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a b s t r a c t 

The problem of an elastic film bonded to a finite-thickness graded substrate under different loading con- 

ditions is investigated, in which the shear modulus of the graded substrate is assumed to vary exponen- 

tially along its thickness and perfect adhesion is adopted at the contact interface. The governing singular 

integral equation for the present model is formulated analytically in terms of interfacial shear stress. 

With the help of the collocation method, the governing equation is further solved numerically. The in- 

terfacial shear stress, the normal stress in the film as well as the singularity near the film edges are 

discussed in order to evaluate the interface behaviors that are closely related to failure and destruction 

of the film/substrate systems. It is found that the interface behavior of the film/substrate system can be 

modified by tuning the material and geometric parameters of both the film and the graded substrate. 

Compared with cases under a non-symmetric loading and a symmetric one, the effect of some parame- 

ters is observed to be dependent of the loading type. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The mechanical behavior of film/substrate systems are of in-

erest in a wide range of industrial, hi-tech and biotechnological

pplications in recent decades, including, for example, piezoelec-

ric sensors and actuators attached to a structure to monitor and

ontrol the deformation and vibration of the host structure ( Fang

t al., 2013; Gladwell, 1980; Jin and Wang, 2011 ), stretchable and

exible electronics made of inorganic films and soft substrate ( Dai

t al., 2015 ), and etc. A film/substrate system can also be used to

ncover the mechanism of cell differentiations, which are affected

y the surrounding substrate ( Banerjee and Marchetti, 2012 ). The

hallenge of establishing suitable models is therefore constantly

aced to predict the interface stresses that may result in failure and

estruction of the film/substrate systems ( Huang et al., 2010 ). 

Various studies have been done to access the interface stress

istribution in the film/substrate system. Generally, these works

an be categorized into two typical approaches. The first one, rep-

esented by Akisanya and Fleck (1994) and Yu et al. (2001) , makes

n assumption that a pre-existing crack lies on the edge of a thin

lm, and deals the problem with the fracture mechanics theory.

evertheless, a lack of pre-existing cracks or defects would be cru-
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ial in many cases ( Hu, 1979 ). The second one could be termed as a

ontact model, in which perfect bonding between the film and the

orresponding substrate is assumed and contact mechanics is used

o find the stress field at the interface and near the edge of the

lm. Using a contact model, Arutiunian (1968) studied the contact

roblem between a half plane and a stiffener with finite length,

nd gave an infinite power series solution. The same problem was

ell solved by Erdogan and Gupta (1971) later through tackling

he governing singular integral equation into terms of the interface

hear stress. Shield and Kim (1992) , considering the bending stiff-

ess of the film, employed a beam theory model for a thin film

onded to an elastic half plane to incorporate normal stresses at

ontact interface to the interfacial shear ones. The multi-layered

lms or multi-periodic films bonded to an elastic substrate was

odeled by Erodgan and Joseph (1990a,b ). A closed form solu-

ion of the governing singular equation was obtained by Alaca

t al. (2002) by adopting Vekua’s solution procedure of Prandtl’s

quation and assuming a nearly rectangular film profile. Jin and

ang (2011) discussed the electromechanical behavior of surface-

onded piezoelectric film attached to an infinite elastic half plane

ncluding the adhesive layer. Analysis of stress singularity in thin

lm bonded structures is considered by Lanzoni (2011) for sev-

ral geometric configurations under different loading conditions.

ecently, the problem of a Timoshenko beam of finite length per-

ectly bonded to a homogeneous isotropic half plane loaded by
film bonded to a finite thickness graded substrate, International 
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Fig. 1. The two-dimensional non-slipping contact model between an elastic film 

of length l f and a finite-thickness graded substrate. h is the length of the graded 

substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic of the mechanical behavior of the bonded interface between a 

film and an elastically graded substrate. 
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concentrated forces and couples is considered by Lanzoni and Radi

(2016) . 

All the bonded models mentioned above involve homogeneous

materials. Materials with gradient variation along certain direc-

tion have been widely found in nature, for example, teeth and

bones ( Suresh, 2001 ). What is more, functionally graded materi-

als (FGM) have attracted numerous attentions of scientists due to

their novel performance ( Giannakopoulos and Pallot, 20 0 0; Qian et

al., 2009 ) in various present and potential applications. The tradi-

tional contact problem between a stamp or punch and a graded

medium have been explored extensively to find the contact stress

that would cause crack initiation of wear of surface. These works

include Booker et al. (1985), Guler and Erdogan (20 04, 20 07 ), Choi

and Paulino (2008, 2010 ), Ke and his co-workers (20 06, 20 08), El-

loumi et al. (2010), Chen and Chen (2013a,b ), Dag et al. (2012),

Chen et al. (2015), Jin et al. (2013) , etc. In the mentioned works,

contact stresses at the contact region are mainly focused. As for

the sub-surface stresses and local deflection of a graded medium

loaded by a pre-determined pressure or a rigid punch, Chidlow et

al. (2011, 2012 ) proposed a valid analytical method. 

Although both experimental studies and theoretical researches

on the contact mechanics of graded materials have been reported,

existing literature is mainly concerned with the traditional inden-

tation problem, and few works have discussed the bonded prob-

lem between a deformable layer and a graded medium. Guler

(2008) and Guler et al. (2012) explored the contact problem be-

tween a thin film and a graded/FGM coated half plane using both

FEM and analytical methods. Recently, Chen et al., (2016a, b ) inves-

tigated the contact problem of an elastic film subjected to a mis-

match strain on a finite-thickness graded substrate. It was found

that the interfacial behavior is significantly influenced by the thick-

ness of the graded substrate. Whether the result under a mis-

match strain loading condition is consistent with that under a non-

symmetric load when a film bonded to a finite-thickness graded

substrate? How can we tune different material and geometric pa-

rameters to improve the interfacial behavior? 

In order to answer the above questions, a non-slipping contact

model is established in this paper, in which an elastic film attach

to a graded substrate of finite thickness under a non-symmetric

loading condition. The governing integro-differential equation for

the present model is formulated analytically in terms of interfacial

shear stress, and is further solved numerically with the help of the

collocation method. The interfacial shear stress, the normal stress

in the film as well as the singularity near the film edges are mainly

discussed in order to evaluate the interface behavior that is closely

related to failure and destruction of the film/substrate systems 

2. The bonded model of a thin film on a finite-thickness 

graded substrate 

The two-dimensional non-slipping contact model between an

elastic film and a finite-thickness graded substrate which is fixed

on a rigid foundation is shown in Fig. 1 , where the length of the

film is l f =2 a. h f , μf , ν f are denoted as the thickness, the shear
Please cite this article as: P. Chen et al., The interfacial analysis of a 

Journal of Solids and Structures (2017), http://dx.doi.org/10.1016/j.ijsols
odulus and the Poisson’s ratio of the film, respectively, and h is

he thickness of the graded substrate. 

The shear modulus of the graded substrate is assumed to abide

y 

2 ( y ) = μ1 exp ( γ y ) , 0 ≤ y ≤ h, (1)

here μ1 is the value of shear modulus at the surface of the

raded substrate. γ is a constant characterizing the inhomogene-

ty of material, which can be expressed as 

= 

1 

h 

ln 

(
μ3 

μ1 

)
, (2)

here μ3 corresponds to the shear modulus at the bottom of

he graded substrate. The exponential function is commonly used

o describe a graded medium in existing theoretical models, and

t covers a fairly broad class of graded materials, for example,

raded γ -TiAl/Y-TZP and Ni-Al 2 O 3 ( Suresh, 2001; Suresh et al.,

997 ). When γ =0 is chosen, the finite-thickness graded substrate

ill reduced to a homogeneous elastic one. Note that the problem

f a thin-film bonded to an elastic layer subjected to a thermal

ariation has been well solved by Lanzoni and Radi (2009) . In the

resent model, the Poisson’s ratio of the graded substrate is as-

umed to be a constant ν due to the neglectable effect. 

. Governing equation of the present model 

For the present plane contact problem, th equilibrium equations

f the graded substrate in absence of body forces can be written as

 Chen et al., 2016b ), 

( κ + 1 ) 
∂ 2 u 

∂ x 2 
+ 2 

∂ 2 v 
∂ x∂ y 

+ ( κ − 1 ) 
∂ 2 u 

∂ y 2 
+ γ ( κ − 1 ) 

∂u 

∂y 

+ γ ( κ − 1 ) 
∂v 
∂x 

= 0 , (3)

( κ − 1 ) 
∂ 2 v 
∂ x 2 

+ 2 

∂ 2 u 

∂ x∂ y 
+ ( κ + 1 ) 

∂ 2 v 
∂ y 2 

+ γ ( 3 − κ) 
∂u 

∂x 

+ γ ( κ + 1 ) 
∂v 
∂y 

= 0 , (4)

here u ( x, y ) and v ( x, y ) are the displacement components in x and

 directions, respectively, κ = 3 −4 ν is adopted for the plane strain

ase and κ = (3 −ν)/(1 + ν) for the plane stress one. 

Taking the Fourier transform of Eqs. (3) and ( 4 ), and carry-

ng out a lengthy mathematic analysis similar to Chen and Chen

2013b) , the surface displacements of the graded substrate u ( x , 0)

nd v ( x , 0) can be expressed as 

∂u ( x, 0 ) 

∂x 
= − κ + 1 

4 πμ1 

∫ a 

−a 

σxy ( r, 0 ) 

r − x 
d r + 

κ − 1 

4 μ1 

σyy ( x, 0 ) 

+ 

1 

π

∫ a 

−a 
[ K 11 ( x, r ) σxy ( r, 0 ) + K 12 ( x, r ) σyy ( r, 0 ) ] d r. (5)
film bonded to a finite thickness graded substrate, International 

tr.2017.04.029 
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Fig. 3. (a) The bonded model between an elastic film and a graded substrate un- 

der a loading at a single end on the film; (b) The model under a mismatch strain 

loading at the interface. 

(a)

(b)

Fig. 4. Comparison of the nondimensional interfacial shear stress σ f 
xy ( x, 0 ) / ( P/ h f ) 

and the normal stress in the thin-film σ f 
xx ( x, 0 ) / ( P/ h f ) for the model of an film 

in adhesive contact with a homogeneous half plane and the present one with a 

relatively thick substrate under a loading at a single film end, where μf / μ1 =0.6 

and l f / h f =2. 
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Fig. 5. The distribution of the nondimensional interfacial shear stress 

σ f 
xy ( x, 0 ) / ( P/ h f ) and the normal stress in the thin-film σ f 

xx ( x, 0 ) / ( P/ h f ) for 

the model of an elastic film bonded to a finite-thickness graded substrate with 

determined μf / μ1 =28, a / h=1 and l f / h f =32, but with different ratios μ3 / μ1 . 

s  
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e

σ

σ

w

 

t  

t

Q

a∫

w  

l

 

a

σ

∂v ( x, 0 ) 

∂x 
= −κ − 1 

4 μ1 

σxy ( x, 0 ) − κ + 1 

4 πμ1 

∫ a 

−a 

σyy ( r, 0 ) 

r − x 
d r 

+ 

1 

π

∫ a 

−a 
[ K 21 ( x, r ) σxy ( r, 0 ) + K 22 ( x, r ) σyy ( r, 0 ) ] d r. (6) 

here σ xy ( x ,0) is the interfacial shear stress and σ yy ( x ,0) is the

ormal one between the graded substrate and the bonded film,

nd K ij ( x,r ) are bounded functions given in the Appendix. 

The film thickness h f is assumed to be sufficiently small so that

embrane assumption holds in the present model. The film is as-
Please cite this article as: P. Chen et al., The interfacial analysis of a 
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umed perfectly bonded to the finite-thickness graded substrate

ithout any initial stress, and only the interfacial shear stress is

enerated between the film and the substrate when loads are ex-

rted, i.e., 

xy ( x, 0 ) = σ f 
xy ( x, 0 ) = 

{
0 , x < −a, x > a, 

− f ( x ) , −a < x < a, 
(7) 

yy ( x, 0 ) = σ f 
yy ( x, 0 ) = 0 , (8) 

here the superscript ‘ f ’ refers to the film. 

Due to a small value of the film thickness, the normal stress in

he film is assumed to be uniform across the thickness. Based on

he equilibrium diagram in Fig 2 , one can readily find, 

 −
∫ x 

−a 

σ f 
xy ( r, 0 ) dr = σ f 

xx ( x, 0 ) h f , (9) 

nd 

 a 

−a 

σ f 
xy ( r, 0 ) dr = −

∫ a 

−a 

f ( r ) dr = Q − P, (10) 

here P and Q are loads per unit length exerted at the right and

eft edges of the film, respectively. 

Therefore, the normal stress in the film σ f 
xx ( x, 0 ) can be written

s, 

f 
xx ( x, 0 ) = 

Q 

h f 

+ 

1 

h f 

∫ x 

−a 

f ( r ) dr , (11) 
film bonded to a finite thickness graded substrate, International 

r.2017.04.029 
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(a) (b)

(c) (d)

Fig. 6. The distribution of the nondimensional interfacial shear stress σ f 
xy ( x, 0 ) / ( P/ h f ) and the normal stress in the thin-film σ f 

xx ( x, 0 ) / ( P/ h f ) for the model of an elastic film 

bonded to a finite-thickness graded substrate with determined a / h = 1 and l f / h f =32, but with different ratios μf / μ1 . (a) and (b) for μ3 / μ1 =7; (c) and (d) for μ3 / μ1 =1/7. 
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and the normal strain in the film induced by the interface stress is

ε f xx ( x, 0 ) = 

∂ u 

f 

∂x 
= 

1 + κ f 

8 μ f 

σ f 
xx ( x, 0 ) , (12)

i.e., 

ε f xx ( x, 0 ) = 

1 + κ f 

8 μ f 

(
Q 

h f 

+ 

1 

h f 

∫ x 

−a 

f ( r ) dr 

)
, (13)

where κ f = 3 −4 ν f for the plane strain problem and

κ f = (3 −ν f )/(1 + ν f ) for the plane stress one. 

From Eq. (5) , the strain at the surface of the graded substrate

may be written as, 

ε xx ( x, 0 ) = 

∂u ( x, 0 ) 

∂x 
= − κ + 1 

4 πμ1 

∫ a 

−a 

σxy ( r, 0 ) 

r − x 
d r 

+ 

1 

π

∫ a 

−a 

K 11 ( x, r ) σxy ( r, 0 ) d r. (14)

Besides the loads exerted at the ends of the film, the mis-

match strain between the film and the graded substrate ε0 ( x ) can

also be taken into consideration, for example, a constant strain

ε0 = [(1 + v ) α− (1 + v f ) αf ] 
T might be caused by a uniform temper-

ature change 
T at the same time, where α and αf are the thermal

expansion coefficients of the graded substrate and the film, respec-

tively. 

Thus, the compatibility condition at the interface can be given

as, 

ε xx ( x, 0 ) − ε f ( x, 0 ) = ε 0 ( x ) . (15)
xx 

Please cite this article as: P. Chen et al., The interfacial analysis of a 
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Combining Eqs. (13) –( 15 ) yields the governing equation of the

resent model, i.e., 

1 

π

∫ a 

−a 

[ 
1 

r − x 
− 4 μ1 

κ + 1 

K 11 ( x, r ) 

] 
f ( r ) dr − χ

2 h f 

∫ x 

−a 

f ( r ) dr 

= 

χ

2 h f 

Q + 

4 μ1 

κ + 1 

ε 0 ( x ) , (16)

here χ = 

1+ κ f 

1+ κ
μ1 
μ f 

is a parameter determining the compliancy be-

ween the film and the surface layer of the graded substrate. 

. Solutions to the integral equation 

As shown in Fig. 3 (a) and (b), basic mechanical loadings of the

lm/substrate system consist of single loading on the film and mis-

atch strain loading at the interface. Based on the fundamental

olutions under these basic loadings, the problems involving more

omplicated loadings could be solved with the help of superposi-

ion method. In the following, the fundamental solutions are stud-

ed for the interfacial mechanics in the film/substrate systems un-

er these basic mechanical loadings. 

.1. Loading at a single end of the film 

When Q = 0 and ε0 ( x ) = 0, the model shown in Fig. 1 will reduce

o a special one that is, a film with loading at a single end. By

ntroducing the following normalized definition 

 = as, r = at, (17)
film bonded to a finite thickness graded substrate, International 
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(a) (b)

(c) (d)

Fig. 7. The distribution of the nondimensional interfacial shear stress σ f 
xy ( x, 0 ) / ( P/ h f ) and the normal stress in the thin-film σ f 

xx ( x, 0 ) / ( P/ h f ) for the model of an elastic film 

bonded to a finite-thickness graded substrate with determined μf / μ1 =28 and l f / h f =32, but with different ratio a / h . (a) and (b) for μ3 / μ1 =7; (c) and (d) for μ3 / μ1 =1/7. 
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F
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e

T  

t  
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a

σ

he governing equation in Eq. (16) and the equilibrium equation in

q. (10) becomes, 

1 

π

∫ 1 

−1 

[ 
1 

t − s 
− 4 μ1 a 

κ + 1 

K 11 ( s, t ) 

] 
f ( t ) dt − aχ

2 h f 

∫ s 

−1 

f ( t ) dt = 0 , (18) 

 1 

−1 

f ( t ) dt = −P 

a 
. (19) 

Due to the Cauchy-type singular kernel in the governing equa-

ion, the solution to Eqs. (18) and ( 19 ) could be expressed as

 Gladwell, 1980; Guler, 2008 ), 

f ( s ) = 

1 √ 

1 − s 2 

∞ ∑ 

n =0 

A n T n ( s ) , (20) 

here T n ( ·) is the Chebyshev polynomial of the first kind of order

, A n denotes unknown constant to be determined. 

Taking into consideration the properties of Chebyshev polyno-

ials in the Appendix, Eq. (18) can be reduced to 

∞ 

 

n =1 

A n [ U n −1 ( s ) + Q n ( s ) ] = F ( s ) , | s | ≤ 1 , (21)

here, 

 n ( s ) = − 1 

π

∫ 1 

−1 

4 μ1 a 

κ + 1 

K 11 ( s, t ) 
T n ( t ) √ 

1 − t 2 
dt + 

χa 

2 h f 

1 

n 

U n −1 ( s ) 
√ 

1 − s 2

(22) 
Please cite this article as: P. Chen et al., The interfacial analysis of a 
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 ( s ) = A 0 

{
χa 

2 h f 

[
π − cos −1 ( as ) 

]
+ 

1 

π

∫ 1 

−1 

4 μ1 a 

1 + κ

K 11 ( s, t ) √ 

1 − t 2 
ds 

}
. (23) 

The value of A 0 can be readily obtained from Eq. (19) as 

 0 = − P 

πa 
. (24) 

Thus, the governing integral Eq. (18) can be reduced to a system

f algebraic Eq. (21) in terms of the unknown constants A n . Trun-

ating the infinite series at n = N and selecting suitable collocation

oints as roots of the following Chebyshev polynomials ( Erdogan

t al., 1973 ), 

 N ( s i ) = 0 , i = 1 , ..., N, (25)

he system of algebraic equations can be well solved with N un-

nown constants A n ( n = 1, 2,..., N ). 

The interfacial shear stress σ f 
xy ( x, 0 ) can be approximately given

s, 

f 
xy ( x, 0 ) = − f ( x ) = −

N ∑ 

n =0 

A n T n ( x/a ) √ 

1 − ( x/a ) 
2 

. (26) 
film bonded to a finite thickness graded substrate, International 
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(a)

(b)

Fig. 8. Variation of the stress intensity factors K 2 ( −a ) / ( P 
√ 

a / h f ) and 

K 2 (a ) / ( P 
√ 

a / h f ) near film ends versus the ratio of half of the film length to 

the substrate thickness a / h for different ratios μ3 / μ1 , where μf / μ1 =28, l f / h f =32. 
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Then, the normal stress in the film becomes, 

σ f 
xx ( x, 0 ) = 

1 

h f 

{
− a A 0 

[
π − cos −1 ( x ) 

]

+ a 

N ∑ 

n =1 

A n 

n 

U n −1 

(
x 

a 

)√ 

1 −
(

x 

a 

)2 
}

. (27)

The shear stress singularities at the left and right end of the

thin film can be expressed as 

K 2 ( −a ) 

P 
√ 

a / h f 

= −
N ∑ 

n =0 

A n T n ( −1 ) , (28)

K 2 ( a ) 

P 
√ 

a / h f 

= −
N ∑ 

n =0 

A n T n ( 1 ) . (29)

4.2. A mismatch loading in the film/substrate system 

When P = Q = 0 is chosen in Fig. 1 , the applied loading in the

film/substrate system is reduced to the case of a mismatch strain

at the interface as shown in Fig. 3 (b). For better understanding and

simplicity, ε0 ( x ) is usually assumed to be a constant, i.e., ε0 ( x ) = ε0 .

The solution to the governing integral Eq. (16) can also be ex-

pressed as those in Eq. (20) for this case. Considering the orthogo-

nality of the Chebyshev polynomials, one can readily obtain, 

A 0 = 0 , (30)
Please cite this article as: P. Chen et al., The interfacial analysis of a 
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nd 

∞ 

 

n =1 

A n [ U n −1 ( s ) + Q n ( s ) ] = 

4 μ1 

κ + 1 

ε 0 , | s | ≤ 1 , (31)

here 

 n ( s ) = − 1 

π

∫ 1 

−1 

4 μ1 a 

κ+1 

K 11 ( s, t ) 
T n ( t ) √ 

1 − t 2 
dt + 

χa 

2 h f 

1 

n 

U n −1 ( s ) 
√ 

1 − s 2 

(32)

Based on the solutions to Eq. (31) and taking into consideration

he symmetry of this problem, we can find the shear stress singu-

arities at the both ends of the thin film, i.e., 

K 2 ( −a ) 

4 μ1 ε 0 
√ 

a / ( κ + 1 ) 
= 

K 2 ( a ) 

4 μ1 ε 0 
√ 

a / ( κ + 1 ) 
= −

N ∑ 

n =0 

A n T n ( −1 ) , (33)

For the bonded problem between a thin-film and a finite graded

ubstrate subjected to a mismatch loading, detailed analysis can be

ound in our recent work ( Chen et al., 2016b ). 

After obtaining the fundamental solutions under these basic

oading cases, the problems involving more complicated loadings

an be determined by using the superposition method. 

. Results and discussion 

In the following section, interfacial properties of a thin

lm bonded to a finite-thickness graded substrate are explored.

hroughout the analysis, a plane strain condition is adopted, and

he Poisson’s ratios of the film and the substrate are the same,

= ν f = 0.3. The symmetrical loading case has been discussed in

etail for the graded substrate in our previous work (a mismatch

oading case in Chen et al. (2016b) ). Therefore, the interfacial prop-

rties of the film/substrate system under unsymmetrical loadings

re mainly focused in the following analysis. 

Note that the analyses in the present paper and those in

hidlow et al. (2011, 2012 ) are totally different. Chidlow et al.

2011, 2012 ) have proposed a Fourier series based solution method

o analyze the sub-surface stresses and local deflection of a graded

edium loaded by a pre-determined pressure and a rigid punch

a contact model of a single deformable solid). The stresses in

hidlow et al. (2011, 2012 )’s model vanish at the deformable solid’s

dge because of Saint-Venant’s Principle. However, for the bonded

roblem in the present paper, the elastic film is of a finite length,

nd the effect of the film edges cannot be neglected. What’s more,

he stresses at the film edges provide the most important informa-

ion, because that the interface near the film edges are the most

ulnerable place for the film/substrate system. Difference between

he present model and the one in Chidlow et al. (2011, 2012 ) in-

ludes also the final results. In Chidlow et al. (2011, 2012 )’s result,

he sub-surface stress field in the solid is calculated loaded by a

re-determined pressure and a rigid punch. However, the interfa-

ial shear stress, the normal stress in the film as well as the stress

ingularities near the film edges induced by different loadings are

ainly discussed in the present paper to evaluate the interface be-

aviors that are closely related to failure and destruction of the

lm/graded substrate systems. 

When γ =0 and h / a → ∞ in the present model, the finite-

hickness graded substrate will reduced to a special one, i.e., an ho-

ogeneous half plane. The distribution of the nondimensional in-

erfacial shear stress σ f 
xy ( x, 0 ) / ( P/ h f ) and the normal stress in the

hin-film σ f 
xx ( x, 0 ) / ( P/ h f ) under a loading at a single film end for

he homogeneous half plane is shown in Fig. 4 (a) and (b), in which

e take μf / μ1 =0.6 and l f / h f =2. One can readily find that non-

ymmetric stresses are induced due to the non-symmetric load-

ng. The interfacial shear stress increases dramatically toward each
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(a) (b)

(c) (d)

Fig. 9. The distribution of the nondimensional interfacial shear stress σ f 
xy ( x, 0 ) / ( P/ h f ) and the normal stress in the thin-film σ f 

xx ( x, 0 ) / ( P/ h f ) for the model of an elastic film 

bonded to a finite-thickness graded substrate with determined μf / μ1 =28 and a / h=1, but with different ratios l f / h f . (a) and (b) for μ3 / μ1 =7; (c) and (d) for μ3 / μ1 =1/7. 

Table 1 

Variation of the Mode II stress intensity factors near both ends, 

K 2 ( −a ) / ( P 
√ 

a / h f ) and K 2 (a ) / ( P 
√ 

a / h f ) for selected ratio of shear 

modulus μ3 / μ1 in cases of determined parameters μf / μ1 =28, 

a / h = 1 and l f / h f =32. 

μ3 / μ1 =1/7 μ3 / μ1 =1 μ3 / μ1 =7 

K 2 ( −a ) / ( P 
√ 

a / h f ) 0.0187 0.0127 0.0086 

K 2 (a ) / ( P 
√ 

a / h f ) 0.0327 0.0296 0.0282 

e  
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t
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n  

fi

 

s  

i  

s  
nd and is obvious singular near both ends of the film. The nor-

al stress in the film equals the value of the dimensionless ap-

lied load P / h f at the loaded end, while remaining zero at the free

nd. The results obtained from the present model agree well with

hose reported by Guler et al. (2012) . Thus, the proposed model

an be seen as the extending of the existing bonded problems of

he film/elastic homogeneous substrate system. 

When it comes to graded substrates, comprehensive analyses

f the effect of different parameters are given in Figs. 5–11 . Fig.

 (a) and (b) shows the effect of the ratio of shear modulus μ3 / μ1 

n the distributions of interfacial shear stress and the normal

tress in the film, respectively, in which μf / μ1 = 28, a / h = 1 and

 f / h f =32. From Fig. 5 (a), the interfacial shear stress at both the free

nd loaded ends of the film varies when different μ3 / μ1 is cho-

en. Variation of the corresponding Mode II stress intensity factors

ear both ends, K 2 ( −a ) / ( P 
√ 

a / h f ) and K 2 (a ) / ( P 
√ 

a / h f ) is given in

able 1 . Obviously, the stress intensity factors at the free end are
Please cite this article as: P. Chen et al., The interfacial analysis of a 

Journal of Solids and Structures (2017), http://dx.doi.org/10.1016/j.ijsolst
uch less than those at the loaded one, and the values at both

nds decrease with an increasing μ3 / μ1 . The normal stress in the

lm is found to decrease with an increasing μ3 / μ1 in the bonded

rea. All results suggest that, for a thin-film bonded to a finite-

hickness graded substrate under a single film loading, a substrate

ith an increasing modulus in the thickness is beneficial to a more

eliable interface and a more durable film. 

The distribution of the nondimensional interfacial shear

tress σ f 
xy ( x, 0 ) / ( P/ h f ) and the nondimensional normal stress

f 
xx ( x, 0 ) / ( P/ h f ) in the film as a function of the ratio μf / μ1 is

hown in Fig. 6 . A fixed value μ3 / μ1 =7 is used in Fig. 6 (a) and

b), while μ3 / μ1 =1/7 is adopted in Fig. 6 (c) and (d). One can read-

ly find that both the interfacial shear stress and the normal stress

n the film increase with μf / μ1 no matter what value μ3 / μ1 is

hosen. The corresponding Mode II stress intensity factor is given

n Table 2 , specifically, the factors at the free end increase while

he ones at the loaded end decrease significantly when μf / μ1 in-

reases. However, the stress intensity factors at both ends have

een found to increase with an increasing μf / μ1 under a mismatch

train loading ( Chen et al., 2016b ), which shows a totally different

ariation trend under the present single film end loading. This phe-

omenon has been reported by Lanzoni (2011) , in which an elastic

lm bonded to a homogeneous half plane is discussed. 

The ratio effect of contact region to the thickness of the sub-

trate a / h on the interfacial stress and the normal stress in the film

s given in Fig. 7 . Fig. 7 (a) and (b) correspond to the cases of a sub-

trate with an increasing modulus along the thickness μ3 / μ1 =7,
film bonded to a finite thickness graded substrate, International 
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Table 2 

The stress intensity factors K 2 ( −a ) / ( P 
√ 

a / h f ) and 

K 2 (a ) / ( P 
√ 

a / h f ) near both ends versus different ratios 

μf / μ1 in cases with fixed parameters a / h = 1, l f / h f = 32 

and μ3 / μ1 . 

μf / μ1 μ3 / μ1 =1/7 μ3 / μ1 =7 

K 2 ( −a ) 
( P 

√ 
a / h f ) 

K 2 (a ) 
( P 

√ 
a / h f ) 

K 2 ( −a ) 
( P 

√ 
a / h f ) 

K 2 (a ) 
( P 

√ 
a / h f ) 

28/69 0.0 0 03 0.2221 0.0 0 03 0.2220 

1 0.0 0 04 0.1417 0.0 0 06 0.1416 

5 0.0106 0.0642 0.0026 0.0635 

10 0.0143 0.0470 0.0047 0.0451 

28 0.0187 0.0327 0.0086 0.0282 

Table 3 

Variation of the Mode II stress intensity factors near 

both ends, K 2 ( −a ) / ( P 
√ 

a / h f ) and K 2 (a ) / ( P 
√ 

a / h f ) for 

selected ratio of the film thickness to its thickness 

l f / h f in cases of determined parameters μf / μ1 =28, 

a / h = 1 and μ3 / μ1 . 

l f / h f μ3 / μ1 =1/7 μ3 / μ1 =7 

K 2 ( −a ) 
( P 

√ 
a / h f ) 

K 2 (a ) 
( P 

√ 
a / h f ) 

K 2 ( −a ) 
( P 

√ 
a / h f ) 

K 2 (a ) 
( P 

√ 
a / h f ) 

32 0.0187 0.0327 0.0086 0.0282 

60 0.0087 0.0214 0.0033 0.0199 

100 0.0044 0.0158 0.0014 0.0152 

200 0.0016 0.0108 0.0 0 04 0.0107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The bonded model between an elastic film and a graded substrate under 

two opposite loadings at the ends of the film. 

(a)

(b)

Fig. 11. The distribution of the nondimensional interfacial shear stress 

σ f 
xy ( x, 0 ) / ( P/ h f ) and the normal stress in the thin-film σ f 

xx ( x, 0 ) / ( P/ h f ) for 

the model of an elastic film bonded to a finite-thickness graded substrate under 

two opposite loadings at the film ends with different ratios μ3 / μ1 , and fixed 

μf / μ1 = 28, a / h = 1 and l f / h f = 32. 

Table 4 

The stress intensity factors K 2 ( −a ) / ( P 
√ 

a / h f ) and 

K 2 (a ) / ( P 
√ 

a / h f ) near both ends versus different ratios μ3 / μ1 

for the cases of two opposite loadings at the ends of a film, and 

fixed parameters μf / μ1 =28, a / h=1, l f / h f =32. 

μ3 / μ1 =1/7 μ3 / μ1 =1 μ3 / μ1 =7 

K 2 ( −a ) / ( P 
√ 

a / h f ) 0.0140 0.0170 0.0195 

K 2 (a ) / ( P 
√ 

a / h f ) 0.0140 0.0170 0.0195 

w  

m  

s  

c  

v  

i  

e  

a  
while Fig. 7 (c) and (d) correspond to those with a decreasing stiff-

ness μ3 / μ1 =1/7. The a / h shows a more regular effect on the inter-

facial stress and the normal stress in the film for the form cases,

in which both stresses vary monotonically with an increasing a / h .

However, nonmonotonical variation of the interfacial shear stress

and the normal stress in the film can be found for the latter cases

in Fig. 7 (c) and (d). Variation of the corresponding Mode II stress

intensity factors at both the film edges versus the nondimensional

contact region a / h for different μ3 / μ1 is shown in Fig. 8 (a) and (b),

where the result of a homogeneous half plane case is also given

for comparison. It is easily found that both K 2 ( −a ) / ( P 
√ 

a / h f ) and

K 2 ( −a ) / ( P 
√ 

a / h f ) decrease monotonically with a / h for the cases of

μ3 / μ1 ≥ 1, while increase first then decrease for the case of μ3 / μ1 

< 1. Therefore, the ratio effect of contact region to the thickness

of the substrate on the interfacial properties can not be neglected.

The results of a finite substrate cannot be predicted by an infinite

model. However, if a / h → 0, the ratio effect weaken in all cases and

the intensity factors at both edges tend to the case of a homoge-

neous half plane. 

Fig. 9 displays the distributions of the interfacial shear stress

and the normal stress in the film affected by the parameter of

the ratio of the film thickness to its thickness l f / h f . A fixed value

μ3 / μ1 =7 is chosen in Fig. 9 (a) and (b), while μ3 / μ1 =1/7 is

adopted in Fig. 9 (c) and (d). Similar changes of the interfacial shear

stress and the normal stress in the film can be easily found for

the cases of and those of μ3 / μ1 =1/7. In both cases, the interfacial

shear stress as well as the normal stress in the film decrease with

an increasing l f / h f . The corresponding Mode II stress intensity fac-

tors are listed in Table 3 , from which one can readily notice that

both K 2 ( −a ) / ( P 
√ 

a / h f ) and K 2 ( −a ) / ( P 
√ 

a / h f ) decrease with an in-

creasing l f / h f . Therefore, we can infer that for a fixed film length,

the thinner the film, the stronger the interface strength is; while

for cases of a fixed film thickness, the longer the film is, the more

reliable interface behavior it will lead. 

Furthermore, two opposite loadings applied at both ends of the

film will lead to the film/substrate system under a symmetric load-

ing as shown in Fig. 10 , which can be tackled through a superposi-

tion of single end film loading cases. Note that the bonded problem

involving more complicated loadings can also be well determined
Please cite this article as: P. Chen et al., The interfacial analysis of a 
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ith the help of superposition method. Distributions of the nondi-

ensional interfacial shear stress σ f 
xy ( x, 0 ) / ( P/ h f ) and the normal

tress in the thin-film σ f 
xx ( x, 0 ) / ( P/ h f ) for the symmetric loading

ase as a function of the ratio μ3 / μ1 are shown in Fig. 11 . The

ariations of K 2 ( −a ) / ( P 
√ 

a / h f ) and K 2 (a ) / ( P 
√ 

a / h f ) are presented

n Table 4 . Obviously, the stress intensity factors at both ends are

qual, and the values increase with an increasing μ3 / μ1 . It means

 substrate with a decreasing stiffness will lead to more reliable
film bonded to a finite thickness graded substrate, International 
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nterface, which agrees very well with the foundings in Chen et

l., (2016b) , but it presents a totally different variation trend from

he findings for a single film end loading case given above. Similar

o the ratio effect of μf / μ1 , the effect of the shear modulus ratio

3 / μ1 are found to be dependent of the applied loadings. 

. Conclusions 

The non-slipping contact model of an elastic film on a finite-

hickness graded substrate under different loading conditions is in-

estigated in the present paper. With the help of Fourier transform

nd numerical calculation, the distribution of the interfacial shear

tress, the normal stress in the film as well as the correspond-

ng Mode II intensity factors are analyzed by solving the governing

ingular integral equation. It is found that (i) The bonded prob-

em of an elastic film on a graded substrate under both the non-

ymmetric loading condition and the symmetric one can be ef-

ectively modeled; (ii) The interface behavior of the film/substrate

ystem can be modified by tuning the film stiffness, the stiffness

ariation of the graded substrate, as well as the geometric param-

ters of the film and substrate; (iii) Compared with cases under

oth a single film end loading and a symmetric one, the effect of

he modulus ratio effect of the film to the upper surface of the

ubstrate μf / μ1 and the stiffness variation of the graded substrate

3 / μ1 is observed to be dependent of the applied loading. The re-

ult should be very useful for the design of film-substrate systems

n potential and practical applications. 
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ppendix 

K ij ( x,r ) appearing in Eqs. (5) and ( 6 ) are expressed as follows, 

 11 ( x, r ) = 

∫ + ∞ 

0 

[ 
αφ11 ( α) + 

κ + 1 

4 μ1 

] 
sin [ α( r − x ) ] d α. (A1a) 

 12 ( x, r ) = −
∫ + ∞ 

0 

[ 
αφ12 ( α) + 

κ − 1 

4 μ1 

] 
cos [ α( r − x ) ] d α, (A1b) 

 21 ( x, r ) = 

∫ + ∞ 

0 

[ 
αφ21 ( α) + 

κ − 1 

4 μ1 

] 
cos [ α( r − x ) ] d α, (A1c) 

 22 ( x, r ) = 

∫ + ∞ 

0 

[ 
αφ22 ( α) + 

κ + 1 

4 μ1 

] 
sin [ α( r − x ) ] d α, (A1d) 

here ϕjk ( α) are the elements of matrix �( α). 

The matrix �( α) can be given as, 

( α) = 

[
G 13 G 14 

G 23 G 24 

]
·
[

G 33 G 34 

G 43 G 44 

]−1 

, (A2) 

here G ij ( i, j = 1, ..., 4) is elements of the matrix G( α), and 

 ( α) = T ( α, 0 ) T 

−1 ( α, h ) . (A3) 

The elements in the matrix T( α, y ) are as follows, 

 1 j ( α, y ) = e n j y , (A4a) 

 2 j ( α, y ) = −m j e 
n j y , (A4b) 

 3 i ( α, y ) = μ2 

[
n j − s m j 

]
e n j y . (A4c) 
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 4 i ( α, y ) = 

μ2 

[
m j n j ( κ + 1 ) + ( 3 − κ) s 

]
( 1 − κ) 

e n j y , ( j = 1 , ..., 4 ) (A4d) 

 j , m j ( j = 1, ..., 4) appearing in Eq. (A4) are as follows, 

n j ( α) = −γ

2 

+ 

√ 

γ 2 

4 

+ α2 − i ( −1 ) 
j γα

(
3 − κ

1 + κ

)1 / 2 

, 

Re 
(
n j 

)
> 0 , j = 1 , 2 , (A5) 

n j ( α) = −γ

2 

−
√ 

γ 2 

4 

+ α2 + i ( −1 ) 
j γα

(
3 − κ

1 + κ

)1 / 2 

, 

Re 
(
n j 

)
< 0 , j = 3 , 4 , (A6) 

 j ( α) = 

( κ − 1 ) 
(
n 

2 
j 
+ γ n j 

)
− α2 ( κ + 1 ) 

α
[
2 n j + γ ( κ − 1 ) 

] , ( j = 1 , ..., 4 ) , (A7) 

The properties of Chebyshev polynomials used in Eq. (21) are

iven as follows: 

1 

π

∫ 1 

−1 

T n ( t ) 

( t − s ) 
√ 

1 − t 2 
dt = 

{
0 , n = 0 

U n −1 ( s ) , n > 0 

| s | ≤ 1 (A8) 

 s 

−1 

T n ( t ) √ 

1 − t 2 
dτ = −1 

n 

U n −1 ( s ) 
√ 

1 − s 2 | s | ≤ 1 , (A9) 

1 

π

∫ 1 

−1 

T n ( t ) T m 

( t ) √ 

1 − t 2 
ds = 

{ 

0 , m � = n 

1 , m = n = 0 

1 / 2 m = n ≥ 1 

(A10) 
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