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Abstract 

Magneto-electro-elastic (MEE) materials usually consist of piezoelectric (PE) and piezomagnetic 

(PM) phases. Between different constituent phases, there exist lots of interfaces with discontinuous MEE 

properties. Complex interface distribution brings a great difficulty to the fracture analysis of MEE 

materials since the present fracture mechanics methods can hardly solve the fracture parameters 

efficiently of a crack surrounded by complex interfaces. This paper develops a new domain formulation 

of the interaction integral for the computation of the fracture parameters including stress intensity factors 

(SIFs), electric displacement intensity factor (EDIF) and magnetic induction intensity factor (MIIF) for 

linear MEE materials. The formulation derived here does not involve any derivatives of material 

properties and moreover, it can be proved that an arbitrary interface in the integral domain does not affect 

the validity and the value of the interaction integral. Namely, the interaction integral is 

domain-independent for material interfaces and thus, its application does not require material parameters 

to be continuous. Due to this advantage, the interaction integral becomes an effective approach for 

extracting the fracture parameters of MEE materials with complex interfaces. Combined with the 

extended finite element method (XFEM), the interaction integral is employed to solve several 
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representative problems to verify its accuracy and domain-independence. Good results show the 

effectiveness of the present method in the fracture analysis of MEE materials with continuous and 

discontinuous properties. Finally, the particulate MEE composites composed of PE and PM phases are 

considered and four schemes of different property-homogenization level are proposed for comparing their 

effectiveness.  

Keywords: magneto-electro-elastic (MEE); particulate; crack; interaction integral; domain-independent; 

stress intensity factor (SIF); electric displacement intensity factor (EDIF); magnetic induction intensity 

factor (MIIF); extended finite element method (XFEM)  

1. Introduction 

Magneto-electro-elastic (MEE) materials were first observed by Van Suchtelen 

(1972) and Van Run et al. (1974) who found that the ferrite-ferroelectric composites 

possessing both piezoelectric (PE) and piezomagnetic (PM) phases exhibited a 

magneto-electric coupling effect. Possessing the ability of converting mechanical, 

electric and magnetic energy, MEE materials have drawn significant interest in several 

engineering fields as a class of important functional materials, such as magnetic field 

probes, electronic packaging, hydrophones, medical ultrasonic imaging, actuators, 

waveguides, sensors, phase invertors, transducers (Wu and Huang, 2000; Ma et al., 

2012). However, a great drawback of MEE materials is their inherent brittleness and 

low fracture toughness (Sladek et al., 2011). Generally, these materials may fail 

prematurely in service due to some defects such as cracks and holes, arising during the 

manufacturing process and subsequent handling. For this reason, it is of great important 

to understand the fracture feature of MEE materials.  
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On the theoretical side, Liu et al. (2001) studied Green’s functions for MEE 

materials involving a crack. Based on the extended Stroh formalism, Wang and Mai 

(2003) obtained a general two-dimensional (2D) solution of the MEE field around the 

crack tip. Gao et al. (2003, 2004) obtained the explicit solutions in closed forms for a 

crack in MEE solids. Song and Sih (2003) examined the crack initiation and growth 

behavior in a MEE body. Subsequently, considerable research work was carried out on 

the static and dynamic fracture problems of MEE materials (Wang and Mai, 2004, 2007; 

Chen et al., 2004; Li, 2005; Hu and Li, 2005; Yong and Zhou, 2007; Guo and Lu, 2010; 

Zhang, 2011; Zhong, 2011; Ma et al., 2012). MEE materials usually contain PE and PM 

phases and the interfaces between constituent phases may reduce the reliability of MEE 

materials since the interfaces generally act as sources of failures in service. In order to 

improve the reliability, researchers proposed the concept of functionally graded 

materials (FGMs), a category of non-homogeneous materials with properties varying 

continuously, and recently, the concept of FGMs is extended to MEE materials, called 

functionally graded MEE (FGMEE) materials. The cracks in a FGMEE solid subjected 

to anti-plane shear loading were first considered by Zhou and Wang (2004, 2006) using 

the Schmidt method. The fracture analyses of FGMEE materials are mostly restricted to 

a relatively simple anti-plane problems (Feng and Su, 2006; Ma et al., 2007, 2009; Li 

and Lee, 2008; Lee and Ma, 2010; Rangelov et al., 2011). Up to recent years, there are 

few research papers (Zhou and Chen, 2008; Ma and Lee, 2009; Rekik et al., 2012; 

Zhong and Lee, 2012) on the in-plane fracture problems of FGMEE materials. 

Theoretical studies are mostly under some rigorous assumptions and thus, lots of 
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actual problems need to be solved by using numerical methods. On the numerical side, 

except the finite element method (FEM) (Rao and Kuna, 2008b), the boundary element 

method (BEM), the Meshless local Petrov-Galerkin (MLPG) method and the extended 

finite element method (XFEM) are mostly used to analyze the fracture problems of 

homogeneous MEE and FGMEE materials. Garcia-Sanchez et al. (2007), Dong et al. 

(2008), Rojas-Diaz et al. (2012) and Pasternak (2012) adopted the BEM to investigate 

the static crack problems of MEE materials. Rojas-Diaz et al. (2010) and Wunsche et al. 

(2012) employed the BEM to study fracture problems of MEE materials under dynamic 

loading. Sladek et al. (2008) and Li et al. (2009) applied the MLPG method to analyze a 

crack in homogeneous MEE media. Sladek et al. (2010, 2011) extended the MLPG 

method to examine crack problems of FGMEE materials subjected to the stationary and 

transient thermal and mechanical loading. Rojas-Diaz et al. (2011) and Bhargava et al. 

(2012) used the XFEM in static fracture and quasi-static crack propagation analyses of 

MEE solids.  

The intensity factors (IFs) including stress intensity factors (SIFs), electric 

displacement intensity factor (EDIF) and magnetic induction intensity factor (MIIF) are 

the key fracture parameters charactering the crack-tip fields of linear MEE materials. As 

a powerful tool solving the fracture parameters, conservation integrals such as the 

J-integral, the 
i

J -integral and the M-integral are widely used to study the crack 

behaviors in pure elastic media in the past decades. Recently, these conservation 

integrals have also been developed to deal with MEE materials. Wang and Mai (2003) 

first derived a path-independent J-integral for homogeneous MEE materials. Tian and 
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Rajapakse (2005) discussed the 
iJ -integral and M-integral for a single crack and 

multi-crack problems in MEE media. For dynamic fracture problems of MEE solids, 

Chen (2009) established a dynamic contour integral which is equivalent to the dynamic 

energy release rate. He pointed out that the dynamic contour integral is 

path-independent for steady-state crack propagation in the absence of mechanical body 

force, thermal effect and electricity conduction. In order to decouple mode I and mode 

II SIFs in mixed-mode fracture, Stern et al. (1976) proposed the interaction integral for 

pure elastic solids on the basis of the J-integral by considering two admissible states. 

Enderlein et al. (2005) developed the interaction integral to study the fracture problems 

of homogeneous PE materials. Soon later, Rao and Kuna (2008a, b) exploited the 

interaction integral method for solving the IFs of functionally graded PE and FGMEE 

media. Due to the convenience in the post-processing of most numerical 

implementations, such as in FEM and XFEM, the domain form of an integral is 

generally adopted to replace the contour form. By selecting three types of the auxiliary 

fields for non-homogenous MEE materials, Rao and Kuna (2008b) gave three 

corresponding domain formulations of the interaction integral and discussed their 

precision differences. Recently, the domain form of the interaction integral is widely 

used in the static crack and quasi-static crack propagation analyses of MEE materials 

(Rojas-Diaz et al., 2011; Bhargava and Sharma, 2012).  

To the best knowledge of the authors, almost all the previous fracture studies are 

focused on the MEE materials with continuous and differentiable properties and 

correspondingly, all the interaction integral published previously require material 
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properties to be differentiable. However, most of the MEE materials are typical 

composites composed of PE and PM phases and therefore, there exist unavoidably 

material interfaces between different phases. In addition, FGMEE materials actually are 

at least two-phase particulate composites synthesized in such a way that the volume 

fractions of the constituent materials vary continuously along a spatial direction to give 

a predetermined composition profile resulting in a relatively smooth variation of the 

mechanical properties (Rekik et al., 2012). Experimental studies (Cannillo et al., 2006) 

show that the microstructure and the interfaces between the constituents affect the 

fracture behaviors of FGMs obviously and therefore, as the research scale decreases 

down to a certain level, the interfaces in FGMs have to be considered. In order to 

analyze MEE materials with complex interfaces effectively, this paper aims to establish 

a fracture mechanics method which is not require material properties to be continuous 

and differentiable.  

In the previous studies on pure elastic and PE media (Yu et al., 2009, 2010a, b, 

2012), the authors have established an interaction integral which is domain-independent 

for material interfaces. In this paper, the authors will attempt to establish a 

domain-independent interaction integral for MEE media. Our contributions can be 

stressed as follows. 1) The interaction integral derived here is domain-independent for 

material interfaces. Therefore, the present interaction integral method may become an 

extremely promising technique in the fracture analysis of MEE materials with complex 

interfaces. 2) The expression of the present interaction integral does not contain any 

derivatives of MEE properties, which gets rid of the requirement on the differentiability 
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of material properties and thus, facilitates the practical implementation of numerical 

computations since the derivatives of actual material properties are usually extremely 

difficult to acquire. 

The outline of this paper is as follows. Section 2 reviews the basic equations of 

MEE materials briefly and introduces an expanded tensor notation to simplify their 

expressions. Section 3 gives the definitions of the interaction integral and the auxiliary 

fields for MEE media, and provides the relation between the interaction integral and the 

IFs. Section 4 derives a new domain form of the interaction integral for MEE media 

with continuous properties. Section 5 derives the domain form of the interaction integral 

for MEE media with discontinuous properties and gives the rigorous proof that an 

arbitrary interface in the integral domain does not affect the value of the interaction 

integral. Section 6 describes the extended finite element method (XFEM) briefly and 

provides the discretization of the interaction integral. Section 7 presents several 

numerical examples. Finally, Section 8 gives a summary and some conclusions.  

2. Basic relations for MEE media  

For MEE media, the governing equations and the boundary conditions are given 

first. Then, we will define the expanded tensors by which the expressions of the basic 

equations will be simplified.  

2.1 Governing equations 

The field equations for a linear MEE medium subjected to 

magneto-electro-mechanical loads in the absence of body forces, concentrated electric 

charges and concentrated magnetic source are:  
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� Constitutive equations:  

 

ij ijkl kl lij l lij l

i ikl kl il l il l

i ikl kl il l il l

C e E h H

D e E H

B h E H

σ ε

ε κ β

ε β γ

= − −

= + +

= + +

 (1) 

The constitutive equations can also be expressed as 

 

ij ijkl kl lij l lij l

i ikl kl il l il l

i ikl kl il l il l

S d D g B

E d D B

H g D B

ε σ

σ µ α

σ α λ

= + +

= − + +

= − + +

 (2) 

� Kinematic equations: 

 , , , ,

1
( ), ,

2
ij i j j i i i i iu u E Hε φ ϕ= + = − = −  (3) 

� Equilibrium equations: 

 
, , ,0, 0, 0ij j i i i iD Bσ = = =  (4) 

where the variables marked by the subscripts i , j , k  and l  ( , , , 1,2,3)i j k l =  are 

the components of a vector or a tensor; 
i

u , ijσ  and ijε  are the elastic displacement, 

stress, strain tensors, respectively; φ , 
i

D  and 
i

E  are the electric potential, electric 

displacement, electric field tensors, respectively; ϕ , 
i

B  and 
i

H  are magnetic 

potential, magnetic induction, magnetic field tensors, respectively; 
ijklC , 

ijklS , 
ilκ , 

ilµ , 

ilγ  and 
ilλ  are the elastic stiffness, elastic compliance, dielectric permittivity, 

dielectric impermeability, magnetic permeability and reluctivity tensors, respectively; 

ikl
e , 

ikl
d , 

ikl
h , 

ikl
g , 

il
β  and 

il
α  are the PE stress, PE strain, PM stress, PM strain, 

electro-magnetic and magneto-electric tensors, respectively. A comma denotes partial 

differentiation and the repetition of an index ( i , j , k , l  and I , J , K , L ) implies 

summation with respect to the index over its range.  

2.2 Boundary conditions 
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Consider a MEE medium occupying the space Ω  enclosed by surface Λ . The 

boundary surface u D Bσ φ ϕΛ = Λ + Λ = Λ + Λ = Λ + Λ  On the boundaries σΛ , 
D

Λ  and 

B
Λ , the resultants of the stresses, electric displacements and magnetic inductions are 

respectively 

 

0

0

0

, on 

, on 

, on 

ij i j

i i D

i i B

n t

D n

B n

σσ

ω

ω

= Λ

= − Λ

= − Λ�

  (5) 

where 
0

j
t , 0ω  and 0ω�  are prescribed values on σΛ , DΛ  and BΛ , respectively, and 

i
n  is the outward unit normal vector to Λ . On the boundaries 

u
Λ , φΛ  and ϕΛ , the 

displacements, electric potential and magnetic potential are, respectively 

 

0

0

0

, on 

, on 

, on 

i i uu u

φ

ϕ

φ φ

ϕ ϕ

= Λ

= Λ

= Λ

 (6) 

where 0

iu , 0φ  and 0ϕ  are prescribed values on uΛ , φΛ  and ϕΛ , respectively. 

2.3 Expanded tensor notation  

By letting  

 

4 5

4 5

4 5

, ,

, , 0,

2 , 2 , 0

j j j j i j

j j j j i j

u u

D B

E H

φ ϕ

σ σ σ

ε ε ε

′ ′

′ ′

= =

= = =

= − = − =

 (7) 

where , , , 1,2,3i j k l =  and , , , 4,5i j k l′ ′ ′ ′ = , and letting 

 

4 5

4 4 5 5 4 5

4 5

4 4 5 5 4 5

, ,

, , ,

0,  arbitrary value

2 , 2 ,

4 , 4 , 4 ,

0,  determined b

jkl jkl jkl jkl

j l jl j l jl j l jl

i j kl i j k l i j k l

jkl jkl jkl jkl

j l jl j l jl j l jl

i j kl i j k l i j k l

C e C h

C C C

C C C

S d S g

S S S

S S S

κ γ β

µ λ α

′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′

= =

= − = − = −

= =

= =

= − = − = −

= = y i j k lC ′ ′ ′ ′

 (8) 

we can extend the tensors iu , ijσ , ijε , ijklC  and ijklS  respectively into the expanded 



  

 - 10 - 

tensors 
Iu , 

IJσ , 
IJε , 

IJKLC  and 
IJKLS  ( , , , 1 5I J K L = − ) which have the following 

symmetry properties  

 

, ,

,

IJ JI IJ JI

IJKL JIKL IJLK KLIJ

IJKL JIKL IJLK KLIJ

C C C C

S S S S

σ σ ε ε= =

= = =

= = =

 (9) 

Here, the expanded compliance tensor 
IJKLS  and the expanded stiffness tensor 

IJKLC  

meet the relation 
IJST STKL IK JLC S δ δ= , where the symbol 

IKδ  is Kronecker delta.  

Since an actual coordinate system does not contain the coordinate components 4x  

and 
5

x , the components of the unit vector 
j

n  in 
4

x  and 
5

x  directions can be 

defined as zero and the derivatives of a variable with respect to 
4

x  and 
5

x  can also be 

defined as zero, i.e.,  

 4 5 ,4 ,50, (*) (*) 0n n= = = =  (10) 

where (*)  denotes an arbitrary variable.  

On the basis of the above definitions, the governing Eqs. (1)-(4) can be expressed in 

an expanded tensor notation respectively as  

 
IJ IJKL KLCσ ε=  (11) 

 
IJ IJKL KLSε σ=  (12) 

 
, ,

1
( )

2
IJ I J J Iu uε = +  (13) 

 , 0IJ Jσ =  (14) 

And the boundary conditions in Eqs. (5) and (6) can be expressed respectively as  

 0 , on ,  and IJ I J D Bn t σσ = Λ Λ Λ  (15) 

 0 , on ,  and I I uu u φ ϕ= Λ Λ Λ  (16) 

3. Definition of the interaction integral  
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The interaction integral is derived from the J-integral by superimposing two 

admissible states, i.e., an actual state and an auxiliary state. Selecting a suitable 

auxiliary state is a key step to establish a domain-independent interaction integral. 

Therefore, in this section, the auxiliary fields will be given first. Then, the definition of 

the interaction integral will be described. Finally, the relation between the interaction 

integral and the IFs will be introduced.  

3.1 Auxiliary fields  

For non-homogeneous MEE materials, the auxiliary fields have three alternative 

choices (Rao and Kuna, 2008b). Here, an incompatibility formulation is selected. As 

shown in Fig. 1, the detailed auxiliary fields are defined in the polar coordinate system 

( , )r θ  with the origin at the crack tip. The expanded auxiliary displacements aux

Ju  and 

auxiliary stresses aux

IJσ  are defined as  

 
2

( , ) ( )aux aux N

J N J

N

r
u r K fθ θ

π
= ∑  (17) 

 
1

( , ) ( )
2

aux aux N

IJ N IJ

N

r K g
r

σ θ θ
π

= ∑  (18) 

where the summation over { ,  ,  ,  ,  }N II I III D B=  comprises the fracture opening 

modes; aux

IK , aux

IIK , aux

IIIK , aux

DK  and aux

BK  denote the auxiliary mode-I, mode-II, 

mode-III mechanical SIFs, EDIF and MIIF, respectively. The angular functions ( )N

Jf θ  

and ( )N

IJ
g θ  are the standard angular functions for a crack in a homogeneous MEE 

medium, which depend only on the material properties at the crack-tip location. The 

detailed definitions of the angular functions can be found in the appendix.  

The expanded auxiliary strains are defined as 
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 ( )aux aux

IJ IJKL KLSε σ= x  (19) 

It can be found that the constitutive equations of the auxiliary fields use the same 

material constants as those of the actual fields. The expanded auxiliary stresses satisfy 

equilibrium equations in the absence of body forces, concentrated electric charges and 

concentrated magnetic source, i.e.,  

 
, 0aux

IJ Jσ = . (20) 

However, the above definition of the auxiliary strains leads to that in general,  

 , ,

1
( )

2

aux aux aux

IJ I J J Iu uε ≠ + , (21) 

while another strain tensor defined by  

 0aux tip aux

IJ IJKL KLSε σ=  (22) 

satisfies the relation  

 0

, ,

1
( )

2

aux aux aux

IJ I J J Iu uε = +  (23) 

where tip

IJKL
S  is the expanded compliance tensor at the crack-tip location. It needs to be 

pointed out that the auxiliary strain tensor used in the interaction integral is aux

IJ
ε , not 

0aux

IJε .  

3.2 Interaction integral 

As shown in Fig. 1, for a 2D cracked MEE body, the J-integral (Wang and Mai, 

2003) is 

 
1 ,1 ,1 ,1

0
lim ( )j ij i j j jJ F u D B n d

εε

δ σ φ ϕ
ΓΓ →

= − − − Γ∫  (24) 

where F  is the electro-magnetic enthalpy density; 
jn  is the unit outward normal 

vector to the contour εΓ . For linear MEE media, ( ) 2ij ij i i i iF D E B Hσ ε= − −  and 

according to Section 2.3, it can be expressed in an expanded tensor notation as 



  

 - 13 - 

2IJ IJF σ ε= . Similarly, the J-integral can also be expressed as  

 
1 ,1

0

1
lim ( )

2
IK IK J IJ I JJ u n d

εε

σ ε δ σ
ΓΓ →

= − Γ∫  (25) 

Superposition of the actual fields (
I

u , 
IJ

σ , 
IJ

ε ) and the auxiliary fields ( aux

I
u , 

aux

IJσ , aux

IJε ) leads to another equilibrium state (state S ) for which the J-integral is  

 
1( )

0

,1 ,1

1
( )( )

2lim

( )( )

aux aux

IK IK IK IK JS

J

aux aux

IJ IJ I I

J n d

u u
εε

σ σ ε ε δ

σ σ
ΓΓ →

 
+ + = Γ

 
− + +  

∫  (26) 

By expanding Eq. (26), it can be obtained that  

 ( )S auxJ J J I= + +  (27) 

Here, J  is the J-integral aroused by the actual fields alone,  

 1 ,1
0

1
lim ( )

2

aux aux aux aux aux

IK IK J IJ I JJ u n d
εε

σ ε δ σ
ΓΓ →

= − Γ∫  (28) 

is the J-integral aroused by the auxiliary fields alone and  

 
1

0

,1 ,1

1
( )

2lim

aux aux

IK IK IK IK J

J

aux aux

IJ I IJ I

I n d

u u
εε

σ ε σ ε δ

σ σ
ΓΓ →

 
+ = Γ

 
− −  

∫  (29) 

is the interaction integral. According to the definition of the auxiliary strains in Eq. (19), 

it can be observed that aux aux

IK IK IK IKσ ε σ ε=  and hence, I  can be simplified as 

 1 ,1 ,1
0

lim ( )aux aux aux

IK IK J IJ I IJ I JI u u n d
εε

σ ε δ σ σ
ΓΓ →

= − − Γ∫  (30) 

3.3 Extraction of the IFs from the interaction integral 

For linear MEE solids, the J-integral is equal to the total potential energy release 

rate and thus, the J-integral can be expressed as (Rao and Kuna, 2008b)  

 
1

2

T
J = K YK  (31) 

where [ , , , , ]T

II I III D BK K K K K=K  is the vector of the five IFs. Y  is the 

(5 5)×  generalized Irwin matrix which depends on the material constants at the 
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crack-tip location and its definition is given in the appendix.  

The J-integral for the superposition of the two fields (state S ) can be written as 

 ( ) 1
( ) ( )

2

S aux T aux
J = + +K K Y K K  (32) 

where [ , , , , ]aux aux aux aux aux aux T

II I III D BK K K K K=K  is the vector of the auxiliary IFs. 

Similarly to Eq. (27), ( )SJ  can also be expanded as J , auxJ  and I . Due to the 

symmetry of the matrix Y , the interaction integral can be expressed as  

 T auxI = K YK  (33) 

For 2D case, 0aux

III III
K K= = . If the auxiliary fields are chosen to be the state 

corresponding to the fracture opening mode II, namely, 1aux

II
K = , 

0aux aux aux

I D BK K K= = = , Eq. (33) reduces to  

 ( )

11 12 14 15

II

II I D BI K Y K Y K Y K Y= + + +  (34) 

By letting 1aux

IK = , 0aux aux aux

II D BK K K= = = , Eq. (33) reduces to  

 ( )

21 22 24 25

I

II I D B
I K Y K Y K Y K Y= + + +  (35) 

By letting 1aux

D
K = , 0aux aux aux

I II B
K K K= = = , Eq. (33) reduces to  

 ( )

41 42 44 45

D

II I D BI K Y K Y K Y K Y= + + +  (36) 

By letting 1aux

BK = , 0aux aux aux

I II DK K K= = = , Eq. (33) reduces to  

 ( )

51 52 54 55

B

II I D BI K Y K Y K Y K Y= + + +  (37) 

If ( )III , ( )II , ( )DI  and ( )BI  are known, by simultaneously solving Eqs. (34)-(37), 

the IFs 
I

K , 
II

K , 
D

K  and 
B

K  can be obtained . Next, how to calculate the values of 

the interaction integral will be discussed.  

4. Interaction integral for MEE media with continuous properties 

The infinitesimal contour integral in Eq. (30) can not be obtained directly in 
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numerical calculations and thus, it is usually converted into an equivalent domain 

integral which can avoid the potential source of inaccuracy in the computation process 

of a line integral (Moran and Shih, 1987). In this section, we will discuss the interaction 

integral for a 2D MEE solid with material properties varying continuously and derive a 

new domain formulation different from that given by Rao and Kuna (2008b).  

4.1 An equivalent closed contour form of the interaction integral 

To begin, as shown in Fig. 1, consider two domain A  and 0A  enclosed 

respectively by the contours 
B

Γ  and 
0

Γ , where 
0 B c cε

− + −Γ = Γ + Γ + Γ + Γ  and ε
−Γ  is 

the opposite path of the contour εΓ . Therefore, taking the limit 0εΓ →  leads to 

0A A→ . Next, we define an integral on the closed contour 
0Γ  as  

 
0

1
0

lim J JI P n qd
ε ΓΓ →

= Γ∫�  (38) 

where the expression of 1JP  is identical with that in the bracket in Eq. (30), i.e.,  

 1 1 ,1 ,1

aux aux aux

J IK IK J IJ I IJ IP u uσ ε δ σ σ= − −  (39) 

Here, 
1J

P  can be regarded as the mutual MEE energy momentum tensor in the spirit of 

Eshelby’s concept; q  is an arbitrary weight function with value varying smoothly from 

1 on εΓ  to 0 on 
BΓ .  

In this paper, the crack faces 
c

+Γ  and 
c

−Γ  are assumed to be mechanical 

traction-free ( 0ij jnσ = ), electrically impermeable ( 0j jD n = ) and magnetically 

impermeable ( 0
j j

B n = ), and according to Section 2.3, it can be called the expended 

traction-free condition expressed by  

 0, on  and  IJ J c cnσ + −= Γ Γ  (40) 

According to Eqs. (17)-(19), it can be noted that the auxiliary fields also meet the 
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expended traction-free condition expressed by  

 0, on  and  aux

IJ J c cnσ + −= Γ Γ  (41) 

According to the relations that 0q =  on 
B

Γ , 0
IJ J

nσ = , 0aux

IJ J
nσ =  and 

1
0n =  

on 
c

+Γ  and 
c

−Γ , it can be easily proved that  

 
0

1
0

lim J JI I P n qd
ε ΓΓ →

= − = − Γ∫�  (42) 

4.2 Domain formulation of the interaction integral 

Applying divergence theorem to Eq. (42), one obtains  

 
1 , 1 ,( )J J J J

A
I P q P q dA= − +∫  (43) 

Substituting Eqs. (13), (14) and (20) into 
1 ,J J

P , one obtains  

 
1 , ,1 , 1

aux aux

J J IJ IJ IJ I JP uσ ε σ= −  (44) 

Substituting Eqs. (12), (22) and (23) into Eq. (44), we have 

 1 , ,1[ ( ) ]aux tip

J J IJ IJKL IJKL KLP S Sσ σ= −x  (45) 

By substituting the expressions 
1J

P  (Eq. (39)) and 
1 ,J J

P  (Eq. (45)) into Eq. (43), the 

domain formulation of the interaction integral is finally simplified as  

 

,1 ,1 1 ,

,1

( )

[ ( )]

aux aux aux

IJ I IJ I IK IK J J
A

aux tip

IJ IJKL IJKL KL
A

I u u q dA

S S qdA

σ σ σ ε δ

σ σ

= + −

+ −

∫

∫ x  (46) 

Since only the material properties at the crack-tip location are adopted in the 

expanded auxiliary stresses and displacements, there are no derivatives of material 

properties in the formulation of the interaction integral given in Eq. (46). This 

advantage may bring a great convenience to the application of the present interaction 

integral, since it is usually very difficult to obtain the derivatives of material properties 

in many actual cases. Moreover, no derivatives of material properties in Eq. (46) imply 
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that the present interaction integral does not require the material properties of MEE 

media to be differentiable.  

5. Interaction integral for MEE media with discontinuous properties 

In the previous section, it has been shown that the interaction integral does not 

require material properties to be differentiable. However, the material properties are still 

required to be continuous. In this section, we will discuss whether this continuity 

condition of material properties is necessary.  

5.1 Interaction integral for a MEE solid with an interface 

As shown in Fig. 2, in domain A , there is a perfectly bonded interface 
interface

Γ  on 

which all material parameters are discontinuous. Due to the existence of the interface 

interfaceΓ , the domain A  is divided into two sub-domains 
1A  and 

2A  enclosed 

respectively by the closed contours 01Γ  and 02Γ . As a result, 1 2A A A= + , 

01 1 interface 3B B c cε
+ − −Γ = Γ +Γ +Γ +Γ +Γ +Γ  and 

02 2 interfaceB

−Γ = Γ + Γ , where 
interface

−Γ  is the 

opposite path of 
interface

Γ . In order to apply divergence theorem, the interaction integral 

needs to be expressed as  

 
01 02

*

1 1 int erface
0

lim J J J JI P n qd P n qd I
ε Γ ΓΓ →

= − Γ − Γ +∫ ∫� �  (47) 

where *

interfaceI  is a line integral along the interface with the expression as 

 

interface interface

interface

*

interface 1 1

1 1( )

J J J J

J J J

I P n qd P n qd

P P n qd

−Γ Γ

Γ

= Γ + Γ

= − Γ

∫ ∫

∫

① ②

① ②  (48) 

Here, the variables or expressions marked by the superscripts ① and ② means that 

they belong to the domains 
1A  and 

2A , respectively. Applying divergence theorem to 

the first and second integrals in Eq. (47), respectively, we have  
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 *

1 , 1 , interface
( )

J J J J
A

I P q P q dA I= − + +∫  (49) 

The value of the interface integral *

interfaceI  will be discussed in the following.  

5.2 Interface integral *

interface
I   

According to the definitions of the auxiliary fields, the expanded auxiliary stresses, 

displacements and their derivatives are continuous on the interface. Therefore, there are 

the relations 
1 1 1( ) ( )aux aux aux

I I Iu x u x u x∂ ∂ = ∂ ∂ = ∂ ∂① ②  and ( ) ( )aux aux aux

IJ IJ IJσ σ σ= =① ② , 

and applying these conditions, we can simplify the interface integral *

interfaceI  in Eq. (48) 

as  

 
interface

1

* 1

interface

1 1

( ) ( )

[( ) ( ) ]

aux
aux J
IJ IJ IJ I IJ IJ

aux J J
I IJ

u
n n

x
I qd

u u
n

x x

σ ε ε σ σ

σ
Γ

 ∂
− − − 

∂ 
= Γ 

∂ ∂ − −
 ∂ ∂ 

∫

① ② ① ②

① ②

 (50) 

  

Since the interface is in equilibrium, the resultant on the interface is zero. Namely,  

 
I IJ I IJ

n nσ σ=① ②  (51) 

According to the perfectly bonded assumption of the interface, the derivatives of the 

expanded displacements with respect to the curve 
interfaceΓ  should be equal on both 

sides of the interface. If we define the curvilinear coordinates of a point p  as  

 
02 2

1 1 10 2 20 2
0

( ) ( ) ,
p

x x x x dη η= − + − = Γ∫  (52) 

where 
0 10 20
( , )p x x  is the point on 

interface
Γ  closest to the point 

1 2
( , )p x x  as shown in 

Fig. 3, this continuity condition of the displacement derivatives can be expressed as  

 
2 2

( ) ( )J Ju u

η η

∂ ∂
=

∂ ∂

① ②  (53) 

In order to simplify the first integrand in Eq. (50), applying the strain-displacement 
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relations of actual fields in Eq. (13), one obtains  

 
1 1( ) [( ) ( ) ]aux aux J J

IJ IJ IJ IJ

I I

u u
n n

x x
σ ε ε σ

∂ ∂
− = −

∂ ∂

① ② ① ②  (54) 

It can be noted from Eq. (52) that 
1 i i

x nη∂ ∂ =  and according to the definitions in Eq. 

(10), it can be expanded as 
1 I Ix nη∂ ∂ = . Substituting the chain rule formulation 

( ) ( )J I J K K Iu x u xη η∂ ∂ = ∂ ∂ ∂ ∂ , 
1 I Ix nη∂ ∂ = , Eqs. (10) and (53) into Eq. (54), one 

can simplify the first integrand of the interface integral *

interfaceI  as  

 
1 1

1 1

( ) [( ) ( ) ]aux aux J J
IJ IJ IJ I IJ

u u
n n nσ ε ε σ

η η

∂ ∂
− = −

∂ ∂

① ② ① ②  (55) 

Using the relations 
1 1

( ) ( )
J J K K

u x u xη η∂ ∂ = ∂ ∂ ∂ ∂ , 
1 1 1

x nη∂ ∂ =  and Eq. (53), we 

can write the third integrand of the interface integral *

interfaceI  as  

 1

1 1 1 1

[( ) ( ) ] [( ) ( ) ]aux auxJ J J J
I IJ I IJ

u u u u
n n n

x x
σ σ

η η

∂ ∂ ∂ ∂
− = −

∂ ∂ ∂ ∂

① ② ① ②  (56) 

Substituting Eqs. (51), (55) and (56) into Eq. (50) yields  

 *

interface
0I =  (57) 

The same result in Eq (57) can be obtained for the interface across the crack face.  

5.3 Discussion on the interaction integral  

Substituting Eq. (57) into Eq. (49), the same expression as Eq. (46) is obtained 

when the integral domain contains an arbitrary interface, which implies that Eq. (46) is 

still valid for MEE materials with discontinuous properties. Namely, the interaction 

integral method does not require material properties to be continuous and hence, it may 

become an extremely promising method for the fracture analysis of MEE materials with 

complex interfaces. Moreover, compared with the formulation in the papers published 

previously (Rao and Kuna, 2008b; Sladek et al., 2011), the expression in Eq. (46) can 
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facilitate the numerical implementation since the integral domain can be chosen as a 

regular area containing arbitrary interfaces.  

If the crack faces in the integral domain A  are curved as shown in Fig. 4, it can be 

derived that a line integral along the crack faces 
crackfaceI  needs to be added into Eq. 

(46), namely, the expression of the interaction integral becomes  

 

,1 ,1 1 ,

,1

( )

[ ( )]

aux aux aux

IJ I IJ I IK IK J J
A

aux tip

IJ IJKL IJKL KL crackface
A

I u u q dA

S S qdA I

σ σ σ ε δ

σ σ

= + −

+ − +

∫

∫ x  (58) 

where  

 
1

c c A A
crackface J JI P n qd

+ − + −Γ +Γ +Γ +Γ
= Γ∫  (59) 

where 
A

+Γ  and 
A

−Γ  are the fictitious crack faces tangent to the crack tip. Considering 

the boundary conditions 0J IJn σ =  on 
c

+Γ  and 
c

−Γ , 0aux

J IJn σ =  and 
1 0n =  on 

A

+Γ  

and 
A

−Γ , Eq. (59) can be simplified as  

 

1 ,1

,1

( )
c c

A A

aux aux

crackface IJ IJ J IJ I

aux

J IJ I

I n n u qdA

n u qdA

σ ε σ

σ

+ −

+ −

Γ +Γ

Γ +Γ

= −

−

∫

∫  (60) 

This interaction integral formulation for MEE media is of the same form as that for pure 

elastic media (Yu et al., 2009) by extending the range of indices from 1-3 to 1-5.  

6. Numerical implementation of the interaction integral  

The interaction integral method is implemented in conjunction with the extended 

finite element method (XFEM) since the XFEM can greatly simplify the analysis of 

fracture problems, especially, crack propagation problems. Therefore, the XFEM is 

introduced briefly.  

6.1 XFEM for MEE media 
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For a pure elastic medium, the XFEM was developed by Belytschko and Black 

(1999) and Moës et al. (1999) who introduced the local enrichment functions into 

standard displacement-based approximation to characterize the local features. Therefore, 

the XFEM allows discontinuous boundaries, such as cracks or material interfaces, to be 

independent of the mesh. Recently, the XFEM is extended to MEE media (Rojas-Diaz 

et al., 2011; Bhargava and Sharma, 2012). The approximations of the expanded 

displacements are adopted as  

 
0

( ) ( ) ( ) ( )h P P P

I P I I P I

P

u N u b H cψ
∈Ω

 = + + ∑x x x x  (61) 

where, ( )
P

N x  is the standard finite element shape function, the enrichment function 

( ) ( )Rψ = −x x x x , where 
1

( ) ( )Q

Q

R N
∈Ω

= ∑x x  is a ramp function (Fries, 2008), and 

( ) ( ) ( )P PH H H= − − −x x x x x  is the shifted Heaviside step function which is zero for 

the node 
2P ∉Ω ; P

Iu  is the nodal displacement, and P

Ib  and P

Ic  are the additional 

degrees of freedom. As shown in Fig. 5, x , x , x  and 
P

x  denote a point at arbitrary 

position, on an interface, on a crack face and on node P , respectively; 
0

Ω , 
1

Ω  and 

2Ω  are the set of all nodes in mesh, the set of the enriched nodes for an interface and 

the set of the enriched nodes for a crack, respectively.  

6.2 Numerical discretization of the interaction integral 

In order to compute the value of the interaction integral according to the 

displacements, stresses and strains obtained by the XFEM, Eq. (46) should be 

discretized as  

 
,1 ,1 , ,1

1 1 ,1

( )

( )

eA
aux aux auxpe

IJ I IJ I J IJ IJ

aux tip
e p IJ IJKL IJKL KL

p

u u q q
I w

S S q

σ σ σ ε

σ σ= =

  + − 
=   

+ −    
∑∑ J  (62) 
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Here, 
Ae  is the number of elements in the integral domain A ; 

ep  is the number of 

integration points in one element; J  represents the determinant of Jacobian matrix; 

w  is the corresponding weight factor. Except tip

IJKL
S , all variables in Eq. (62) take 

values at the integration point p . 

In this paper, the quadrature used by Yu et al. (2009) is adopted. In details, for the 

standard elements, 3 3×  Gauss quadrature is used. For the elements cut by the crack, 

the separately integrating on each side of the crack is executed by using a 

decomposition of the elements into sub-triangles and four-point integration rule is used 

on each sub-triangle. For the elements containing interfaces, the follow integration 

strategy is adopted: each element is divided into 3 3×  sub-domains and 3 3×  Gauss 

quadrature is used in each sub-domain, which leads to that one of such elements 

contains 81 integration points. Meanwhile, actual properties at integration points are 

employed in the process of forming the element stiffness matrix.  

7. Numerical examples and discussions  

At first, several benchmark fracture problems of MEE materials are considered to 

verify the accuracy and the domain-independence of the interaction integral. Then, our 

attention will be focused on the crack problems of a particulate MEE plate composed of 

PE and PM phases.  

For all examples in this paper, plain strain condition and magneto-electrically 

impermeable crack surface conditions are prescribed. Using the relation between the 

indices 11 1→ , 22 2→ , 33 3→ , 23 4→ , 31 5→ , 12 6→ , the constitutive Eq. (1) 

can be written in Voigt notation as:  
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i i i i

i i ij j ij j

i i ij j ij j

C e E h H

D e E H

B h E H

α αβ β α α

β β

β β

σ ε

ε κ β

ε β γ

= − −

= + +

= + +

 (63) 

where the subscripts , 1,2,...,6α β =  and , 1, 2,3i j = . The material constants in all 

examples are expressed in Voigt notation and four types of material constants shown in 

Table 1 are used in this paper which are denoted by (a) PE: the properties of PE phase 

(BaTiO3) used in Examples 6 and 7; (b) PM: the properties of PM phase (CoFe2O4) used 

in Examples 6 and 7; (c) MEE1: the effective homogenized properties of the 

BaTiO3-CoFe2O4 particulate composite with the particle volume fraction 0.5
f

V =  used 

in Examples 1, 2, 3, 6 and 7; (d) MEE2: the properties of the homogeneous MEE 

material used in Examples 4 and 5. The poling directions in all examples are all 

assumed to be along 
2x -axis in this paper. 

7.1 Fracture of homogeneous MEE materials 

Example 1: Central straight crack in a 2D MEE plate  

As shown in Fig. 6(a), the first example is a center-cracked homogeneous MEE 

plate of length 4W  and width 2W  subjected to far-field tensile stress 
0σ , electric 

displacement 
0D  and magnetic induction 

0B  on the remote boundary. The plate 

contains a horizontal crack of length 2a  with the center coinciding with the origin. 

The data used in the analysis are as follows: 1W = ; / 0.2a W = ; 2

0 1 N/mσ = ; 

9 2

0
10  C/mD −= ; 8

0
10  N/AmB −= . The material is taken to be BaTiO3-CoFe2O4 

composite with a volume fraction 0.5fV = , and the material constants are given in 

Table 1 (see MEE1).  

Fig. 6(b) shows the mesh configuration. Eight-node quadrilateral (Q8) elements are 
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used over most of the mesh and six-node quarter-point (T6qp) singular elements are 

employed around the crack tips to improve the accuracy for the stress, electric 

displacement and magnetic induction fields exhibit an inverse square root singularity. 

The mesh consists of 1970 regular Q8 elements, 22 T6qp elements around the crack tips 

and 45 enriched elements containing the crack face, with a total of 2037 elements and 

6238 nodes.  

In order to determine the integral domain, as shown in Fig. 7, we first built a 

referenced circular contour 
I

C  of radius 
I

R , and the elements cut by 
I

C  and 

surrounded by 
I

C  constitute the integral domain. In order to verify the convergence of 

the IFs, 10 integral domains of different size are adopted, namely, 1 ~ 512I eR h = , 

where 
eh  denotes the radial-edge length of the crack-tip element. In this example, 

4
3.03 10eh

−= × .  

In all examples, we define the normalized SIFs as * 0

I I
K K K=  and 

* 0

II II
K K K= , the normalized EDIF as * 0

D D D
K K K=  and the normalized MIIF as 

* 0

B B BK K K= , where 0K , 0

DK  and 0

BK  are the normalized factors. In Example 1, the 

normalized factors 0

0K aσ π= , 0

0DK D aπ=  and 0

0BK B aπ= . Table 2 lists the 

normalized IFs obtained at the right crack tip. The results show that each of the IFs 

converges to a stable value when the integral domain reaches an enough size, such as 

4
I e

R h ≥  for this example. In comparison of the present results for 4
I e

R h ≥  and 

those given by Rojas-Diaz et al. (2012), the relative errors of *

IK , *

DK  and *

BK  are 

respectively within 0.2%, 0.2% and 0.3%.  

Example 2: Three parallel cracks in an infinite 2D MEE solid  



  

 - 25 - 

As shown in Fig. 8, another model is a homogeneous MEE plate with three parallel 

cracks 1C , 2C  and 3C . The problem of an infinite plate with such a configuration 

was investigated by Rojas-Diaz et al. (2012). In order to simulate an infinite solid, the 

plate length 2W  remains fixed at 20 times of the crack length 2a . The data used in 

the analysis are as follows: 1a = ; 20W = ; 2

0 1 N/mσ = ; 9 2

0 10  C/mD
−= ; 

8

0 10  N/AmB
−= . The material constants of MEE1 in Table 1 are also adopted in this 

example.  

The mesh consists of 2039 elements and 6060 nodes. Here, 32.01 10
e

h −= ×  and 

4
I e

R h =  which leads to that the integral domain contains four layer elements around 

the crack tips as shown in Fig. 7. The normalized factors are taken to be 0

0K aσ π= , 

0

0DK D aπ=  and 0

0BK B aπ= , and Table 3 lists the normalized IFs at the right tip of 

the cracks 1C  and 2C . The relative errors between present results and those given by 

Rojas-Diaz et al. (2012) are all within 3.0%. 

Example 3: a circular arch crack in an infinite 2D MEE solid  

To further confirm the validity of the interaction integral for a curved crack, as 

shown in Fig. 9, a circular arch crack in a 2D MEE plate is considered. The problem of 

an infinite solid with such a configuration was investigated by Garcia-Sanchez et al. 

(2007) and Feng et al. (2011). The radius and central angle of the crack are 
0

r  and θ , 

respectively and take 
0

/ 0.1r W =  to simulate an infinite solid. The data used in the 

analysis are as follows: 
0

1r = ; 15 ~ 75θ = ° ° ; 10W = . Table 1 lists the material 

constants (see MEE1). In this example, the following two loading cases are considered:  

Case 1: the pure mechanical loading, i.e., 0 1σ =  and 0 0 0D B= = ; 
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Case 2: the magneto-electro-mechanical loading, i.e., 
0 1σ = , 

0 0DD λ σ=  and 

0 0B
B λ σ= , where the parameters 

33 33D
e Cλ =  and 

33 33B
h Cλ = . 

The normalized factors are taken to be 0

0 0 sinK rσ π θ= , 0

0 0 sinD DK rλ σ π θ=  and 

0

0 0 sinB BK rλ σ π θ=  for both the above cases. 

For Case 1, the mesh consists of 1469 elements and 4454 nodes. Here, 

31.17 10eh
−= ×  and 4I eR h = . Table 4 lists the normalized IFs obtained here and those 

in published articles. It can be observed that compared with the other SIFs in Table 4, 

the value of *

I
K  for 75θ = °  is very small. And except it, the relative errors of *

I
K  

and *

II
K  between present results and those in published papers (Garcia-Sanchez et al., 

2007; Feng et al., 2011) are all within 3.5%.  

For Case 2, the mesh consists of 1661 elements and 5030 nodes. Here, 

45.14 10eh
−= × . As shown in Fig. 10, six integral domains of different size 

( 4 ~ 128
I e

R h = ) are selected to check the variations of the IFs. In order to estimate the 

deviation of the IFs, the relative error is defined as  

 max min

mean

100%rr

K K
E

K

−
= ×  (64) 

where maxK , minK  and meanK  denote the maximum, minimum and mean of the IFs, 

respectively, obtained by different integral domains. Table 5 lists the normalized IFs and 

the corresponding relative errors 
rr

E . The relative errors 
rr

E  are all within 1.0%, 

which demonstrates the domain-independence of the interaction integral. It should be 

pointed out that the term 
crackfaceI  in Eq. (58) is not considered in the computation of 

the interaction integral. It can be observed from Table 5 that the contribution of the term 

crackfaceI  is not obvious for 128
I e

R h ≤  (or 
0

2 1.0%
I

R rπ ≤ ) in this example. 
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7.2 Fracture of non-homogeneous MEE materials 

Example 4: a horizontal crack in an infinite 2D FGMEE plate  

Next, as shown in Fig. 11, a cracked FGMEE plate under remote loading is 

considered. The same problem was investigated by Rao and Kuna (2008b). The plate 

length 2W  is ten times the larger of the crack length 2a  for an approximation of an 

infinite plate. The material parameters are assumed to vary with 
1x  according to  

 1

0 0 0 0 0 0

( , , , , , )

( , , , , , ) e

i i il il il

x

i i il il il

C e h

C e h

αβ β β

ζ
αβ β β

κ β γ

κ β γ=  (65) 

where 
0

Cαβ , 
0i

e β , 
0i

h β , 
0il

κ , 
0il

β  and 
0il

γ  are taken to be the material constants of 

MEE2 as shown in Table 1. The data used in the analysis are: 10W = ; 1a = ; 

0.5 ~ 0.5ζ = − ; 
0 1σ = ; 8

0 010D σ−= ; 6

0 010B σ−= ± . The normalized factors are 

0

0K aσ π= , 0 8

010DK aσ π−=  and 0 6

010BK aσ π−= . 

The mesh consists of 1185 elements and 3570 nodes. Here, 31.54 10eh
−= ×  and 

4
I e

R h = . Fig. 12 presents the normalized IFs of the right crack tip. The relative errors 

of *

IK , *

DK  and *

BK  between the present values and those given by Rao and Kuna 

(2008b) are all within 2.4%, 3.5% and 0.7%, respectively.  

Example 5: an inclined crack in a plate with four types of MEE properties  

In order to check the domain-independence of the interaction integral for material 

non-homogeneity and discontinuity, as shown in Fig. 13(a), we select a MEE plate 

whose properties vary with 
1

x  according to  

 
0 0 0 0 0 0 1

( , , , , , )

( , , , , , ) ( )

i i il il il

i i il il il

C e h

C e h f x

αβ β β

αβ β β

κ β γ

κ β γ= ×  (66) 

where 0Cαβ , 0ie β , 0ih β , 0ilκ , 0ilβ  and 0ilγ  are the material constants of MEE2 as 
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shown in Table 1. As shown in Fig. 14, four functions used in this example are : 

1) constant, 
1

( ) 1f x = ; 

2) linear, 
1 1

( ) 1 2f x x W= + ; 

3) exponential, 1 2

1( ) e
x W

f x = ; 

4) jump, 
1

1

1

1 ( 0)
( )

2 ( 0)

x
f x

x

≤
= 

>
. 

The constant function denotes a homogeneous MEE material, the linear and exponential 

functions denote two FGMEE materials, and the jump function denotes a discontinuous 

MEE material with a vertical interface at 
1

0x = . Correspondingly, the 

domain-independence of the interaction integral will be verified for homogeneous, 

non-homogeneous and discontinuous MEE materials successively. The plate of length 

2L and width 2W contains an inclined crack AB of length 2a  which occupies the 

segment from ( 4.6, 1)A − −  to ( 0.6,1)B − . The following data are used for numerical 

analysis: 30L = ; 10W = ; 
0

1σ = ; 10

0 0
10D σ−= ; 8

0 0
10B σ−= . The normalized 

factors are 0

0K aσ π= , 0

0DK D aπ=  and 0

0BK B aπ= . 

Fig. 13(b) shows the corresponding mesh configuration consisting of 1982 elements 

and 6069 nodes. Here, 21.02 10eh
−= ×  and eight integral domains ( 73 ~ 3 2I eR h = × ) 

are selected to check the variations of the IFs. As shown in Figs. 15(a) and (b), for the 

jump function, the domains 43 ~ 3 2
I e

R h = ×  do not contain the vertical interface 

while the domains 5 73 2 ~ 3 2I eR h = × ×  contain it. Table 6 lists the normalized IFs 

and the corresponding relative errors 
rrE . It can be observed that the relative errors of 

all IFs are within 0.20% for every function 1( )f x , which implies the interaction 

integral is domain-independent for material non-homogeneity and discontinuity.  
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Example 6: a crack in a particulate MEE plate  

In order to verify the domain-independence of the interaction integral for curved 

interfaces, a BaTiO3-CoFe2O4 particulate MEE plate is considered. As shown in Fig. 16, 

the square plate of unit length contains an inclined crack of length 2a and angle θ  

measured counterclockwise. 16 circular CoFe2O4 particles of radius 
0r  are uniformly 

distributed in the BaTiO3 matrix and thus, the plate is composed of 16 square cells of 

length 2W  each of which contains a circular particle of radius 0r  at its center. The 

volume fraction of the particles is 2 2

04fV r Wπ= . The poling directions of the matrix 

and the particles are all assumed to be along 
2

x -axis. The corresponding material 

constants are given in Table 1 and the other data used in the analysis are: 0.5W = ; 

0.5fV = ; (0 ,36 )θ = ° ° ; 
0 1σ = ; 10

0 010D σ−= ; 8

0 010B σ−= . The normalized factors 

are 0

0K aσ π= , 0

0DK D aπ=  and 0

0BK B aπ= . 

Figs. 17(a) and (b) show the mesh configurations corresponding to 0θ = °  and 

36θ = ° , respectively, each of which consists of 1009 elements and 3082 nodes. Here, 

30.63 10eh
−= ×  and eight integral domains 73 ~ 3 2I eR h = ×  are also adopted to 

check the variations of the IFs. The domains 43 ~ 3 2I eR h = ×  do not contain 

interfaces while the domains 5 73 2 ~ 3 2I eR h = × ×  contain interfaces. Table 7 lists the 

normalized IFs and the corresponding relative errors 
rr

E . The relative errors of the IFs 

are all within 0.8%. From this example, it can be seen that the interaction integral may 

become a very promising technique in the fracture analysis of MEE materials with 

complex interfaces. 

Meanwhile, an equivalent homogeneous MEE plate of the same geometry and 



  

 - 30 - 

boundary conditions as shown in Fig. 16 is adopted to compare the IFs. The material 

properties are taken to be the homogenized effective properties of CoFe2O4-BaTiO3 

composite with 0.5
f

V =  shown in Table 1 (see MEE1). The normalized IFs are listed 

in Table 8 in which the symbols “PE-PM” and “MEE1” denote the CoFe2O4-BaTiO3 

particulate plate and the equivalent homogenous MEE plate, respectively. The 

differences of the IFs between the particulate plate and the equivalent homogeneous 

plate imply that in a certain scale, we may not obtain an expected result by applying the 

homogenized effective properties in the fracture analysis of actual particulate MEE 

composites.  

7.3 Fracture of particulate MEE composites 

The accuracy and domain-independence of the interaction integral have been 

verified in Sections 7.1 and 7.2, good results imply that the interaction integral is of 

effectiveness in linear fracture analyses of MEE materials with complex interfaces. 

Besides, the differences of the IFs between a particulate MEE plate and an equivalent 

homogeneous MEE plate have been observed and hence, a further study on a particulate 

MEE plate with an edge crack will be given in this section.  

Example 7: an edge crack in a particulate MEE plate  

Fig. 18 shows a particulate MEE plate of width 1W =  and length 3 3W =  which 

contains an edge crack of length a  at the center of the plate. The plate contains 40 

elliptical particles of same size which are distributed randomly throughout the matrix 

with a total volume fraction 0.5fV = . The crack length a  is taken to be 0.36W  and 

0.5W , respectively, to study the distinction of the IFs for the crack tip located in 
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different phases. In details, as shown in Fig. 18, the crack tip lies in a particle for 

0.36a W=  and in the matrix for 0.5a W= .  

Four computational schemes of different level in homogenizing the material 

properties will be adopted in this example. Before introducing these schemes, we first 

plot a rectangular box of 2 2enr enrw w×  with the center at the crack tip, as shown in Fig. 

19(b) and (c), and then, name the area in the rectangular box as the near-tip region and 

the remaining area as the far-tip region. In this example, 0.2enrw W= . These schemes 

can be described as follows:  

Scheme 1: the enrichment corresponding to the interface ( ( ) P

I
bψ x  in Eq. (61)) is added 

into the approximations of the expanded displacements for all particles. 

Therefore, all particles can be called as the “enriched particles” whose 

boundaries are marked by black solid lines in Fig. 19(a). 

Scheme 2: the enrichment corresponding to the interface is added only for the particles 

totally and partially in the near-tip region. As shown in Fig. 19(b), four 

particles are selected to be the “enriched particles”. Moreover, although the 

nodal displacements for most of elements in Scheme 2 are not enriched by 

the term ( ) P

Ibψ x , as shown in Fig. 20, the distribution of the integral points 

and the properties at the integral points used in Scheme 1 are the same as 

those used in Scheme 2.  

Scheme 3: as shown in Fig. 19(c), actual properties of PE phase and PM phase are 

adopted for the elements totally and partially in the near-tip region, and the 

homogenized effective properties (MEE1 in Table 1) are used for the 
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remaining elements.  

Scheme 4: as shown in Fig. 19(d), the homogenized effective properties are used for all 

elements.  

It can be observed that the property-homogenization level increases from Scheme 1 to 

Scheme 4. In details, compared with Scheme 1, Scheme 2 ignores the influences of the 

interfaces far away from the crack tip. Compared with Scheme 2, Scheme 3 replaces the 

actual properties by the homogenized effective properties in the region far away from 

the crack tip. Compared with Scheme 3, Scheme 4 replaces the actual properties by the 

homogenized effective properties for the whole plate.  

At first, the pure mechanical loading, 
0 1σ =  and 

0 0 0D B= = , is applied along 

the top and bottom edges. Here, the matrix and the particles are taken to be BaTiO3 and 

CoFe2O4, respectively. The normalized factors are taken to be 0

0
K aσ π= ,  

0 10

010DK aσ π−=  and 0 8

010BK aσ π−=  in this example, and the normalized IFs are 

listed in Table 9. It can be found that the IFs obtained by Scheme 2 are most close to 

those obtained by Scheme 1, and especially, the approximately same values of *

I
K , *

II
K  

and *

D
K  are obtained by these two schemes. The differences of the IFs obtained by 

Scheme 1 and Scheme 3 are not obvious for 0.36a W= , but become prominent for 

0.5a W= . And the IFs obtained by Scheme 4 are distinctly different from those 

obtained by Scheme 1. The results imply that in the fracture analysis of a particulate 

MEE material under pure mechanical loading, Schemes 3 and 4 could not solve the IFs 

effectively while Scheme 2 may be used as a simplified approach to replace Scheme 1. 

Next, the magneto-electro-mechanical loading, 
0 1 σ = , 10

0 010D σ−= and 
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8

0 010B σ−= , is applied. In order to study the effects of the matrix properties on the IFs, 

two constitutions of the particulate MEE plate are considered: (a) PE-matrix: 

CoFe2O4-particles distributed in the BaTiO3-matrix; (b) PM-matrix: BaTiO3-particles 

distributed in the CoFe2O4-matrix. Fig. 21(a) and (b) show the normalized IFs obtained 

using the above four schemes. It can be seen that the relative errors of the IFs for 

different schemes become a bit more obvious compared with pure mechanical loading. 

Especially, in comparison of Scheme 1 and Scheme 2, it can be observed that for both 

0.36a W=  and 0.5a W= , the difference of *

B
K  is largest for the PE-matrix plate, and 

in contrast, the difference of *

D
K   is largest for the PM-matrix plate. It implies that for 

a particulate MEE composite, the PE-matrix composite is more sensitive to the 

property-homogenization level under the magnetic loading and in contrast, the 

PM-matrix composite is more sensitive under the electric loading. The reason may be 

that the matrix is connected as a whole while the particles are independently distributed. 

If the particles in the MEE composite can also form a skeleton, this phenomenon may 

disappear.  

8. Summary and conclusions 

This paper first introduces an expanded tensor notation to simplify the expressions 

of the basic equations of the MEE materials. Then, based on the expanded tensor 

notation, a domain-form interaction integral is derived for the computation of the 

intensity factors (IFs) of linear MEE materials. The present formulation does not 

contain any derivatives of material parameters. Moreover, it is proved that the 

interaction integral is still valid when the integral domain contains an arbitrary interface 
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and the interface does not affect its value. Namely, the interaction integral is 

domain-independent for material interfaces, which leads to that the interaction integral 

may become one of the most promising methods in linear fracture analyses of MEE 

materials with complex interfaces. By solving several benchmark fracture problems, 

excellent agreements are obtained in comparison of the present results and those in 

published articles, and the interaction integral exhibits good domain-independence for 

material non-homogeneity and discontinuity. Finally, four computational schemes of 

different property-homogenization level are adopted to study the particulate MEE plate. 

The results show that generally, the acceptable results can not be obtained by totally or 

partially using the homogenized effective properties to replace the actual PE and PM 

properties.  
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Appendix  

In the local polar coordinate system shown in Fig. 1, the angular functions ( )N

Jf θ  

and ( )N

IJ
g θ  can be obtained by means of the extended stroh formalism and 

semi-analytical calculations. Only 2D problems are focused in this paper. Therefore, 

0IIIK = , 0aux

IIIK =  and the subscript , 1,2, 4,5I J = . Since 
44 55 45 0aux aux auxσ σ σ= = = , only 

1

N

Ig  and 
2

N

Ig  are given due to the symmetry of the expanded auxiliary stress tensor. 



  

 - 35 - 

The angular functions are expressed in terms of complex material eigenvalues Pα , 

eigenvectors 
M

A α , and matrices 
M

M α  and 
N

Nα  (Rao and Kuna, 2008b)  

 { }
5

1

Re cos sinN

J J Nf A N pα α α
α

θ θ
=

= +∑  (A1) 

 

5

1

1

5

2

1

Re ,
cos sin

Re
cos sin

N I N
I

N I N
I

M N p
g

p

M N
g

p

α α α

α α

α α

α α

θ θ

θ θ

=

=

  
= −  

+  

  
=  

+  

∑

∑

 (A2) 

Here, Re{*}  and Im{*} denote the real and imaginary parts, respectively, of the 

quantity in brackets. The five conjugate pairs of eigenvalues pα , the (5 5)×  matrix of 

eigenvectors 
M

A α  can be obtained by solving the following quadratic, eigenvalue 

problem:  

 2( )T p pα α α
 + + + = Q R R T A 0  (A3) 

where [ ]T

II I III D BA A A A Aα α α α α α=A  and  

 1 1 1 2 2 2, ,tip tip tip

I K I K I KC C C     = = =     Q R T  (A4) 

where tip

IJKLC  is the expanded stiffness tensor evaluated at the crack tip location. Eq. 

(A3) can be converted into the following eigenrelations: 

 
1 1

1 1( )

T

T T
p

− −

− −

 −
= 

− − 

T R T
ξ ξ

RT R Q R T
 (A5) 

where the eigenvector [ ]T T T

α α=ξ A B , [ , , , , ]T

II I III D BB B B B Bα α α α α α=B . αA  

and αB  satisfy the following relation  

 
1

( ) ( )T
p p

p
α α α α α

α

= + = − +B R T A Q R A  (A6) 

Only the five eigenvalues pα  having positive imaginary part and the corresponding 

eigenvectors are used in Eqs. (A1) and (A2). The (5 5)×  MM α  and NNα  are 
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calculated by  

 [ ] [ ]1

2 1 2 2( )I I K I K KM C C p Aα α α
− = = = +N M  (A7) 

It should be noted that the summation convention is valid only for K , not for α . 

The Irwin matrix Y  is defined as  

 
5

1

[ ] Im{ }MN M NY A Nα α
α =

= = −∑Y  (A8) 

It is necessary to pointed out that the subscripts , { ,  ,  ,  ,  }M N II I III D B=  of the 

symbols 
M

A α , 
M

M α  and 
N

Nα  denote the crack opening modes with the values 

corresponding to a general subscript {1,  2,  3,  4,  5}I = , respectively. 
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Fig. 1. Schematic illustration of some contour integrals and related equivalent domain integrals for a 

2D cracked MEE solid.  

 

 

Fig. 2. An integral domain A  divided by an interface interfaceΓ  into two areas of different material 

properties 
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Fig. 3. A curvilinear coordinate system based on an interface. 

 

 

 

Fig. 4. Schematic illustration of a curved crack and a straight fictitious crack. 
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Fig. 5. Finite element mesh of a particulate MEE composite with a crack. 

 

 

Fig. 6. A homogeneous MEE plate with a center crack: (a) geometry and boundary conditions; (b) 

finite element mesh.  
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Fig. 7. An integral domain formed by the elements filled with green color.  

 

 

Fig. 8. A homogeneous MEE plate with three parallel cracks. 
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Fig. 9. A homogeneous MEE plate with a circular arch crack.  

 

 

Fig. 10. Finite element mesh around the crack and reference circles 
I

C . 
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Fig. 11. A FGMEE plate with a horizontal crack. 
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Fig. 12. Normalized IFs for a horizontal crack in a FGMEE plate: (a) *

I
K ; (b) *

D
K ; (c) *

B
K . 
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Fig. 13. A MEE plate with an inclined crack AB: (a) geometry and boundary conditions; (b) finite 

element mesh. 

 

 

Fig. 14. Four types of material functions. 
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Fig. 15. Different integral domains surrounding the crack tip B: (a) 2 3 4/ 3 (1, 2, 2 , 2 ,2 )
I e

R h = × ; (b) 

4 5 6 7/ 3 (2 , 2 , 2 , 2 )
I e

R h = × . 

 

 
Fig. 16. A particulate MEE plate of unit length with an inclined center crack. 
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Fig. 17. Finite element mesh and integral domains of the particulate MEE plate with an inclined 

center crack: (a) 0θ = ° ; (b) 36θ = ° . 
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Fig. 18. A BaTiO3-CoFe2O4 particulate plate with an edge crack. 
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Fig. 19. Finite element mesh configurations for 4 computational schemes (the particles with the 

boundaries marked by black lines are the “enriched particles”): (a) Scheme 1; (b) Scheme 2; (c) 

Scheme 3; (d) Scheme 4. 
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Fig. 20. Distribution of the integral points in an enriched element containing an interface (different 

shapes of the integral points denote different material constants): (a) for the nodal displacements 

enriched by ( ) P

I
bψ x ; (b) for the nodal displacements not enriched by ( ) P

I
bψ x .  

 

 

Fig. 21. Normalized IFs of different schemes for the plate under the magneto-electro-mechanical 

loading. 
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Table 1. Material constants.  

Examples 6, 7 1, 2, 3, 6, 7 4, 5  

PE-PM 

(Pasternak, 2012) 

MEE1:  

(Feng et al., 2011) 

MEE2:  

(Rao and Kuna, 2008b) 

Material 

constants 

PE:  

BaTiO3  

PM:  

CoFe2O4 

BaTiO3-CoFe2O4 

( 0.5
f

V = ) 

 

11
C (GPa) 166 286 226 166 

12
C (Gpa) 77 173 125 77 

13
C (Gpa) 78 170.5 124 78 

33
C (Gpa) 162 269.5 216 162 

44C (Gpa) 43 45.3 44 43 

31e (C/m
2
) -4.4 0 -2.2 -4.4 

33
e (C/m

2
) 18.6 0 9.3 18.6 

15
e (C/m

2
) 11.6 0 5.8 11.6 

31
h (N/Am) 0 580.3 290.2 580.3 

33
h (N/Am) 0 699.7 350 699.7 

15
h (N/Am) 0 550 275 550 

11
κ (10

-9
C

2
/Nm

2
) 11.2 0.08 5.64 11.2 

33
κ (10

-9
C

2
/Nm

2
) 12.6 0.093 6.35 12.6 

11
β (10-12Ns/VC) 0 0 5.367 5 

33β (10-12Ns/VC) 0 0 2737.5 3 

11γ (10
-6

Ns
2
/C

2
) 5 590 297 5 

33
γ (10

-6
Ns

2
/C

2
) 10 157 83.5 10 
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Table 2. Normalized IFs at the right tip of a center crack in a homogeneous MEE plate (Example 1).  

Present  

I e
R h  

*

I
K  *

II
K  *

D
K  *

B
K  

1 1.0258 -6.689 410−×  1.0204 1.0223 

2 1.0272 5.767 510−×  1.0185 1.0190 

4 1.0242 -8.542 710−×  1.0171 1.0175 

8 1.0242 4.305 710−×  1.0173 1.0179 

16 1.0238 3.498 710−×  1.0180 1.0189 

32 1.0242 3.905 710−×  1.0175 1.0185 

64 1.0241 3.703 710−×  1.0175 1.0188 

128 1.0240 3.517 710−×  1.0175 1.0190 

256 1.0239 2.551 710−×  1.0174 1.0188 

512 1.0240 3.485 710−×  1.0175 1.0190 

Rojas-Diaz  

et al. (2012) 

1.0255 2.4187 910−×  1.0190 1.0205 

 

 

Table 3. Normalized IFs at the right tips of the cracks 1C  and 2C  in an infinite 2D MEE solid 

(Example 2).  

Present  Rojas-Diaz et al. (2012)  Relative errors   

1C  2C  1C  2C  1C (%) 2C (%) 

*

I
K  

0.6943 0.4773 0.6865 0.4634 1.14 3.00 

*

II
K  

0.1386 7.945 1010−×  0.1379 ~0 0.51 — 

*

D
K  

0.7439 0.6053 0.7405 0.5992 0.46 1.02 

*

B
K  

0.7947 0.6679 0.7939 0.6643 0.10 0.54 
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Table 4. Normalized IFs at the tip B of a circular arch crack in an infinite 2D MEE solid (Example 3, 

Case 1). 

Present  Feng et al. (2011) Garcia-Sanchez et al. 

(2007) 

( )θ °  

*

I
K  *

II
K  *

D
K  *

B
K  *

I
K  *

II
K  *

I
K  *

II
K  

15 0.9403 0.2539 -0.0314 -0.0565 0.9518 0.2631 0.95 0.25 

30 0.7778 0.4684 -0.1006 -0.1682 0.7860 0.4841 0.78 0.47 

45 0.5406 0.6140 -0.1761 -0.2487 0.5497 0.6299 0.54 0.62 

60 0.2797 0.6684 -0.2322 -0.2834 0.2856 0.6844 0.27 0.67 

75 0.0264 0.6367 -0.2599 -0.2908 0.0342 0.6499 0.03 0.65 

 

 

Table 5. Normalized IFs at the tip B of a circular arch crack for different integral domains (Example 3, 

Case 2).  

I e
R h  

*

I
K  *

II
K  *

D
K  *

B
K  

30θ = °      

4 0.7785 0.4695 0.8643 0.8633 

8 0.7785 0.4696 0.8645 0.8627 

16 0.7784 0.4696 0.8650 0.8600 

32 0.7784 0.4701 0.8648 0.8618 

64 0.7785 0.4656 0.8655 0.8564 

128 0.7786 0.4667 0.8679 0.8566 

rr
E  (%) 0.03 0.96 0.42 0.80 

60θ = °      

4 0.2803 0.6703 0.6277 0.7349 

8 0.2804 0.6704 0.6278 0.7344 

16 0.2803 0.6704 0.6283 0.7324 

32 0.2802 0.6702 0.6285 0.7321 

64 0.2803 0.6699 0.6277 0.7321 

128 0.2803 0.6692 0.6271 0.7303 

rr
E  (%) 0.07 0.18 0.22 0.63 
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Table 6. Normalized IFs at the tip B for different integral domains (Example 5).  

I eR h  
*

I
K  *

II
K  *

D
K  *

B
K  

Constant     

3 0.83560 0.40571 0.93853 0.92712 

3 2×  0.83510 0.40539 0.93806 0.92660 
23 2×  0.83417 0.40497 0.93716 0.92578 
33 2×  0.83498 0.40520 0.93828 0.92606 
43 2×  0.83493 0.40512 0.93799 0.92634 
53 2×  0.83504 0.40525 0.93835 0.92651 
63 2×  0.83508 0.40498 0.93819 0.92645 
73 2×  0.83505 0.40500 0.93816 0.92643 

rrE  (%) 0.172 0.182 0.145 0.145 

Linear      

3 0.94899 0.44184 1.14343 0.94232 

3 2×  0.94842 0.44149 1.14286 0.94176 
23 2×  0.94736 0.44104 1.14180 0.94091 
33 2×  0.94827 0.44124 1.14310 0.94114 
43 2×  0.94820 0.44119 1.14279 0.94147 
53 2×  0.94833 0.44131 1.14319 0.94165 
63 2×  0.94837 0.44104 1.14302 0.94160 
73 2×  0.94833 0.44105 1.14298 0.94158 

rrE  (%) 0.172 0.182 0.142 0.149 

Exponential      

3 0.89693 0.42013 1.07638 0.89717 

3 2×  0.89639 0.41979 1.07584 0.89664 
23 2×  0.89539 0.41936 1.07484 0.89583 
33 2×  0.89626 0.41956 1.07607 0.89605 
43 2×  0.89619 0.41951 1.07578 0.89636 
53 2×  0.89631 0.41963 1.07616 0.89653 
63 2×  0.89635 0.41936 1.07599 0.89648 
73 2×  0.89631 0.41938 1.07595 0.89646 

rrE  (%) 0.172 0.182 0.142 0.149 

Jump      

3 0.61449 0.28473 0.71671 0.61086 

3 2×  0.61412 0.28451 0.71635 0.61050 
23 2×  0.61343 0.28421 0.71568 0.60995 
33 2×  0.61403 0.28434 0.71650 0.61009 
43 2×  0.61394 0.28433 0.71624 0.61028 
53 2×  0.61405 0.28441 0.71659 0.61040 
63 2×  0.61409 0.28423 0.71646 0.61039 
73 2×  0.61406 0.28425 0.71643 0.61038 

rrE  (%) 0.172 0.184 0.144 0.150 
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Table 7. Normalized IFs obtained by different integral domains at the right tip of a crack in a particulate 

MEE plate (Example 6).  

I e
R h  

*

I
K  *

II
K  *

D
K  *

B
K  

0θ = °      

3 1.18049 7.98 1410−×  1.63425 0.79944 

3 2×  1.18065 7.34 1410−×  1.63431 0.80022 
23 2×  1.18071 7.63 1410−×  1.63441 0.80063 
33 2×  1.18072 8.17 1410−×  1.63462 0.80088 
43 2×  1.18076 8.22 1410−×  1.63479 0.80103 
53 2×  1.18084 8.67 1410−×  1.63336 0.80103 
63 2×  1.18073 8.75 1410−×  1.63488 0.80005 
73 2×  1.18018 9.55 1410−×  1.63770 0.79871 

rr
E  (%) 0.05 -- 0.26 0.29 

36θ = °      

3 0.88983 0.59665 0.015906 1.36522 

3 2×  0.88961 0.59755 0.015920 1.36688 
23 2×  0.88937 0.59797 0.015927 1.36783 
33 2×  0.88905 0.59816 0.015931 1.36846 
43 2×  0.88886 0.59828 0.015933 1.36898 
53 2×  0.88875 0.59839 0.015939 1.36956 
63 2×  0.88863 0.59832 0.015944 1.37255 
73 2×  0.88864 0.59842 0.015920 1.37516 

rr
E  (%) 0.13 0.30 0.24 0.72 

 

 

Table 8. Normalized IFs at the right tip of a center crack in a particulate MEE plate (Example 6).  

Types of the 

plate 

*

I
K  *

II
K  *

D
K  *

B
K  

0θ = °      

PE-PM  1.1806 0 1.6348 0.8002 

MEE1  1.2086 0 1.1710 1.0934 

36θ = °      

PE-PM  0.8891 0.5980 0.0159 1.3693 

MEE1  0.7916 0.5481 0.9373 0.8959 
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Table 9. Normalized IFs obtained by different schemes for a particulate MEE plate under pure mechanical 

loading (Example 7, 
0

1 σ = , 
0 0

0D B= = ).  

Schemes  
*

I
K  *

II
K  *

D
K  *

B
K  

0.36a W=      

Scheme1  1.9613 0.0290 -0.0038 0.2205 

Scheme 2  1.9606 0.0290 -0.0038 0.2346 

Scheme 3  1.9732 0.0296 -0.0036 0.2409 

Scheme 4  1.9015 7.89 810−×  0.6361 0.1839 

0.5a W=      

Scheme 1  2.5888 0.1498 1.7340 -0.0012 

Scheme 2  2.5877 0.1502 1.7398 0.0014 

Scheme 3  2.5672 0.1618 1.9641 0.0070 

Scheme 4  2.8149 5.51 810−×  1.2663 0.3476 

 

 

 

 

 


