui (1991) and therefore can be generalized to more complex microstructures. Following this ap- 

proach, new bounds and estimates are derived. Two particular cases are treated: (i) the case of an el- 

lipsoidal spatial distribution of the voids, (ii) the case of a biporous material containing both spherical 

nanovoids and randomly oriented spheroidal microvoids. The second case is typical of the microstructure 

of the irradiated uranium dioxide (UO 2 ). Thereby, the associated result could be used for determining the 

poro-elastic properties of these doubly voided materials. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Nanoporous materials can be classified into the category of

anocomposites materials in which the characteristic length is typ-

cally of the order of a few nanometers ( < 100 nm, Paliwal and

herkaoui (2012) ). The particularity of this kind of materials is the

igh surface/volume ratio. Indeed, atoms near a surface are in a

ifferent local environment than those in the bulk: their coordina-

ion number is less than that of the bulk atoms and their energy is

ifferent ( Duan et al., 20 05a; 20 05b; Paliwal and Cherkaoui, 2012;

ang et al., 2011 ). Therefore there is a disturbed region some-

imes called the interfacial region whose thickness is of the order of

ew atomic layers (about one nanometer), which has a local elas-

ic behavior different from that of the bulk ( Paliwal and Cherkaoui,

012; Wang et al., 2011 ). The impact of surfaces is often negligible

n classical continuum mechanics but becomes predominant when

he number of surface atoms is high as in nanocomposite mate-

ials ( Brisard et al., 2010a; Duan et al., 20 05a; 20 05b; Le Quang

nd He, 2008; Paliwal and Cherkaoui, 2012; Wang et al., 2011 ). In
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articular, such surface effects have to be considered when deriv-

ng a model for the effective elastic behavior of these materials.

he main consequence of the surface effects is a strong depen-

ency of the effective properties to the nanometer characteristic

ength ( Duan et al., 2005b; Paliwal and Cherkaoui, 2012; Sharma

nd Ganti, 2004 ). The present study is devoted to the modeling of

he elastic properties of porous materials which exhibits cavities

hose characteristic length is in the nanometer range. 

Indeed, this is the case of the irradiated uranium dioxide (UO 2 ),

hich is commonly used as a nuclear fuel. The modeling of its

echanical behavior from up-scaling methods has recently moti-

ated several studies (see for example Julien et al. (2011) ; Vincent

t al. (2008) ; Vincent et al. (20 09a , 20 09b ); Vincent et al. (2014a ,

014b )). This material contains intragranular cavities whose radii

ange between one and ten nanometers and pore density from

0 23 m 

−3 to 10 24 m 

−3 ( Kashibe et al., 1993 ). Jelea et al. (2011) have

arried out atomistic simulations and have determined the elas-

ic moduli of a system built with periodic UO 2 elementary cells

ontaining spherical nanocavities. Their results are compared to

lassical homogenization schemes in elasticity (Mori–Tanaka and

elf-consistent) and experimental data. Although there is a good

greement between the different results, it was shown that a sur-

ace effect exists at the scale of nanometric intragranular cavities in

O 2 and the results obtained from the homogenization approach

ould be improved by taking into account these surface effects. 

http://dx.doi.org/10.1016/j.ijsolstr.2016.01.018
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Description of the disturbed region. The first step to derive a mi-

cromechanical model with surface effects consists in giving a me-

chanical description to the disturbed region. There are mainly two

ways to model this region. The first way is a zero thickness ap-

proach and the disturbed region is treated as an ‘interface’. The

interface stress model or ‘imperfect coherent interface model’ as-

sumes that the traction vector is discontinuous across the surface

and the displacement is continuous ( Brisard et al., 2010a; 2010b;

Duan et al., 20 05a; 20 05b; 20 05c; 20 06; 20 07; Le Quang and He,

2008; Paliwal and Cherkaoui, 2012; Sharma and Ganti, 2004; Wang

et al., 2005; 2011; 2007 ). This model is a limit case of a thin and

stiff interphase ( Wang et al., 2005 ) and is often used to model the

disturbed region for nanocomposite materials. 

The second way describes the disturbed region as an ‘inter-

phase’ ( Marcadon, 2005; Paliwal and Cherkaoui, 2012 ), i.e. as a

classical three-dimensional coating. Although this approach is less

used than the interface stress model, it makes no assumption con-

cerning the stiffness and the thickness of the disturbed region.

However it often leads to more complex analytical results. 

Homogenization process. Once the description of the interfacial

region is chosen, it has to be integrated in the homogenization pro-

cess to derive models. Most of the classical micromechanical mod-

els are based on the Eshelby inclusion problem ( Eshelby, 1957 ) and

cannot deal with surface effects. Relatively recent works ( Brisard

et al., 2010a; 2010b; Duan et al., 2005b ) have extended these

classical models to the case of nanocomposite materials, particu-

larly the Hashin (1962) composite sphere assemblage model, the

Mori and Tanaka (1973) model, and the generalized self-consistent

model ( Christensen and Lo, 1979 ). These models, developed by

analogy with their classical counterparts, are based on a modi-

fied inclusion problem in which the perfect interface 1 between

the spherical inclusion and the surrounding medium is replaced

by an imperfect coherent interface (as stated above, the term co-

herent means that the displacement field is continuous across the

interface). The solving of this problem generally leads to non-

uniform deformation fields inside the inclusion. This generaliza-

tion of the classical results is limited to the case of materials

containing nanospherical inclusions isotropically distributed inside

the bulk. However, it is shown in the sequel that they can be

derived in the theoretical framework of the morphologically rep-

resentative pattern (MRP) theory ( Bornert, 1996a; 1996b; 2001;

Bornert et al., 1996; Stolz and Zaoui, 1991 ) and thus extended to

the case of materials with more complex microstructures such as

an ellipsoidal spatial distribution of voids. 

Morphologically representative pattern. The MRP theory extends

the classical approach: it allows us to take some finer details of

the microstructure into account and particularly the local arrange-

ment of the phases. It is convenient in the case of nanoparticulate

composites (also called materials with an inclusion-matrix mor-

phology 2 ), in which the disturbed region is included between the

matrix and the heterogeneities and locally perturbs the mechani-

cal fields. The establishment of the effective elastic moduli through

this approach requires the solving of auxiliary problems related

to heterogeneous inclusions embedded in an infinite medium. In

the case of the spherical inclusions or voids, these auxiliary prob-

lems are similar to those solved by Duan et al. (2005b ) and cor-

respond to a single spherical inclusion coated with a disturbed

region (modeled as an interface or an interphase) surrounded by

a matrix phase. It is shown here that the MRP approach delivers

a better understanding concerning the assumptions underlying in

the already existing models. 
1 A perfect interface (or a perfect bonding condition) means that the traction vec- 

tor and the displacement are continuous across two adjacent media. 
2 The material is made of a predominant phase in which heterogeneities (inclu- 

sions, voids or heterogeneous inclusions) are included. 
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The present study is organized as follows. The interface stress

odel typically used for nanomaterials is shortly described in

ection 2 . In Section 3 , the theory and the main results concern-

ng the MRP approach are summarized. This section is also devoted

o a direct use of the MRP theory in the case of nanoporous ma-

erials and it is shown that the existing models can be directly

erived from the MRP approach. Section 4 deals with some orig-

nal results, corresponding to particular cases that can be easily

reated following the MRP theory. It illustrates the ability of the

RP approach to catch the effective elastic properties of materi-

ls containing nanospherical voids. Two particular cases are dis-

ussed in this section: (i) spheroidal spatial distributions of voids,

ii) a biporous medium containing spherical nano voids together

ith larger spheroidal voids. The second case is typical of the mi-

rostructure of irradiated UO 2 and the results are then plotted with

haracteristic moduli for this material. 

. Nanomaterials: modeling of the disturbed region with the 

nterface stress model 

As already stated, the interface stress model is intensively used

n the case of nanomaterials. It assumes a traction vector jump

cross the interface whereas the displacement is continuous. This

odel has been proposed by Gurtin and Murdoch (1975) develop-

ng a theoretical framework for the mechanical behavior of mate-

ial surfaces. 

The Gurtin and Murdoch model consists in a set of two equa-

ions: a surface constitutive law and a balance equation. The sur-

ace constitutive law is assumed to be composed of two parts: a

urface internal stress, called by analogy with liquids a ‘surface

ension’, which is independent on the external loading and an elas-

ic part whose moduli are distinct from those of the bulk. The elas-

ic behavior is often assumed to remain isotropic in the tangent

lane. For polycristals with intragranular nanocavities, such as the

rradiated UO 2 , due to the crystal anisotropy, the mechanical be-

avior of the disturbed region around each cavity is probably not

sotropic. It is unlikely that the disturbed region is in a particular

rystallographic orientation and it is certainly randomly oriented.

lthough the hypothesis of an isotropic elastic behavior of the dis-

urbed region is not really equivalent to the case of randomly ori-

nted disturbed regions, the complexity generated by anisotropy to

evelop non-numerical micromechanical models would be higher

han the gain of precision by taking account of it ( Duan et al.,

005b; Paliwal and Cherkaoui, 2012 ). As a result, the elastic be-

avior of the surface is commonly considered as isotropic. 

The surface between two media (1 and 2) is denoted by �. The

nit normal vector to � (oriented from 1 to 2) is denoted by n and

he two vectors t t and t b are unit vectors contained in the tangent

lane to �. These three vectors are assumed to be pairwise orthog-

nal and ( t t , t b , n ) forms a vector basis for 3 dimensional vectors

 n = t t ∧ t b ). The couple ( t t , t b ) is a basis for surface tangent vec-

ors. The second-order identity tensor in the tangent plane i T and

he fourth-order identity tensor in the tangent plane I T are defined

s: 

 T = i − n ⊗ n (1)

 T = 

∑ 

α,β= t,b 

[ 
t α ⊗ t α ⊗ t α ⊗ t α

+ 

1 

2 

(
t α ⊗ t β ⊗ t α ⊗ t β + t α ⊗ t β ⊗ t β ⊗ t α

)] 
(2)

here i is the classical second -order identity tensor ( i kl = 1 if k = l,

 kl = 0 otherwise) and ⊗ denotes the tensor product. The two ten-

ors i T and I T can be seen as projectors onto the surface, in the

ense that they serve to extract the tangential parts of vectors or
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3 In the present paper, the correlation functions p rs have the following form: 

∀ (r, s ) ∈ [1 , p] 2 ∀ h 	 = 0 p rs (h ) = ψ rs (|| α : h || ) where α is a second-order sym- 

metric normalized tensor and ψ rs a scalar function with scalar arguments. The case 

α = i corresponds to the isotropic case. 
econd -order tensors. The surface constitutive relation which ex-

resses the surface stress σs in terms of the surface strain εs can

e written in the infinitesimal strain framework as follows ( Huang

nd Wang, 2006; Ru, 2010 ): 

s = τs i T + C s : εs (3)

 s = 2(k s J T + μs K T ) (4)

The tensors J T = (1 / 2)(i T ⊗ i T ) and K T = I T − J T are two ten-

ors among the six classical tensors for the transversely isotropic

asis of the fourth-order tensors. They are projectors in the sense

hat if ε is a strain tensor, then the non-zero components of K T : ε
re only the transverse shear strains and J T : ε expresses the sec-

ion changing in the tangent plane. The surface elastic moduli have

nusual dimensions. Indeed, they have the dimension of a force

er unit length (N/m). This paper is devoted to the modeling of

he effective elastic moduli. The influence of the surface tension,

enoted by τ s in Eq. (3) , on the overall mechanical behavior is not

nvestigated in this article ( τ s is set to zero in the sequel). 

The surface strain εs corresponds to the tangential part of the

train in the matrix or in the inclusion at the interface and is de-

ermined from: 

s (x ) = I T : ε1 (x ) = I T : ε2 (x ) , ∀ x ∈ � (5)

Concerning the balance equation, the most commonly used

quation is the Generalized Young Laplace equation. This equation

inks the stress jump at the interface [ σ] = σ2 (x ) − σ1 (x ) , ∀ x ∈ �

o the surface stress σs and to the second-order curvature tensor b

 Brisard et al., 2010a; 2010b ) : 

 σ] · n + (σs : b) n + div s σs = 0 (6)

ere, the operator div s refers to as the surface divergence of the

wo-dimensional second-order tensors. 

. MRP-based approach 

.1. General framework 

The MRP-based approach was first proposed by Stolz and Za-

ui (1991) and then followed by Bornert (1996a ); 1996b ); 2001 );

ornert et al. (1996) . It considers non uniform admissible elas-

ic fields over the phases on the heterogeneous material. This

pproach allows us to take into account some details on the

icrostructure, especially the relative local phases arrangement.

s a consequence, it allows us to introduce some characteristic

engths in the micromechanical models. This approach is used

y Marcadon (2005) to derive the effective elastic properties of

anocomposite materials with randomly distributed spherical in-

lusions. In Marcadon (2005) , the disturbed region is modeled as

n interphase. On the other hand, Brisard et al. (2010b ) also use

he MRP concept to derive a Mori–Tanaka-like estimate for the

hear modulus of a nanomaterial with randomly distributed spher-

cal inclusions (which becomes a bound under certain conditions). 

The MRP approach assumes that the representative volume el-

ment (RVE) can be split into separated subdomains. These sub-

omains are grouped together into families called morphologically

epresentative patterns. All the members of a pattern exhibits the

ame geometry and the same spatial distribution of the mechanical

roperties. The heterogenous medium is then characterized by the

escription of all its patterns and the positions of all their mem-

ers inside the volume as illustrated in Fig. 1 . The patterns are

escribed as morphologically representative by Bornert et al. (1996)

ince they take into account some primary morphological charac-

eristics of the heterogeneous material such as the phase continu-

ty or discontinuity, the presence of inclusions in a surrounding

aterial, the shapes and the orientations of the inclusions. 
Here, the domain occupied by the RVE is denoted by �. This

omain can be split into p patterns (subscript r ∈ [1 , . . . , p] ) and a

urrounding matrix. Each pattern has N r members. The members

superscript i ) of each pattern r are defined over their domains D 

i 
r 

entered at the points x i r ( ∀ r ∈ [1 , . . . , p] and ∀ i ∈ [1 , . . . , N r ] ). 

The domains D r ( ∀ r ∈ [1 , . . . , p] ) are centered at the origin and

re such that the domains D 

i 
r are obtained from the domains D r by

 translation of x i r . So a pattern is characterized by a given do-

ain D r and a spatial distribution of local elastic moduli C r (u )

 ∀ u ∈ D r ). 

While the domains D r and the distributions of the local elas-

ic moduli C r are assumed to be given data, only statistical infor-

ation on the characteristic functions are available. The first and

econd order informations, respectively the volume fractions and

he correlation functions 3 , are supposed to be known. This paper

s devoted to the particular case of an ellipsoidal distribution of

he centers. 

The total domain � is not necessarily described by the patterns

nly. A domain D m 

can subsist around the patterns: an homoge-

eous matrix phase surrounding all the patterns can be considered

nd it is called the Matrix Outside the Patterns (MOP) in the sequel:

he subscript associated to this domain is m . Its elastic stiffness

ensor is denoted by C m 

and c m 

denotes its volume fraction. 

The overall stress and strain are defined as the volume averages

f the local stress and strain fields over the RVE: 

¯ = 

1 

| �| 
∫ 
�

σ(x ) dx , ε̄ = 

1 

| �| 
∫ 
�

ε(x ) dx . (7)

The averages of the stress and the strain over the domain D r 

re respectively denoted by 〈 σ〉 D r and 〈 ε〉 D r : 

 

σ〉 D r = 

1 

| D r | 
∫ 

D r 

σ(x ) dx , 〈 ε〉 D r = 

1 

| D r | 
∫ 

D r 

ε(x ) dx . (8)

From the MRP-based description, different kinds of models can

e derived. These models contain distinct morphological informa-

ions. First-order bounds can be derived. The upper bound is called

he Generalized Voigt (GV) bound and is expressed as follows: 

 

GV 
M 

= c m 

C m 

+ 

p ∑ 

r=1 

c r C 

GV 
M r with 〈 C r : ε〉 D r = C 

GV 
M r : ε̄, ∀ ε̄ (9)

The lower bound, called the Generalized Reuss (GR) bound, is

xpressed as follows: 

C 

GR 
M 

)−1 = c m 

( C m 

) 
−1 + 

p ∑ 

r=1 

c r 
(
C 

GR 
M r 

)−1 

with 

〈
( C r ) 

−1 : σ
〉
D r 

= 

(
C 

GR 
M r 

)−1 
: σ̄, ∀ σ̄ (10) 

The tensors C 

GV 
M r 

and C 

GR 
M r 

are the overall stiffness tensors ob-

ained from the study of a single pattern r subjected to the macro-

copic strain ε̄ (for C 

GV 
M r 

) or to the macroscopic stress (for C 

GR 
M r 

) σ̄ on

ts boundary. It corresponds to a Generalized Hashin assemblage of

attern r subjected to ε̄ or σ̄ at infinity ( Bornert, 2001 ). 

As in the classical approach, the previous bounds can be im-

roved by adding informations on the spatial distribution of the

enters of the patterns. A procedure inspired of the classical

ashin and Shtrikman variational formulation has been derived in

he MRP context and lead to second-order bounds or estimates. As

lready stated, the spatial distribution of the centers of the pat-

erns is assumed to be ellipsoidal. For the three cases presented

erefater, Bornert (2001) shows that the optimal polarization fields
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Fig. 1. Schematic illustration of the MRP approach: particular case of a decomposition of the RVE using two patterns (whose the external shape is spherical) and a sur- 

rounding matrix. 
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are obtained by solving p + 1 auxiliary problems. Each problem is

relative to an inclusion (made by a single pattern or by the MOP)

embedded in an infinite medium. The infinite medium, also called

the reference medium, is indexed by 0 and its elastic stiffness ten-

sor is denoted by C 0 . A remote strain ε0 is applied at infinity. The

mean polarization field over the domain D r 〈 τ〉 D r is defined as

〈 σ〉 D r − C 0 : 〈 ε〉 D r . Then a tensor T 

0 
M r 

is introduced for each aux-

iliary problem: 

〈 τ〉 D r = T 

0 
M r : ε

0 (11)

Again, each auxiliary problem can be seen as a problem of a gen-

eralized Hashin assemblage where the overall strain is equal to the

mean strain over the pattern. The fourth-order tensor linking 〈 σ〉 D r 
and 〈 ε〉 D r is thus commonly denoted by C 

HS 
M r 

(C 

0 ) : 

〈 σ〉 D r = C 

HS 
M r (C 0 ) : 〈 ε〉 D r (12)

Moreover, one should remark that the previous tensors C 

GV 
M r 

and

C 

GR 
M r 

can be determined from the tensor C 

HS 
M r 

(C 0 ) as follows: 

lim ‖ C 0 ‖→ + ∞ 

C 

HS 
M r (C 0 ) = C 

GV 
M r , lim ‖ C 0 ‖→ 0 

C 

HS 
M r (C 0 ) = C 

GR 
M r (13)

where ‖ . ‖ denotes a norm for the fourth order symmetric tensors.

Indeed, when C 0 tends to the rigid case, an homogeneous strain is

applied on the boundary of the pattern and when C 0 tends to the

porous case, an homogeneous stress is applied on its boundary. 

Following Bornert (1996b ), three particular cases are considered

here. In the first case ( case 1 ), the reference medium has the same

elastic properties as the matrix. This model is called the Mori–

Tanaka-type model or the Generalized Mori–Tanaka model (GMT).

In the second case ( case 2 ), the volume fraction of matrix which

is not included inside the patterns (the MOP) is equal to zero. The

tessellation of the RVE consists in a Hashin-like assemblage. Such a

material is called a Generalized Hashin assemblage. To build such

an assemblage, the following conditions have to be checked: 

• the patterns have all the same ellipsoidal external shape (same

aspect ratio and same orientation) and this shape is related to

the spatial distribution of the centers of the patterns, 
• the assemblage is fractal and so the patterns cannot have a well

definite size. 

In this second case, the choice for the reference medium re-

mains free. In the third case ( case 3 ), the external shape of the pat-

terns is related to the spatial distribution of the centers of the pat-

terns (as in the previous case). So the patterns have all the same

ellipsoidal external shape. But unlike the previous case, the volume

fraction of the matrix which is not included in the patterns is not

necessarily equal to zero. In this case, the MOP can be treated as

an additional homogeneous pattern. For these three specific cases,

the effective stiffness tensor can be written as: 
Case 1: 

 

GMT 
M 

= C m 

+ 

(
I − 〈 T 

m 

M r 〉 M 

: P 

m 

d 

)−1 

: 〈 T 

m 

M r 〉 M 

(14)

n this expression, the operator 〈 . 〉 M 

is defined as the average

 

X 〉 M 

= 

∑ p 
r=1 

c r X r and I is the classical fourth-order identity ten-

or. The tensor P 

0 
d 

is the Hill tensor related to the ellipsoidal spatial

istribution of the centers of the patterns and to the stiffness ten-

or of the reference medium C 0 . The Hill tensor P (C 0 ) is related to

he Eshelby tensor S E (C 0 ) : 

 (C 0 ) = S 
E (C 0 ) : C 

−1 
0 (15)

Case 2 ( c m 

= 0 ): 

 

HS 
M 

(C 0 ) = C 0 + 

(
I −

〈
T 

0 
M r 

〉
M 

: P 

0 
d 

)−1 

: 
〈
T 

0 
M r 

〉
M 

(16)

Case 3: Here the MOP can then be seen as an additional homo-

eneous pattern. Its auxiliary problem consists in an homogeneous

nclusion with stiffness C m 

and with the same shape as the pat-

erns. This inclusion is embedded in an infinite medium with stiff-

ess C 0 subjected to a remote strain ε0 at infinity. As in expression

11) , a tensor T 

0 
m 

can be introduced such that: 〈 τ〉 D m = T 

0 
m 

: ε0 . In

his case: 

 

HS 
M 

(C 0 ) = C 0 + 

(
I −

〈
T 

0 
M r 

〉
M 

: P 

0 
d −c m 

T 

0 
m 

: P 

0 
d 

)−1 

: 

(〈
T 

0 
M r 

〉
M 

+ c m 

T 

0 
m 

)
(17)

If the patterns have the same shape as the spatial distribution

f their centers (cases 2 and 3 always meet this condition), then

inequality in the sense of the quadratic forms): 

 

GR 
M 

< C 

HS 
M 

(C 0 ) < C 

GV 
M 

(18)

Unlike case 1, cases 2 and 3 allow an arbitrary reference

edium. The specific choice C 0 = C 

HS 
M 

(C 0 ) lead to a self-consistent

odel called the Generalized Self-Consistent model (GSC). 

.2. Auxiliary problem for spherical nanovoids with interface stress 

odel 

The objective is to apply the MRP approach to the case of a

orous material with spherical nanovoids. Here, the auxiliary prob-

em of a pattern made by a spherical cavity (index v ) embedded in

 matrix layer (index m ) is considered. At the interface between

he cavity and the matrix, the disturbed region is taken into ac-

ount by using the interface stress model. This pattern is denoted

y S . The outer shape of the pattern is chosen spherical and con-

entric with respect to the cavity. The center of the pattern is de-

ned as the center of the cavity. The radius of the cavity and the

xternal radius of the pattern are respectively denoted by r and r .
1 0 
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Fig. 2. Problem of the heterogeneous inclusion in an infinite reference medium for 

spherical nano voids with the interface stress model. 
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he porosity of the pattern S, denoted by f S , is equal to ( r 1 / r 0 ) 
3 .

he surfaces �1 and �0 are respectively characterized by r = r 1 
nd r = r 0 in the classical spherical coordinates system. 

The study is limited to the case of an ellipsoidal spatial distri-

ution of the centers of the voids. Following the MRP approach,

uxiliary problems are defined as heterogeneous inclusions (with

he same microstructures as the patterns) which are embedded

n an infinite homogeneous medium (called the reference medium

nd denoted by 0) submitted to a remote strain ε0 applied at in-

nity. This problem is illustrated in Fig. 2 . Hereafter, the domain

ccupied by a phase i is denoted by ω i . The set of equations reads

s follows ( u refers to a displacement field and ε is the linearized

train tensor): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

div σ = 0 , ε = 

1 

2 

(
grad u + 

T grad u 

)
in ω 0 and ω m 

σ = C 0 : ε in ω 0 and σ = C m 

: ε in ω m (
σ(0) − σ(m ) 

)
· n = 0 and 

(
u 

(0) − u 

(m ) 
)

= 0 on �0 (
σ(m ) − σ(v ) 

)
· n + (σs : b) n + div s σs = 0 , εs = I T : ε, 

σs = C s : εs on �1 

σ = 0 in ω v and u = ε0 · x when || x || → ∞ 

(19) 

here σ(0) , σ( m ) , and σ( v ) denote the stress tensors respectively in

he infinite medium, in the matrix, and in the void. The vectors

 

(0) , u 

( m ) , and u 

( v ) denote the displacement vectors respectively in

he infinite medium, in the matrix, and in the void. The vector n

enotes the unit normal vector to �i ( ∀ i ∈ {0, 1}) oriented to the

atrix. 

The elastic behaviors of the matrix and the reference medium

re assumed to be isotropic ( J = 1 / 3(i ⊗ i ) , K = I − J ): 

C m 

= 3 k m 

J + 2 μm 

K and C 0 = 3 k 0 J + 2 μ0 K (20) 

The surface elastic tensor is specified in Eq. (4) . The determin-

ng of the fourth-order tensor T 

0 
M S and C 

HS 
M S is given in Appendix A

y solving the problem (19) . Due to the spherical symmetry and to

he isotropic behaviors of the phases, these tensors are isotropic

nd they can be written as follows: 

T 

0 
M S = T 0 

M S| h J + T 0 
M S| d K , C 

HS 
M S = 3 k HS 

M S J + 2 μHS 
M S K (21) 

here T 0 
M S| h , k HS 

M S are given in (A.2) , and T 0 
M S| d , μHS 

M S are given in

A.8) . 

Unlike the effective bulk modulus k HS 
M S , the shear modulus μHS 

M S 
epends on the stiffness C 0 (to be more precise it depends only on

he shear modulus μ0 ). Following (13) , the tensors C 

GV 
M S and C 

GR 
M S 

re obtained: 

 

GV 
M S = 3 k HS 

M S J + 2 μGV 
M S K , C 

GR 
M S = 3 k HS 

M S J + 2 μGR 
M S K (22)
he shear moduli μV 
M S and μR 

M S are given in (A.15) . They will be

sed after to derive the GV and GR bounds according to Eqs. (9)

nd (10) . 

.3. Particular cases derived from the MRP approach 

In this section, some particular cases derived from the gen-

ralized estimates and bounds and based on the pattern S are

reated. By the way, it is shown how the already existing models

or nanoporous media can be replaced into the framework of the

RP approach. 

.3.1. GMT estimates 

In the case of the GMT models, the reference medium has the

ame elastic properties as the matrix. Therefore the polarization

elds over the MOP and in the matrix phases included inside the

atterns vanish. It implies that the external shape and the external

ength of the patterns have no influence on the overall properties

valuated with this kind of models. Then the external shape of the

atterns are not necessarily related to the spatial distribution of

he centers, unlike other models (such as the GSC estimate, the

V and GR bounds). The external radii of the patterns character-

zing the distance between the centers of the patterns, the pack-

ng effects cannot be taken into account. In this case, the tensor

 

m 

M S used to derive the GMT estimates for the effective moduli ( Eq.

14) ) is expressed as: 

 

m 

M S = T m 

M S| h J + T m 

M S| d K (23)

here T m 

M S| h and T m 

M S| d are respectively specified in (A.4) and (A.16) .

If the interface is rigid (i.e. k s and μs tend to infinity) or if the

adius r 1 of the void is equal to zero, then the tensor T 

m 

M S reduces

o (with f S = 1 , it means that there is no matrix phase inside the

attern S): 

 

m 

M S = (3 k m 

+ 4 μm 

) J + 

5 μm 

(3 k m 

+ 4 μm 

) 

3(k m 

+ 2 μm 

) 
K (24)

n the other hand, if the interface is soft (i.e. k s and μs are van-

shing) or if the radius r 1 of the void tends to infinity, then its ex-

ression reduces to (with f S = 1 ): 

 

m 

M S = −3 k m 

(3 k m 

+ 4 μm 

) 

4 μm 

J − 10 μm 

(3 k m 

+ 4 μm 

) 

9 k m 

+ 8 μm 

K (25) 

he two previous expressions correspond to the classical tensors

 

m 

i 
without surface effect, corresponding respectively to rigid in-

lusions and to pores. In other words: 

• when the interface is very stiff or when the radius of the void

r 1 tends to zero, the medium behaves as if the cavities were

replaced by stiff inclusions, 
• when the interface is infinitely soft or when the radius tends

to infinity, the surface effect becomes negligible and the

medium behaves as a classical porous medium without surface

effect. 

When the medium contains a single pattern S, the effective

tiffness tensor related to the GMT scheme is expressed as follows:

 

GMT 
M 

= C m 

+ (I − c S T 

m 

M S : P 

m 

d ) 
−1 : c S T 

m 

M S (26)

here c S is the volume fraction of the pattern S in the RVE. Then,

he total porosity over the RVE, denoted by f in the sequel, is equal

o f S c S . This result shows that the tensor C 

GMT 
M 

depends on f S 
nd c S only through the total porosity f . Again, it means that the

verall properties evaluated with this model do not depend on the

xternal radius r of the pattern S . 
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Fig. 3. Effective shear modulus (normalized with respect to the shear modulus of 

the matrix) as a function of the radius of the cavities. The total porosity f is equal 

to 5%. The models are evaluated by setting f S = f . 
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In the particular case of an isotropic spatial distribution of the

centers of the pattern S, this expression leads to the following bulk

and shear moduli: 

k GMT 
M 

= k m 

+ 

f 

3 

(3 k m 

+ 4 μm 

)(4 k s − 3 k m 

r 1 ) 

4(1 − f ) k s + r 1 (3 f k m 

+ 4 μm 

) 
(27)

μGMT 
M 

= μm 

+ f 
5 βd μm 

(3 k m 

+ 4 μm 

) 

3 k m 

δd + 4 μm 

ζd − 6 fβd (k m 

+ 2 μm 

) 
(28)

where βd , δd , and ζ d are given in (A.16) . Therefore the effec-

tive moduli are equal to those already established by Duan et al.

(2005b ). 

From this, an ellipsoidal spatial distribution of the centers can

be easily taken into account using the adapted expression of P 

m 

d 
.

The influence of the spatial distribution of the centers of the pat-

tern S on the effective elastic properties will be investigated in

Section 4.1 . 

3.3.2. Other bounds and estimates 

The self-consistent model of Duan et al. (2005b ) can also be di-

rectly refound by using the expressions (17), (21), (A.2) , and (A.8)

together with C 0 = C 

GSC 
M 

and f S = f . In this case, it means that

c S = 1 , c m 

= 0 , and the tensor P 

0 
d 

is the Hill tensor for a spheri-

cal inclusion. The bulk modulus evaluated from this model is equal

to that evaluated from the GMT model ( Eq. (27) ) and the effective

shear modulus is obtained by solving: 

V d (μ
GSC 
M 

) 2 + ( R d − V n ) μ
GSC 
M 

− R n = 0 (29)

where V n , V d , R n and R d are expressed in (A.9) . 

The composite sphere assemblage models (CSA) of Duan et al.

(2005b ) (only derived for the bulk modulus) can also be directly

refound by using the MRP approach. Indeed, these models pro-

vide bounds for the effective elastic properties of a generalized

Hashin assemblage built with the single pattern S (without MOP).

For such a material, the CSA models of Duan et al. (2005b ) are

simply the GV and GR bounds obtained from Eqs. (9) and (10) : 

C 

GV 
M 

= C 

GV 
M S and C 

GV 
M 

= C 

GV 
M S (30)

with the tensors C 

GV 
M S and C 

GV 
M S given by Eq. (22) and taking f S 

equal to the total porosity f . 

The three previous models (GSC estimate, GV and GR bounds)

lead to the same effective bulk modulus which is also the bulk

modulus obtained from the GMT estimate. The GV and GR bounds

being equal, it means that the exact effective bulk modulus for

this material has been obtained. Let us remark that the GV and

GR bounds for the shear modulus are now available. For building

a generalized Hashin assemblage with a single pattern (which is a

fractal structure), the members of the pattern must be distinct in

size and homothetic (by definition) in order to tessellate the entire

domain. However, for the GMT, GSC, GV, and GR models, a char-

acteristic length has been fixed in the pattern (by considering that

the interfacial region has zero thickness) and the entire domain is

directly built with one pattern. So in these models, all the mem-

bers of the pattern have the same size and it cannot tessellate,

strictly speaking, all the entire domain. By doing so, these mod-

els are not representative of a generalized Hashin assemblage built

from a single pattern. This difficulty can be overcome by introduc-

ing a MOP. 

Then the first-order bounds derived by Le Quang and He (2008)

(LQH bounds) can also be derived from the MRP approach. Let us

consider a material made of a MOP and p patterns S (i ) where the

porosity of each pattern, f (i ) 
S , is equal to 1 for all i from 1 to p :

it means that the matrix is only in the MOP and that there is no

matrix inside the pattern. Each pattern S (i ) has its own interface

moduli denoted by k (i ) 
s and μ(i ) 

s , its own internal radius r (i ) 
1 

, and
olumic fraction f i . In this case, the GV and GR bounds can be ex-

ressed as: 

 

GV 
M 

= c m 

C m 

+ 

i = p ∑ 

i =1 

f i C 

GV 
M S (i ) and 

 C 

GR 
M 

] −1 = c m 

[ C m 

] −1 + 

i = p ∑ 

i =1 

f i [ C 

GR 
M S (i ) ] 

−1 (31)

here the tensors C 

GV 
M S (i ) 

and C 

GR 
M S (i ) 

are derived from Eq. (22) : 

 

GV 
M S (i ) = 

4 k (i ) 
s 

r (i ) 
1 

J + 2 

k (i ) 
s + 6 μ(i ) 

s 

5 r (i ) 
1 

K 

 

GR 
M S (i ) = 

4 k (i ) 
s 

r (i ) 
1 

J + 

10 k (i ) 
s μ(i ) 

s 

(6 k (i ) 
s + μ(i ) 

s ) r (i ) 
1 

K (32)

f the stiffness tensor C m 

is isotropic, then the previous bounds

atch with the bounds of Le Quang and He (2008) . Nevertheless,

he bounds of Le Quang and He (2008) are not based on the MRP

heory but on admissible fields which are uniform in the matrix

nd in the pores together with the variational principle. In fact,

hese assumptions are, in this case, in full agreement with those

f the GV and GR models. The bounds of Le Quang and He (2008)

for the porous media) appear as a particular case of the GV and

R bounds derived with the patterns S (i ) . 

In the approach of Le Quang and He (2008) , the admissible field

ver the matrix is fully uniform which is a crude approximation.

his is not the case for the GV and GR bounds when the f (i ) 
S re-

ain free, which implies that an amount of matrix can be taken

nto account inside each pattern. This would lead to non-uniform

elds inside the matrix of the composite and a better descrip-

ion of the heterogeneity of the exact fields inside the composite.

ollowing this idea, it means that it would be more relevant to

uild bounds based on the GV and GR procedure with a non-zero

mount of matrix inside each pattern. This is illustrated in Fig. 3 .

he GMT, GSC, GV, GR, and LQH models are compared in the case

f a porous material with a single mono-sized population of cavi-

ies. The models derived from the MRP approach are evaluated by

etting f S to f (no MOP). One should remark that the GMT and GSC

stimate are close to each other and they respect the GV and GR

ounds. Moreover it appears that the GV and GR bounds improve
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Fig. 4. Effective elastic constants as a function of the aspect ratio for an oblate 

spheroidal spatial distribution of the centers of the pattern S . The total porosity f is 

equal to 25% and the radius of the voids is 1 nm. 

Fig. 5. Effective elastic constants as a function of the aspect ratio for a prolate 

spheroidal spatial distribution of the centers of the pattern S . The total porosity 

f is equal to 25% and the radius of the voids is 1 nm. 

 

 

 

 

he LQH bounds. In the following, the material data used for the

umerical implementations are: 

• E m 

= 188 GPa, νm 

= 0 . 3 , for the Young modulus and the Poisson

ratio of the matrix. These values are relative to compact UO 2 at

1200 o C following the study of Martin (1989) . 
• k s = 26 . 85 N / m , μs = 14 . 46 N / m for the bulk and the shear

moduli of the surface. This value for the bulk is in the range of

those specified by Wolfer (2011) for Al, Au, and Ag nanoparti-

cles. Unfortunately, to the best of our knowledge, these surface

moduli are not known for compact UO 2 . Here, the equivalence

between the interface and the thin elastic layer of Brisard et al.

(2010a ) has been used to derive the proposed values for k s and

μs : the layer is considered to be 200 times stiffer than the ma-

trix; its thickness is set to 0.001 nm following Le Quang and

He (2008) in such a way that it remains smaller than the typi-

cal length of the nanocavities. 

. New estimates for nanoporous materials 

In this section, two particular cases are considered to illustrate

he ability of the MRP approach to extend the existing models: the

nfluence of a spatial distribution of the centers of the voids is in-

estigated, then the case of a bi-porous material containing spheri-

al nanovoids and randomly oriented spheroidal microvoids is con-

idered. 

.1. Ellipsoidal spatial distribution of voids 

Unlike the other models, the GMT estimates easily allow us to

ake into account a spheroidal spatial distribution of the centers

f the patterns without defining new patterns with an external

hape related to the distribution. Here the material is assumed to

e composed of mono-sized voids. Thus the GMT estimate is still

erived from Eq. (26) . As already stated for this kind of model,

ne can impose f S = 1 without loss of generality (it implies that

f = c S ). The Hill tensor P 

m 

d 
is then related to the spheroidal distri-

ution and is expressed by Eq. (15) in terms of the Eshelby tensor

 

E (C m 

) . Denoting by a and b the semi-length of the vertical ( z axis)

nd the horizontal axes of the spheroid (ellipsoid which is rotation

nvariant around the z axis) the spheroidal distribution aspect-ratio

s expressed as: 

 d = a/b (33) 

he overall material presents a transversely isotropic symmetry

ith respect to the z axis. The effective stiffness tensor can be put

nder the following form: 

 

GMT 
M 

= n E l + 2 k t J t + 

√ 

2 l(F + 

T 
F ) + 2 μt K t + 2 μl K l (34)

here E l , J t , F , T F , K t and K l are the basis tensors for fourth-

rder transversely isotropic tensors defined in Suquet and Bornert

2001) . 

The Figs. 4 and 5 show the evolutions of the effective elastic

onstants as a function of the aspect ratio ω d for an oblate ( a <

 ) and a prolate ( a > b ) spheroidal spatial distribution of the cen-

ers 4 . The radius of the voids is set to r 1 = 1 nm . The total porosity

s set to an artificially large value f = 25 % in order to enhance the

ffect of the voids. The effective elastic constants are normalized

ith respect to the effective elastic constants when the spatial dis-

ribution is isotropic ( ω d = 1 ). The following observations can be
ade: 

4 For prolate spheroid, the evolution of the effective elastic constants is plotted as 

 function of 1 − 1 /ω d to browse all the range of the possible values of the aspect- 

atio. 

 

 

 

• first, one can observe that the overall behavior becomes more

anisotropic when ω d tends to 0 (oblate case) and when 1 −
1 /ω d tends to 1 (prolate case): the difference between the lon-

gitudinal coefficients ( n, μl ) and the transverse coefficients ( k t ,

μt ) increases when ω d tends to these particular values. 
• in the oblate case, the longitudinal coefficients ( n, μl ) become

stiffer when ω d tends to 0 and the transverse coefficients be-

come softer compared to the isotropic case ( ω d = 1 ). 
• in the prolate case, only the coefficient n becomes softer when

ω d tends to infinity whereas the coefficients μl , k t , μt become

stiffer com pared to the isotropic case ( ω = 1 ). 
d 
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Fig. 6. Transversely isotropic constants of H as a function of the aspect ratio for 

an oblate spheroidal spatial distribution of the centers of the pattern S . The total 

porosity f is equal to 25 % and the radius of the voids is 1 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Transversely isotropic constants of H as a function of the aspect ratio for 

an oblate spheroidal spatial distribution of the centers of the pattern S . The total 

porosity f is equal to 25 % and the radius of the voids is 1 nm. Specific case where 

E m = 100 GPa , νm = 0 . 2 , k s = 50 N/m , μs = 30 N/m . 
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The physical meaning of the two previous items is tricky be-

cause of the various effects taken into account in the model.

First, the interface induces more stiffness for the overall behav-

ior whereas the void phase induces softening. Secondly, the spa-

tial distribution of the centers of the patterns induces changes in

the distances between the cavities and their interactions: for ex-

ample, when ω d tends to 0, the spherical voids are spaced far away

from each other in the transverse plane and they tend to line up in

the axial direction (as already pointed out by Ponte Castañeda and

Willis (1995) in the case of rigid particles or cracks). Thirdly, the

differences in the behaviors between the matrix and the interface

can also influence the overall behavior. To see the influence of the

distribution of the centers on the overall behavior, one can write

the following Taylor expansion due to Ponte Castañeda and Willis

(1995) : 

C 

GMT 
M 

= C m 

+ c S T 

m 

M S + ( c S T 

m 

M S ) : P 

m 

d : ( c S T 

m 

M S ) + O [ ( c S ) 
3 ] (35)

It appears that the shape of the distribution affects C 

GMT 
M 

through

the Hill tensor P 

m 

d 
to second order in the volume fraction of the

pattern. Let us introduce a new tensor called the first distribution

effect tensor as: 

H = T 

m 

M S : P 

m 

d : T 

m 

M S (36)

The evolution of this H tensor can be used for studying the spe-

cific evolutions of the parameters n, μl , k t , μt shown in Figs. 4

and 5 . Fig. 6 illustrates the evolution of the transversely isotropic

coefficients of H with respect to ω d in the oblate case. One can ob-

serve that the transverse coefficients of H (resp. the longitudinal)

decreases (resp. increases) when ω d tends to 0 (aligned case). This

is in accordance with the evolutions of the transversely isotropic

coefficients of C 

GMT 
M 

shown in Fig. 4 . When ω d tends to 0, the

spherical voids are spaced far away from each other in the trans-

verse plane. It may be understood that the interactions between

the voids decrease in the transverse plane which could lead to

softer transverse coefficients. On the other hand, it implies that

the voids are spaced close to each other in the longitudinal direc-

tion. Therefore, the interactions between the voids may increase in

this direction which could lead to stiffer longitudinal coefficients.

It is also possible to demonstrate that the transverse shear of the

H tensor is zero when ω tends to 0 (aligned case). It means that,
d 
n this case and for the transverse shear of C 

GMT 
M 

, the voids are so

ar from each other that the interaction effect is neglectable and

he model reduces to the dilute case. 

Moreover it has been shown that the longitudinal shear (resp.

he transverse shear) coefficient for the difference H (ω d = 0) −
 (ω d = 1) is still positive (resp. negative) for all the values of the

ther coefficients (matrix and interface coefficients, radius of the

oids). It implies that the overall longitudinal shear (resp. the over-

ll transverse shear) predicted by the model will be still stiffer

resp. softer) in the aligned case ( ω d = 0 ) than in the isotropic case

 ω d = 1 ). 

The same conclusion cannot be generalized to the other coeffi-

ients ( n, l, k t ) of C 

GMT 
M 

. It is illustrated in Fig. 7 , where the H tensor

xhibits another trend for its transversely isotropic coefficients ( n,

, k t ), for other choices of the parameters ( E m 

= 100 GPa , νm 

= 0 . 2 ,

 s = 50 N/m , μs = 30 N/m ). 

.2. A second population of cavities 

Let us consider now the case of a bi-porous material. The first

opulation of voids is assumed to be composed of nano-spherical

oids and the second population is assumed to be composed of

pheroidal (more precisely oblate) voids whose the size is larger

nough to avoid the surface effects. The spatial distribution of the

enters of the voids is assumed to be isotropic. As already stated

n the introduction, such a microstructure is representative of the

rradiated UO 2 . Indeed, this material contains intragranular cavi-

ies, almost spherical in shape with a typical diameter of a few

anometers, and at a larger scale, intergranular cavities, roughly el-

ipsoidal in shape with a typical size of a few microns and located

t the grain boundaries (see for example ( Vincent et al., 2008; Vin-

ent et al., 2009a; Vincent et al., 2014a )). 

Two patterns have to be specified: (i) a pattern for the spher-

cal nanovoids (we make use of the already defined pattern S),

ii) a pattern denoted by E made of a spheroidal oblate microvoid

without surface effect). The major axis of the ellipsoidal cavity are

enoted by a and b and the aspect ratio ω is equal to a / b . The

uxiliary problem related to the pattern E is a classical Eshelby in-

lusion problem (where the inclusion is a void). The total porosity
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Fig. 8. Normalized effective bulk modulus as a function of the total porosity. Aspect 

ratio of the microvoids ω = 0 . 2 . Radius of the spherical nanovoids r = 1 nm. 

Fig. 9. Normalized effective shear modulus as a function of the total porosity. As- 

pect ratio of the microvoids ω = 0 . 2 . Radius of the spherical nanovoids r = 1 nm . 
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s denoted by f . The porosity of the nano-spherical voids is equal to

f and the porosity of spheroidal voids is equal to (1 − α) f where

is a parameter, ranging from 0 to 1. The GMT estimate is derived

rom (14) : 

 

T 

m 

M r 〉 M 

= α f T 

m 

M S + (1 − α) f 〈 T 

m 

E 〉 � (37)

The operator 〈 . 〉 � denotes an average over all the orientations.

he tensor T 

m 

E is the classical tensor for an ellipsoidal cavity with-

ut surface effect: 

 

m 

E = −C m 

: (C 

� 

m 

) −1 : (C 

� 

m 

+ C m 

) (38)

ith C 

� 

m 

= P 

−1 
m 

− C m 

and P m 

= S E (C m 

) : C 

−1 
m 

. The tensor S E (C m 

) is

he Eshelby tensor relative to the shape of the oblate voids when

he matrix is the reference medium. Then according to Gatt et al.

2005) , the average can be expressed as: 

 

T 

m 

E 〉 � = 

(
T 

m 

E :: J 
)

+ 

1 

5 

(
T 

m 

E :: K 

)
(39)

The evolution of the effective moduli (normalized with respect

o the matrix moduli) as a function of the total porosity is illus-

rated in Figs. 8 and 9 . From these figures, one can observe that

he relative difference for the effective bulk moduli, between the

ase where all the porosity corresponds to oblate microvoids and
he case where all the porosity corresponds to spherical nanovoids,

s about 20 % when the porosity reaches 5 % which is a common

alue for the porosity in irradiated UO 2 . A similar trend can be ob-

erved for the effective shear modulus. 

. Conclusion 

This study is devoted to the modeling of the elastic behavior

f porous media with spherical nanovoids. It is shown here that

he existing models can be directly derived following the Morpho-

ogically Representative Pattern (MRP) approach of Stolz and Za-

ui (1991) . Several particular cases have been considered to illus-

rate the ability of the MRP approach to extend the existing esti-

ates and bounds. First the influence of a spatial distribution of

he centers of the voids has been investigated, showing a com-

lex dependence of the elastic moduli with respect to the mate-

ial and geometric parameters. A new model has been proposed

or dealing with an ellipsoidal spatial distribution of the voids. It

as been checked that, for an isotropic spatial distribution, the pro-

osed model reduces to the model of Duan et al. (2005b ). Then the

ase of a bi-porous material containing spherical nanovoids and

andomly oriented spheroidal microvoids has been treated. This re-

ult is of a great interest for modeling the elastic behavior of bi-

orous materials such as the irradiated uranium dioxide. This work

roves that the MRP approach can be easily applied to complex

icrostructures such as nanovoids together with different kinds of

eterogeneities. 

ppendix A. Auxiliary problem 

The auxiliary problem relative to the pattern S ( Section 3.2 ) is

efined as a spherical cavity (radius r 1 ) surrounded by a matrix

ayer (index m , radius r 0 ). This domain is embedded in an infinite

omogeneous medium (reference medium, index 0) submitted to

 remote strain ε0 applied at infinity. The interface stress model is

pplied at the interface between the void and the matrix. 

1. Hydrostatic loading 

First, an hydrostatic remote strain ε0 = ε0 
h 

i is applied. The dis-

lacement field and stress vector in each phases have the following

orms (in the spherical coordinates system): 

 i ∈ { m, 0 } , u 

(i ) = 

(
A i r + 

B i 

r 2 

)
e r and 

(i ) · n = 

(
3 k i A i −

4 μi B i 

r 3 

)
e r (A.1) 

The four constants, A 0 , B 0 , A m 

and B m 

have to be determined

y using the boundary conditions. For the displacement field in the

eference medium at infinity, it comes that A 0 = ε0 
h 

. Then, the three

ther constants are obtained from the continuity of the stress vec-

or at �0 , the continuity of the displacement at �0 , and the equi-

ibrium conditions of the imperfect coherent interface at �1 . 

Then the average of the stress and strain fields over the pattern

can be easily expressed and it comes that: 

 

 

 

 

 

T 0 
M S| h = 

(3 k 0 + 4 μ0 )(4 αh − 3 k 0 βh ) 

4 γh 

k HS 
M S = 

4 

3 

3 k m 

μm 

(1 − f S ) r 1 + k s (3 k m 

+ 4 f S μm 

) 

(3 f S k m 

+ 4 μm 

) r 1 + 4(1 − f S ) k s 

(A.2) 

 

 

 

 

 

αh = k s (4 f S μm 

+ 3 k m 

) + 3(1 − f S ) k m 

μm 

r 1 
βh = 4(1 − f S ) k s + r 1 (3 f S k m 

+ 4 μm 

) 
γh = k s (4((1 − f S ) μ0 + f S μm 

) + 3 k m 

) 
+ r 1 (3 f S k m 

(μ0 − μm 

) + μm 

(3 k m 

+ 4 μ0 )) 

(A.3) 
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Table A1 

Coefficients a (1) 
j 

, b (1) 
j 

, c (1) 
j 

, d (1) 
j 

, and e (1) 
j 

( ∀ j ∈ [1 , . . . , 12] ). 

j a (1) 
j 

b (1) 
j 

c (1) 
j 

d (1) 
j 

e (1) 
j 

1 −288 1080 −3024 1800 432 

2 −1392 −600 −2016 2400 1608 

3 −1632 −920 −336 1800 1088 

4 −576 −1080 1512 450 −621 

5 −2208 600 −504 3300 −2028 

6 −1632 920 −336 1800 −1312 

7 −432 1080 −4536 2700 −702 

8 −1992 −600 −4536 30 0 0 −912 

9 −2176 −920 −1008 10 0 0 −256 

10 −432 −1080 3024 −2025 513 

11 −1608 600 2016 −1500 492 

12 −1088 920 336 −200 32 

Table A2 

Coefficients b (2) 
j 

, e (2) 
j 

, a (3) 
j 

, b (3) 
j 

, and b (4) 
j 

( ∀ j ∈ [1 , . . . , 12] ). 

j b (2) 
j 

e (2) 
j 

a (3) 
j 

b (3) 
j 

b (4) 
j 

1 1800 −288 −342 −2025 −1170 

2 2400 −1392 −708 −1500 −300 

3 1800 −1632 −48 −200 −120 

4 −1800 414 −684 2025 1170 

5 −2400 1812 −732 1500 300 

6 −1800 1968 −48 200 120 

7 1800 468 −513 −2025 −1170 

8 2400 1128 −948 −1500 −300 

9 1800 384 −64 −200 −120 

10 −1800 −342 −513 2025 1170 

11 −2400 −708 −492 1500 300 

12 −1800 −48 −32 200 120 

w  

[  

w

∀

 

 

t  

t  

a

 

U

d  

E

μ  

 

i⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

 

Particularly, when the reference medium is the matrix, it comes

that: 

T m 

M S| h = f S 
(3 k m 

+ 4 μm 

)(4 k s − 3 k m 

r 1 ) 

4(k s + μm 

r 1 ) 
(A.4)

The scalar f S = (r 1 /r 0 ) 
3 corresponds to the porosity of the pattern

S . 

A2. Deviatoric loading 

Then a deviatoric remote strain is applied (in the Cartesian co-

ordinates system): 

ε0 = −γ (e x ⊗ e x + e y ⊗ e y − 2 e z ⊗ e z ) (A.5)

In each phase ( ∀ i ∈ { m , 0}), the displacement and stress vector

fields are ( ν i refers to Poisson ratios): 

u 

(i ) = −
(

A i r + B i r 
3 + 

C i 
r 2 

+ 

D i 

r 4 

)(
1 − 3 cos 2 (θ ) 

)
e r 

−
(

3 A i r + 

(7 − 4 νi ) r 
3 

2 νi 

B i + 

6(1 − 2 νi ) 

(5 − 4 νi ) r 2 
C i −

2 

r 4 
D i 

)

× cos (θ ) sin (θ ) e θ (A.6)

σ(i ) · n 

μi 

= 

(
A i −

1 

2 

r 2 B i −
2(5 − νi ) 

(5 − 4 νi ) r 3 
C i −

4 

r 5 
D i 

)(
1 + 3 cos (2 θ ) 

)
e r

−
(

6 A i + 

(7 + 2 νi ) r 
2 

νi 

B i + 

12(1 + νi ) 

(5 − 4 νi ) r 3 
C i + 

16 

r 5 
D i 

)

× cos (θ ) sin (θ ) e θ (A.7)

The eight constants A 0 , B 0 , C 0 , D 0 , A m 

, B m 

, C m 

and D m 

have to

be determined. The remote strain imposes that A 0 = γ and B 0 = 0 .

The six other constants are obtained from the continuity of dis-

placement field components u r and u θ at �0 , the continuity of the

stress field components σ rr and σ r θ at �0 , and the equilibrium of

the imperfect coherent interface at �1 . The averages of the stress

and strain fields over the pattern S can then be derived. Then the

deviatoric parts of the tensors T 

0 
M S and C 

HS 
M S read: 

T 0 M S| d = −10 

3 k 0 + 4 μ0 

15(k 0 + μ0 ) r 
3 
0 

μ0 
C 0 
γ

and μHS 
M S = 

R n + V n μ0 

R d + V d μ0 

(A.8)

The constants R n , R d , V n and V d depend on the material proper-

ties and the geometry ( k m 

, μm 

, k s , μs , r 0 and r 1 ) but do not depend

on the elastic properties of the reference medium. Moreover, they

are polynomials of the second degree in terms of r 1 and they can

be written as R n = A (3 , 1) , R d = A (4 , 2) , V n = A (1 , 2) , V d = A (2 , 3)

with: 

A (i, j) = 

3 ∑ 

k =1 

f k (i, j) r k −1 
1 (A.9)

The functions f k ( i, j ) (with k ∈ [1 , . . . , 3] ) have the following

forms: 

f 1 (i, j) = k s μs μ
3 − j 
m 

ξ ( M 

(i ) 
1 

, M 

(i ) 
2 

, M 

(i ) 
3 

) 

f 2 (i, j) = μ4 − j 
m 

[
k s ξ

(
M 

(i ) 
4 

, M 

(i ) 
5 

, M 

(i ) 
6 

)
+ μs ξ

(
M 

(i ) 
7 

, M 

(i ) 
8 

, M 

(i ) 
9 

)]
f 3 (i, j) = μ5 − j 

m 

ξ ( M 

(i ) 
10 

, M 

(i ) 
11 

, M 

(i ) 
12 

) (A.10)

where 

ξ (x, y, z) = k 2 m 

x + k m 

μm 

y + μ2 
m 

z (A.11)

The coefficients M 

(i ) 
j 

, ( ∀ i ∈ [1 , . . . , 4] , ∀ j ∈ [1 , . . . , 12] ) depend only

on the porosity of the pattern f S = (r 1 /r 0 ) 
3 and can be written as:

M 

(i ) 
j 

= a (i ) 
j 

+ b (i ) 
j 

f S + c (i ) 
j 

f 5 / 3 S + d (i ) 
j 

f 7 / 3 S + e (i ) 
j 

f 10 / 3 
S (A.12)
here the coefficients a (i ) 
j 

, b (i ) 
j 

, c (i ) 
j 

, d (i ) 
j 

, and e (i ) 
j 

( ∀ i ∈
1 , . . . , 4] , ∀ j ∈ [1 , . . . , 12] ) are obtained from Tables A.1 and A.2 ,

ith the following relations: 

 j ∈ [1 , . . . , 12] , a (2) 
j 

= a (1) 
j 

, a (3) 
j 

= a (4) 
j 

, 

c (2) 
j 

= c (1) 
j 

= −c (3) 
j 

= −c (4) 
j 

, 

d (2) 
j 

= d (1) 
j 

= −d (3) 
j 

= −d (4) 
j 

, 

e (3) 
j 

= −e (1) 
j 

, e (4) 
j 

= −e (2) 
j 

(A.13)

The expression of C 0 / γ (in (A.8) ) does not depend on γ , and

hen the expressions of T 

0 
M S does not depend on the amplitude of

he external loading. Its expression can easily be derived using (11)

nd (12) : 

C 0 
γ

= r 3 0 

15(k 0 + μ0 )(μ0 − μHS 
M S ) 

(9 k 0 + 8 μ0 ) μ0 + 6 μHS 
M S (k 0 + 2 μ0 ) 

(A.14)

nlike the effective bulk modulus k HS 
M S , the shear modulus μHS 

M S 
epends on the stiffness C 0 (only on μ0 ). From this remark and

q. (13) , it comes: 

GV 
M S = 

V n 

V d 

and μGR 
M S = 

R n 

R d 

(A.15)

Let us remark that, when the reference medium is the matrix,

t comes that: 

 

 

 

 

 

 

 

 

 

 

 

T m 

M S| d = f S 
10 μm 

(3 k m 

+ 4 μm 

) βd 

3 k m 

δd + 4 μm 

ζd 

βd = (k s + r 1 μm 

)(μs − r 1 μm 

) 

δd = 3 r 1 μm 

(r 1 μm 

+ μs ) + 2 k s (2 r 1 μm 

+ μs ) 

ζd = 3 k s (r 1 μm 

+ μs ) + 2 r 1 μm 

(r 1 μm 

+ 2 μs ) 

(A.16)
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