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In this work, we study the dispersion of elastic waves in piezoelectric infinite plates with
ferroelectric inversion layers. The motivation is to analyze the effect of ferroelectric inver-
sion layers on wave dispersion and resonant behavior under impulsive line loads. A semi-
analytical finite-element (SAFE) method has been adopted to analyze the problem. Two
model problems are considered for analysis. In one, the plate is composed of a layer of
36� rotated y-cut LiNbO3 with a ferroelectric inversion layer. In the other, material is
PZT-4 with a ferroelectric inversion layer. Comparison with experimental results, reported
in the literature for isotropic materials, shows a very good agreement with theoretical pre-
dictions obtained using SAFE method. Furthermore, comparison of the resonance frequen-
cies of the S1 modes, calculated using KLM approximation (f0 = Cd/2h) and SAFE method, are
illustrated for each problem. The frequency spectra of the surface displacements show that
resonant peaks occur at frequencies where the group velocity vanishes and the phase
velocity remains finite, i.e., a minimum in the dispersion curve below the cut-off frequency.
The effect of the ratio of the thicknesses of the inversion layer (IL) and the plate on the fre-
quencies and strength of the resonant peaks is examined. It is observed that for PZT-4 with
50% IL to plate thickness ratio the frequency for the second resonant peak is about twice
that for the first one. Results are presented showing the dependence of resonant frequen-
cies on the material properties and anisotropy. Materials selection for single-element har-
monic ultrasound transducers is a very important factor for optimum design of transducers
with multiple thickness-mode resonant frequencies. The theoretical analysis presented in
this study should provide a means for optimum ultrasound transducer design for harmonic
imaging in medical applications.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Infinite plates have been widely used as a model for single element ultrasound transducers. Current ultrasound trans-
ducer design is based on exciting the resonant frequency of the first extensional mode (S1) only. Thus, most manufacturers
use equivalent approximate networks such as KLM, Mason and Redwood circuit models to design ultrasound transducers
that are limited to the first resonant frequency of the extensional mode (S1). For medical applications such as harmonic
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imaging, it would be desirable to have a transducer operating with multiple resonant frequencies near the frequencies of
interest (Wang and Chan, 2003; Frijlink et al., 2005, 2006; Bouakaz et al., 2002).

Finite-element methods (FEM) have been widely used to analyze piezoelectric structures. A full review of these is beyond
the scope of this paper. Mention is made here of Saravanos and Heyliger (1995), Saravanos et al. (1997), Ramirez et al. (2006),
and references therein. FEM has also been used to model ultrasound transducers (Lerch, 1990; Hossack and Hayward, 1991;
McKeighen, 2001; Zhou et al., 2006). Time-domain schemes have been used to predict the performance of ultrasound trans-
ducers in terms of impedances and efficiencies. The effect of matching layers, backing layers, bonding layer and electrodes on
the operation of the transducer can be addressed using this technique (Zhou et al., 2006; McKeighen, 2001). However, a large
number of elements and simulation time are usually required for high frequency simulations. On the other hand, semi-ana-
lytical finite-element (SAFE) methods, where the discretization is used only in the thickness direction in an infinite plate (or
the radial direction in a circular cylinder), have been used by Bai et al. (2004), Dong and Pauley (1978), Pauley and Dong
(1974), Siao et al. (1994) and Taciroglu et al. (2004) for analysis of dispersion of guided waves and dynamic response. These
are generalizations of the ones used for the analysis of guided waves in composite plates and circular cylinders (see the re-
view by Datta, 2000). Mukdadi et al. (2002) and Mukdadi and Datta (2003) studied time-harmonic and transient guided
waves in cylinders of rectangular cross section using the SAFE method.

Multilayered piezoelectric ceramics have been demonstrated to improve the performance of medical ultrasound trans-
ducers (Mills and Smith, 2002a,b; Goldberg and Smith, 1994). Mills and Smith (2002a) showed that the signal-to-noise ratio
(SNR) increased by 11 dB and the bandwidth was improved by 40% when using three-layer PZT crystals for 2-D arrays. Gold-
berg and Smith (1994) found similar results for 1.5-D transducers made of a layered ceramic. Layers of different materials
were also analyzed numerically by Mills and Smith (2002b) showing improvements on the bandwidth and SNR.

A recent improvement on the design of broadband ultrasound transducer by the introduction of an inversion layer (IL) has
been reported (Nakamura et al., 2003, 2005; Zhou et al., 2006, 2005; Huang et al., 2005). The active element in an IL trans-
ducer is composed of two piezoelectric sublayers of opposite poling directions. In the ferroelectric inversion layer, the pie-
zoelectric constants are opposite in sign to those of a regular one. Note that the equations governing wave motion in such an
IL are the same as those in a regular one except for the change in sign of the piezoelectric constants. It has been demonstrated
that the use of a layer of LiNbO3 of 30% of the total thickness with inverted piezoelectric properties decreases the conversion
loss at the second-order thickness-mode, i.e., at a frequency equal to twice the fundamental resonance frequency. Zhou et al.
(2005, 2006) used time-domain finite elements to study electrical impedance and acoustic characteristics of IL transducers.

In this paper, attention is focused on analyzing the effect of those lower-order propagating modes that have zero-group
velocity (ZGV) points in the frequency–wavenumber domain. Although special properties of these points have been well known
since the early studies of dispersion of guided waves in plates and cylinders, they have been exploited only recently for material
characterization and dynamic response studies. Recent experimental studies (Clorennec et al., 2007; Gibson and Popovics,
2005; Holland and Chimenti, 2004; Veidt et al., 2000) have shown that strong resonances occur in plates at frequencies where
the group velocities of S1 and A2 modes vanish, but the phase velocities have finite values, i.e., the dispersion curves for those
modes have minima below the cut-off frequencies. Since the group velocity of such a mode vanishes at the minimum, mechan-
ical energy is trapped and high amplitude standing waves (vibrations) are present. The frequencies of the zero-group velocity
(ZGV) points depend on the materials properties and the thickness of the plate. The frequency spectrum of the forced displace-
ment response due to a frequency-dependent excitation shows the resonant peaks, from which the frequencies of the ZGV
points can be obtained. Excitation of plates at frequencies in the neighborhood of ZGV points can be used to calculate the thick-
ness or the Poisson’s ratio for isotropic plates (Clorennec et al., 2007) or for imaging of flaws (Holland and Chimenti, 2004).

The same concept has been used to refine another NDT method called ‘Impact Test’ (Gibson and Popovics, 2005) or tra-
ditional transducer excitation for nondestructive evaluation of composite plates (Veidt et al., 2000). In these, the normal dis-
placements of a plate structure are measured after an impact or a force is applied to the structure. The frequency spectra of
these displacements are used to detect the resonant frequencies and then material properties or thickness can be calculated.

In this paper, we have used the SAFE method to analyze the dispersion behavior and the forced response of a piezoelectric
plate with an inversion layer with particular attention to frequencies near ZGV points. LiNbO3 and PZT-4 plates, with various
percentages of inversion layers have been analyzed to explore the relation between ZGV points and resonant peaks in the
frequency spectra of the displacement and the effect of IL on the first two resonant frequencies. Corresponding modes shapes
at the ZGV regions are also discussed. This analysis provides a better understanding of the IL effect and may be used as ana-
lytical tool to optimize the design of broadband ultrasound transducers.
2. Finite-element formulation

2.1. Governing equations

Consider a layered piezoelectric plate as shown in Fig. 1. The piezoelectric plate consists of N parallel, homogeneous, and
anisotropic layers, which are perfectly bonded together. A global rectangular coordinate system (X,Y,Z) is adopted such that
the Z-axis coincides with the thickness direction. The X and Y axes are parallel to the infinite direction of the plate. We adopt
a hybrid analytical–numerical approach to model elastic guided wave propagation in layered anisotropic infinite piezoelec-
tric plates. The analysis couples analytical treatment of the motion in the XY plane with a numerical treatment of the motion



Fig. 1. Coordinate system and inversion layer distribution.
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along the thickness direction of the plate using the finite-element method. To effect the latter, we discretize the thickness (Z-
axis) of the plate using three-node finite-elements, each of which has associated with it a local coordinate system (x,y,z),
which is parallel to the global coordinate system. The displacement and electric potential are assumed to be time-dependent
and functions of local coordinates system (x,y,z). Since the displacements are small compared to the thickness, a linear
stress–strain-electrical field will be used to describe the dynamic behavior of the plate. The constitutive equation in the ma-
trix form is given by
Q ¼ C�q; ð1Þ
where Q = [Txx,Tyy,Tzz,Tyz,Txz,Txy,Dx,Dy,Dz] is a vector of the stress components and the electric displacements,
q = [Sxx,Syy,Szz,2Syz,2Sxz,2Sxy,Ex,Ey,Ez] is a vector with the components of the mechanical strain and electric field components,
and C* is a matrix containing the elastic constants c, dielectric constants e and the piezoelectric stress constants e:
C� ¼ c �eT

e e

� �
: ð2Þ
Without loss of generality, we assume that the waves are propagating in the x-direction. The kinematic equation relates the
vector q to the displacements and electric potential vector v = [ux,uy,uz,/] as,
q ¼ B1ve
;x þ B2ve; ð3Þ
where B1 and B2 are operator matrices defined in Appendix A.
The equation of motion can be obtained using the Hamilton’s principle (Tiersten, 1969):
d
Z t1

t0

ðKE� H þWÞdt ¼ 0; ð4Þ
where KE, H and W are the kinetic energy, electrical enthalpy and potential energy of the prescribed surface forces and
charges, respectively. These terms can be expressed as:
KE ¼ 1
2

Z Z Z
t

_vTq _vdt; H ¼ 1
2

Z Z Z
t

qTCqdt; and W ¼
Z Z

S
vT f dS; ð5Þ
where, C ¼ c �eT

�e �e

� �
, and q ¼

q
q

q
0

2
664

3
775.

The thickness direction of the plate is discretized using three-node elements. Within each sublayer, quadratic interpola-
tion functions with three equally spaced nodal surfaces are used. The explicit form of these interpolations over a sublayer is
shown in Appendix A.

The field variables v can be written in terms of the vector of nodal variables ve as follows:
vðx; z; tÞ ¼ NðzÞveðx; tÞ; ð6Þ
where N is a matrix composed of the interpolation functions. The equations of motion are obtained by substitution of Eq. (6)
into Eq. (5) and carrying out the variation of Eq. (4), analogous to that used by Mukdadi et al. (2002) and Mukdadi and Datta
(2003) (details are shown in Appendix A):
me€ve þ ke
1ve þ ke

2ve
;x � ke

3ve
;xx ¼ fe

: ð7Þ
Eq. (7) is a system of partial differential equations that relates the electromechanical response due to mechanical and/or
electrical excitation. Global mass and stiffness matrices can be obtained considering the connectivity of the discretized
geometry. Eq. (7) can be expressed in its global form as:
M€V þ K1V þ K2V;X � K3V;XX ¼ F; ð8Þ
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where,
M ¼ [me; Ki ¼ [ke
i ; F ¼ [fe

; and V ¼ [ve:
A comma (,) represents the spatial first derivative with respect to the global coordinates. To solve Eq. (8), a semi-analytical
technique will be implemented in the following section. In this study, we consider open circuit (DZ = 0) and traction-free
(TXZ = TZZ = 0) boundary conditions on the upper and lower surfaces of the plate. Note that Eq. (8) is the semi-analytical
finite-element equation, which is obtained by discretizing in the Z-direction. This equation can now be solved by using
standard Fourier transforms techniques in X and t.

Define the Fourier transformation as
eUðk;xÞ ¼ Z 1

�1

Z 1

�1
UðX; tÞe�iðkX�xtÞdX dt; ð9Þ
where U(X, t) is a finite function, k and x represent the wave numbers along X direction and the angular frequency, respec-
tively. Applying this transformation to Eq. (8), the differential equation is transformed into:
ðK1 � ikK2 þ k2K3 �x2MÞeV ¼ eF: ð10Þ
The dispersion relations of the propagating modes are found by solving the eigenvalue problem arises when considering
the homogeneous case ðeF ¼ 0Þ of Eq. (10). If the wavenumber k is defined, then Eq. (10) can be solved for the angular fre-
quencies x of the propagating modes. The phase and group velocities can be expressed, respectively, as,
vp ¼
x
k
; and vg ¼

@x
@k

: ð11Þ
Dispersion curves showing the dependence of the phase and group velocities on the angular frequencies can be obtained
using Eqs. (10) and (11).

2.2. Electro-elastodynamic Green’s functions

Solving the homogenous part of Eq. (10) will yield the dispersion relation for elastic guided waves in infinite piezoelectric
plates. To derive the Green’s functions, one can rewrite Eq. (10) including the forcing term in the form (Mukdadi and Datta,
2003),
½A�U ¼ c½B�Uþ P; ð12Þ
where
A ¼
0 I

K1 �x2M �K2

� �
; B ¼

I 0
0 K3

� �
;

and
U ¼ ½ eV ceV �T ; P ¼ ½0 eF �T; and c ¼ ik:
Note that matrix A is not symmetric but B is symmetric. The homogenous part of Eq. (12) will yield the characteristic equa-
tion, the roots of which (eigenvalues) are the wavenumbers of the modes for a given frequency x. These wavenumbers can
be real, imaginary or complex numbers. The imaginary and complex eigenvalues correspond to the evanescent modes, while
real values are for the propagating modes.

The right and left eigenvectors, um and wm, respectively, associated with each eigenvalue can be found solving the sys-
tems of equations (written in an abbreviated form)
½A� cmB�um ¼ 0; and ½AT � cmB�wm ¼ 0: ð13Þ
Here, um and wm satisfy the bi-orthogonality relations:
wT
mBum ¼ dmnBn; and wT

mAum ¼ dmncmBn: ð14Þ
The eigenvectors can be combined as the upper and lower parts to give
um ¼
umu

uml

� �
¼

umu

cmuml

� �
; wm ¼

wmu

wml

� �
¼

wmu

cmwml

� �
: ð15Þ
These eigenvectors can be used to calculate the response spectrum due to electrical or mechanical excitations. The solution
of Eq. (12) is the weighted sum of all modes:
Uðc;xÞ ¼
X2N

m¼1

Umum: ð16Þ
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Inserting Eq. (16) into Eq. (12), the following system of equations is obtained:
Table 1
Mechan

Steel
36� rot
PZT-4
½A� cB�
X2N

m¼1

Umum ¼ P: ð17Þ
Multiplying Eq. (17) on the left side by wT
m and applying the bi-orthogonality relations, the Um coefficients can be obtained:
Um ¼
wT

mP
ðcm � cÞBm

: ð18Þ
In terms of the lower and upper eigenvectors (Eq. (15)), we expressed the resulting Green’s functions in the wavenumber–
frequency domain by substituting Um in Eq. (16) as follows,
eVðc;xÞ ¼X2N

m¼1

cmwT
mu
eF

ðcm � cÞBm
umu: ð19Þ
a
ical properties and mass densities of steel, 36� rotated y-cut LiNbO3 and PZT-4 materials (Zhou et al., 2006; Auld, 1990)

Elastic properties (GPa) Density (kg/m3)

C11 C12 C13 C14 C33 C44 C66 q

277.5 113.4 113.4 0 277.5 82 82 7850
ated y-cut LiNbO3 199 51.85 70.85 3.91 203.96 70.75 60.44 4640

139 77.8 74.3 0 115 25.6 30.6 7500

Fig. 2. Vibrational characteristics of a steel plate of 0.9 mm thick: (a) dispersion curves, (b) frequency spectra of the normal displacement.
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The displacement and electrical potential in the space–frequency domain were determined by applying the inverse Fourier
transform, which was evaluated numerically using Cauchy’s residue theorem,
Table 1
Piezoele

36� rot
PZT-4

Fig. 3.
(b) freq
V
_

ðX; xÞ ¼ �i
XN

m¼1

cmwT
mu
eF

Bm
umue�cmX : ð20Þ
Eq. (20) represents the displacement and electrical potential Green’s functions in the space–frequency domain due to force
or electric excitation.

2.3. Frequency response due to impulse loading

To obtain ultrasound images with optimum axial and lateral spatial resolutions, impulsive loads are usually used with
broadband ultrasound transducers. In this study, we aim to study the resonance modes of elastic guided waves for harmonic
b
ctric properties of 36� rotated y-cut LiNbO3 and PZT-4 materials (Zhou et al., 2006; Auld, 1990)

Piezoelectric stress constant (C/m2) Clamped dielectric constants

e15 e31 e33 e33 e11

ated y-cut LiNbO3 1.544 �1.152 3.628 32.99 44.9
12.7 �5.2 15.1 635 730

Vibrational behavior of 36� rotated y-cut LiNbO3 plate for several percentages of inversion layer and 0.5 mm thickness: (a) dispersion curves,
uency spectra of the normal displacement.
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ultrasound transducer design. To do so, we considered an impulsive line load applied to the surface of the piezoelectric plate.
This line load along the Y-axis is acting into the thickness direction of the plate (Z-axis). This impulse line load can be ex-
pressed in the form,
Fig. 4.
the nor
FðX; tÞ ¼ dðXÞdðtÞF0; ð21Þ
where F0 is a vector with all the components equal to zero, except one component corresponding to force acting into Z-axis
or charge applied on the piezoelectric plate. Applying the Fourier transform (Eq. (9)) to Eq. (21) results in
eFðkX ; kY ;xÞ ¼ F0: ð22Þ
The frequency spectrum of the normal displacements and electrical potential can be expressed, using Eq. (20), as:
V
_

ðX;xÞ ¼ �i
XN

m¼1

cmwT
muF0

Bm
umue�cmX : ð23Þ
The above equation represents the frequency response of the displacement and electrical potential at the point X due to a
line force along the Y-axis and acting in the Z-direction. The numerical results illustrated in the following section will
consider the frequency spectrum of the normal displacement calculated at the same point of excitation (i.e., X = 0). This is
analogous to the experiment reported by Clorennec et al. (2007).

3. Numerical results and discussion

Eqs. (10) and (23) govern the dispersion behavior and the frequency spectrum of displacements and electrical potential of
guided wave propagation in layered piezoelectric infinite plates. In this study, numerical results for single layer and
bi-layered plates used for fabricating single-element medical ultrasound transducers will be addressed.
Vibrational behavior of PZT-4 plate for several percentages of inversion layer and 0.5 mm thickness: (a) dispersion curves, (b) frequency spectra of
mal displacement.
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Validation of the SAFE method with experiment was made by comparison of numerical results for a 0.9 mm steel plate
and experimental results reported by Clorennec et al. (2007). The mechanical properties used for steel are shown in Table 1a.
The dispersion curves for a steel plate of 0.9 mm show two ZGV points at 3.08 and 5.36 MHz (Fig. 2a), corresponding to the
first extensional (S1) and second flexural (A2) modes. Excellent agreement for the peaks and off-peak values is observed be-
tween the frequency spectra of the normal displacement obtained by this method and experimental results (Fig. 2b). A com-
parison between the dispersion curves and the frequency spectra of the normal displacement clearly show that resonance
peaks correspond to ZGV frequency points. This phenomenon shall be useful for piezoelectric resonators and ultrasound
transducers used for imaging. Note that even though the experiment was for a point load, the frequency dependence of
the displacement is the same for the point and line loads (except for a normalization factor). This is because the dispersion
behavior is the same in two and three dimensions for an isotropic plate.
Table 2
Comparison of the resonance frequencies for several percentages of IL thickness ratios using SAFE method

IL (%) 1st fSAFE (x/x0) 2nd fSAFE (x/x0) 2nd fSAFE/1st fSAFE

36� rotated y-cut LiNbO3 0 5.25 9.45 1.78
30 5.34 9.44 1.77
50 5.46 9.35 1.71

PZT-4 0 6.00 15.40 2.57
30 6.50 15.25 2.35
50 6.95 15.05 2.16

Fig. 5. Group velocity spectrum for 36� y-cut LiNbO3: (a) 0% IL, (b) 30% IL, (c) 50% IL.
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Fig. 3 shows the dispersion curves and the frequency spectra of the normal displacement of a 36� rotated y-cut LiN-
bO3 layered plate of 0.5 mm total thickness. The effect of the ratio of the thickness of the inversion layer (IL) to the total
thickness of the plate was examined. The mechanical and piezoelectric properties are shown in Table 1a and 1b, respec-
tively. The wavenumber was normalized by multiplying with the thickness (h) and the non-dimensional frequency is
defined as x/x0 where by x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p
=h. Here C44 is an elastic constant and q the mass density. The dispersion curves

(Fig. 3a) for several ratios (0%, 30% and 50%) of IL thickness to the plate show negligible differences for shear-horizontal
modes SH0, SH2 and SH3. For the first-order shear-horizontal SH1 mode, the curves are identical for k in the range 0–2.5,
but after that, small differences are seen for the three percentages of IL thickness ratios. Small differences are observed
for the S0, S1 and S2 modes. The cut-off frequencies for the SH1 and A1 modes show small differences for 0% and 30% of
IL, but are the same for 50% thickness ratio of IL. On the other hand, for SH2 and S2 modes, the cut-off frequencies are
slightly different for 30% and 50% thickness ratios of IL. However, these cut-off frequencies for SH2 and S2 modes are
equal for single LiNbO3 plate without inversion layer (i.e., 0% IL thickness ratio). The ZGV point for the S1 mode does
not change considerably. However, the lowest frequency for this ZGV point corresponds to 0% IL thickness ratio. On
Table 3
Comparison of the resonance frequencies calculated using the KLM approximation (f0 = Cd/2h) and using SAFE method

f0 = Cd/2h (MHz) fSAFE (MHz) fSAFE/f0 2f0 (MHz) 2nd fSAFE (MHz) 2nd fSAFE/2f0

36� rotated y-cut LiNbO3 7.10 6.57 0.92 14.20 11.75 0.827
PZT-4 3.92 3.52 0.90 7.82 9.05 1.156

Fig. 6. Group velocity spectrum for PZT-4: (a) 0% IL, (b) 30% IL, (c) 50% IL.
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the other hand, the lowest frequency for the ZGV point corresponding to the A2 mode is obtained for 50% IL thickness
ratio.

A similar analysis of the dispersion curves (Fig. 4a) for PZT-4 (Table 1) shows that the shear-horizontal SH0, SH1, SH2 and
SH3 modes are similar for all the ratios of IL analyzed. A considerable difference is observed for the cut-off frequencies of the
A1 mode, especially for 0% IL thickness ratio. In a similar way, the cut-off frequencies for S1 modes show considerable differ-
ences. It is noted that, the cut-off frequencies of S1 and SH2 modes are the same for 0% IL thickness ratio. The same is found to
be true for the S1 and S2 for 50% of IL. A very important observation is that for this material the second ZGV point is not pres-
ent on A2 mode dispersion curve, but is found on that of S4. Negishi (1987) showed that for isotropic materials a ZGV point for
the A2 mode exists only when the Poisson’s ratio (v) is less than 0.31. Furthermore, ZGV points can be also found for S3, S4, S6

and A5 modes for specific values of v. In fact, there is not an explicit relation between the ZGV points and the elastic constants
for anisotropic materials.
Fig. 7. Mode-shapes at resonant frequencies for 36� y-cut LiNbO3 with 0% inversion layer: (a) S1 mode, (b) A2 mode.
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Figs. 3b and 4b clearly show that the resonant frequencies for the plates correspond to the ZGV points on the dispersion
curves. For LiNbO3, the first two resonant peaks correspond to the ZGV of S1 and A2 modes. In the same way, for PZT-4, the
first two resonant peaks are obtained for the ZGV points of S1 and S4 modes. The change in the frequency for the resonant
peaks with the change in percentage of IL is small, except for first resonant peak for PZT-4. In this case, the resonant fre-
quency was shifted from x/x0 = 6.0 to x/x0 = 6.95. Small peaks are observed at the cut-off frequency for the A2 mode, espe-
cially for 50% IL thickness ratio. A comparison between the resonant frequencies obtained using the SAFE method presented
here (Table 2) shows that the second resonant peak for PZT-4 with 50% IL thickness ratio is located at almost twice the fre-
quency of the first peak, making this configuration optimum for harmonic imaging. Additionally, there is no significant dif-
ference in the ratio of the first two resonant frequencies of LiNbO3 when the percentage of IL thickness ratio is changed.

Fig. 5 shows the frequency dependence of the non-dimensional group velocity �vg ¼ vg=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p� �
for LiNbO3. The group

velocities were calculated using Eq. (11). It is clearly seen that for all percentages of inversion layer there is a ZGV point for
the S1 mode below the cut-off frequency. However, there is no ZGV point for the second anti-symmetric A2 mode with 30% IL
Fig. 8. Mode-shapes at resonant frequencies for 36� y-cut LiNbO3 with 30% inversion layer: (a) S1 mode, (b) A2 mode.
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thickness ratio, instead a crossing between the A2 and SH3 modes is observed. Fig. 6 shows the group velocity dispersion
curves for PZT-4. The ZGV points for S1 and S4 modes are observed for all thickness ratios of IL. These results show strong
influence of the piezoelectric material anisotropy on the ZGV modes, resonance characteristics and dispersion behavior of
layered piezoelectric plates used for ultrasound imaging transducers. These theoretical findings provide a means for optimiz-
ing resonance characteristics of piezoelectric resonators.

In the approximate conventional methods (KLM) for transducer design the resonance frequency is defined as
f0 = Cd/2h, where Cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C33=q

p
is the bulk dilatational speed of the piezoelectrical material and h the thickness. A

comparison of the first and second resonance frequencies obtained using this method and the one proposed here
for 0% IL thickness ratio is shown in Table 3. The error in calculating the first resonance for 36� rotated y-cut LiN-
bO3 and PZT-4 is about 10%. For the second resonant frequencies the errors are considerably high for both materials
(about 17%). These differences indicate that the resonant frequencies are strongly influenced by the material prop-
Fig. 9. Mode-shapes at resonant frequencies for 36� y-cut LiNbO3 with 50% inversion layer: (a) S1 mode, (b) A2 mode.
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erties and thus should be carefully obtained specially when designing multi-resonant transducers for harmonic
imaging.

Recent studies have shown the improvement in the bandwidth for transducers made of LiNbO3 when 30% IL
thickness ratio has been included (Zhou et al., 2005, 2006; Nakamura et al., 2003, 2005). Zhou et al. (2006) showed
that the bandwidth can be increased up to 90% using IL and a proper selection of the matching layers. Nakamura
et al. (2003) found that the transducer characteristics depend on whether the IL is in the front (upper) or back
(lower) sides of the transducer. However, in both cases the total efficiency of the transducer was improved at f0

and 2f0.
The mode-shapes for the displacements, stresses and electrical displacements and voltage at the resonant frequencies

are shown in Figs. 7–9. The displacements and stresses were normalized by the maximum overall value to preserve their
relative magnitude. The electrical variables were normalized independently. It is clearly seen that the values of the stress
components TZZ, TXZ and electrical displacement DZ are zero at the surfaces for all cases. Note that the free boundary con-
ditions are the natural boundary conditions. Displacements in all coordinate directions are observed. However, there is a
dominant displacement component and the others are very small. The mechanical displacements and stresses show no
significant change with a change in the IL percentage. The electrical displacements and the stresses are observed to be
divided into two regions corresponding to the inversion layer zones. Chen et al. (2007) also reported very small changes
in the mechanical displacements of magneto-electro-elastic plates for changes in the piezoelectric and/or piezomagnetic
properties.
4. Conclusions

A semi-analytical finite-element method has been used to theoretically predict the resonant frequencies and the
dispersion behavior of layered piezoelectric plates. The analysis of piezoelectric layered plates shows that the reso-
nant frequencies at the ZGV points of the Lamb wave modes are more significant than those at the cut-off frequen-
cies. This is consistent with previous observations on Lamb waves in homogeneous and composite plates. It was also
shown that the material properties as well as the percentage of inversion layer have measurable effect on the occur-
rence of the first and second resonance peak frequencies. A comparison between the resonant frequencies obtained
by this method and analytical approximations, usually adopted for transducer design, showed considerable differ-
ences, especially for the second resonant frequency. The modal analysis showed that the mechanical displacements
and stresses are independent of the changes in the thickness of the inversion layer. The theoretical analysis pre-
sented in this study provides a useful means for accurately calculating high-order resonance modes and ZGV points.
It is believed that the method presented here would be useful for the design and optimization of ultrasound trans-
ducers for harmonic iimaging.
Appendix A. The matrices shown in Eq. (3) are defined as,
B1 ¼

N � � �
� � � �
� � � �
� � � �
� � N �
� N � �
� � � �N
� � � �
� � � �

2
66666666666666664

3
77777777777777775

; and B2 ¼

� � � �
� � � �
� � N;z �
� N;z � �

N;z � � �
� � � �
� � � �
� � � �
� � � �N;z

2
66666666666666664

3
77777777777777775

; ðA1Þ
where
N ¼

N1 � � � N2 � � � N3 � � �
� N1 � � � N2 � � � N3 � �
� � N1 � � � N2 � � � N3 �
� � � N1 � � � N2 � � � N3

2
6664

3
7775:
N1, N2 and N3 are quadratic interpolation functions with three equally spaced nodal surfaces given as,
N1 ¼
1
2

zðz� 1Þ; N2 ¼ 1� z2; and N3 ¼
1
2

zðzþ 1Þ; where � 1 6 z 6 1:
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Eq. (5) can be expressed in terms of Eq. (3) as:
KE ¼ 1
2

Z
_veTme _ve dx;

H ¼ 1
2

Z
ðveT

;x k11ve
;x þ veT

;x k12ve þ veTk21ve
;x þ veTk22veÞdx;

W ¼ 1
2

Z
veTfe dx;

ðA2Þ
where,
me ¼
Z

NT
qN dz; kij ¼

Z
BT

i CBj dz; and fe ¼
Z

NTf dz; for i; j ¼ 1;2;3:
Carrying out the variations on Eq. (4), the motion equation for a single element is obtained:
me€ve þ ke
1ve þ ke

2ve
;x � ke

3ve
;xx ¼ fe

; ðA3Þ
where
ke
1 ¼ k22; ke

2 ¼ k21 � k12; and ke
3 ¼ k22:
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