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a b s t r a c t 

Double-layered inhomogeneities consist of enclosed, or layered, inhomogeneities of different material 

properties, embedded in a matrix material. They are found in engineering materials used for compo- 

nents under contact and relative motion. Currently, most theoretical investigations on the double-layered 

inhomogeneities are limited to elastic or plane-strain problems. This work proposes a novel model, based 

on the numerical equivalent inclusion method, for the elasto-plastic contact of materials with double- 

layered inhomogeneities. The current analysis is focused on such inhomogeneities as a stiff core enclosed 

by a compliant outer layer. A group of in-depth parametric studies is performed to reveal the effects of 

this type of double-layered inhomogeneities on the contact plasticity of the matrix material. The results 

indicate that the plastic strain distribution in the matrix material is related to the Young’s modulus and 

geometric eccentricity of the inner and outer inhomogeneities, as well as the location and shape of the 

inhomogeneities. For the cases of individual double-layered inhomogeneity embedded at different loca- 

tions, the maximum equivalent plastic strain in the matrix appears in the vicinity of the double-layered 

inhomogeneity, wherever is the closest to the location of the theoretical maximum elastic stress from 

the homogeneous solution. For the cases of multiple double-layered inhomogeneities, the overlap of the 

plastic strain concentration regions amplifies the disturbance caused by these inhomogeneities, and the 

amplification effect is related to the inhomogeneity layout. If the stiff core is completely encircled in the 

outer inhomogeneity layer, plastic strains would initiate from the outer layer and then permeate to the 

matrix material. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

An inhomogeneity is defined as the subdomain of a material,

hose mechanical properties are different from those of the major

ortion of the material, known as the matrix ( Mura, 1987 ). Inho-

ogeneities inevitably exist in many engineering materials, such as

teels. These materials are widely used in industries to build com-

onents subjected to high stresses while working under contact

nd relative motion. The inhomogeneities may act as the sites for

atigue-crack nucleation and weaken the fatigue strength of mate-

ials ( Atkinson and Shi, 2003; Li et al., 2014; Sun et al., 2013; Zhang
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t al., 2013 ). Some inhomogeneities appear in the form of double-

ayered structures composed of enclosed inhomogeneities of dif-

erent material properties ( Byun et al., 2003; Zhang et al., 2016 ),

s Fig. 1 shows. Apparently, such an inhomogeneity could result in

ifferent mechanical impact to the material than does a homoge-

eous inhomogeneity. This inspires the authors to study the mi-

romechanics nature of double-layered inhomogeneities. 

The rolling contact fatigue life of mechanical components is sig-

ificantly affected by inhomogeneities. Their existence can induce

aterial microstructure variations, for example, the formation of

utterfly wings, when the material is subjected to cyclic rolling

ontact loading ( Moghaddam and Sadeghi, 2016 ). Micro cracks ini-

iated around an inhomogeneity may propagate to the surface and

nally result in contact surface failure. In spite of some controver-

ial issues, a number of studies have pointed out that the effect of
aterials containing double-layered inhomogeneities, International 
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Fig. 1. Scanning Electron Microscope image of a double-layered inhomogeneity mi- 

crostructure in a steel ( Lis, 2009 ). 1– Aluminum oxide, 2– Manganese sulfide. 
Nomenclature 

a 0 Hertz contact radius 

a 1 , a 2 , a 3 element size along the x, y and z di- 

rections, respectively 

B , c , n material constants for the isotropic 

hardening law 

C 

∗
i jkl 

, C i jkl coefficients of elastic properties for 

inhomogeneity and matrix, respec- 

tively 

�D ijkl , �H ijkl coefficients, where �D i jkl = 

( C ∗−1 
i jkl 

− C −1 
i jkl 

) , �H i jkl = 

C −1 
i jmn 

( C 
mnkl 

− C ∗
mnkl 

) 

D 

E 
i jk 

influence coefficients relating contact 

pressure and subsurface elastic stress 

D 

R 
i jkl 

influence coefficients relating plastic 

strain and subsurface residual stress 

E Young’s modulus 

h total gap between contact surfaces 

h 0 initial gap (no deformation) between 

contact surfaces 

I g set of all elements in the grid 

I c set of the elements in the contact 

area 

K influence coefficients relating contact 

pressure and surface elastic displace- 

ment 

K 

R 
i jk 

influence coefficients relating plastic 

strain and surface residual displace- 

ment 

N x , N y , N z total element number along the x, y 

and z directions, respectively 

P 0 Hertz contact pressure 

p contact pressure 

S ij deviatoric stress 

T (0) 
i jkl 

, T (1) 
i jkl 

, T (2) 
i jkl 

, T (3) 
i jkl 

influence coefficients relating eigen- 

strain and eigenstress 

u 3 normal elastic surface displacement 

u R 3 normal residual surface displacement 

W total normal load 

α, β , γ element indices number along the x, 

y and z directions, respectively 

ξ , η, ϑ element indices number along the x, 

y and z directions, respectively 

ε P 
i j 

plastic strain 

ε ∗
i j 

eigenstrain 

ε H 
i j 

sum of strains from homogeneous 

solution 

ε P 
Eq 

equivalent plastic strains 

ε 
i j 

total strain used in the equations 

of the numerical equivalent inclusion 

method 

ε (1) 
i j 

, ε (2) 
i j 

components of ε 
i j 

, i.e. ε i j = ε (1) 
i j 

+ 

ε (2) 
i j 

λ effective accumulative plastic strain 

ν Poisson’s ratio 

σ E 
i j 

contact-induced initial subsurface 

elastic stress 

σ R 
i j 

residual stress 

σ ∗
i j 

disturbance stress (eigenstress) 
Please cite this article as: M. Zhang et al., Elasto-plastic contact of m
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σ VM 

von Mises stress 

σ Y yield strength 

ω rigid-body motion 

nhomogeneities on rolling contact fatigue was driven by compli-

ated reversal stresses and strains around them ( Moghaddam et al.,

014, 2015 ) . Therefore, the stress-strain analysis is the very first

tep to examine the link between inhomogeneities and rolling con-

act fatigue. 

Usually, mechanical components are designed to operate within

he elastic range based on the assumption that the materials are

omogeneous. However, heterogeneous cyclic plasticity at the mi-

rostructural scale can be induced by high and localized stresses

ue to inhomogeneities. Such micro-plasticity raises concerns in

olling contact fatigue and thus has attracted a great deal of atten-

ion. For example, the fatigue indicator parameters (FIPs) related

o the maximum plastic strain range or other properties, were de-

eloped to connect local cyclic plasticity to the drivers for fatigue

rack formation ( Fatemi and Socie, 1988; Zhang et al., 2009; Przy-

yla et al., 2010 ). Pandkar et al., (2014) investigated the participa-

ion of carbides in the plastic deformation accumulation in case-

ardened M50-NiL bearing steel under a rolling contact load and

bserved hardness to increase within the RCF-affected zone. The

ardness changes somewhat reflected the microstructural variation

n this rolling-contact fatigue process ( Bhattacharyya et al., 2014 ). 

A number of microstructure-sensitive models have been devel-

ped for analyzing material heterogeneities by means of the finite

lement method (FEM) and the semi-analytical method (SAM). The

EM has good flexibility and versatility for handling complicated

ituations. However, three-dimensional (3D) FEM contact model-

ng requires a large solution domain (at least ten times the con-

act region in each dimension) and very fine mesh, and its ex-

cution is time consuming. The SAM, on the other hand, does

ot require a large solution domain because it is built upon an-

lytical core solutions; it has been proven convenient for solv-

ng contact problems. SAM is especially suitable for implement-

ng the idea of the equivalent inclusion method (EIM), proposed by

shelby (1957) , that converts an inhomogeneity problem to an in-

lusion problem accompanied with prescribed eigenstrains. Based

n Mura (1987) , inclusions are eigenstrain-containing sub-domains

hose properties are identical to those of the matrix. Examples

f eigenstrains are thermal expansion, plastic strain, and magneto-

echanical strain. Two steps are needed when utilizing the EIM to

olve an inhomogeneity problem, which are 1) replacing inhomo-
aterials containing double-layered inhomogeneities, International 

tr.2017.08.006 
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Fig. 2. Inhomogeneous material subjected to contact loading. A double-layered in- 

homogeneity set (front) and a uniform inhomogeneity (side) are shown. The ele- 

ment at the top left corner of the half space is enlarged to view the definition of 

an element by its edges, a 1 , a 2 , and a 3 . 
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eneities by equivalent inclusions that contain properly assigned

igenstrains under the condition that the stress fields induced by

quivalent inclusions equal those by inhomogeneities, and 2) cal-

ulating the stress distributions caused by the eigenstrains thus

mposed. The EIM, combined with the elastic stress solutions of

llipsoidal inclusions ( Eshelby, 1957 ), has led to many studies and

ethod developments. For example, Zhou et al., (2014a) proposed

 highly efficient approximate method to treat problems involv-

ng distributed ellipsoidal inhomogeneities in a 3D half-space. This

odel was further used to investigate the effects of reinforcing

articles on the rolling fatigue lives of (TiB + TiC)/Ti-6Al-4 V com-

osites ( Zhou et al., 2014b ). 

In recent years, the idea of EIM has been extended to the

umerical equivalent inclusion methodology (NEIM), in order to

nalyze the inhomogeneities that have irregular shapes ( Liu and

ang, 2005; Liu et al., 2012; Koumi et al., 2014; Zhou et al., 2011,

012, 2015; Amuzuga et al., 2016 ). With the NEIM, inhomogeneities

an be discretized into cubic elements. The stress fields caused

y nuclei of strain can be expressed by the basic Galerkin vec-

ors ( Yu and Sanday, 1991 ) and its cuboidal solutions have been

olved as closed-form explicit integral kernels for convolution and

orrelation operations in favor of the fast solution by means of

he fast Fourier transform (FFT) ( Liu et al., 20 0 0; Liu and Wang,

002 ). Wang et al., (2013b) proposed a more efficient method to

alculate the eigenstress, in which parallel computing technologies

ere also utilized to boost the computational efficiency. A thor-

ugh summary of the recent research on inclusion related prob-

ems can be found in the review by Zhou et al., (2013) . The ef-

orts on coupling multiple stress fields and contact elasto-plasticity

lso deserve mentioning. For example, Wang et al., (2013a) ex-

ended the partial-slip contact model to inhomogeneous materi-

ls by utilizing the NEIM approach mentioned above. Most re-

ently, Amuzuga et al., (2016) analyzed the influence of inhomo-

eneities on the stress and strain fields of an elasto-plastic half-

pace. Dong et al., (2016) constructed a coupled model to consider

lasticity, plasticity, inhomogeneity, and partial slip in contact of

aterials. 

However, models and solutions to the contact of materials

nvolving double-layered inhomogeneities are rarely seen in the

orks mentioned above. A double-layered inhomogeneity mi-

rostructure is referred to a set of two inhomogeneities of differ-

nt materials, one surrounded by the other, as shown in Fig. 1 .

n steels, the core of a double-layered inhomogeneity is usually a

tiff particle, such as an oxide or nitride, while the outer layer may

e a complaint sulfide of much higher deformability. The research

ims to develop a SAM based elasto-plastic contact model for the

nalyses and numerical simulations of the plasticity behaviors of

ouble-layer inhomogeneities, and to conduct in-depth parametric

tudies for quantifying the influence of a double-layered inhomo-

eneity on the plasticity of its surrounding steel material. 

. Elasto-plastic contact of inhomogeneous materials 

.1. Problem description 

Fig. 2 presents the contact between an inhomogeneous half-

pace and a rigid indenter. A concentrated force, W , is applied on

he indenter. The calculation zone is expressed in a Cartesian co-

rdinate system, where the x - and y - axes are parallel to the sur-

ace of the half-space and the z -axis points to depth direction. The

rigin, O, of the coordinate system is at the center of the con-

act area. The half-space is elasto-plastic and contains several in-

omogeneities including double-layered ones. The entire calcula-

ion zone is discretized into Nx × Ny × Nz cubic elements. The in-

omogeneity shape is not limited to ellipsoidal, and multiple ma-

erial components can be readily involved. Material properties are
Please cite this article as: M. Zhang et al., Elasto-plastic contact of m
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ssigned to each element corresponding to inhomogeneities or the

atrix. Although Fig. 2 describes a general scenario, the current

esearch will focus on double-layered inhomogeneity cases. 

Four procedures should be performed when using the current

odel: 1). Determination of the contact pressure between the in-

enter and the half-space; 2). Calculation of the subsurface elastic

tress field when the contact pressure is determined; 3). Solution

f the eigenstress caused by inhomogeneities; and 4). Evaluation

f plastic strains and residual stresses, as well as the residual dis-

lacement of the surface. 

.2. Inhomogeneity consideration 

.2.1. Governing equations for the numerical equivalent inclusion 

ethod 

As mentioned, the mechanical properties of an inhomogeneity

re different from those of the major portion of the material sys-

em, known as the matrix, while an inclusion has the same proper-

ies as those of the matrix but contains eigenstrains, as defined by

ura (1987) . Sometimes, an inhomogeneity may also have a dis-

ributed internal eigenstrain and is termed as the inhomogeneous-

nclusion ( Mura, 1987 ). In this paper, the pre-described eigenstrain

nside an inhomogeneity is referred to as plastic strain. 

Following the EIM ( Eshelby, 1957 ), an inhomogeneity is re-

laced by an inclusion, as a convenient stepping stone, by choos-

ng an equivalent eigenstrain distribution ε ∗
i j 

that enables the EIM

o result in a stress field identical to that of the original problem.

he consistency condition of the EIM for inhomogeneous-inclusion

roblems, which is enforced in each element, is shown as: 

 

∗
i jkl 

(
ε E kl + ε kl − ε P kl 

)
= C i jkl 

(
ε E kl + ε kl − ε P kl − ε ∗kl 

)
in 
 (1) 

here, C ∗
i jkl 

and C ijkl are the elastic coefficients of inhomogene-

ty and matrix, respectively, ε E 
i j 

is the elastic strain correspond-

ng to the homogeneous solution of the contact-induced elas-

ic stress σ E 
i j 

, ε P 
i j 

the plastic strain, ε ∗
i j 

the equivalent eigenstrain,

nd ε 
i j 

the strain disturbance caused by inhomogeneous-inclusions

 Mura, 1987 ). 

Based on the EIM theory ( Mura, 1987 ), disturbance strains ε 
i j 

re linearly related to eigenstrains. The plastic strain is considered

s one kind of eigenstrain. The right side of Eq. (1) implies that for

n inhomogeneous-inclusion problem, the total eigenstrain of the

quivalent inclusion contains two portions, plastic strain ε P 
i j 

and

quivalent eigenstrain ε ∗
i j 

. Therefore, disturbance strain ε 
i j 

can be

xpressed as the sum below, in order to separate the unknown ε ∗
i j 

:

aterials containing double-layered inhomogeneities, International 

tr.2017.08.006 
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σ  

w  

e  
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o

ε i j = ε ( 1 ) 
i j 

+ ε ( 2 ) 
i j 

(2)

where ε (1) 
i j 

and ε (2) 
i j 

are linearly depend on ε P 
i j 

and ε ∗
i j 

, respectively.

Substituting Eq. (2) into (1) results in: 

C ∗i jkl 

[(
ε E kl + ε ( 1 ) 

kl 
− ε P kl 

)
+ ε ( 2 ) 

kl 

]
= C i jkl 

[(
ε E kl + ε ( 1 ) 

kl 
− ε P kl 

)
+ ε ( 2 ) 

kl 
− ε ∗kl 

]
in 
 (3)

Let ε H 
i j 

= ε E 
i j 

+ ε (1) 
i j 

− ε P 
i j 

, where superscript H means the ‘homo-

geneous solution’. Then Eq. (3) becomes, 

 

∗
i jkl 

(
ε H kl + ε ( 2 ) 

kl 

)
= C i jkl 

(
ε H kl + ε ( 2 ) 

kl 
− ε ∗kl 

)
in 
 (4)

Eq. (3) demonstrates how the plastic strain, ε P 
i j 

, is involved

with the initial strain state, ε H 
i j 

. Equivalent eigenstrain is the only

unknown thus Eq. (4) can be solved. The consistency condition

Eq. (4) can be reorganized into the following form as a prepara-

tion for the numerical implement of the EIM: 

ε ∗i j = �H i jkl 

(
ε H kl + ε ( 2 ) 

kl 

)
in 
 (5)

Converting the strains at the right-hand side to the stress for-

mat as the following: 

ε ∗i j = �D i jkl 

(
σ H 

kl + σ ∗
kl 

)
in 
 (6)

where, { 

�H i jkl = C −1 
i jmn 

(
C 

mnkl 
− C ∗

mnkl 

)
�D i jkl = 

(
C ∗−1 

i jkl 
− C −1 

i jkl 

) (7)

σ H 
i j 

is the initial stress as the summation of contact-induced elastic

stress σ E 
i j 

= C i jkl ε 
E 
kl 

and residual stress σ R 
i j 

. The residual stress can be

expressed as σ R 
i j 

= C i jkl ( ε 
(1) 
kl 

− ε P 
kl 
) by following the basic equation

of EIM ( Eq. (1) ) because the plastic strain is considered as a kind

of eigenstrains. However, such an expression is not convenient for

numerical calculation; therefore, in this paper, the residual stress

and eigenstress are calculated by identical equations expressed as

σ R 
i j 

= T i jkl ε 
P 
kl 

and σ ∗
i j 

= T i jkl ε 
∗
kl 

. The influence coefficients, T ijkl , will

be discussed in Section 2.2.2 in detail. 

2.2.2. Eigenstress calculation 
The total stress of inhomogeneous-inclusion problems is the su-

perposition of initial stress σ H 
i j 

and eigenstress σ ∗
i j 

. The direct an-

alytical solution of eigenstress derived by Liu et al., (2012) is im-
plemented in this work to avoid truncation error. The eigenstress is
expressed as convolutions and correlations of influence coefficients
and eigenstrains of any distribution: 

σ ∗
i j ( α, β, γ ) = 

−μ

4 π( 1 − ν) 

( 

Nx ∑ 

ξ=1 

Ny ∑ 

η=1 

Nz ∑ 

ϑ=1 

T ( 
0 ) 

i jkl 
( α − ξ , β − η, γ − ϑ ) ε ∗kl ( ξ , η, ϑ ) 

+ 

Nx ∑ 

ξ=1 

Ny ∑ 

η=1 

Nz ∑ 

ϑ=1 

T ( 
1 ) 

i jkl 
( α − ξ , β − η, γ + ϑ ) ε ∗kl ( ξ , η, ϑ ) 

+ z 

Nx ∑ 

ξ=1 

Ny ∑ 

η=1 

Nz ∑ 

ϑ=1 

T ( 
2 ) 

i jkl 
( α − ξ , β − η, γ + ϑ ) ε ∗kl ( ξ , η, ϑ ) 

+ z 2 
Nx ∑ 

ξ=1 

Ny ∑ 

η=1 

Nz ∑ 

ϑ=1 

T ( 
3 ) 

i jkl 
( α − ξ , β − η, γ + ϑ ) ε ∗kl ( ξ , η, ϑ ) 

) 

(8)

where ξ , η, θ and α, β , γ are the element index, Nx, Ny , and

Nz the grid numbers of the calculation zone along the x -, y -, and

z -direction, and T (0) 
i jkl 

, T (1) 
i jkl 

, T (2) 
i jkl 

and T (3) 
i jkl 

are the influence coeffi-

cients and ε ∗
i j 

are the eigenstrains. Detailed expressions of influ-

ence coefficients can be found in the appendix of the reference

paper ( Liu et al., 2012 ). 
Please cite this article as: M. Zhang et al., Elasto-plastic contact of m
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Eq. (8) contains a 3D convolution (the first term) and

onvolution-correlation combination terms (the remaining three).

s described by Liu and Wang (2005) and Liu et al., (2012) ,

he computation of 3D convolution can be accelerated by DC-

FT, while the convolution-correlation terms are evaluated by DC-

FT in the x- and y- directions and the discrete correlation and

ast Fourier transform (DCR-FFT) algorithm in the z- direction ( Liu

t al., 2007; Chen et al., 2008 ). 

The four groups of convolution or convolution-correlation in

q. (8) can be evaluated separately at the same time. Therefore,

 parallel calculation strategy is possible for accelerating the most

ime-consuming portion of the algorithm ( Wang et al., 2013b ).

ig. 3 shows the chosen parallel calculation strategy, where each

f the four operations is undertaken by a parallel thread, and the

esults are summed when the calculations of all threads are com-

leted. An open-source software package, named FFTW ( http://

ww.fftw.org/ ), is employed for performing the fast Fourier trans-

orm in the present study. The FFTW can be made parallel as well,

mplying that more than four threads can be involved in the cal-

ulation if necessary. 

.3. Surface contact and elastic stress field 

The contact between surfaces is defined by equation system (9) ,

hich is then transformed to the frequency domain by the DC-

FT algorithm ( Liu et al., 20 0 0; Liu and Wang, 2002 ) and solved by

sing a single-loop iteration scheme based on the conjugate gradi-

nt method (CGM) ( Polonsky and Keer, 1999 ). The process is briefly

entioned here for clarity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 1 a 2 
∑ 

( α,β) ∈ I g 
p ( α, β) = W 

h ( α, β) = h 0 ( α, β) + u 3 ( α, β) − ω 

p ( α, β) ≥ 0 , h ( α, β) = 0 ( α, β) ∈ I c 

p ( α, β) = 0 , h ( α, β) ≥ 0 ( α, β) / ∈ I c 

u 3 ( α, β) = 

Nx ∑ 

ξ=1 

Ny ∑ 

η=1 

K ( α − ξ , β − η) p ( α, β) 

(9)

here a 1 and a 2 are the sizes of element, ξ and η, α and β the

lement indices, Nx and Ny the total element number of the calcu-

ation zone along the x - and y -directions, and K is the influence co-

fficients relating the contact pressure to the surface displacement.

q. (9) involves W , the total normal load, p , the contact pressure,

 , the gap between the two surfaces, ω, the rigid-body motion be-

ween the two solids, h 0 , the initial gap before loading, and u 3 , the

ormal elastic surface displacement. In addition, I c is the set of all

lements that are in contact while I g is the set of all elements in

he grid. The residual plastic surface displacement, once identified,

ill be added into h 0 and to the real surface roughness data, as

ell, if available. Note that a rolling contact simulation is achieved

y changing the relative location of the indenter with respect to

he origin point of the half-space, which can be represented by the

nitial gap between the contacted surfaces, h 0 . 

The subsurface elastic stress field, σ E 
i j 

, is expressed by the fol-

owing form of discrete convolution: 

E 
i j ( α, β, γ ) = 

Nx ∑ 

ξ=1 

Ny ∑ 

η=1 

D 

E 
i j ( α − ξ , β − η, γ ) p ( ξ , η) (10)

here D 

E 
i j 

is the influence coefficients, α, β , γ and ξ , η are the el-

ment indices, respectively, and N x and N y the element numbers of

alculation zone along the x - and y -directions. Detailed expressions

f D 

E 
i j 

were given in the work by Liu and Wang (2002) . 
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Fig. 3. Parallel calculation strategy. Total computing workload is shared by several threads labeled from I to IV. More threads can be involved when FFTW is parallelized. 
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.4. Plasticity consideration 

In this work, both the inhomogeneities and matrix materials

re considered to be elasto-plastic. The yield strengths and other

lasticity-related parameters of the inhomogeneities and the ma-

rix can be different. However, the theory and algorithm that are

iscussed throughout this section should be applicable to both the

atrix and the inhomogeneities. Thus, the parameters in the fol-

owing paragraphs are not distinguished by material. 

Work hardening . Isotropic hardening following the Swift law

s considered in the current work to describe the growth of yield

trength: 

Y = g ( λ) = B ( c + λ) 
n 

(11) 

here σ Y is the yield strength, B, c and n are the work hardening

arameters related to materials, and λ = 

∑ 

dλ = 

∑ 

√ 

2 dε p 
i j 

: dε p 
i j 
/ 3

s the effective accumulative plastic strain. 

Yield function. The von Mises yield criterion is utilized to iden-

ify yield. The total von Mises stress is the result of superposi-

ion of elastic stress σ E 
i j 

, residual stress σ R 
i j 

, and eigenstress σ ∗
i j 

that

aused by the inhomogeneities, expressed as σV M 

= σ E 
i j 

+ σ R 
i j 

+ σ ∗
i j 

.

he yield function is: 

f = σV M 

− σY = 

√ 

3 

2 

S i j : S i j − g ( λ) (12) 

here S i j = σi j − 1 
3 σkk δi j is the deviatoric stress. 

Plastic strain increment. The material yields when f ( λ) > 0, i.e.

hen the von Mises stress is larger than the current yield limit of

he material. A new balance is reached if the increment of effective

ccumulative plastic strain satisfies the condition of f ( λ+�λ) = 0.

 universal integration algorithm, proposed by Fotiu and Nemat-

asser (1996) and improved by Ne ́lias et al., (2006) , is used to cal-

ulate the value of �λ for each load step. Finally, the plastic strain

ncrement is determined by the plastic-flow rule that expressed as:

ε P i j = 

[
λ( n +1 ) − λ( 1 ) 

] 3 S (n +1) 
i j 

2 σ (n +1) 
V M 

(13) 

Surface residual displacement and residual stress field. Accord-

ng to the work of Jacq et al., (2002) , the surface residual displace-

ent, u R 3 , can be expressed as follows based on the reciprocal the-

rem: 

 

R 
3 ( α, β) = 

Nx ∑ 

ξ=1 

Ny ∑ 

η=1 

Nz ∑ 

ϑ=1 

K 

R 
i jk ( α − ξ , β − η, ϑ ) ε P jk ( ξ , η, ϑ ) (14) 
Please cite this article as: M. Zhang et al., Elasto-plastic contact of m
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The residual stresses, σ R 
i j 

, are obtained by superposing the con-

ributions of all yield regions with non-zero plastic strain. The

esidual stress can be calculated through treating the plastic strains

s eigenstrains ( Liu et al., 2012 ) by using Eq. (8) . 

.5. Flow chart of the overall algorithm 

Fig. 4 shows the overall flow chart to solve the contact of

lasto-plastic inhomogeneous materials, which consists of two it-

rations: the numerical EIM (NEIM) loop and the plasticity loop.

he NEIM loop, on the basis of the iterative method proposed by

hou et al. (2015) , is utilized to determine the equivalent eigen-

trains and corresponding eigenstresses. The plasticity loop per-

ains to the algorithm developed by Jacq et al., (2002) , in which

lastic strains, residual stresses, and surface residual displacements

re calculated. 

The solution starts from a pre-process by dividing the total

pplied load, W , into several loading steps. In the NEIM loop,

he elastic and residual stresses are kept unchanged. The total

tress of the i th iteration step is updated by summing the elas-

ic and residual stresses with the eigenstress from the (i-1)th step.

hen the equivalent eigenstrain is estimated by using Eq. (5) or

6) , and the eigenstress by Eq. (8) . The difference of the equiva-

ent eigenstrains between the current and the previous iteration

tep is compared against convergence criterion. Similarly, the to-

al stress is refreshed at the beginning of each plasticity calcula-

ion loop by adding the newest eigenstress portion. Next, the plas-

ic strain increment, residual stress and residual surface displace-

ent are determined. The calculation loop will be returned to the

lastic contact module if the pre-set convergence criterion is not

atisfied; this is because the contact pressure is affected by the

atest surface geometry to which the residual displacement was

dded. 

This algorithm is versatile for analyzing contact problems in-

olving uniform, double-layered, or even multi-layered inhomo-

eneities. Each element in the model is assigned a marker to iden-

ify its composition as matrix or inhomogeneities; different mate-

ial properties are attached to elements according to their mark-

rs. No matter how many types of inhomogeneities are modeled,

ll inhomogeneity elements are converted to matrix elements with

roper equivalent eigenstrains by using Eq. (5) or (6) (depending

n inhomogeneities’ elastic moduli). Then the eigenstress in the

alf-space is calculated by gathering the eigenstrain contributions

rom all elements, and the plasticity-related process can be ana-

yzed sequentially. 
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Fig. 4. Flow chart of the algorithm and steps for solving inhomogeneous contact elasto-plastic problems. 

Table 1 

Parameters of the FE model and new semi-analytical model in validation. 

Terms Matrix Inner Layer Outer Layer 

Mesh size, FEM 0.01 a 0 
Mesh size, SAM 0.04 a 0 
Element number, SAM 

( x, y, z ) 

64,64,32 

Location of 

inhomogeneity 

center ( x, y, z ) 

(0, 0, 0.5 a 0 ) 

Radius of 

Inhomogeneity r 1 , r 2 

/ 0.15 a 0 0.3 a 0 

Length of 

Inhomogeneity l 1 , l 2 

/ 0.3 a 0 0.6 a 0 

Ratio of Young’s 

Modulus E/E Matrix 

1 1.5 0.65 

Poisson’s Ratio 0.3 0.2 0.2 

Initial Yield Strength 0.3 P 0 / 0.25 P 0 
Hardening Parameter 0.1 / 0.1 
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2.6. Model validation 

The model validation was executed through simulating the con-

tact between a rigid indenter and a half-space containing a short

cylindrical double-layered inhomogeneity by the new NEIM model

in a reasonably dense mesh and by an axisymmetric FEM model

in a very fine mesh set ( Table 1 ). The validation model was so

selected that complicated and time-consuming 3D FEM modeling

is avoided, while the axisymmetric FEM results can be compared

to the 3D results from the current modeling method. The center-

line of the double-layered inhomogeneity coincides with the cen-

ter axis of the indenter. The half-space was partitioned into sev-

eral sections so that the local refinements of the FEM mesh could
Please cite this article as: M. Zhang et al., Elasto-plastic contact of m
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e implemented, as shown in Fig. 5 (a), while totally 99,690 type

AX4R linear quadrilateral elements were used, hoping that the

EM results thus obtained can be an accurate reference. 

In the FEM simulation, the rigid indenter was related to a ref-

rence point where the concentrated force was applied. The hori-

ontal displacement and rotation of the indenter were restricted to

nly indent vertically. The bottom of the half-space was fixed. Both

he matrix and outer inhomogeneity are elasto-plastic, while the

nner layer is elastic. The Hertz contact radius a 0 and Hertz con-

act pressure P 0 were used to normalize the geometric terms and

tresses, respectively. The major parameters are listed in Table 1 .

he validation problem involves all key characteristics, such as

tiff ( E I > E M 

) and compliant ( E I < E M 

) inhomogeneities, and plastic-

ty in both the inhomogeneity (inner layer) and the matrix mate-

ial. Therefore, the solutions can provide an overall examination of

he proposed model. 

Fig. 6 (a) and (b) plot the equivalent plastic strains solved with

he new model and the axisymmetric FEM. The results from the

wo models are slightly different at the edges of the contours

round the inhomogeneity due to the mesh size difference. The

tress and plastic strain values along the central axis and the x - axis

re compared in Fig. 7 , respectively. A good agreement is observed,

hus the proposed model is validated. 

. Results and discussion 

.1. Basic contact plasticity behavior of double-layered inhomogeneity

The plastic strain fields in a half-space steel that contains a

ouble-layered inhomogeneity are analyzed in this section to re-

eal the essential micromechanics behaviors of the materials at

he vicinity of the inhomogeneity. Spherical inhomogeneities are
aterials containing double-layered inhomogeneities, International 
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Fig. 5. Model validation: (a) axisymmetric FE model and its local refinements; (b) 3D semi-analytical model. 

Fig. 6. Results of the equivalent plastic strain solved with (a) the 3D semi-analytical model, (b) the asymmetric FEM. 
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onsidered because they are often seen in actual materials. Cases

ith a uniform stiff or compliant inhomogeneity are also stud-

ed for result comparison. The corresponding homogeneous solu-

ion is also plotted as a reference. The uniform stiff and compliant

nhomogeneities share the same material properties as the inner

nd outer layers of the double-layered inhomogeneity, respectively.

he outer layer is a more compliant inhomogeneity, such as man-

anese sulfide (MnS), whose elastic modulus is lower than that of

he matrix. The inner inhomogeneity core is a stiff particle that

an be referred to aluminum oxide (Al 2 O 3 ). The Young’s moduli of

nS and Al 2 O 3 are 138 GPa and 389 GPa, and their Poisson’s ra-

ios are 0.3 and 0.25, respectively ( Murakami, 2002a ). The hard-

ess of Al 2 O 3 is over 20 0 0 HV, implying that it does not yield

nder the loading condition in current work. Therefore, the core

f a double-layered inhomogeneity system is set to be elastic in

he following simulations. Matsuno et al., (2006) measured the in-

entation hardness of MnS. Under the room temperature, the av-

rage hardness of MnS is around 150HV. Considering the relation-

hip among yield strength, indentation hardness, Young’s modu-

us, and indenter geometry ( Gao et al., 2006 ), the yield strength

f MnS is estimated to be 409 MPa. The matrix properties are se-

ected identical to those reported by Amuzuga et al., (2016) to fa-

ilitate comparisons, which are Young’s modulus E matrix = 205 GPa,

oisson’s ratio ν = 0.3, yield strength σ Y = 730 MPa, and hardening

ε P Eq = 

√ 

2 

3 

[ (
ε P 

11 
− ε P 

22 

)2 + 

(
ε P 

22 
− ε P

3

Please cite this article as: M. Zhang et al., Elasto-plastic contact of m
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arameter n = 0.0095. The indenter radius and the applied concen-

rate force are 6 mm and 50 N, respectively, which yield a Hertzian

ontact radius a 0 = 100.7 μm, and the Hertzian contact pressure, P 0 ,

s 2.35 GPa. 

The sizes of the inhomogeneities in steels can be found from

ess than 1 μm to tens of microns ( Zhang et al., 20 05, 20 07;

ashimoto et al., 2011 ); however, a number of work indicate that

arge inhomogeneities are more critical to the fatigue resistance

f a steel ( Murakami, 2002b; Lu et al., 2009; Li, 2012 ). In the

eanwhile, when the inhomogeneity size is comparable to Hertz

ontact radius a 0 , the contact pressure distribution may be sig-

ificantly affected by inhomogeneities ( Leroux et al., 2010; Koumi

t al., 2014; Amuzuga et al., 2016; Dong et al., 2016 ). There-

ore, this section focuses on the inhomogeneity of 0.2 a 0 in radius

 Amuzuga et al., 2016 ). For double-layered inhomogeneity, the ra-

ius of inner layer is 0.15 a 0 . Each inhomogeneity is centered at (0,

, 0.64 a 0 ). The equivalent plastic strain ( Eq. (15) ) is selected to rep-

esent the magnitude of plastic strain concentration. 

 

(
ε P 

33 
− ε P 

11 

)2 + 2 

((
ε P 

12 

)2 + 

(
ε P 

23 

)2 + 

(
ε P 

13 

)2 
)] 

(15) 

The field of the resulting equivalent plastic strain in the ma-

rix material is of the concern, and Fig. 8 plots its contours in

he cross-section XOZ. A pair of circles marks the boundaries be-

ween the inner, outer inhomogeneities and the matrix. A contour

lot is drawn for εEq 
P = 0.55% in Fig. 8 (b-d), which corresponds

o the maximum plastic strain encountered in the inhomogeneity-

ree material, to identify the regions of plastic strain concentrations
aterials containing double-layered inhomogeneities, International 
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Fig. 7. Plots of the plastic strains (a) along the center line; (b) along the x -axis when z = 0.5 a 0 ; Plots of the total stresses (c) along the center line; (d) along the x -axis when 

z = 0.5 a 0 . 
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equivalent or more severe than that in Fig. 8 (a). Fig. 8 (b–d) reveal

that plastic strains may concentrate in the two polar areas and the

equatorial regions of the spherical inhomogeneity. These regions

are marked as I, II, and III, respectively, as shown in Fig. 8 (e), for

the convenience of further discussion. 

The uniform stiff inhomogeneity induces plastic strain concen-

trations in all these three regions although they are stronger in

regions I and II; and the maximum plastic strain in the matrix

material is located above the upper boundary of the spherical in-

homogeneity. The uniform stiff inhomogeneity causes the highest

plastic strain value (1.28%) as compared to other cases in Fig. 8 ,

which is about 2.3 times higher than that in the homogeneous

material ( Fig. 8 (a)). The uniform compliant inhomogeneity results

in plastic strain concentrations only in region III; while in regions

I and II, the plastic strains are lower than those in the homoge-

neous case ( Fig. 8 (a)). The maximum of εEq 
P in Fig. 8 (c) reaches

0.816%, indicating that the compliant inhomogeneity is also a plas-

tic strain raiser although the rise is not as strong as that observed

in Fig 8 (b). Similar phenomena were reported by Amuzuga et al.,

(2016) for the uniform inhomogeneity types. Furthermore, when

the stiff inhomogeneity core is surrounded by a compliant outer

layer, plastic strain concentrations are found in all three regions,

as shown in Fig. 8 (d). However, compared to the uniform stiff

inhomogeneity case, Fig 8 (b), the concentration regions I and II

around the double-layered inhomogeneity are significantly smaller,

and the maximum plastic strain decreases to about 0.99%, implying

that the compliant outer layer, to some extent, relieves the plastic

strain concentrations caused by the stiff core. Such a buffer effect

F  

Please cite this article as: M. Zhang et al., Elasto-plastic contact of m
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f the outer layer is related to the material properties and geo-

etric parameters of the inhomogeneities; and therefore, in-depth

arametric studies are needed, which are reported in the following

ections. 

.2. Parametric studies 

.2.1. Effect of Young’s modulus 

As mentioned before, in real materials, the inner particle of

 double-layered inhomogeneity can be oxide or nitride, such as

l 2 O 3 ( Lis, 2009 ), MgO ( Chang et al., 2005; Luo et al., 2013 ), or

iN ( Zhang et al., 2016 ), while the outer layer is usually sulfide.

he elastic moduli of different com positions may affect the plastic

train distributions around the double-layered inhomogeneity, and

heir effects are investigated in this section. The matrix material

as Young’s modulus E matrix = 205 GPa and Poisson’s ratio ν = 0.3.

he ratio of E outer /E matrix increases from 0.5 to 0.9, while that of

 inner /E matrix ranges from 1.0 to 3.0. The Poisson’s ratios of the in-

omogeneities are set to 0.3 for simplicity. The radii of the spher-

cal outer and inner inhomogeneity are 0.2 a 0 and 0.15 a 0 , and the

oordinates of inhomogeneity centers are (0, 0, 0.64 a 0 ). Other key

arameters, including the size of the indenter and external force,

he yield strength of matrix and inhomogeneities, are the same as

hose used to obtain Fig. 8 . 

Again, the contour for εEq 
P = 0.55% is marked in each subplot

n Fig. 9 for identifying the regions of plastic strain concentration

quivalent or stronger than that in the homogeneous solution in

ig. 8 (a). Fig. 9 (a) and (b) plot the equivalent plastic strain in the
aterials containing double-layered inhomogeneities, International 
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Fig. 8. Equivalent plastic strain distributions in XOZ cross section of (a) a homogeneous half-space, a half-space that contains (b) a uniform stiff inhomogeneity, (c) a uniform 

compliant inhomogeneity, (d) a double-layered inhomogeneity, under the same point contact loading, and (e) schematic of plastic strain concentration regions. 
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atrix material with increasing E inner /E matrix , while E outer /E matrix is

eld constant. In Fig. 9 (a) and (b), the plastic strain concentration

egions I and II expand with the increase in Young’s modulus of

he inner inhomogeneity because a harder core induces a stronger

isturbance to the plastic strain distribution. Note that the size and

hape of region III are barely affected by the change of E inner /E matrix .

hus it can be reasoned that region III is dominated by the compli-

nt outer layer. On the other hand, all three regions are influenced

y the increase in Young’s modulus of the outer layer, as shown

n Fig. 9 (c) and (d), where regions I and II expand but region

II shrinks. A higher E outer /E matrix causes less disturbance in region

II, but the buffer effect of the outer layer is weakened because
Please cite this article as: M. Zhang et al., Elasto-plastic contact of m
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he other two concentration regions expand, and consequently the

aximum equivalent plastic strain in the matrix material increases

or over 20%. 

Fig. 10 plots detailed plastic strain variations in the vicinities

f the individual double-layered inhomogeneity. Two cases with

ifferent Young’s modulus combinations are considered as repre-

entatives, which are E outer /E matrix = 0.5 and E inner /E matrix = 2.0, and

 outer /E matrix = 0.7 and E inner /E matrix = 3.0. Compared to the results of

he homogeneous case, significant deviations of plastic strains are

ound when the double-layered inhomogeneity appears; however,

uch disturbances reduce rapidly with increasing distance to the

nhomogeneity, either in the depth or the lateral direction. 
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Fig. 9. Equivalent plastic strain fields in cross section XOZ, with varying Young’s modulus of (a) (b) the inner layer and (c) (d) the outer layer. 

Fig. 10. Variations of the equivalent plasti strains in region II and III for the cases of an individual double-layered inhomogeneity with different Young’s moduli. 
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3.2.2. Effect of inhomogeneity geometries 

Size ratio . In real materials, the size of the core of a double-

layered inhomogeneity could be either comparable ( Fig. 1 ) or much

smaller ( Fig. 11 ) than that of the outer layer. Therefore, the effect

of size ratio r inner / r outer on plastic strain distribution in the matrix

material is studied, where r inner and r outer are radii of the inner

and outer layer of a double-layered inhomogeneity. In this section,

r outer is fixed at 0.2 a 0 , while r inner is set to be 0.16 a 0 and 0.10 a 0 ,

resulting in size ratios of 0.8 and 0.5, respectively. Young’s modu-
Please cite this article as: M. Zhang et al., Elasto-plastic contact of m
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us ratios are set to be E outer /E matrix = 0.7 and E inner /E matrix = 2.0, and

oisson’s ratios of inhomogeneities are set to be 0.3. Other param-

ters not specified here are the same as those used in Fig. 8 (d).

ig. 12 presents the plastic strain distributions in the matrix mate-

ial. Regions I and II in Fig. 12 (a) are larger than those in Fig. 12 (b),

uggesting that the buffer effect of the compliant layer is weak-

ned when it is thin. On the other hand, if the stiff core shrinks

o r inner / r outer = 0.5, as shown in Fig. 12 (b), the plastic strain distri-

ution caused by this double-layered inhomogeneity is almost the
aterials containing double-layered inhomogeneities, International 
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Fig. 11. A double-layered inhomogeneity in steel. The size of the core is much 

smaller than that of the outer layer ( Zhang et al., 2016 ). 

s  

w  

i  

s  

c  

t  

b  

t  

t  

a  

m  

s

 

d  

c  

c  

c  

s  

t  

n  

t  

o  

m  

o  

i

 

m  

g  

i  

t  

e  

t  

s  

t  

s  

c  

l  

p  

t  

t  

l  

o  

r  

a  

w  

F  

c  

e

 

l  

d  

m  

a  

a  

e  

i  

h  

m

 

m  

g  

c  

g  

t  

n  

t  

t  

g  

h  

t  

r  

t  

v  

t  

m  

i 0  
ame as that by a uniform compliant inhomogeneity ( Fig. 8 (c)),

here regions I and II disappear, and the location of the max-

mum plastic strain is in region III. This suggests that a small

tiff core can barely affect the plasticity in matrix materials be-

ause as Fig. 12 (b) shows, regions I and II become smaller when

he inner particle shrinks, and these regions are largely encircled

y the compliant outer layer; thus the plastic strain concentra-

ions are relieved. This observation suggests that it is reasonable

o simplify a double-layered inhomogeneity to a uniform compli-

nt inhomogeneity without losing accuracy if the inner particle is

uch smaller than the compliant outer layer ( r inner / r outer = 0.5 or

maller). 

Concentricity . In most actual materials, the two layers of a

ouble-layered inhomogeneity may be eccentric ( Fig. 13 ) without

enter symmetry, and sometimes the stiff core is not totally encir-

led by the outer layer. Therefore, it is necessary to investigate the

oncentricity effect of such asymmetric inhomogeneities on plastic

train distributions in matrix materials. For the cases in this sec-

ion, the outer layer center is fixed at (0, 0, 0.64 a 0 ), while the in-

er layer center moves along the x - or z -axis until it is tangent

o the outer layer. Fig. 14 shows the analysis results for the cases

f E outer /E matrix = 0.7 and E inner /E matrix = 2.0. Poisson’s ratios of inho-

ogeneities are set to be 0.3. Other parameters, including the size

f indenter, the external force, the yield strengths of matrix and

nhomogeneities, are the same as those used in Fig. 8 (d). 

Fig. 14 (a–c) plot the plastic strain distributions in the matrix

aterial in XOZ section when an eccentric double-layered inhomo-

eneity exists, and Fig. 14 (d) shows the result for the correspond-

ng concentric inhomogeneity case as a reference. The shapes of

he plastic strain concentration regions are significantly different in

ach case. As mentioned before, a stiff inhomogeneity raises plas-

ic strain concentration more in regions I and II, i.e. the north and

outh poles. When tangent to the outer layer, the stiff core touches
Fig. 12. Equivalent plastic strain fields in cross section XOZ, with varying size ratio o
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he matrix material without any buffer, as shown in Fig. 14 (a), re-

ulting in a much larger region I than that in Fig. 14 (d) where the

ore is completely encircled by the complaint outer layer. A simi-

ar phenomenon can be observed in Fig. 14 (b), where region II ex-

ands if the core moves downward. However, the maximum plas-

ic strain in Fig. 14 (b) is smaller than that in Fig. 14 (a) because

he north pole of the stiff inhomogeneity, which should be the

ocation of maximum εEq 
P , is embedded deeper in the compliant

uter layer. Thus, the plastic strain concentration in this region is

elieved. For the double-layered inhomogeneity in Fig. 14 (c), upper

nd lower regions of strain concentration shift with the stiff core,

hich results in the highest plastic strain among all the cases in

ig. 14 . Meanwhile, the right portion of region III is released be-

ause it becomes similar to the situation of Fig. 8 (b), and its left

quator is similar to that of Fig. 8 (c). 

Location . In this section, the center location of the double-

ayered inhomogeneity changes from 0.32 a 0 to 0.8 a 0 along the

epth direction, and from 0 to 0.6 a 0 along the x -axis. The Young’s

oduli of the double-layered inhomogeneity are E outer /E matrix = 0.7

nd E inner /E matrix = 2.0 and Poisson’s ratios are 0.3; the radii of outer

nd inner inhomogeneity are 0.2 a 0 and 0.15 a 0 . Fig. 15 plots the

quivalent plastic strains in the matrix when the double-layered

nhomogeneity sets are at different locations. For all cases, the in-

omogeneities lead to plastic strain concentrations, although the

aximum values of ε P 
Eq 

vary from case to case. 

For each plot in Fig. 15 , the peak equivalent plastic strain in the

atrix is found at one of the sides of the double-layered inhomo-

eneity (i.e. region I, II, or III, defined in Fig. 8 (e)), whichever is the

losest to the location of the maximum elastic stress of the homo-

eneous solution ( z = 0.48 a 0 ). For example, in Fig. 15 (a), although

he plastic strains concentrate in both region II and III, the mag-

itude of the equivalent plastic strain in region II is much higher

han that in region III. On the contrary, when considering Fig. 15 (c),

he plastic strains tend to concentrate in region I because this re-

ion is closer to the maximum elastic stress of the corresponding

omogeneous solution than to the lower region. Fig. 15 (d) reveals

hat the maximum equivalent plastic strain in the left portion of

egion III of the double-layered inhomogeneity, which also follows

he phenomena discussed above. These observations can also be

iewed from another scenario. When the distances from any of

hose regions to the point of the maximum elastic stress of ho-

ogeneous solution are equal, i.e. the center of the double-layered

nhomogeneity is situated at (0, 0, 0.48 a ), the difference between
f double-layered inhomogeneities: (a) r inner / r outer = 0.8 and (b) r inner / r outer = 0.5. 
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Fig. 13. A double-layered inhomogeneity in steel, where the inner and outer layers 

are not concentric ( Zhang et al., 2016 ). 
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the global maximum and the secondary highest equivalent plas-

tic strain is the minimum despite the non-uniform contact stress

distribution of the homogeneous solution. As shown in Fig. 15 (b),

the global maximum of the equivalent plastic strain is 1.14%, while

the value of the local maximum located in region III is 0.81%, thus

the difference is 0.33%; and on the other hand, such differences in

Fig. 15 (a) and (c) are 0.48% and 0.38%, respectively. 

Shape . The shape of inhomogeneities is commonly spherical or

ellipsoidal. However, cuboidal inhomogeneities have also been ob-

served in steels, as shown in Fig. 16 . It is interesting to investigate
Fig. 14. Equivalent plastic strain fields in cross section XOZ, (a) (b) (c) with varying orent

layered inhomogeneity. 
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he inhomogeneity shape effect on matrix material plasticity. In

his section, the diameters of the inner and outer layers of a spher-

cal inhomogeneity are 0.3 a 0 and 0.4 a 0 , while the edge lengths

f a cuboidal double-layered inhomogeneity are set to be 0.3 a 0 
nd 0.4 a 0 . Young’s moduli of the double-layered inhomogeneity

et are E outer /E matrix = 0.7 and E inner /E matrix = 2.0, and Poisson’s ratios

re 0.3. Other parameters follow those used in Fig. 8 . Fig. 17 plots

he result comparisons, which are the plastic strain fields of ma-

rix materials in section XOZ. Both inhomogeneities cause plastic

train concentrations in all three regions, but due to the sharp cor-

ers, the cuboidal inhomogeneity leads to larger plastic strain con-

entration regions and higher ε P 
Eq 

values than those of a spherical

nhomogeneity, suggesting that cuboidal inhomogeneities could be

ore harmful. 

.2.3. Effect of inhomogeneity distributions 

Multiple inhomogeneities may appear in a stringer, and each

ontributes to the imposed stresses and strains. The elastic analy-

is by Zhou et al., (2012) for the cases of two inhomogeneities indi-

ates that their interaction becomes stronger when they are closer

o each other. Amuzuga et al., (2016) studied the plastic strain
ation of an eccentric double-layered inhomogeneity, and (d) a homocentric double- 
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Fig. 15. Equivalent plastic strain fields in cross section XOZ of the maxtrix. The distances between the plastic strain concentration regions and the point of the maximum 

elastic stress from the homogeneous solution affect the plastic strain distribution. 

Fig. 16. A cuboidal inhomogeneity in steel ( Zhang et al., 2016 ). 
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elds in the matrix material when a stringer of three uniform stiff

nhomogeneities is involved. Their results indicated that the orien-

ation of a stringer has a significant influence on the magnitudes

f plastic strain concentration due to inhomogeneity interactions.

his section studies the interaction between double-layered inho-

ogeneities, for which two double-layered inhomogeneities are ar-

anged vertically or horizontally, one of them is centered (0, 0,

.64 a 0 ) while the other moves along the x - or z -axis. Young’s mod-

li of the double-layered inhomogeneity set are E outer /E matrix = 0.7

nd E inner /E matrix = 3.0, and Poisson’s ratios are both 0.3. Other pa-

ameters are chosen the same as those in Fig. 8 (d). 
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The overlap of the plastic strain concentration regions is the

ey to understanding the effect of inhomogeneity distributions on

lastic strain fields. As mentioned before, a double-layered inho-

ogeneity causes plastic strain concentration in region III. When

wo such inhomogeneities are horizontally spaced by a clearance

s small as d = 0.08 a 0 ( Fig. 18 (a)), their region III should overlap,

ence resulting in the maximum plastic strain increase to 0.88%.

owever, the amplifying effect due to overlapping decreases when

he two inhomogeneities are far away from each other. As shown

n Fig. 18 (b), when distance d = 0.36 a 0 , the inhomogeneities almost

ave no interaction because the sizes of plastic strain concentra-

ion regions are quite limited, as indicated by Fig. 10 (b). The am-

lification effect due to overlapping can also be found in Fig. 18 (c)

s well, where the location of the maximum plastic strain (0.975%)

s found in the narrow gap of d = 0.04 a 0 between the vertically ar-

anged inhomogeneities. 

As stated in Fig. 8 (b), a stiff inhomogeneity mainly causes

lastic strain concentrated in region I and II, therefore, if spaced

orizontally, these regions parallel to each other and will not

e overlapped. This explains the phenomenon in a reference

 Amuzuga et al., 2016 ), where a stiff inhomogeneity stringer ver-

ical to the contact surface leads to the highest plastic strain in
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Fig. 17. Equivalent plastic strain fields in cross section XOZ, where (a) a spherical or (b) a cuboidal double-layered inhomgoeneity is involved. 

Fig. 18. Equivalent plastic strain fields in cross section XOZ. Two double-layered inhomogeneities are arranged vertically or horizontally to reveal the effect of inhomogeneity 

disributions on the matrix plasticity. 
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Fig. 19. Plastic region evolutions in section XOZ, (a–g) the half-sapce contains various types of inhomogeneity, and (h) the half-space is homogeneous. 
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comparison to other orientations. On the other hand, plastic strain

concentration can only be found in region III around a uniform

compliant inhomogeneity ( Fig. 8 (c)), suggesting that the horizon-

tal stringers are more vulnerable for compliant inhomogeneities.

However, a double-layered inhomogeneity may cause higher plas-

tic strains in all three regions (depending on its material proper-

ties and geometric parameters, as discussed above), and it is highly

possible that plastic strain concentrations be amplified by both

horizontally and vertically lined double-layered inhomogeneities

once they are very close to each other. 

3.3. Initialization of yield 

For a homogeneous half-space under a Hertzian contact, the

maximum subsurface von Mises stress is approximate 0.62 times

of the Hertz pressure P 0 . Therefore, the critical load for the ma-

trix material yield initialization in this study is P c = 1.18 GPa corre-

sponding to its yield strength set to be 0.73 GPa, as stated at the

beginning of Section 3 . The evolutions of the plastic regions are

presented in Fig. 19 . Seven representative cases are studied, which

are a) uniform stiff inhomogeneity, b) uniform compliant inhomo-

geneity, c) double-layered inhomogeneity, d) double-layered inho-

mogeneity having a smaller core, e) double-layered inhomogeneity

having an eccentric core, f) double-layered inhomogeneity in a dif-

ferent location, and g) cuboidal double-layered inhomogeneity. The

plastic strain distributions in both the matrix and the outer inho-

mogeneity are plotted. The plastic strain field of the corresponding

homogeneous case is given in h). Note that the compliant outer

layer is elasto-plastic in all the double-layered cases of this pa-

per, but in Sections 3.1 and 3.2 , the plastic strains in the inhomo-

geneities were not plotted for clarity. Key parameters are listed in

each figure. 

In Fig. 19 (a), plastic strains are found in the north polar region

of the uniform stiff inhomogeneity even under the load of P 0 = P c ,

which is, apparently, due to the stress concentrations caused by

the stiff particle. For the case of uniform compliant inhomogene-

ity, plasticity starts from the upper boundary of the inhomogene-

ity and then extends along depth as the load increases. When the

stiff particle is embedded in the compliant outer layer, as shown

in Fig. 19 (c) or (d), the plastic strain concentration induced by

the core is confined within the double-layered inhomogeneity at

first, and it then permeates to the matrix materials. In Fig. 19 (e),

the stiff core results in plastic strains in the matrix under critical

load P c because it is exposed to the matrix material without any

buffer effect from an outer layer. Except what shown in Fig. 19 (e),

no plastic strain is found in the matrix material in other double-

layered cases in Fig. 19 when P 0 = P c , further demonstrating the

buffer effect of the outer com pliant layer, which more or less in-

creases the critical load to cause matrix plastic deformation. 

4. Conclusions 

An elasto-plastic contact model, based on the numerical equiv-

alent inclusion method, is presented for investigating the effects

of double-layered inhomogeneity sets on the matrix plasticity of

an inhomogeneity-containing material. The analyses were focused

on the double-layered inhomogeneity of a stiff core enclosed by

a compliant outer layer. The parameters of material properties,

shape, and distribution of inhomogeneities were studied for their

influences on the plastic strain concentrations measured by the

maximum equivalent plastic strains. The results suggest following

major findings: 

• Increase in Young’s modulus of the stiff inner layer can in-

duce more serious plastic strain concentration in the upper and

lower regions of the spherical double-layered inhomogeneity.
Please cite this article as: M. Zhang et al., Elasto-plastic contact of m
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Lowering Young’s modulus of the compliant outer layer of the

inhomogeneity makes it absorbs more plastic strain concentra-

tion caused by the stiff core. 
• If the diameter of the inner stiff core is smaller than one half

of that of the compliant outer layer, the double-layered inho-

mogeneity behaves like a uniform compliant inhomogeneity. 
• For the cases of an individual double-layered inhomogeneity at

different locations, the maximum equivalent plastic strain in

the matrix is in one of the adjacent regions (upper, lower or

equatorial) of the inhomogeneity, whichever is the closest to

the location of the maximum elastic stress in the correspond-

ing homogeneous material (which is x = y = 0 and z = 0.48 a 0 in

the current study). 
• The eccentric inner stiff core in a double-layered inhomogene-

ity raises a higher plastic strain concentration than does a con-

centric one. In addition, a cuboidal double-layered inhomogene-

ity causes stronger plastic strain concentration in the matrix

than does a spherical one. 
• For the cases of multiple double-layered inhomogeneities, the

overlap of the plastic strain concentration regions, either verti-

cally or parallel to the loading surface, amplifies the plasticity

disturbance caused by the double-layered inhomogeneities. 
• If the stiff core of a double-layered inhomogeneity is com-

pletely encircled by the outer layer, plastic strains should initi-

ate from the compliant outer layer and then permeate into the

matrix material. The compliant outer layer provides a buffering

function. 
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