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Abstract 

The effect of adhesion on the contact behavior of elastic rough surfaces is examined within the framework 

of the multi-asperity contact model of Greenwood and Williamson (1966), known as the GW model. 

Adhesive surface interaction is modeled by nonlinear springs with a force-displacement relation governed 

by the Lennard-Jones (LJ) potential. Constitutive models are presented for contact systems characterized 

by low and high Tabor parameters, exhibiting continuous (stable) and discontinuous (unstable) surface 

approach, respectively. Constitutive contact relations are obtained by integrating the force-distance 

relation derived from the LJ potential with a finite element analysis of single-asperity adhesive contact. 

These constitutive relations are then incorporated into the GW model, and the interfacial force and contact 

area of contacting rough surfaces are determined numerically. The development of attractive and 

repulsive forces at the contact interface and the occurrence of instantaneous surface contact (jump-in 

instability) yield a three-stage evolution of the contact area. It is shown that the adhesion parameter 

introduced by Fuller and Tabor (1975) governs the strength of adhesion of contact systems with a high 

Tabor parameter, whereas the strength of adhesion of contact systems with a low Tabor parameter is 

characterized by a new adhesion parameter, defined as the ratio of the surface roughness to the 

equilibrium interatomic distance. Applicable ranges of aforementioned adhesion parameters are 

interpreted in terms of the effective surface separation, obtained as the sum of the effective distance range 

of the adhesion force and the elastic deformation induced by adhesion. Adhesive contact of rough 

surfaces in the entire range of the Tabor parameter is discussed in terms of a generalized adhesion 

parameter, defined as the ratio of the surface roughness to the effective surface separation. 
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1. Introduction 

Surface adhesion and roughness have attracted significant attention in contemporary contact 

mechanics studies. Because of the wide range of surface topology features, contact models based on 

simple geometrical configurations, such as a sphere in contact with a semi-infinite solid, do not yield 

accurate solutions of the real contact area and interfacial tractions. Among the first contact analyses to 

consider adhesion effects on solid contact deformation are those of Johnson et al. (1971) and Derjaguin et 

al. (1975), who introduced elastic contact models for two adhering spheres, known as the JKR and the 

DMT model, respectively. These models show that the pull-off force at the instant of surface 

detachment is equal to  (JKR model) and  (DMT model), where  is the reduced 

radius of curvature ( , where  and  are the radii of curvature of the two 

contacting spheres, respectively) and  is the work of adhesion ( , where  and  

are the surface energies of the two spheres, respectively, and  is the interfacial energy).  

Adhesive elastic contacts can be characterized by the dimensionless Tabor parameter , defined 

as (Tabor, 1977): 

 

where 
 
is the effective elastic modulus (  and  represent the 

elastic modulus and Poisson’s ratio, respectively) and ε is the equilibrium interatomic distance. Tabor 

(1977) has argued that the JKR model is suitable for compliant spherical bodies with a large radius of 

curvature ( ), whereas the DMT model is more appropriate for stiff spherical bodies with a small 

radius of curvature ( ). Maugis (1992) used the Dugdale approximation to represent the adhesive 

stress at the contact interface and obtained  as a function of a dimensionless parameter  ( ) 

in the transition range of the Tabor parameter bounded by the DMT and the JKR solutions. Carpick et al. 

(1999) derived a semi-empirical equation of in terms of  by using a curve-fitting method and 

numerical results obtained by Maugis (1992). Muller et al. (1980), Greenwood (1997), and Feng (2001) 
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used the Lennard-Jones (LJ) potential to model interfacial adhesion in elastic contacts and a self-

consistent integration method to numerically analyze adhesive contact. The solution obtained from the 

latter approach represents a smooth transition between the DMT and the JKR solutions, but differs from 

that obtained by Maguis (1992) in the same range of the Tabor parameter. Using a curve-fitting method 

identical to that of Carpick et al. (1999), Wu (2008) obtained an equation of the dimensionless pull-off 

force in terms of the Tabor parameter, given by 

 

where the negative sign in Eq. (2) indicates an attractive force. The aforementioned self-consistent 

integration method has been used in finite element analyses where interfacial adhesion was modeled by 

nonlinear spring elements obeying a force-displacement constitutive relation derived from the LJ potential 

(Du et al., 2007; Kadin et al., 2008; Song and Komvopoulos, 2011). 

             Despite of well-established theories of adhesive contact of elastic spheres or equivalent systems, 

the applicability of these models is limited because real surfaces are rough. One of the first contact 

models accounting for surface roughness effects is that of Greenwood and Williamson (1966), often 

referred to as the GW model. Modeling the rough surface by spherical asperities of identical radius of 

curvature and varied height, they developed a multiple-asperity framework, which allows for macroscopic 

contact parameters (e.g., real contact area and contact force) to be calculated by a numerical integration of 

an asperity-scale contact model. Ciavarella et al. (2008) assumed uniform contact pressure over the 

nominal contact area, which induces an increase in mean surface separation, and improved the GW model 

by including the effect of asperity interaction. Despite of significant differences between the later model 

and the original GW model for rough surfaces in close intimacy, they observed a good agreement 

between the original GW model and numerical results of three-dimensional fractal surfaces for mean 

surface separation larger than 1.5 times the surface roughness. 

One of the first fundamental studies of adhesive contact between elastic rough surfaces is 

attributed to Fuller and Tabor (1975). Using the statistical rough-surface GW model and the JKR 
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approximation at the asperity level, they showed that the strength of adhesion of contacting rough 

surfaces decreases with the dimensionless adhesion parameter , given by 

                                                      

where  is the root-mean-square (rms) surface roughness. The physical meaning of  can be understood 

by considering that it represents the ratio of the surface roughness to the elastic deformation caused by 

adhesion at the instant of surface separation, as shown by the second form of Eq. (3). The strength of 

adhesion between a smooth rubber sphere and a hard rough surface, evaluated in terms of  (Eq. (2)), has 

been found to be in good agreement with experimental results (Fuller and Tabor, 1975). Maugis (1996) 

used a similar approach and the DMT model to study the contact behavior of adhering asperities and 

observed a contribution of the adhesion force outside the contact region of interacting asperities to the 

total normal force. The existence of an adhesion force in most contact systems explains the finite friction 

force obtained with a zero or negative (adhesive) normal force and the higher friction of clean surfaces. 

Morrow et al. (2003) incorporated an improved Maugis solution, originally derived by Kim et al. (1998) 

for the transition range between the DMT and the JKR solutions, into the model of Fuller and Tabor 

(1975) and determined the adhesion force produced from non-contact and contact asperity regions in the 

entire range of . 

Sahoo and Chowdhury (1996) developed an elastic adhesive contact model for rough surfaces 

that uses the Weierstrass-Mandelbrot function to describe fractal surfaces. This model was later improved 

by Mukherjee et al. (2004), who analyzed elastic-plastic deformation of adhering asperities by the finite 

element method. Experimental and analytical studies of Kesari et al. (2010) have shown that the force 

hysteresis observed in atomic force microscopy and nanoindentation measurements can be correlated to a 

series of asperity-contact instabilities attributable to adhesion and roughness effects. Kesari and Lew 

(2011) analyzed the compression of an elastic half-space by an axisymmetric rigid punch with random 

periodic undulations in the radial direction and observed multiple equilibrium contact regions during the 

loading and unloading phases by minimizing the potential energy of the system.  
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Although the previous studies have yielded important insight into the contact behavior of 

adhesive rough surfaces, the majority of these studies are either restricted to “hard” contact at the asperity 

scale (i.e., negligible adhesion forces between noncontacting asperities) or rely on the solution derived by 

Maguis (1992), which does not reproduce important physical phenomena, such as the contact instabilities 

due to instantaneous surface contact (jump-in) encountered with contact microprobes and suspended 

microstructures. The objective of this study was to develop an adhesive contact analysis of elastic rough 

surfaces, which models surface adhesion with nonlinear springs obeying a force-displacement law derived 

from the LJ potential, accounting for both JKR and DMT type of adhesive contacts at the asperity scale. 

Jump-in contact instabilities are identified by the sharp increase of the interfacial force or the 

instantaneous establishment of surface contact. The dependence of macrocontact instabilities in rough-

surface contact on the Tabor parameter was found to differ from that of single-asperity contact observed 

in a previous study (Song and Komvopoulos, 2011). The effects of surface roughness and Tabor 

parameter on the strength of adhesion and the evolution of the interfacial force and the contact area are 

discussed in the context of numerical solutions. It is shown that the classical adhesion parameter of Fuller 

and Tabor (1975) only governs the strength of adhesion of compliant rough surfaces (high  range). Thus, 

a new adhesion parameter is introduced for relatively stiff contact systems (low  range). The applicable 

ranges of the aforementioned adhesion parameters are determined for three different characteristic length 

scales at the single-asperity and rough-surface levels and a generalized adhesion parameter is proposed 

for the entire range of the Tabor parameter.  

2. Analysis of single-asperity contacts 

Because contact between real (rough) surfaces comprises numerous microscopic asperity contacts, 

it is necessary to derive constitutive deformation relations that are applicable at the asperity level. The 

problem of two elastic spherical asperities in close proximity is equivalent to that of a rigid sphere of 

reduced radius of curvature  and an elastic half-space of effective elastic modulus . In the presence of 

interfacial adhesive (attractive) pressure, the surface of the half-space deforms in the upward direction, as 
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shown schematically in Fig. 1. Song and Komvopoulos (2011) obtained the dimensionless elastic 

deflection at the center of the proximity region  by integrating the solution of a point surface 

force acting on an elastic half-space (Boussinesq, 1885), i.e., 

 

where  is the adhesive pressure, derived from the LJ potential, and  is the dimensionless 

minimum surface gap. Consequently, the dimensionless minimum surface separation at , defined as 

, can be expressed as  

 

Analytical and finite element results (Song and Komvopoulos, 2011) show that jump-in is not 

observed for  and the interfacial force and contact area  vary continuously as the two asperities 

approach each other (Fig. 2(a)) and 2(c), respectively), while for  jump-in commences, as 

evidenced by the abrupt increase of the interfacial force (tensile) (Fig. 2(b)) and the instantaneous 

establishment of surface contact (Fig. 2(d)). The critical (minimum) surface separation corresponding to 

the maximum adhesion force  during the approach of the surfaces and the inception of initial contact 

(i.e., the surface separation at the transition instant from zero to nonzero contact area) are denoted by  

and , respectively (Fig. 2). The definition of the contact area may appear to be controversial because 

“hard” contact, such as that considered in classical contact mechanics of adhesionless surfaces, is not 

possible in the present analysis due to the repulsive term in the LJ potential (Greenwood, 1997; Feng, 

2000, 2001). Thus, for consistency with classical contact mechanics, the contact area is defined as the 

area of compressive normal traction. For , the contact area at the instant of  can be either zero 

or nonzero. In particular, for very low  values,  is encountered before contact (i.e., ), for 

moderate  values less than 0.5, contact commences before the occurrence of  (i.e., ) (Figs. 

2(a) and 2(c)), and for , both  and initial contact are encountered at the instant of jump-in 

(i.e., ) (Figs. 2(b) and 2(d)).  
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Fig. 3 shows the dimensionless contact radius   corresponding to the critical 

minimum surface separation  as a function of the Tabor parameter. Discrete data points represent 

numerical results obtained using a previous finite element model of adhesive contact (Song and 

Komvopoulos, 2011). Curve fitting of the numerical data yields 

                                                              (6a) 

                                               (6b) 

Eqs. (6a) and (6b) indicate that, for ,  occurs before the establishment of surface 

contact (i.e., ), while for , contact is established either before or upon the occurrence of 

 (i.e., ), with the contact radius given by Eq. (6b). It is noted that Eq. (6b) is the first relation 

to yield the contact area at the instant of  in terms of the Tabor parameter, and its validity is 

confirmed by favorable comparisons with analytical solutions obtained for large  values. For example, 

for , Eq. (6b) yields , which is in excellent agreement with the solution derived from 

JKR theory, (Eq. (A9) in Appendix A).  

Considering the significant effect of the jump-in instability on the evolution of the interfacial 

force and the contact area, two different sets of constitutive relations of adhesive asperity contacts must 

be derived – one set for continuous elastic contact and another set for discontinuous elastic contact due to 

the occurrence of the jump-in instability. Moreover, because of the transition from attractive- to repulsive-

dominant contact behavior encountered with the decrease of the surface separation, different constitutive 

relations must be derived for the surface separation ranges of attractive and repulsive dominant force, i.e., 

,  and , , respectively. 

2.1. Constitutive relations for the surface separation range of dominant attractive force  

2.1.1. Elastic adhesive contacts not exhibiting jump-in instability 

In the absence of the jump-in instability ( ), the interfacial force  increases continuously 

from zero (large ) to a maximum adhesion force  with the decrease of  to a critical value  

(Fig. 2(a)). Fig. 4 shows the dimensionless critical minimum surface separation 
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corresponding to  as a function of  for adhesive elastic contacts that do not exhibit jump-in. From a 

linear fit through the numerical results (discrete data points), obtained with a previous finite element 

model (Song and Komvopoulos, 2011), it is found that 

                             (7) 

        Assuming small deformation in the elastic half-space for , the dimensionless interfacial 

force , obtained by integrating the surface traction applied to the undeformed surface of the 

half-space (Boussinesq, 1885), is given by 

 

     

Applying the boundary condition , where  is given by 

Eq. (2), because for elastic adhesive contact  while retaining the force-distance 

proportionality that is intrinsic of the LJ potential (i.e., ), Eq. (8) can be modified as  

 

Fig. 5 shows analytical solutions (Eq. (9)) and finite element method (FEM) results (Song and 

Komvopoulos, 2011) of the dimensionless interfacial force  versus the dimensionless minimum surface 

separation 
o  at for  in the range of 0.091–0.425. The good agreement between analytical and 

FEM results validates Eq. (9). 

Because the minimum surface separation occurs at ,  is obtained for . Thus, the 

following equation of the dimensionless critical minimum surface separation  at the instant of initial 

contact is obtained by substituting  into Eqs. (4) and (5): 

                                                   (10) 

For the dimensionless contact area, defined as , it follows that 
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 = 0   ( )                                                                                                               (11)                                

A transition value of the Tabor parameter equal to 0.19 is obtained by equating Eq. (7) with Eq. 

(10). For , , implying that  = 0 at the instant of , whereas for , a 

finite contact area is established before the occurrence of
 

,  which is in excellent agreement with the 

predictions of Eqs. (6a) and (6b).  

2.1.2. Elastic adhesive contacts exhibiting jump-in instability 

As mentioned earlier, when , initial contact and  occur simultaneously at the instant 

of jump-in (i.e., ). From curve fitting the jump-in part of the contact instability equation (Song 

and Komvopoulos, 2011), the dimensionless critical surface gap  at the instant of jump-in is 

obtained as 

   
                 

(12) 

Substitution of Eq. (12) into Eqs. (4) and (5) yields 

(1

3) 

For , elastic deformation can be ignored as negligibly small in comparison to the 

relatively large surface separation. Thus, an approximate expression of the interfacial force can be derived 

by integrating the surface traction for the undeformed configuration of the half-space, i.e., 

 

 

Because the critical minimum surface separation is larger than the equilibrium interatomic 

distance, before the commencement of jump-in the surface traction is attractive everywhere and the 

contact area is zero, i.e., 

                                                                                                                                  (15) 
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At the instant of jump-in ( ), the interfacial force increases instantaneously from a 

value given by Eq. (15) to a value given by Eq. (2), with the simultaneous abrupt formation of a contact 

area of dimensionless radius 
ca  (Eq. (6b)). 

2.2. Constitutive relations for the surface separation range of dominant repulsive force  

The decrease of the minimum surface separation below and  leads to the dominance of 

the repulsive term in the LJ potential and the dependence of the deformation behavior on the elastic 

material properties. The evolution of the interfacial force and the contact area was analyzed with a 

previous FEM model of adhesive contact (Song and Komvopoulos, 2011), using  in the range of 0.091 

(no jump-in) to 1.971 (jump-in). Figs. 7(a) and 7(b) show the dimensionless interfacial 

force  and the contact area  as functions of the dimensionless 

minimum surface separation and , respectively. The good agreement between 

FEM results and analytical (Hertz) solutions suggests that the jump-in instability does not affect the 

constitutive relations in the surface separation range dominated by the repulsive force. Hence, the 

following constitutive relations hold after the occurrence of  and the establishment of initial contact: 

(a) For adhesive elastic contacts that do not exhibit jump-in ( ): 

        ( )   (16) 

              ( )                                      (17) 

(b) For adhesive elastic contacts that exhibit jump-in ( ): 

       ( )    (18) 

 

where subscript H denotes Hertz analysis. 

3. Contact analysis of elastic rough surfaces         
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3.1. Rough surface model  

Fig. 8 shows a cross-sectional schematic of the equivalent system of two rough surfaces 

consisting of a rigid rough surface and a flat elastic half-space at a mean surface separation from the 

rough surface. The rough surface is represented by the GW model, consisting of uniformly distributed 

spherical asperities of fixed radius of curvature , area density , and randomly varying height . The 

topography of an isotropic rough surface can be uniquely defined by , , and the standard deviation of 

the surface heights, referred to as the rms surface roughness . The ratio of the standard deviation of the 

asperity heights  to the surface roughness , denoted by , can be expressed as (McCool, 1986) 

 

The probability of an asperity height to be between z and z + dz is equal to , where  is 

the asperity height distribution function, described by a normal probability density function, which in 

dimensionless form can be written as  

 

where . (Hereafter, the symbol ~ over a parameter denotes normalization by .) For a rigid rough 

surface of asperity area density  and apparent contact area , the total number of potentially contacting 

asperities is . Because all the asperities possess the same radius of curvature, they are 

characterized by the same Tabor parameter.  

3.2. Constitutive contact relations for rough elastic surfaces not exhibiting jump-in instabilities 

For rough elastic surfaces comprising asperity contacts that do not exhibit jump-in contact 

instabilities (i.e., ), the numbers of asperity contacts in the surface separation range dominated by 

attraction ( ) and repulsion ( )  and , respectively, where  is the 

dimensionless mean surface separation (Fig. 8) and , are given by  

                (22a) 
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and 

                  (22b)    

where and is given by Eq. (7). 

Using Eqs. (2), (9), (16), (22a), and (22b), the dimensionless total interfacial force can be 

expressed as  

 

 

The numbers of noncontacting and contacting asperities  and , respectively, are given by  

                (24a)  

and  

                 (24b)    

where 
 
and is given by Eq. (10).   

Using Eqs. (10), (17), (24a), and (24b), the dimensionless total contact area can be expressed as 

 

3.3. Constitutive contact relations for rough elastic surfaces exhibiting jump-in instabilities 

For asperity contacts demonstrating jump-in contact instabilities ( ), all asperities in the 

surface separation range dominated by attraction are not in contact, whereas all asperities in the surface 

separation range dominated by repulsion are in contact because . Thus, the corresponding 

asperity numbers are given by 

                (26a) 

and 
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                   (26b)    

where 
 
is obtained from Eq. (16). 

Using Eqs. (2), (14), (18), (26a), and (26b), the dimensionless total interfacial force can be 

written as  

 

 

From Eqs. (15), (16), (26a), and (26b), the dimensionless total contact area  can be obtained as 

 

4. Results and discussion      

4.1. Effect of adhesion-induced instabilities at the asperity level on the contact behavior of rough 

surfaces 

Figs. 9(a) and 9(b) show the dimensionless total interfacial force  and the total contact area  of 

different rough surfaces as functions of the dimensionless mean surface separation , respectively, for 

fixed surface roughness (  = 2 nm) and  varied in the range of 0.5–46.9 by changing the effective elastic 

modulus of the semi-infinite solid . Since  was fixed at a relatively high value, i.e.,  > 300, the 

Derjaguin approximation still holds and  is the only governing parameter of elastic adhesive contact 

(Greenwood, 2009). As expected, lower values of the Tabor parameter characterize stiffer contact systems. 

Differences in the adhesive contact behavior between a single asperity and a rough surface can be 

examined by considering the variation of the interfacial force for  = 10. (The inset of Fig. 9(a) shows a 

magnified plot of the interfacial force versus the mean surface separation for  = 10.) It can be seen that 

the dimensionless maximum adhesive force  obtained for  = 10 is significantly less than 0.75, which 
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is the value predicted by the JKR model (single-asperity contact), and jump-in is not encountered despite 

that , which is the critical Tabor parameter for jump-in to occur in single-asperity adhesive 

contacts (Song and Komvopoulos, 2011).  

Fig. 9(b) shows three distinct surface separation ranges of the evolution of the contact area. In the 

high range of mean surface separation, contact does not occur (range of zero contact area) and the 

interfacial force is very low and attractive because the surfaces are sufficiently apart. The critical surface 

separation for initial contact increases with the Tabor parameter due to the enhancement of jump-in 

contact at the asperity level (Eq. (13)). In the intermediate range of mean surface separation, the contact 

area increases nonlinearly as the surfaces approach closer, especially for higher  values. In this range, 

asperities on the rough surface jump into contact with the elastic half-space, causing abrupt surface 

contact and the rapid growth of the contact area. The evolution of the contact area in the intermediate 

distance range is more pronounced for contact systems characterized by high  values, implying an 

enhancement of the jump-in instabilities with increasing Tabor parameter. In addition, the rate of increase 

of the contact area (slope of  curves) also increases with the Tabor parameter (Eq. (6b)). In the low range 

of mean surface separation, the contact area increases linearly with the decrease of the mean surface 

separation at a rate independent of . In this range, the contact behavior is dominated by the repulsive 

term of the LJ potential and the linear response of the contact area is independent of  and is accurately 

described by Hertz theory (Eq. (19)). The observed evolution of the contact area, particularly in the 

intermediate distance range, suggests that even though jump-in instabilities at the asperity level are not 

reflected in the interfacial force response (Fig. 9(a)), they affect the contact behavior. This phenomenon 

has not been observed in any of the previous studies, which are not based on constitutive models 

accounting for jump-in instabilities at the asperity scale. Therefore, it is necessary for constitutive contact 

models of adhesive rough surfaces to account for such contact instabilities. In addition, Fig. 9(b) shows 

that contact instabilities occur in the range 2  <  < 5 , indicating a low interfacial force and a very small 
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fraction of contacting asperities, which implies that the GW model is still applicable (Ciavarella et al., 

2008). 

4.2. Effect of surface roughness on strength of adhesion 

Fig. 10 shows the dimensionless maximum attractive force between rough surfaces , 

hereafter referred to as the strength of adhesion, as a function of the surface roughness  for  = 0.1, 1.0, 

and 10. All three curves show the same general trend, i.e., an enhancement of the strength of adhesion 

with decreasing surface roughness. For a given surface roughness, the strength of adhesion increases with 

the Tabor parameter. The critical surface roughness for zero strength of adhesion also increases with the 

Tabor parameter, implying more pronounced adhesion effects with compliant surfaces. This is in 

agreement with the adhesion parameter of Fuller and Tabor (1975), which predicts a higher strength of 

adhesion for smoother and more compliant surfaces (Eq. (2)). 

4.3. Effect of the Tabor parameter on the strength of adhesion 

Fig. 11 shows the variation of the strength of adhesion  with the Tabor parameter  for σ = 

0.5, 1.0, and 2.0 nm. Despite of the quantitative differences among the three curves,  increases 

asymptotically with the Tabor parameter to 0.75, which is the value of predicted by the JKR theory. 

This implies that the adhesive contact behavior of rough surfaces characterized by a high value of  (e.g., 

) is fairly analogous to that of a single-asperity contact. This finding is consistent with the 

decreasing effect of surface roughness on the strength of adhesion observed with the increase of the Tabor 

parameter in Fig. 10 and confirmed by the asymptotic solution  0.75 obtained from Eq. (27), 

implying a negligible roughness effects for highly compliant contacting surfaces. It is also noted that, for 

a given roughness, decreases sharply in the range 0.1 <  < 10, asymptotically approaching to a 

small value that decreases with the surface roughness. 

 4.4. New adhesion parameter and effective surface separation 
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Numerical results of the strength of adhesion  shown in Fig. 12(a) for  = 0.2, 1.0, and 5.0 

and  in the range of 0–150 nm indicate that the adhesion parameter  controls the strength of adhesion 

only for low  values and/or high  values, i.e., high range of Tabor parameter. The results shown in Fig. 

12(b) provide further evidence that  is a governing parameter of the strength of adhesion only in the high 

range of the Tabor parameter, in agreement by experiments with a smooth rubber sphere pressed into 

contact with a rough surface (Greenwood and Williamson, 1966). Therefore, a different adhesion 

parameter must be used to describe the strength of adhesion in the low range of the Tabor parameter. 

Fig. 13 shows the strength of adhesion  as a function of the Tabor parameter for new 

adhesion parameter  equal to 0.2. 0.5, and 1.0. The results indicate that  is a governing 

parameter of the strength of adhesion in the low  range. Thus, because  represents 

the elastic deformation caused by adhesion and  characterizes the effective range of the adhesion force, a 

generalized adhesion parameter, defined as , can be used for the entire range of the Tabor 

parameter. Surface roughness  characterizes the variation in the separation distance between individual 

asperities and the undeformed half-space (stress-free state), while asperity elastic deformation induced by 

adhesion is on the order of  and the effective range of the adhesion force is on the order of . Therefore, 

the effective surface separation between individual asperities and the elastically deformed half-space is on 

the order of , below which the adhesion force significantly affects the contact behavior. The 

asperity fraction in the range of surface separation dominated by the attractive force decreases with the 

surface roughness and increases with the effective surface separation. 

The adhesion parameters  and  represent asymptotic values of the general adhesion parameter . 

For , the effective surface separation is controlled by adhesion-induced elastic deformation of the 

asperities and , in agreement with the finding that  governs the strength of adhesion of 

contact systems characterized by a high Tabor parameter (Fig. 12). Alternatively, for , the effective 

surface separation is controlled by the effective range of the adhesion force and , in 
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agreement with the observation that  governs the strength of adhesion of contact systems characterized 

by a low Tabor parameter (Fig. 13).  

The present analysis is applicable to homogeneous semi-infinite solids and rough surfaces, i.e., it 

accounts for contact instabilities both at asperity and macroscopic scales. However, most real surfaces are 

not clean and may contain a thin surface layer of absorbed contaminants or a native oxide film, depending 

on the surface material and its environment. The current analysis can easily be modified to model such 

surfaces by accordingly adjusting the interface work of adhesion and replacing the constitutive equations 

developed at the asperity scale for an elastic semi-infinite solid by those of an elastic layered medium (Ye 

and Komvopoulos, 2003; Komvopoulos and Gong, 2007). However, the contact problem may be further 

complicated by adhesion-induced delamination of an oxide or contaminant surface layer (Song and 

Komvopoulos, 2013).   

5. Conclusions     

Adhesive contact of elastic rough surfaces was examined within the framework of the GW rough 

surface model, modified to include contact instabilities (jump-in) at the asperity level. Constitutive 

relations of the interfacial force and the contact area of single-asperity contacts demonstrating continuous 

( ) and discontinuous ( ) approach paths were obtained in the distance range of attractive- 

and repulsive-dominant surface force. These relations were incorporated into the GW rough-surface 

model, and the interfacial force and contact area were expressed in terms of important parameters, such as 

surface separation, asperity radius, asperity area density, surface roughness, effective elastic modulus, 

surface energy, equilibrium interatomic distance, and the Tabor parameter.  

Rough surface contact demonstrated a three-stage behavior with decreasing mean surface 

separation: (1) zero contact area, (2) nonlinear and rapid increase of the contact area caused by jump-in 

instabilities at the asperity level (particularly for surfaces characterized by high  values), and (3) linear 

increase of the contact area (Hertz-like behavior) independent of . The strength of adhesion decreased 
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with increasing surface roughness and generally increased with , approaching asymptotically to the 

value predicted by the JKR contact model of elastic spheres, implying a negligible surface roughness 

effect for . However, for , the strength of adhesion approached asymptotically to a very low 

value, which increased with decreasing surface roughness.   

The adhesion parameter  proposed by Fuller and Tabor (1975) was shown to govern the strength 

of adhesion of surfaces characterized by high  values. A new adhesion parameter , defined as the ratio 

of the surface roughness to the equilibrium interatomic distance, was shown to describe the strength of 

adhesion of rough surfaces characterized by low  values. Differences between  and  parameters were 

interpreted in terms of the effective surface separation, defined as the sum of the effective distance range 

of the adhesion force and the elastic deformation of asperities caused by adhesion. It was shown that the 

strength of adhesion can be characterized over the entire range of the Tabor parameter by a generalized 

adhesion parameter ξ, defined as the ratio of the surface roughness and the effective surface separation, 

with θ and ζ representing asymptotic values in the high- and low-ranges of the Tabor parameter, 

respectively. 

Appendix A. Contact area at the maximum adhesion force derived from the JKR theory 

In the JKR theory, the Hertzian equation of the contact radius , modified to include the effect of 

surface energy, is given by (Johnson et al., 1971) 

                                                      (A1) 

Substitution of  into Eq. (A1) leads to the following equation of the contact 

radius at the instant of : 

                          (A2) 

Using the same normalization scheme, i.e., , Eq. (A2) can be written in 

dimensionless form as follows 
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                      (A3) 

The contact radius given by Eq. (A3) consists of regions with compressive and tensile surface 

tractions, whereas in Eq. (6b) the contact radius is defined as the region of compressive surface traction. 

Therefore, for consistency, it is necessary to determine the contact region under compressive traction in 

the JKR solution. In the JKR theory, the effect of adhesion on Hertzian contact is included by balancing 

the external work with the surface energy and the elastic strain energy. The JKR model accounts for the 

effects of contact pressure and adhesion only within the contact area. The general solution of the contact 

pressure  can be obtained as the superposition of a compressive contact stress distribution due to the 

applied normal (compressive) force  and an adhesive (tensile) contact stress distribution due to a tensile 

force applied by a rigid punch over the same contact radius (Eq. (A1)). Consequently,  is 

expressed as (Johnson, 1958) 

                   (A4) 

where  is the radial distance from the center of contact. 

The Hertzian contact load  and the repulsive load  at the instant of  are given by 

                    (A5) 

 =                  (A6) 

Substitution of Eqs. (A5) and (A6) into Eq. (A4) and use of the normalization  

leads to the following equation of the normal stress distribution: 

                      (A7) 

Substitution of Eq. (A3) into Eq. (A7) yields,  

                                                          (A8) 
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The contact radius  corresponding to the region of compressive surface traction, obtained by 

setting Eq. (A8) equal to zero, is given by . Hence, using Eq. (A3), the dimensionless contact 

radius  can be expressed as 

             (A9) 

Nomenclature 

  contact area 

  dimensionless contact area ( )  

  contact area obtained from Hertz analysis 

  dimensionless contact area obtained from Hertz analysis ( )   

  apparent contact area 

  Hertzian contact radius 

  dimensionless Hertzian contact radius ( ) 

  contact radius  

  dimensionless contact radius ( ) 

  mean surface separation  

  dimensionless mean surface separation ( ) 

,   elastic modulus of asperity (surface) 1 and 2, respectively  

  effective elastic modulus 

  interfacial force 

  dimensionless interfacial force ( )  

  maximum attractive (adhesive) interfacial force or strength of adhesion 

  dimensionless maximum attractive interfacial force or strength of adhesion 

( ) 

 half-space elastic deflection at the center of the proximity region 

 dimensionless half-space elastic deflection at the center of the proximity region ( ) 

  total number of potentially contacting asperities 
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,  number of asperity contacts of rough surfaces without jump-in instabilities in the surface 

separation range dominated by attraction and repulsion, respectively 

,  number of noncontacting and contacting asperities of rough surfaces without jump-in 

instabilities in the surface separation range dominated by attraction and repulsion, 

respectively 

,  numbers of asperity contacts of rough surfaces with jump-in instabilities in the surface 

separation range dominated by attraction and repulsion, respectively 

  interfacial force  

  dimensionless interfacial force ( ) 

  interfacial force obtained from Hertz analysis 

  dimensionless interfacial force obtained from Hertz analysis ( ) 

  maximum attractive (adhesion) force  

  dimensionless maximum attractive (adhesion) force ( ) 

  pull-off force  

  dimensionless pull-off force ( ) 

  normal (compressive) force in JKR model 

  rigid-punch adhesive (tensile) force in JKR model 

  pressure  

  reduced radius of curvature or asperity radius in rough-surface contact model 

,   radius of curvature of asperity 1 and 2, respectively 

  total contact area 

  dimensionless total contact area ( ) 

  horizontal (radial) coordinate (distance) 

  vertical coordinate or surface gap 

  minimum surface gap 

  dimensionless minimum surface gap ( ) 

  minimum surface gap at the instant of jump-in 

  dimensionless critical minimum surface gap at the instant of jump-in ( ) 

  asperity height 

  dimensionless asperity height ( ) 
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Greek symbols 

  work of adhesion 

,   surface energy of asperity (surface) 1 and 2, respectively 

  interfacial energy of asperities (surfaces) 1 and 2 

  minimum surface separation  

  dimensionless minimum surface separation ( ) 

  critical minimum surface separation at the instant of maximum adhesion force 

,  dimensionless critical minimum surface separation at the instant of maximum adhesion 

force ( , ) 

  critical minimum surface separation at the instant of initial contact  

,   dimensionless critical minimum surface separation at the instant of initial contact  

( , ) 

  equilibrium interatomic distance 

  ratio of surface roughness to equilibrium interatomic distance 

  area density of asperities 

  adhesion parameter 

  Tabor parameter 

,   Poisson’s ratio of asperity (surface) 1 and 2, respectively 

  general adhesion parameter 

  root-mean-square (rms) surface roughness 

  standard deviation of asperity heights 

  asperity height distribution function 

  dimensionless asperity height distribution function 

  ratio of standard deviation of asperity heights to surface roughness 
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List of Figures 

Fig. 1 Equivalent model of a rigid sphere of reduced radius of curvature R and an elastic half-space of 

effective elastic modulus . The deformed surface of the half-space is shown displaced in the 

negative x-direction due to the adhesion force applied by the rigid sphere. 

Fig. 2 Schematics of interfacial force and contact area versus minimum surface separation for 

continuous ( ) and discontinuous ( ) surface approach and retraction. 

Fig. 3 Critical contact radius at the instant of maximum adhesive force versus Tabor parameter . 

Discrete data points represent numerical data obtained with a previous finite element model of 

adhesive contact (Song and Komvopoulos, 2011). The solid curve is a best fit through the 

numerical data. 

Fig. 4 Critical surface separation versus Tabor parameter  for single contacts not exhibiting 

jump-in ( ). Discrete data points represent numerical data obtained with a previous finite 

element model of adhesive contact (Song and Komvopoulos, 2011). The solid line is a best fit 

through the numerical data. 

Fig. 5 Analytical solutions (Eq. (9)) and numerical results obtained with the a previous finite element 

model of adhesive contact (Song and Komvopoulos, 2011) of the interfacial force versus 

minimum surface separation for  equal to (a) , (b) , (c) , and (d) . 

Fig. 6 Critical central gap for jump-in instability versus Tabor parameter . Discrete data points 

represent numerical data obtained with a previous finite element model of adhesive contact 

(Song and Komvopoulos, 2011). The solid curve is a best fit through the numerical data. 

Fig. 7 Analytical solutions (Hertz analysis) and finite element method (FEM) results obtained with a 

previous model of adhesive contact (Song and Komvopoulos, 2011): (a) interfacial force 

versus minimum surface separation after the occurrence 
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of maximum adhesive force and (b) contact area versus minimum surface 

separation  after the establishment of contact for  = 0.091–1.971.  

Fig. 8 Schematic of equivalent rough-surface contact model comprising a rigid rough surface and an 

elastic half-space. 

Fig. 9 (a) Interfacial force and (b) contact area versus mean surface separation for fixed surface 

roughness (  = 2 nm) and  = 0.5–46.9. The inset in (a) is a magnified plot of the interfacial 

force for . 

Fig. 10 Strength of adhesion versus surface roughness for  and  

Fig. 11 Strength of adhesion versus Tabor parameter  for  0.5, 1.0, and  nm. 

Fig. 12 Strength of adhesion versus (a) surface roughness  and (b) Tabor parameter  for  

0.2, 1.0, and 5.0. 

Fig. 13 Strength of adhesion versus Tabor parameter  for  0.2, 0.5, and 1.0. 
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