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a b s t r a c t 

Many materials of everyday use are fibrous and their strength is important in most applications. In this 

work we study the dependence of the strength of random fiber networks on structural parameters such 

as the network density, cross-link density, fiber tortuosity, and the strength of the inter-fiber cross-links. 

Athermal networks of cellular and fibrous type are considered. We conclude that the network strength 

scales linearly with the cross-link number density and with the cross-link strength for a broad range 

of network parameters, and for both types of networks considered. Network strength is independent of 

fiber material properties and of fiber tortuosity. This information can be used to design fiber networks 

for specified strength and, generally, to understand the mechanical behavior of fibrous materials. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Many biological and engineering materials are fibrous. Biolog-

ical connective tissue, the extracellular matrix, the cellular cy-

toskeleton, fiber composites, non-wovens, paper and various tex-

tiles are just few examples from a broad range of materials in

which fibers are the key structural element. Biological fibrous ma-

terials are fiber networks embedded in a viscoelastic fluid and

their mechanical performance is controlled by the network be-

havior subjected to the condition of incompressibility mandated

by the embedding matrix (no-drainage case). Some engineering fi-

brous materials do not have an embedding matrix. These can be

random, as in non-wovens, or periodic, as in woven textiles. While

all these types of fibrous materials are of high practical impor-

tance, we restrict the discussion here to random networks without

embedding matrix. 

From a design point of view, it is important to establish the

relationship between structure and macroscopic material behavior.

The best understood such relation refers to the network stiffness.

The stiffness of random networks depends on network architec-

ture ( Head et al., 2003a; Huisman et al., 2007; Islam and Picu,

2018 ), network density, ρ ( Head et al., 2003b; Shahsavari and Picu,

2013a; Wilhelm and Frey, 2003 ), density of cross-links, ρb ( Alava

et al., 2006; Shahsavari and Picu, 2013b ), fiber and cross-link prop-

erties ( Ban et al., 2016a; Borodulina et al., 2016; Deogekar and Picu,

2017 ). Specifically, random networks with no embedding matrix

exhibit two types of mechanical behavior: at high ρ , ρ and/or
b 
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hen the fiber bending mode is stiff, the deformation is approxi-

ately affine. In this limit it is generally observed that the stiffness

Young’s and shear moduli) is proportional to the network density

 Alava and Niskanen, 2006; Head et al., 2003b ). Networks of low

and ρb , and/or networks constructed from thin fibers which are

oft in bending, deform non-affinely. In this case the network mod-

lus scales as a power function of the density, with the exponent

epending on the network architecture and embedding space di-

ensionality ( Gibson and Ashby, 1999; Kroy and Frey, 1996; Licup

t al., 2016; Shahsavari and Picu, 2013b ). 

The mechanical response of random networks is generally

trongly non-linear in all loading modes (tension, compression,

hear) ( Islam and Picu, 2018; Onck et al., 2005; Picu et al., 2018;

tein et al., 2011 ). The non-linearity is primarily geometric and

s associated with the re-orientation of fibers during loading. In

ense networks such as paper – the non-linearity may also origi-

ate from the fiber and cross-link behavior ( Borodulina et al., 2012;

eth and Page, 1981 ). The evolution of the network structure dur-

ng deformation leads to the large variation of the material volume

 Bancelin et al., 2015; Mauri et al., 2015; Picu et al., 2018 ), which

s possible due to the large free volume typically present in non-

olecular network materials in the undeformed state. The consti-

utive behavior of fibers may be linear or non-linear, but this as-

ect is of secondary importance in most networks which are not

f very large density, since in such structures the global strains

re typically much larger than the fiber-level strains ( Eppell et al.,

006; Svensson et al., 2010 ) and hence, in these cases, the effect of

ber constitutive non-linearity on the overall material behavior is

eak. In cases in which the cross-links are compliant, their consti-

utive behavior may reflect in the network behavior ( Fallqvist et al.,

014; Kasza et al., 2010 ). It is generally observed that networks

https://doi.org/10.1016/j.ijsolstr.2019.03.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2019.03.033&domain=pdf
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train stiffen at large deformations. Biological tissue strain stiffens

xponentially ( Bancelin et al., 2015; Lake and Barocas, 2011; Mauri

t al., 2015 ), but in other networks the functional form of the

auchy stress-stretch relation can be either exponential or power,

epending on the network architecture ( Islam and Picu, 2018 ). 

Failure of random networks is either brittle, i.e. occurs by the

ropagation of a major crack, or gradual, emerging from the ac-

umulation of diffuse damage which eventually localizes into a

upture band. High density networks tend to behave more brit-

le than low ρ and/or low ρb networks. The process is intrinsi-

ally complex since random networks are, by definition, highly het-

rogeneous structures that may deform to large strains before the

nset of damage. In addition, damage accumulation is a loading

ath-dependent process, which renders the analysis of the strength

nd failure mode of such structures quite complex. Nevertheless,

rogress along the lines of identifying the structural features that

ontrol the strength has been made. Both experimental ( Alava and

iskanen, 2006; Chen et al., 2016 ) and modeling ( Heyden and

ustafsson, 1998 ) works indicate that strength, σ c , scales linearly

ith the network density. The exact dependence of strength on

and ρb has not been established to date, but it is observed

n cellulose networks (paper) that an increase of the number of

nter-fiber contacts per fiber, due to the increase of fiber flexibility

 Askling et al., 1998; Clark, 1985; Forsstrom et al., 2005 ) or due to

reatment with polyamines ( Marais et al., 2014 ), leads to increased

trength. A linear scaling of the tensile strength with the num-

er of inter-fiber cross-links was also observed in biological tissues

 Akins et al., 2011 ). Models in both 2D and 3D support the increase

f σ c with ρ ( Heyden, 20 0 0 ). In ( Deogekar and Picu, 2018 ) it is

hown that this relation holds both when peak stress is reached

t small strains, i.e. when the network preserves its initial geome-

ry up to the peak load, and when peak stress is reached at large

trains, after substantial fiber re-orientation. 

Structural heterogeneity has a strong effect on the failure mode

f materials. This issue was studied in detail in the context of

tochastic composites in which it is known that material stochas-

icity promotes intermittency and diffuse damage formation during

ailure, which contributes to increased toughness ( Bonamy, 2009;

ägglund and Isaksson, 2006; Herrmann et al., 1989 ). Crack pin-

ing and crack deflection are also discussed as toughening mecha-

isms in the context of the propagation of a major crack through a

eterogeneous body ( Daguier et al., 1997; Faber and Evans, 1983;

osti et al., 2001; Roux et al., 2003 ). Networks being examples of

aterials with stochastic microstructure, inherit all these charac-

eristics. It was shown that non-wovens exhibit notch insensitiv-

ty, i.e. the failure stress of a panel with two opposing notches (or

ith a central crack) is independent of the distance between the

rack tips (or the distance between -crack tips and the boundary

f the sample) ( Ridruejo et al., 2015; Stachewicz et al., 2011 ). This

s due to the strong fiber alignment that takes place in front of

he crack, leading to crack blunting and to the elimination of the

tress concentration. In the absence of a pre-existing major crack,

etworks develop either localized or diffuse damage. As discussed

n ( Deogekar and Picu, 2018 ), affinely-deforming networks of high

ber and cross-link density exhibit brittle failure dominated by lo-

alized damage (as seen, in general, in paper ( Hägglund and Isaks-

on, 2006 )), while non-affinely-deforming networks, which there-

ore exhibit more heterogeneous mechanical fields, fail by a more

radual damage accumulation process. Both types of behavior are

bserved experimentally ( Chen et al., 2016; Isaksson et al., 2012 ). 

Network failure usually takes place by the failure of cross-

inks, while failure of fibers happens in exceptional situations

 Chen et al., 2016; Chen and Silberstein, 2018; Farukh et al., 2014;

idruejo et al., 2011 ). It is established that increasing the cross-link

trength leads to a proportional increase of the network strength.

his conclusion is supported by experimental ( Forsstrom et al.,
005; Marais et al., 2014 ) and modeling ( Deogekar and Picu, 2018;

eyden, 20 0 0 ) results. In many practical situations, the strength of

ross-links formed between individual fibers is a stochastic vari-

ble. In this case one may wonder whether the strength depends

xclusively on the mean of the cross-link strength distribution, or

lso on its variance. Numerical studies ( Deogekar and Picu, 2018;

alakhovsky and Michels, 2007 ) established that increasing the

ariance of the distribution, while maintaining the mean constant,

eads to a gradual reduction of the network strength. This points

o the importance of gaining control on the process of cross-link

ormation such to minimize the cross-link strength variability. 

In this work we extend our previous study reported in

 Deogekar and Picu, 2018 ) by analyzing the importance of con-

rollable structural parameters in defining the network strength.

irst, we intend to clarify the relative importance of network

ensity, ρ , and of cross-link density, ρb . It was observed in

 Shahsavari and Picu, 2013b ) that both parameters define the

mall strain stiffness of random networks. The experimental re-

ults available in the literature do not seem to clearly delineate

he relative importance of these two parameters in defining the

trength. Second, we investigate the effect of fiber tortuosity on

trength. This is an important structural parameter since most

iological and engineering networks are made from fibers which

re not perfectly straight. It is known that increasing tortuosity

educes the stiffness of the network ( Ban et al., 2016b ). Studies

hat isolate the effect of this parameter on strength do not seem

o be available. Further, we investigate the extent to which fiber

roperties influence the strength of the network. It is known

hat network stiffness, E , is proportional either to the fiber axial

igidity, E f A (where E f is the fiber material Young’s modulus and

 is the fiber cross-sectional area), or to the bending rigidity, E f I

where I is the fiber cross-section moment of inertia). Specifically,

 ∼ E f A if network deformation is affine and the axial deformation

ode of fibers prevails, and E ∼ E f I when fibers deform primarily

n their bending mode and the overall network deformation is

on-affine. We reconsider previous reports that σ c ∼ E f A and show

hat this result pertains to a particular case, while in general, the

trength is independent of fiber material properties. 

. Model and simulation set-up 

We address the questions stated above using numerical mod-

ls of fibrous networks similar to those used in previous studies

 Deogekar and Picu, 2018; Islam and Picu, 2018 ). In order to ac-

ount for the influence of network architecture, we consider two

ypes of networks: cellular and fibrous. The cellular structures are

f Voronoi type, while the fibrous networks are the 3D equivalent

f the 2D Mikado networks ( Islam and Picu, 2018; Shahsavari and

icu, 2013b ). Voronoi networks represent open cell foams, while

ost biological (collagen, fibrin) and some man-made networks

non-wovens, paper, fiberglass insulation) are of fibrous type. By

onsidering both types of structures in the present study we ex-

end the validity of the present results to a broad range of network

aterials of high practical interest. In the following we present the

etails of the network structure and generation procedure, cross-

ink definition and simulation parameters. 

Cellular networks ( Fig. 1 a) are generated using a Voronoi

essellation of the 3D problem domain (a cube of edge length L ).

andom seeds are used to generate a Voronoi tessellation and the

etwork results by placing fibers along all edges of the resulting

olyhedra. Each fiber has two cross-links at the two ends. The

etwork density is controlled by the number of seed points. As

n ( Deogekar and Picu, 2018 ), the Voronoi network is decomposed

nto paths that traverse the problem domain. These paths are

onnected to each other randomly at network cross-links. The

aths are divided in segments of nominal length L . To this end,
0 
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Fig. 1. Realization of a (a) 3D cellular network and (b) 3D fibrous network. In both 

these networks, an inter-fiber cross-link is composed from a number of fibrils uni- 

formly distributed over the contact area of size D b × D b , as shown in (c). The global 

coordinate system is x 1 , x 2 and x 3 , while the cross-link deformation is measured 

in a local coordinate system associated with the cross-link, x b 1 , x b 2 and x b 3 . Fiber 

tortuosity is introduced in cellular networks as shown in (d), where straight fiber 

segments are modified to half-sine curves. The segment contour length, l l , and its 

end-to-end length, l , are shown in (d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Variation of network density, ρ , with the mean contour length of fiber seg- 

ments, l cl and fiber tortuosity, c . The red circles represent networks with no tortu- 

osity, case in which l cl ≡ l c and α = 1. The blue triangles represent cases in which 

45% of the fiber segments are tortuous with various values of the tortuosity param- 

eter, c . The exponent leading to data collapse in this particular case is α = 2.3. This 

value is derived in Appendix A . 
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each path is traversed and cuts are introduced such to produce

segments of length as close as possible to the imposed L 0 . The

resulting segments are denoted as ‘fibers’ and the fiber span

between two successive cross-links is a ‘fiber segment’. 

Fibrous networks ( Fig. 1 b) are generated using the method

described in ( Islam and Picu, 2018 ). The random sequential ad-

sorption (RSA) technique is used to generate sparse assemblies

of fibers, each of length L 0 . Further, dynamic finite element sim-

ulations are performed to reduce the volume of the simulation

cell and bring the fibers within crosslink-able distance. Surface-

based contact constraints between fiber-to-fiber surfaces are in-

troduced in these compaction simulations in order to avoid inter-

penetration. The compacted fiber assembly is then transformed

into a network structure by introducing inter-fiber cross-links at

all sites where the inter-fiber distance is smaller than twice the

fiber diameter. These cross-links divide the fibers into segments.

The segment length is Poisson distributed. After the cross-linking

process, isolated fibers may remain unconnected to the main net-

work. These, as well as the dangling ends of fibers, are removed. In

both cellular and fibrous cases, the fibers are distributed in space

with random orientation and positions of their centers of mass. 

In order to test the effect of fiber stiffness on network strength,

we consider in separate models cylindrical fibers of identical di-

ameter, D , and fibers with generalized cross-section for which the

axial and bending stiffnesses can be varied independently (are not

related to the fiber diameter). The generalized cross-section cases

represent networks of filaments which cannot be modeled as con-

tinuum beams, e.g. molecular filaments such as tropocollagen. The

excluded volume interactions between fibers, i.e. the formation of

contacts at sites other than the cross-links, are not considered in

these models. In the fibrous case, the fiber length, L 0 , is sufficiently

smaller than the model size ( L 0 = 0.25 L ) to avoid strong size effects.

The important network parameters are: (i) the network density,

ρ , defined as the total length of fiber per unit network volume.

This parameter is related to the volume fraction occupied by the

network, φ, as φ = A ρ . (ii) The cross-link number density, ρb , de-

fined as the number of cross-links per unit network volume. (iii)

The connectivity number, z . This represents the number of fiber

segments emerging from each cross-link. Voronoi and fibrous net-

works have nominally z = 4. The trimming of dangling ends leads

to an average z slightly smaller than 4. (iv) The fiber material is

considered linear elastic of Young’s modulus E f . This parameter is

considered here the unit of stress. (v) The fiber diameter, D , is also
n important parameter in models in which fibers are considered

ylindrical beams. 

If all fiber segments are straight, the mean segment length, l c ,

s related to the network density, ρ , as ρl 2 c = q , with q being a

roportionality constant. Fig. 2 shows the variation of ρ with l c for

ellular networks with straight fiber segments. 

In models in which fiber tortuosity is considered, parameter

 = l / l l , i.e. the ratio of the end-to-end length to the contour length

f the fiber segment ( Fig. 1 d), is used to quantify the tortuosity.

n these cases, we denote by l c the mean end-to-end length of a

ber segment, and by l cl the mean contour length of a segment. If

ll fibers have the same tortuosity, l c = cl cl and ρ( c ) = ρ(1)/ c , where

(1) is the density computed based on the end-to-end lengths, i.e.

ith c = 1. It results that the relation between the density in net-

orks with tortuous fibers, ρ( c ), and l cl , is 

( c ) l 2 cl = q/ c 3 . (1)

In some networks, not all fiber segments are tortuous

ince short segments tend to remain straight. The relation be-

ween network density and l cl for such situations is derived in

ppendix A and can be approximated by an equation similar to

q. (1) : 

( c ) l 2 cl ≈ q/ c α (2)

here α depends on the fraction of fibers that remain straight.

hen this fraction vanishes, α = 3, while α < 3 in all other cases.

e include in Fig. 2 data for cellular networks with 45% of fiber

egments being tortuous. The data collapse on the line of slope −1

rovided parameter α used in the group on the horizontal axis is

aken 1 for the red circles representing networks with no tortu-

sity (in this case l cl ≡ l c ), and 2.3 for the blue triangles which

epresent networks with a fraction (45%) of tortuous fiber seg-

ents. The value α = 2.3 valid for this set of parameters is derived

n Appendix A . 

The inter-fiber cross-links are represented as connectors that

ransmit both forces and moments, therefore providing uncondi-

ional stability to the network. Physically, one may consider the

ituation in Fig. 1 (c), where a cross-link is composed from fibrils

hat fail in tension at a prescribed force, while the contact between

bers resists compression. This imparts resistance to separation,

hear and rolling of one fiber relative to the other. The fibrils are

ot represented explicitly in the model, rather their net effect is

ccounted for using a connector element with specified stiffness

nd strength. The axial and bending stiffness of the connector

re taken to be approximately two orders of magnitude larger
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Fig. 3. Cauchy stress versus stretch ratio for networks with ρD 2 = 1.12 × 10 −3 

(curves A and B) and ρD 2 = 5.28 × 10 −4 (curves C, D and E) with and without fail- 

ure. Curves A and C represent network behavior in absence of failure, curves B, D 

and E depict network behavior with failure. The cross-link strength corresponding 

to case D is 6 times larger than that corresponding to case E. The bars represent 

standard deviation over 3 realizations. The arrows indicate the transition between 

the three regimes of deformation discussed in the text. The continuous curves and 

symbols correspond to loading conditions in which the kinetic energy is smaller 

than 5% of the total energy of the model, while the dashed lines correspond to the 

situations when this condition is not fulfilled. 
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han the axial and bending stiffness of a fiber segment of length

qual to the mean segment length, l c . It was determined that this

nsures that the maximum cross-link deformation remains below

 × 10 −3 D such that cross-link deformation does not contribute to

he overall network kinematics. 

The cross-link failure criterion is identical to that used in

 Deogekar and Picu, 2018 ). To summarize, the force and moments

ssociated with the deformation of the cross-link are defined in

he coordinate system of the cross-link, { x b 1 , x b 2 , x b 3 }, shown in

ig. 1 (c), as F bi = K bF u bi and M bi = K bM 

θbi , where, u bi and θbi are the

 

th components of the relative displacement and relative rotation

f the two fibers in contact, respectively, and K bF and K bM 

are the

ffective cross-link stiffnesses in the opening and peeling modes.

he cross-link failure criterion has the form: 

 eq = 

√ 

F 2 
b1 

+ F 2 
b2 

+ 

〈
F b3 −

6 

D b 

√ 

M 

2 
b1 

+ M 

2 
b2 

〉2 

= f c (3) 

Here, F b 1 , F b 2 , F b 3 are the forces transmitted by the cross-link in

he direction of the three local coordinate axes ( Fig. 1 c), and M b 1 

nd M b 2 are the moments transmitted about the local axes x b 1 and

 b 2 . D b represents the characteristic size of the cross-link ( D b <

 ). <> indicates Macaulay bracket, which vanishes if the quantity

n the bracket is negative and is equal to the respective quantity

hen it is positive. f c represents the critical equivalent force which

auses cross-link failure and is considered a material parameter.

he term within the Macaulay bracket accounts for the combined

ffect of relative fiber rolling and separation in the direction of the

ross-link normal, while the first two terms under the square root

epresent the contribution of relative shear. 

Using a force-based failure criterion for the cross-links is justi-

ed in part by the observation that, in general, random networks

eform in the lowest energy mode available to the fibers. Specif-

cally, as discussed at the end of Section 1 , if the bending mode

f fibers is soft (large l c and/or small E f I / E f A ), the overall con-

titutive behavior of the network bears the signature of bending,

hile in the opposite situation, it reflects the axial deformation

f fibers. Likewise, if cross-links undergo large deformations with-

ut rupture, their constitutive behavior reflects in the response of

he network. Hence, the structure behaves as if the bending, axial

nd cross-link deformation modes are connected in series, with the

ofter mode dominating the overall network behavior. Considering

uch serial effective arrangement, using a failure criterion based

n equivalent force seems natural. The effectiveness of a force-

ased failure criterion was also emphasized in ( Chen and Silber-

tein, 2018 ), where cohesive zone elements were used to repre-

ent cross-links. An energy-based criterion is suggested as being

ppropriate for cases in which the cross-link compliance is large

n ( Borodulina et al., 2012 ). 

The models are discretized using multiple Timoshenko beam el-

ments per fiber segment ( Shahsavari and Picu, 2012 ). A sensitiv-

ty analysis to the level of discretization was performed to ensure

esh-insensitive results while retaining computational efficiency.

odels are loaded in uniaxial tension by applying displacements

n two opposing faces of the cubic model in the direction of load-

ng. The lateral faces of the model are kept planar but are free to

ove in the direction perpendicular to the loading axis such to in-

ure zero average tractions in the respective directions. 

Cross-links are modeled in Abaqus using the connector element

ONN3D2 and the connector section BUSHING. This allows inde-

endent control of the translational and rotational cross-link stiff-

esses. To model cross-link failure, a connector potential equal to

 eq (in Eq. (3) ) is defined, and the cross-link is ruptured when the

onnector potential reaches a user-defined critical value (i.e. when

 eq = F c ). The cross-link translational and rotational stiffnesses re-

ain constant prior to the cross-link rupture. 
The solution is obtained with the 6.13–1 version of the finite el-

ment solver Abaqus/Explicit. Inertial effects occur due to the dy-

amic scheme used. We use a numerical damping scheme (bulk

iscosity) to minimize the contribution of inertial forces. The ki-

etic energy of the model is kept lower than 1% of the total energy

rior to the onset of cross-link failure, and lower than 5% of the to-

al energy up to a strain larger than that corresponding to the peak

tress. The algorithmic damping is adjusted to ensure that this con-

ition is fulfilled in each simulation. In the stress-strain curves re-

orted here, the regime in which this condition is fulfilled is rep-

esented with continuous line, while dashed line is used for larger

trains. To further limit the effect of the kinetic component on

he reported results, we compute the second Piola-Kirchoff stress

y taking the derivative of the strain energy density relative to

he Green-Lagrange strain, and then compute the Cauchy stress,

hich is used in all calculations reported here. The justification

or this procedure can be found in Appendix A of ( Deogekar and

icu, 2018 ). 

. Results 

To demonstrate the general tensile behavior of networks in

resence of cross-link failure, Fig. 3 shows three Cauchy stress ver-

us stretch curves for several cellular networks. Two of the curves

orrespond to models of same cross-link strength, but different

alues of ρD 

2 , while two other curves correspond to the same

D 

2 and different cross-link strengths. Both the small strain mod-

lus and the peak stress decrease with decreasing ρD 

2 , while the

tretch at peak stress increases as the network becomes more com-

liant. Curves A and C represent the stress-stretch curves of the

ame networks without failure (infinite cross-link strength). Note

hat the curves with and without failure overlap up to close to the

eak stress. This is due to the fact that a relatively small num-

er of cross-links fail before peak stress. Both models ( Abhilash

t al., 2012; Borodulina et al., 2016 ) and experiments ( Chen et al.,

016 ) agree in predicting that a small fraction of the cross-links fail

efore peak stress. In exceptional situations, when additional het-

rogeneity is introduced, for example, by rendering the cross-link

trength stochastic, the fraction may increase ( Borodulina et al.,

016; Deogekar and Picu, 2018 ). When the cross-link strength is
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Fig. 4. Variation of the normalized network strength, σ c , with mean fiber tortuos- 

ity, c , at different values of cross-link strength and for networks of same ρb , D . The 

bars represent the standard deviation of 3 realizations and, where not visible, are 

smaller than the size of the symbol. 
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reduced, the stress-stretch curve follows the virgin material curve

and develops a peak at a lower value of stress. 

As discussed elsewhere ( Broedersz and Mackintosh, 2014;

Licup et al., 2015 ), the characteristic curves exhibit three distinct

regimes: a linear elastic regime at small strains (regime I), fol-

lowed by a stiffening regime (regime II), after which a linear third

regime (regime III) develops. The transition between these regimes

is indicated with arrows in Fig. 3 . Stiffening in regime II is ei-

ther exponential or power law, function of the network architec-

ture ( Islam and Picu, 2018 ) and is due to the orientation of fibers

in the loading direction (geometric non-linearity). Regime III corre-

sponds to the development of load paths across the model, along

which most of the load is transmitted. The response is linear since

these paths are loaded primarily in tension and hence fibers are

loaded axially. Modifying the cross-link strength, f c , one may shift

the peak stress from one regime to another. The results discussed

here are obtained with a broad range of cross-link strength values

and hence are relevant for all regimes. 

In the following, we address the questions posed in the Intro-

duction referring to the specific dependence of σ c on network pa-

rameters, and discuss the results in the context of the previous

findings reported in the literature. 

3.1. Strength is independent of fiber tortuosity 

Physical networks generally contain fibers with some degree of

tortuosity, c . It is therefore of interest to inquire to what extent

this parameter influences σ c . To address this question, we con-

sider cellular networks and vary the tortuosity in the range 0.6 <

c ≤ 1, by allowing fibers to be non-straight in the initial, unde-

formed and stress free configuration. As the fiber contour length

increases, the effective network density, ρ , increases ( Eq. (2) ). In

addition, as the free volume of the network decreases, the proba-

bility of non-bonded, excluded volume interactions between fibers

increases. We neglect here this effect which is expected to be weak

as long as the volume fraction of the network φ = ρA remains be-

low ∼10%. To this end, contacts between fibers are not accounted

for. Previous work ( Islam and Picu, 2018 ) indicated that these in-

teractions do not contribute to the stress and stiffness measured in

tension for any realistic volume fractions. 

Fig. 4 shows the variation of the cellular network strength with

parameter c for networks of fixed φ and two values of the cross-

link strength. Fibrous networks cannot be used to study the ef-

fect of tortuosity since fibrous models with c < 1 loose their

geometric characteristics. Two situations are considered: one of

low f c , f c /( E f D 

2 ) = 4.3 × 10 −4 , in which the peak stress is reached
n regime I of network deformation, and another of higher f c ,

 c /( E f D 

2 ) = 1.7 × 10 −3 , for which peak stress is shifted to the strain

tiffening regime II. In both cases we observe no dependence of

he network strength on fiber tortuosity. Previous numerical stud-

es on networks with transient bonding/debonding properties also

ndicated that the strength was independent of fiber tortuosity

 Kulachenko and Uesaka, 2012 ). Note that the procedure used here

llows varying c without modifying the cross-link number density,

b . 

Fiber tortuosity increases significantly the stretch at peak stress,

c , since such networks are more compliant than the equivalent

nes with c = 1. Fig. 5 a shows the variation of the stretch at peak

tress for the networks whose strength is shown in Fig. 4 . The

apid increases of λc ( c ) with decreasing c (increasing tortuosity)

orrelates with the strong sensitivity of E 0 to parameter c . Fig. 5 b

hows the tangent modulus, E t = ∂ σ 11 / ∂ ( ln λ1 ), versus stress curves

or several networks considered in Fig. 4 , with various values of c ,

n which cross-link rupture is inhibited. The data shows that in-

reasing c leads to a rapid decrease of the small strain modulus

 0 (the plateau at small σ ), while the curves corresponding to the

ifferent c values overlap in the strain stiffening regime. This in-

icates that the functional form of the stress-stretch relation is in-

ependent of tortuosity. This effect as well as the variation of E 0 
ith c are discussed in detail in ( Ban et al., 2016b ). 

.2. Strength scales with the inter-fiber cross-link number density 

A number of experimental data ( Akins et al., 2011; Chen

t al., 2016 ) as well as numerical results ( Borodulina et al., 2016;

eyden and Gustafsson, 1998 ) indicate that σ c scales linearly with

etwork density. However, in most situations, the network density,

, and cross-link number density, ρb , are proportional. Therefore,

t is necessary to clarify the relative importance of ρ and ρb in

efining σ c . We address this issue in two ways. First, fibrous net-

orks are considered and ρb is varied at constant ρ by gradually

emoving some of the cross-links along fibers while retaining the

ross-links closest to the fiber ends along each fiber of the net-

ork. Therefore, removing cross-links does not disconnect the net-

ork and does not introduce additional dangling segments, but de-

reases ρb . Second, we consider cellular structures and take ad-

antage of the way fibers are defined on the initial Voronoi net-

ork. A fiber of length L 0 contains multiple segments, each of av-

rage length l c and each cross-linked to other fibers at both ends

the nodes of the Voronoi tessellation). Therefore, it is possible to

emove (disconnect) some of the cross-links while preserving the

verall ρ , the continuity of each fiber and the overall geometry of

he structure. 

Fig. 6 a shows the variation of the network strength with ρb for

ellular and fibrous cases. Fibers remain straight in the fibrous case

s ρb decreases. In the cellular case, the method used to vary ρb 

t constant ρ introduces fiber tortuosity. The inset to Fig. 6 a shows

he values of the average tortuosity parameter, c , for all cellular

etworks considered in the main figure. As expected based on ge-

metric considerations, c reaches a plateau as ρb decreases. This

as no effect on the strength since, as discussed in Section 3.1 , in-

roducing tortuosity does not modify the strength. 

In both cases, the data indicates that strength is proportional to

he cross-link number density, 

c ∼ ρb . (4)

Fig. 6 b shows the same data plotted against network density, ρ .

ince in the fibrous case ρ is proportional to ρb , the data align.

owever, in the cellular case, σ c of networks with same ρ has dif-

erent values for realizations with different ρ . 
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Fig. 5. (a) Stretch corresponding to peak stress, λc , versus segment tortuosity parameter c , for two different values of cross-link strength, f c . This increase in λc is due to a 

reduction in the small strain modulus E 0 with increasing fiber tortuosity, as seen in (b). The plateaus at small stress values indicate E 0 for the respective curves. 

Fig. 6. (a) Variation of network strength, σ c , with the cross-link number density, ρb , for fibrous (blue, open symbols) and cellular (red, filled circles) networks. For the 

fibrous networks, symbols of same type indicate networks of same density. For the cellular networks, the network density is kept constant for all cases shown here. The 

inset shows the mean tortuosity introduced in cellular networks as ρb varies at constant ρ . In all these models, fibers are cylindrical, of same D and L 0 . The data in (a) is 

replotted in (b) versus the network density, ρ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Network parameters for cellular and fibrous networks considered. The parameters are 

reported in non-dimensional form. 

Parameters Cellular networks Fibrous networks 

Network density, ρL 2 0 8.2–16.8 2.3–12.2 

Mean segment length, l c / L 0 0.20–0.35 0.22–0.56 

Fiber diameter, D / L 0 0.002–0.2 0.02–0.4 

Cross-link strength, f c / E f L 
2 
0 1.11 × 10 −7 –1.11 × 10 −3 1.60 × 10 −6 –3.87 × 10 −4 

Cross-link density, ρb L 
3 
0 16.2–46.1 1.6–15.3 

Fiber tortuosity, c 0.57–1.00 NA 
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.3. Collected results and discussion 

Considering the results discussed in Sections 3.1 and 3.2 , indi-

ating that σ c ∼ρb and that σ c is independent of c , we aim now to

etermine whether any other structural parameter influences σ c .

o this end, a large number of models of both cellular and fibrous

ype and with a broad range of parameters is considered. The pa-

ameters are allowed to vary in ranges shown in Table 1 . Guided

y Eq. (4) and by the observation that σ c ∼ f c , which was sub-

tantiated previously both numerically ( Deogekar and Picu, 2018;

eyden, 20 0 0 ) and experimentally ( Forsstrom et al., 2005; Marais

t al., 2014 ), we plot in Fig. 7 a the normalized strength, σ c / E f , ver-

us the non-dimensional group ρb f c l c / E f , where E f is introduced as

he unit of stress, for non-dimensionalization purposes. The results

or cellular networks include cases in which parameters c , D , ρ ,

f c and ρb are varied independently and are shown with differ-

nt symbols. Cases in which the fiber bending and axial rigidi-

ies are varied independently using the generalized cross-section
ormulation are also included. Similar data is presented for fibrous

odels, with the exception that in these models c = 1 in all cases.

xcellent collapse is observed for both network types. This indi-

ates that σ c is proportional to the cross-link density and the

ross-link strength and is independent of fiber properties (axial

nd bending rigidities, and modulus). 

This result can be understood based on the following argument.

onsider the cellular case and the observation that σ c / E f is pro-

ortional to ρb and f c . One can write the right hand side of this

quation in non-dimensional form as: 

σc 

E f 
∼ 1 

E f 
ρb f c L 

∗, (5) 

here L ∗ is a length parameter which is left unspecified. Consider

urther the geometric relationship between the network density, ρ ,

nd the cross-link number density, ρb : 

( c ) = ρb 

z̄ 
l cl (6) 
2 
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Fig. 7. (a) Variation of network strength, σ c , with the non-dimensional group ρb f c l c / E f for cellular and fibrous networks with a broad range of network parameters: f c , ρb , 

l c , c, and properties of the fiber cross-section ( Table 1 ). Generalized C/S stands for the generalized cross-section model of fibers. Filled symbols represent cellular networks, 

while open symbols represent fibrous networks. The data is replotted in (b) versus the non-dimensional group f c / E f l 
2 
c . 
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where z̄ is the mean connectivity number of the network and ρ( c )

does not include segments which are not fully connected to the

network, such as dangling segments and unconnected fibers. With

Eq. (1) , one may eliminate ρ and ρb from Eq. (4) , which becomes

σc 

E f 
∼ 2 q 

z̄ 

1 

E f 

f c 

l 2 c 

L ∗

l c 
(7)

The collapse seen in Fig. 7 a indicates that L ∗ = l c and the

strength can be written as 

σc = ξ
f c 

l 2 c 

, (8)

which holds for cellular networks with and without tortuosity.

Note that although Eq. (6) depends on tortuosity, c is not present

in Eq. (8) , which supports the conclusions of Section 3.1 . Specif-

ically, l c represents the mean end-to-end length of segments or

the shortest distance between cross-links, as defined above. Fig. 7 b

shows the data in Fig. 7 a replotted versus f c /l 2 c , as suggested by

Eq. (8) . It is observed that the data remain aligned, as expected, al-

though the collapse is slightly perturbed in the case of the fibrous

networks for which Eq. (1) applies only approximately. 

Eq. (8) has an attractive geometric interpretation: consider a

regular network with cross-links distributed in a square lattice. In

this case, the straight line distance (fiber end-to-end length) be-

tween cross-links is l c , and f c /l 2 c becomes the natural reference

value for strength. It is the nominal strength of a lattice network in

which only the cross-links matter (separated by l c ) but not the to-

tal length of fiber between them. Therefore, the emergence of this

group in Eq. (7) is not surprising. 

The coefficient of proportionality, ξ , which is smaller than 1,

is independent of network parameters other than z̄ (note that z̄ is

identical in the two types of networks considered here). We expect

that, in general, ξ is a function of network architecture. However,

Fig. 7 a indicates that ξ has the same value for cellular and fibrous

networks. The value of ξ can be determined only numerically at

present and the factors controlling it are a subject of future work. 

It should be emphasized that, since network strength depends

on the cross-link number density and their spatial distribution,

fibers not connected to the network or dangling fibers connected

at only one point to the backbone network contribute to ρ , but

do not contribute to σ c . This situation might change to some ex-

tent when the network volume fraction, ϕ, increases significantly.

This may lead to a situation in which the excluded volume inter-

actions of fibers contribute to stress and hence to strength. This

is not expected to be a strong effect. However, if in addition to

the excluded volume interactions, surface forces such as inter-fiber
dhesion ( Picu and Sengab, 2018 ), are also present, the mechan-

cs is drastically modified and the strength is expected to depend

trongly on the magnitude of these interactions. 

It is well-known that rupture in a material with stochas-

ic microstructure exhibits strong size effects ( Alava et al., 2009,

008; Curtin, 1998 ). Typically, the weakest link theory applies

nd this was shown to be the case for fibrous networks as well

 Deogekar and Picu, 2018 ). The size effect is defined by a power

unction dependence of σ c on the model size, with the expo-

ent being related to the Weibull modulus ( Deogekar and Picu,

018; Weibull, 1939 ). Therefore, parameter ξ is expected to de-

end on the model size, L , and account for the size effect of

trength. 

It is also useful to discuss the present conclusion against

he results reported in Deogekar and Picu, 2018 ), where the

trength of cellular networks with no tortuosity was reported

o scale as σ c ∼ρu c D 

2 . u c represents the critical equivalent

ross-link deformation (relative displacement of the surfaces

f the two fibers forming the contact, Fig. 1 (c) at which

he cross-link fails. The present results are a generalization of

his scaling relationship which appears as a particular case of

qs. (5) and (8) . Eq. (6) becomes ρ = ( ̄z / 2 ) ρb l c in this case.

urthermore, in the respective study, cross-link failure was de-

cribed in terms of the critical deformation of the cross-link, u c ,

hile in the present case the cross-link strength is defined in

erms of an effective applied force, f c ; converting from one for-

ulation to the other requires specifying the cross-link stiff-

ess. In cases considered in ( Deogekar and Picu, 2018 ), the

ross-link stiffness was made proportional to D 

2 . Therefore,

c ∼ρu c D 

2 becomes equivalent to σc ∼ ρb f c l c ∼ f c /l 2 c , as defined

ere for a much more general range of parameters and network

rchitectures. 

. Conclusions 

The dependence of the strength of stochastic fiber networks

n network parameters is studied in this work. Two 3D network

rchitectures are considered, of cellular and fibrous type. It is

oncluded that the network strength is independent of fiber tor-

uosity and of fiber properties, including the fiber modulus. It

cales linearly with the cross-link strength and with the cross-

ink number density. Network strength does not depend on the

ensity (total fiber length per unit volume), although a linear

caling with density may be observed in situations in which the

ross-link number density scales linearly with the network den-

ity. It is concluded that network strength is defined by the mean



S. Deogekar, M.R. Islam and R.C. Picu / International Journal of Solids and Structures 168 (2019) 194–202 201 

d  

p  

e  

p  

c  

i  

t  

e  

d

A

 

I  

N

A

 

d  

t  

c

 

m  

p  

s  

e  

1  

∫  

t  

l

w

ρ  

 

f  

b

ρ

w  

f  

t  

f

F

s

R

A  

 

A  

 

 

A  

A  

A  

 

A  

A

B  

 

B  

 

B  

 

 

 

B  

 

B  

B  

 

B  

C  

C  

 

C  

C  

D  

 

D  

D  

 

E  

 

istance between cross-links and by the cross-link strength, being

roportional to the stress-like parameter f c /l 2 c , where l c is the av-

rage end-to-end length of fiber segments. The coefficient of pro-

ortionality is much smaller than 1 and has the same value in the

ellular and fibrous networks considered. However, we expect that,

n general, this coefficient depends on network architecture and on

he model size. These results hold for networks that fail in the lin-

ar regime I as well as in the strain stiffening regime II of network

eformation. 
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ppendix A 

In this Appendix we develop the relationship between network

ensity, ρ , the mean contour length of segments, l cl , and the tor-

uosity parameter, c , for cases in which a fraction of segments are

rimped, while the others remain straight. 

Consider a network with straight segments of mean seg-

ent length l c . The segment length distribution if Poisson:

 ( l ) = (1/ l c )exp ( − l / l c ). Consider that fibers shorter than l t remain

traight, while all others are rendered tortuous with param-

ter c . The fraction of straight segments is μ1 = ∫ l t 
0 

p(l) dl =
 − exp ( −l t / l c ) . The mean length of straight segments is l c1 =
 

l t 
0 

l p(l ) dl = l c − ( l c + l t ) exp ( −l t / l c ) , while the mean end-

o-end length of tortuous segments is l c2 = ∫ ∞ 

l t 
l p(l ) dl =

( l c + l t ) exp ( −l t / l c ) . 

The mean contour length of the population is 

 cl = μ1 l c1 + ( 1 − μ1 ) l c2 /c, (A1) 

hile the tortuosity-dependent density can be written as: 

( c ) = [ μ1 l c1 + ( 1 − μ1 ) l c2 /c] ρ( 1 ) / l c (A2)

Using the relation ρ(1) l 2 c = q ( Eq. (1) with c = 1) which is valid

or networks of straight segments ( Fig. 2 ), the product ρ(c) l 2 
cl 

can

e written as: 

( c ) l 2 cl = q 
[(

1 − e −β
)(

1 − ( 1 + β) e −β
)

+ e −2 β ( 1 + β) /c 
]3 

, (A3) 

here β = l t / l c . Eq. (A3) can be approximated with good accuracy,

or 0.2 < c < 1, with Eq. (2) : ρ(c) l 2 
cl 

≈ q/ c α , where α is a func-

ion of β and hence of the fraction of straight segments μ1 . This

unction is shown in Fig. A1 . 
ig. A1. Variation of exponent α, and parameter β , with the fraction of straight 

egments, μ1 . 
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