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This paper presents a layer-wise stress and deformation analysis of a three-layer beam con-
figuration consisting of two dissimilar orthotropic adherends of different thicknesses that
are joined together by a deformable interlayer of finite thickness. Analytical solutions for
the case of three-point flexure loading are presented for both compressible and incom-
pressible interlayers. Parametric analysis reveals the influences of asymmetry of moduli
and adherend thicknesses, interlayer thickness, and overhang of the beams on the beam
compliance. Analytical predictions of beam compliance show very good agreement with
finite element results. Experimental measurements of compliance of various unsymmetric
beams consisting of aluminum adherends separated by a rubber interlayer were performed
in order to validate the analysis. Excellent agreement between measured and predicted
compliance values was observed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Numerous applications can benefit from the incorporation of shear-deformable interlayers by tailoring load paths, pro-
viding energy dissipation and controlling overall structural deformation. Mahdi and Gillespie (2004) have shown that a com-
pliant interlayer in protective armor can effectively decouple the ceramic strike face from the composite backing plate to
limit tensile stress in the ceramic that can cause premature structural failure while at the same time improving energy dis-
sipation. Recently, there has been increasing interest in the automotive industry in replacing steel leaf springs with compos-
ite leaf springs. It has been found that a thin rubber interlayer undergoing intense shear deformation improves the damping
in such springs (Kristensen et al., 2008).

Design of structures containing a shear-deformable interlayer requires a firm understanding of the role of thicknesses of
the adherends and the thickness and stiffness of the interlayer in its ability to moderate the static and dynamic behaviors of
the structure. Most analysis of beam and plate elements of such structures to date are based on finite element analysis, see
Davila and Chen (2000) and Mahdi and Gillespie (2004), since it is widely recognized that the large local shear deformation
of the layer prohibits the use of ordinary beam and plate theories (Gere and Timoshenko, 1984; Timoshenko and Woinow-
sky-Krieger, 1959) and first-order shear deformation theory (Whitney, 1987). Reddy (1984) presented a higher-order theory
that has gained much acceptance and implementation in a finite element formulation by Nayak et al. (2004). This formula-
tion is an effective single-layer plate theory which does not allow specification of boundary conditions for the individual lay-
ers. More recently, Hohe et al. (2006) presented higher-order analysis of sandwich structures that includes the effect of
. All rights reserved.
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transverse compressibility of the core. Again, the theory emphasizes the overall structural response of the sandwich. Proper
analysis of structures with a flexible interlayer demands layer-wise theories such as the one pioneered by Frostig et al. (1991,
1992). They developed a superposition analysis to determine the effects of transverse flexibility of the core in sandwich
beams with a thick flexible core. A more recent review article by Frostig (2003) presents a comparison between classical
shear deformation analysis, elastic foundation models, and higher-order layerwise analysis based on variational principles.

The present work is an extension of the analysis of a symmetric beam configuration presented in an earlier paper by Alfr-
edsson et al. (2008). The aim is to develop a model of the global bending behavior of unsymmetric sandwich beams. The
intention is not to study local phenomena. The approach is similar to the model presented by Frostig et al. (1991) although
we use a direct solution technique that bypasses their intricate superposition solution. It will be shown that our solution
displays a more complex interaction between peel and shear stresses in the flexible interlayer than indicated by the super-
position analysis of Frostig et al. (1991).

2. Governing equations

Similar to an earlier paper by the authors (Alfredsson et al., 2008), we will specifically consider a three-point flexure
loaded layered beam with adherends labeled # 1 (top) and bottom (# 2) joined by a flexible interlayer of thickness, t, see
Fig. 1. The span length is L and the overhang length is c. The x coordinate is zero at the left support. The layer-wise approach
used in the earlier paper (Alfredsson et al., 2008) is extended to the unsymmetric beam configuration.

The adherends are assumed to deform according to classical beam theory, i.e. plane cross-sections remain plane and per-
pendicular to the adherend axis. The displacements of the adherends are described by the longitudinal and vertical displace-
ments of the adherends’ centroids, ui and wi (i = 1, 2), respectively. Thus, the longitudinal displacements are assumed to vary
linearly across the thickness of the top and bottom layers of the beam. The thickness change of the adherends is considered
negligible as compared to the thickness change of the flexible interlayer. Hence, the vertical displacements of the adherends
are assumed to be constant across the thickness of the top and bottom layers of the beam. The interlayer is assumed to have a
stiffness which is orders of magnitude smaller than the stiffness of the adherends. Thus, the longitudinal stiffness of the
interlayer can be neglected. This means that longitudinal equilibrium is fulfilled by a shear stress, s, which is constant
through the thickness of the interlayer. In order to fulfil vertical equilibrium, the peel stresses at the upper and lower edges
of the interlayer, r1 and r2, must be different for the case of a varying shear stress, see Fig. 2. The interlayer is allowed to
deform in peel and shear and is assumed to be linearly elastic. This means that the variation across the thickness of the inter-
layer is assumed to be linear for the longitudinal displacements and quadratic for the vertical displacements.

The modeling approach shares several elements with the classical solution for adhesive joints with an infinitesimally thin
compliant adhesive layer originally presented by Goland and Reissner (1944) and subsequently further developed by several
authors (e.g. Cornell, 1953; Hart-Smith, 1973; Bigwood and Crocombe, 1989; Alfredsson and Högberg, 2008). The present
solution is an extension to interlayers of finite thickness of the solution presented by Alfredsson and Högberg (2008).

The governing equations are derived by requiring that each of the small elements of the adherends (# 1 and 2) in Fig. 2 are
in equilibrium
N01ðxÞ þ bsðxÞ ¼ 0; N02ðxÞ � bsðxÞ ¼ 0 ð1a;bÞ
V 01ðxÞ þ br1ðxÞ ¼ 0; V 02ðxÞ � br2ðxÞ ¼ 0 ð2a;bÞ

V1ðxÞ ¼ M0
1ðxÞ þ

1
2

bh1sðxÞ; V2ðxÞ ¼ M0
2ðxÞ þ

1
2

bh2sðxÞ ð3a;bÞ
where b is the width of the beam, h1 and h2 are the thicknesses of the adherends, see Fig. 1, and the prime on the axial and
shear forces, Ni and Vi, and moments, Mi, indicates differentiation with respect to x.

For the convenience of the subsequent analysis, the normal stresses in the interlayer are divided into symmetric (s) and
antisymmetric (a) parts, see Fig. 3
rs ¼
1
2
ðr1 þ r2Þ; ra ¼

1
2
ðr1 � r2Þ ð4a;bÞ
Fig. 1. Three-point flexure loading of unsymmetric beam with symmetric overhangs.
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Fig. 2. Positive directions of adhesive stresses and sectional loads.

Fig. 3. Superposition of symmetric and antisymmetric stresses on the interlayer.
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Hence, the actual stresses are. r1 = rs + ra and r2 = rs � ra.
Since the interlayer is considered to have a finite thickness, it will carry part of the total shear force, V , see Fig. 4. Thus, the

shear stress in the interlayer will interact with the normal stresses acting on the top and bottom surfaces of the interlayer to
form the vertical equilibrium of the flexible interlayer, Fig. 2
2raðxÞ ¼ ts0ðxÞ ð5Þ
The equilibrium equations are supplemented by the constitutive equations for the elastically deforming adherends. For the
case of plane stress they read
N1ðxÞ ¼ E1bh1u01ðxÞ; N2ðxÞ ¼ E2bh2u02ðxÞ ð6a;bÞ

M1ðxÞ ¼ �
1

12
E1bh3

1w001ðxÞ; M2ðxÞ ¼ �
1

12
E2bh3

2w002ðxÞ ð7a;bÞ
where E1 and E2 are the Young’s moduli of the adherends, which may be isotropic or orthotropic. In this paper the nomen-
clature refers to isotropic adherends, but the analysis is equally valid for homogeneous orthotropic adherends. The model is
not directly applicable for general laminates.
a b

Fig. 4. Symmetry section of three-point flexure specimen (a), and shear forces acting on element of beam (b).
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The relative axial and transverse displacements of the beam centers are, Fig. 5
uðxÞ ¼ u2ðxÞ � u1ðxÞ; wðxÞ ¼ w2ðxÞ �w1ðxÞ ð8a;bÞ
where u1 and u2 are the horizontal displacements of adherends 1 and 2 (Fig. 5a) and w1 and w2 are the deflections of the
adherends. It is noted that the relative deflection, w, represents the thickness change of the interlayer, provided that the
thickness changes of the adherends are neglected.

The flexibility of the interlayer allows for different rotations (w01 and w02) of the two adherends. The rotations and the rel-
ative axial displacement, u, contribute to the shear deformation of the layer, m. For the case of zero rotations, the shear defor-
mation equals the relative axial displacement, see Fig. 5a. In order to account for rotations and obtain an expression for the
shear deformation, the rotations of the adherends are split into symmetric (s) and antisymmetric (a) parts as illustrated in
Fig. 5b and c
/s ¼
1
2
ðw02 �w01Þ; /a ¼

1
2
ðw01 þw02Þ ð9a;bÞ
The actual rotations of the adherends are thus given by w01 ¼ /a � /s and w02 ¼ /a þ /s.
Superposition of the contributions gives the shear deformation
m ¼ u2 � u1 þ /sðh2 � h1Þ=2þ /aðh1 þ h2 þ 2tÞ=2 ð10Þ
From Eqs. (8a) and (9) and (10) the shear deformation of the interlayer becomes
mðxÞ ¼ uðxÞ þ 1
2
ðh1 þ tÞw01ðxÞ þ

1
2
ðh2 þ tÞw02ðxÞ ð11Þ
The solution of the governing equations depends on whether or not the interlayer is compressible. The two cases of (i) a com-
pressible interlayer and (ii) an incompressible interlayer are treated separately in Sections 3 and 4 to follow.

3. Solution for a compressible interlayer

The solution strategy is to first determine a general solution for the deformations of the interlayer, v(x) and w(x), and then
derive a general solution for the individual displacements of the adherends, wi(x) and ui(x).

3.1. Deformation of the interlayer

The axial displacements of the adherends, ui and deflections wi, can be eliminated from Eqs. (1–11), see Appendix A. The
result is two differential equations for the relative deflection and shear deformation
wIVðxÞ ¼ 6
1þ t

h2

E2h2
2

�
1þ t

h1

E1h2
1

 !
s0ðxÞ � 12

1

E1h3
1

þ 1

E2h3
2

 !
rsðxÞ ð12aÞ

v000ðxÞ ¼ 4
1þ 3

2
t

h1
þ 3

4
t

h1

� �2

E1h1
þ

1þ 3
2

t
h2
þ 3

4
t

h2

� �2

E2h2

0
B@

1
CAs0ðxÞ þ 6

1

E1h2
1

� 1

E2h2
2

 !
rsðxÞ ð12bÞ
These equations are independent of the constitutive model for the interlayer.
It is recognized that only the symmetric part of the normal stress, rs, contributes to the thickness change of the interlayer,

see Fig. 3. For the case of a very thin flexible interlayer it can be shown that it is appropriate to assume zero in-plane layer
strains (exx and eyy) of the interlayer (Klarbring, 1991). This implies that an effective Young’s modulus, E P E, should be used
Fig. 5. Shear deformation of flexible layer due to longitudinal displacement (a), symmetric slopes (b) and antisymmetric slopes (c).
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for the elongational stiffness. This concept is adopted here also for cases where the interlayer is not thin compared to the
adherends. This assumption should be justified by the large mismatch in the stiffnesses of the adherends and the interlayer.

Linear-elastic isotropic behavior of the flexible interlayer is assumed as
s ¼ G
t

v; rs ¼
E
t

w ð13a;bÞ
where G = E/[2(1 + m)] and E ¼ Eð1� mÞ=½ð1� 2mÞð1þ mÞ� are the shear modulus and the effective Young’s modulus of the con-
strained interlayer (Klarbring, 1991). Here, E is Young’s modulus and m is Poisson’s ratio of the interlayer.

Eqs. (12) and (13) yield two coupled differential equations for the relative deflection and the shear deformation
wIVðxÞ � Av0ðxÞ þ BwðxÞ ¼ 0; v000ðxÞ � Cv0ðxÞ þ DwðxÞ ¼ 0 ð14a;bÞ
with
A ¼ A2 � A1; where Ai ¼
6G

Eih
2
i t

1þ t
hi

� �
i ¼ 1;2 ð15aÞ

B ¼ B1 þ B2; where Bi ¼
12E

Eih
3
i t

i ¼ 1;2 ð15bÞ

C ¼ C1 þ C2; where Ci ¼
4G

Eihit
1þ 3

2
t
hi
þ 3

4
t
hi

� �2
" #

i ¼ 1;2 ð15cÞ

D ¼ D2 � D1; where Di ¼
6E

Eih
2
i t

1þ t
hi

� �
i ¼ 1;2 ð15dÞ
At this point, the original seven parameters ðE1; E2;h1;h2;G; E; tÞ are reduced to four cross-sectional parameters (A, B, C, D).
Notice that the ratio A=D ¼ G=E is a function of Poisson’s ratio (m) of the interlayer only.

Eq. (14) constitute a system of two coupled ordinary differential equations. The parameters A and D are responsible for
the coupling. When E1h2

1=ð1þ t=h1Þ ¼ E2t2
2=ð1þ t=h2Þ, A = D = 0. Such a configuration is denoted balanced in the following. All

other configurations are denoted unbalanced. Depending on the type of system, balanced or unbalanced, the general solution
for the deformation of the interlayer takes different forms.

3.1.1. Balanced configuration
For the balanced case, A = D = 0 in Eq. (15), only two cross-sectional parameters, B and C, remain. Thus, the differential

equations (14) uncouple
wIVðxÞ þ BwðxÞ ¼ 0; v000ðxÞ � Cv0ðxÞ ¼ 0 ð16a;bÞ
The general solution is
wðxÞ ¼ ejpxðS1 sin jpxþ S2 cos jpxÞ þ e�jpxðS3 sinjpxþ S4 cos jpxÞ ð17aÞ
vðxÞ ¼ S5ejsx þ S6e�jsx þ S7 ð17bÞ
where Si (i = 1, 2, 3, . . ., 7) are seven integration constants. The so called wave-numbers jp and js are given by
j4
p ¼ B=4 ¼ 3E

t
1

E2h3
2

þ 1

E1h3
1

 !
ð18aÞ

j2
s ¼ C ¼ 4G

t

1þ 3
2

t
h2
þ 3

4
t

h2

� �2

E2h2
þ

1þ 3
2

t
h1
þ 3

4
t

h1

� �2

E1h1

0
B@

1
CA ð18bÞ
Thus, for a balanced system, jp and js, replace B and C as cross-sectional parameters.

3.1.2. Unbalanced configuration
A general configuration for which E1h2

1=ð1þ t=h1Þ–E2t2
2=ð1þ t=h2Þ is denoted unbalanced. For such a case, however, the

two coupled differential equations (14) may be transformed into two uncoupled differential equations of higher-order
wVIðxÞ � CwIVðxÞ þ Bw00ðxÞ þ ðAD� BCÞwðxÞ ¼ 0 ð19aÞ
vVIIðxÞ � CvVðxÞ þ Bv000ðxÞ þ ðAD� BCÞv0ðxÞ ¼ 0 ð19bÞ
Note the similarity of these two equations. For the relative deflection, w, Eq. (19a), a general solution in the form w(x) = erx

leads to the characteristic equation
ðr4 þ BÞðr2 � CÞ þ AD ¼ 0 ð20Þ
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Eq. (20) is a third order equation in r2, the roots of which may be found in a mathematical handbook, for example (Råde and
Westergren, 1990). Two roots are complex and conjugate roots, and one of the three roots is real and non-negative. This re-
sults in six roots, ri, of the form
r1;2;3;4 ¼ �j1 � ij2; r5;6 ¼ �j3 ð21a;bÞ
where j1, 2, 3 are real positive numbers. These roots have units of inverse length (m�1) and represent an inverse length scale
of the solution.

For the shear deformation, v, Eq. (19b), the roots of the characteristic equation are the same as in Eq. (21), but an addi-
tional root, r7 = 0, appears. The general solutions of Eq. (19) are thus given by
wðxÞ ¼ ej1xðK1 sinj2xþ K2 cos j2xÞ
þ e�j1xðK3 sin j2xþ K4 cosj2xÞ þ K5ej3x þ K6e�j3x ð22aÞ

vðxÞ ¼ ej1xðK1 sin j2xþ K2 cosj2xÞ
þ e�j1xðK3 sin j2xþ K4 cosj2xÞ þ K5ej3x þ K6e�j3x þ K7 ð22bÞ
The integration constants, K1�6 and K1�6, are dependent. The relations are found by inserting the general solution, Eq. (22),
into one of Eq. (14), which yields
K1 ¼ a1K1 � a2K2; K2 ¼ a2K1 þ a1K2; ð23a;bÞ
K3 ¼ �a1K3 � a2K4; K4 ¼ a2K3 � a1K4; ð23c;dÞ
K5 ¼ a3K5; K6 ¼ �a3K6 ð23e; fÞ
where
a1 ¼ j1ðC � j2
1 þ 3j2

2Þ=D; a2 ¼ j2ðC þ j2
2 � 3j2

1Þ=D; a3 ¼ j3ðC � j2
3Þ=D ð24a;b; cÞ
Hence, also for the unbalanced case, seven independent integration constants, Ki (i = 1, 2, 3,. . .,7) emerge.

3.2. Displacements of the adherends

The governing equations derived in Section 2 can be used to obtain a solution for the displacements of each of the two
adherends, see Appendix B. The following solutions apply to a general unbalanced configuration. The deflections are given
by
w1ðxÞ ¼ A1ðB2v0 � BDw00 � DQwÞ=Q 2 þ B1ðABv0 � ADw00 � CQwÞ=Q 2 � 1
12

CL3

h1 þ h2 þ 2t
K7

x3

L3 þ I1
x2

L2 þ I2
x
L
þ I3 ð25aÞ

w2ðxÞ ¼ A2ðB2v0 � BDw00 � DQwÞ=Q 2 � B2ðABv0 � ADw00 � CQwÞ=Q 2 � 1
12

CL3

h1 þ h2 þ 2t
K7

x3

L3 þ I1
x2

L2 þ I2
x
L
þ I3 ð25bÞ
where Q = BC � AD, and the span length, L, has been introduced as a normalizing factor. The axial displacements of the center
of each adherend are given by
u1ðxÞ ¼ �
1
4

C1 ðBv� Dw0Þ=Q þ 1
2

K7x2
� �

þ I4
x
L
þ I5 ð26aÞ

u2ðxÞ ¼
1
4

C2 ðBv� Dw0Þ=Q þ 1
2

K7x2
� �

þ I4 �
h1 þ h2 þ 2t

L
I1

� �
x
L
þ I5 �

1
2

h1 þ h2 þ 2t
L

I2 þ 1� 1
4

BC=Q
� �

K7 ð26bÞ
where
C ¼ C1 þ C2; where Ci ¼
4G

Eihit
; i ¼ 1;2 ð27Þ
The solution for a balanced system is obtained by replacing K7 with S7 and setting A = D = 0 in Eqs. (25) and (26). The expres-
sions for the interlayer deformation, v and w, are given by Eq. (17) (balanced) and (22) (unbalanced). Each of these expres-
sions contain seven integration constants, (K1 � 7 or S1 � 7). Five new integration constants I1 � 5 appear in the expressions for
the individual displacements, cf. Eqs. (25) and (26). Thus, the general solution contains 12 independent constants, which are
determined from boundary conditions.

It may here be noted that even though the model used in the present paper is similar to the one developed by Frostig et al.
(1991), our solution (Eqs. (25) and (26)) displays a more complex interaction between peel and shear stresses in the flexible
interlayer.

Boundary conditions in the form of prescribed displacements or rotations, ui, wi or w0i, are formed directly from Eqs.
(25) and (26). Boundary conditions on axial force and bending moment require that u0i and w00i are prescribed using
Eqs. (6) and (7). Boundary conditions involving shear forces are formed by prescribing a combination of w000i and m. The
result is
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ViðxÞ ¼ �
Eibh3

i

12
½w000i ðxÞ � AivðxÞ�; Ai ¼

6G

Eih
2
i t
; i ¼ 1;2 ð28a;bÞ
which follows from Eqs. (3), (7), (13a) and (15a).

3.3. Solution for three-point flexure specimen

3.3.1. Boundary conditions for beams without overhang
Consider first a beam without overhang, i.e., c = 0 in Fig. 1. Due to symmetry only the left half of the layered beam,

0 6 x < L/2, is considered. The deflections and axial displacements of the adherends are given by Eqs. (25) and (26). The solu-
tions for the displacements contain 12 integration constants (K1 � 7 and I1 � 5). Hence, 12 boundary conditions are needed.
Boundary conditions may be formulated by considering the symmetry section of the three-point flexure configuration
shown in Fig. 4. Symmetry is modelled by the roller support at x = L/2. A load of magnitude P/2 is introduced on the top sur-
face at the symmetry section. At this section the lower beam does not carry any shear force, i.e. V1(L/2) = P/2 and V2(L/2) = 0,
see Fig. 4. Due to shear and compressive stresses in the interlayer in cross-sections away from x = L/2, shear force is trans-
ferred from the top beam to the lower beam. Symmetry at x = L/2 further requires vanishing of the longitudinal displace-
ments and the slopes, i.e. u1 = u2 = 0 and w01 ¼ w02 ¼ 0. Thus, six conditions are imposed at x = L/2. The six remaining
conditions are formed at the left end (x = 0), where N1, M1, V1, N2, M2 and w2 are zero.

3.3.2. Boundary conditions for beams with overhang
Consider next a beam with overhang, i.e. c > 0 in Fig. 1. Only the left half symmetry section of the beam, �c 6 x 6 L/2, is

considered. The deflections and axial displacements of the adherends are given by Eqs. (25) and (26). The solution contains
24 integration constants; 12 (K1 � 7 and I1 � 5) for the overhang part, �c 6 x 6 0, and another 12 for the loaded region,
0 6 x 6 L/2. Thus, the solution requires in total 24 conditions. At the point of load introduction (x = L/2), the six boundary
conditions are identical to the case without overhang, i.e. V1 = P/2 and u1, u2, w01, w01 and V2 are all zero. At left the support
(x = 0) u1;u2;w1;w2;w01 and w02 are continuous. Moreover, the deflection of the lower adherend is zero at the support, w2 = 0.
Also N1, N2, M1, M2 and V1 are continuous at the support. In all this gives us 12 more conditions to fulfil at x = 0.

The free end (x = �c) is not subjected to any external loads. This means that the normal forces, N1 and N2, and the bending
moments, M1 and M2, are all zero. However, in the present formulation, the shear stress in the interlayer is directly con-
nected to the shear deformation of the interlayer, Eq. (13a), which may not be zero at a free end. Hence, the formulation does
not allow for a zero interlayer shear stress at a free boundary. Due to equilibrium it also becomes impossible to guarantee
vanishing of the shear forces, V1 and V2, since these are required to compensate for the non-zero shear stress at the free end
of the interlayer, see Fig. 4b. There is no unambiguous way to split the spurious shear forces in the two adherends. Here, the
shear forces are split in proportion to the bending stiffnesses of the adherends, i.e. V1ð�cÞ=ðE1h3

1Þ ¼ V2ð�cÞ=ðE2h3
2Þ. In order to

fulfil the condition of zero external vertical load at the free end, the total shear force, V ¼ V1 þ V2 þ bts, is set to zero. With
these six conditions at the left free end (x = �c), 12 conditions at the left support (x = 0) and six conditions at the loading
point (x = L/2), a system of 24 equations is formed.

The fact that the model can only achieve approximate boundary condition at a free end might introduce spurious stresses.
However, these are likely to be present only in the vicinity of the free end. The focus of the present paper is to obtain global
measures, such as the load point compliance, which will not be affected by the end-effects to any measurable extent.

3.3.3. Solution and extraction of compliance and stresses
For the case of no overhang, the 12 integration constants may be used to form a 12 � 12 system of equations. If an over-

hang is present the 24 integration constants are determined from a 24 � 24 system of equations formed from the boundary
conditions described previously. Some of the coefficients of the systems of equations contain quite a number of terms. Here,
the MATLAB� symbolic tool box is used to form the coefficients symbolically. The system of equations is solved numerically
using a MATLAB� built-in matrix inversion tool. Once the integration constants have been determined, the deformation of
the interlayer is given by Eq. (17) or (22), depending on whether the configuration is balanced or unbalanced. The stresses
in the interlayer are subsequently determined from Eqs. (4), (5) and (13), and the displacements of the adherends from Eqs.
(25) and (26). Here, the compliance of the three-point flexure specimen, C = w1(L/2)/P, is of special interest. The stress resul-
tants, N1,2, M1,2 and V1,2, are found from Eqs. (6), (7) and (28).

3.4. Stresses in the adherends

The axial normal stress in each adherend is given by Navier’s formula
riðx; ziÞ ¼
NiðxÞ
bhi

þ 12
MiðxÞ
bh3

i

zi; i ¼ 1;2 ð29Þ
where z1 and z2 are coordinates in the vertical direction measuring the distance from the middle plane of each adherend, see
Fig. 6. The shear stress in each adherend is determined from longitudinal equilibrium of ‘cut-out’ sections of the adherends,
see Fig. 6
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s1ðx; z1Þ ¼ �
Z z1

�h1=2

or1

ox
ðx;~z1Þd~z1; s2 ¼

Z h2=2

z2

or2

ox
ðx;~z2Þd~z2 ð30a;bÞ
Determination of the shear stress, si, thus requires the derivative of ri, obtained by inserting the equilibrium Eqs. (1) and (3)
into a differentiated Navier’s formula (29). Integration according to Eq. (30) yields
siðx;�ziÞ ¼
1
4

3�z2
i � 2�zi � 1

� 	
sðxÞ þ 1� �z2

i

� 	3
2

ViðxÞ
bhi

; i ¼ 1;2 ð31Þ
where the positive/negative signs apply for the upper/lower adherend (i = 1, 2). Normalized coordinates, �zi ¼ 2zi=hi, have
been introduced, i.e. �zi ¼ �1 at the free outer surfaces, �zi ¼ 0 at the adherend centroid and �zi � 1 at the interlayer/adherend
interface, respectively. According to Eq. (31), the shear stress distribution in an adherend consists of one part proportional to
the shear stress in the interlayer and another part proportional to the shear force in the adherend. It is seen that both parts
satisfy the traction-free outer surfaces of the adherends, i.e. si(x, � 1) = 0. At the interlayer/adherend interface, the shear
stress equals the shear stress in the interlayer, i.e. si(x, ±1) = s(x), as expected. The shear stress in the adherends due to
the transverse shear force is parabolically distributed, i.e. precisely as in classical beam theory (Gere and Timoshenko,
1984). Also the shear stress in the adherends due to the interlayer shear stress is parabolically distributed over the cross sec-
tion. As expected, this part of the shear stress distribution has a zero resultant.

The transverse normal stress, rzi is determined from vertical equilibrium of the ‘cut-out’ pieces of the adherends, Fig. 6
rz1ðx; zÞ ¼ �
Z z1

�h1=2

os1

ox
ðx;~zÞd~z; rz2 ¼

Z h2=2

z2

os2

ox
ðx;~zÞd~z ð32a;bÞ
The derivative of the adherend shear stress, s0i, is obtained by inserting Eqs. (2), (4) and (5) into a differentiated Eq. (31). Inte-
gration according to Eq. (32) yields
rziðx;�ziÞ ¼
rs

4
��z3

i � 3�zi þ 2

 �

þ rahi

4t
� 1þ t

hi

� �
�z3

i � �z2
i þ 1þ 3

t
hi

� �
�zi � 1þ 2

t
hi

� �� �
; i ¼ 1;2 ð33Þ
Hence, the transverse normal stress in an adherend consists of two parts; one proportional to the symmetric part of the nor-
mal stress on the interlayer, rs, and another one proportional to the antisymmetric part, ra, cf. Eq. (4).

4. Solution for an incompressible interlayer

For the case of an incompressible interlayer (m = 1/2) the effective Young’s modulus, E, is infinitely large, cf. Eq. (13b). A
different solution procedure than in the previous section must then be followed. The consequence of the incompressibility is
that the thickness stretch of the interlayer, w, is zero along the entire beam. According to Eq. (8b) this means that the deflec-
tion of the two adherends are identical, i.e. w1(x) � w2(x). This is utilized in the following derivation, where entities of adher-
end #1 are eliminated in favour of entities of adherend #2. The following dimensionless quantities are introduced:
R ¼ E1

E2
; g ¼ h1

h2
; f ¼ t

h2
: ð34a;b; cÞ
Identical deflections implicate that also the curvatures of the two adherends are identical, i.e. w001 � w002. It then follows from
Eq. (7) that the bending moments are related through
τ2

τ1

Δ Δ

σ σ Δσ

σ σ Δσ

σ

σ

τ1 τ Δτ

τ1 τ Δτ

Fig. 6. Free body diagram for determination of stresses in adherends.
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M1ðxÞ ¼ Rg3M2ðxÞ ð35Þ
Furthermore, longitudinal equilibrium requires that N1(x) � �N2(x). It then follows from Eq. (6):
u01ðxÞ ¼ �R�1g�1u02ðxÞ ð36Þ
A relation between the shear forces and the bending moments is obtained from Eq. (3). By use of Eq. (35) it reads
V1ðxÞ ¼ gV2ðxÞ þ gðRg2 � 1ÞM0
2ðxÞ ð37Þ
Eqs. (35) and (37) show that for incompressible interlayers it is not possible to independently prescribe bending moments
and shear forces on the two adherends.

All displacements and stress resultants of adherend #1 have now been eliminated. The derivation for symmetric beams
presented by Alfredsson et al. (2008) is here generalized to the unsymmetric case. Hence, the deflection, w2, and the longi-
tudinal displacement, u2, are eliminated to form an equation in the shear deformation of the interlayer. This leads to a second
order differential equation (see Appendix C)
v00ðxÞ � j2vðxÞ ¼ �j2�st=G ð38Þ
where
�s ¼ 6V
bh2

1þ gþ 2f

ðRg3 þ 1Þð1þ R�1g�1Þ þ 3ð1þ gþ 2fÞ2
ð39Þ
is the constant shear stress in the interlayer obtained by ordinary beam theory (Gere and Timoshenko, 1984), and
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRg3 þ 1Þð1þ R�1g�1Þ þ 3ð1þ gþ 2fÞ

Rg3 þ 1

2
G

E2h2t

s
ð40Þ
A beam with symmetric overhang, i.e. c > 0 in Fig. 1, is considered. Due to symmetry, only the left part, �c 6 x 6 L/2, is stud-
ied. The general solution to Eq. (38) is
vðxÞ ¼
ðH1ejx þ H2e�jxÞ �s

k for � c 6 x 6 0
ðH3ejx þ H4e�jx þ 1Þ �s

k for 0 6 x 6 L=2

(
ð41Þ
where �s is given by Eq. (39) with V ¼ P=2. The absence of a constant term for the overhang portion in Eq. (41) reflects the fact
that the total shear force, V , is zero in the overhang part of the beam. The constants Hi (i = 1, 2, 3 and 4) are determined by
conditions on v or v0. With prescribed end forces and moments, the following relation, obtained from Eqs. (6), (7), (8) and
(11), can be used to form boundary conditions on v0
v0ðxÞ ¼ N2ðxÞ
E2bh2

� N1ðxÞ
E1bh1

� 6ð1þ f=gÞM1ðxÞ
E1bh2

1

� 6ð1þ fÞM2ðxÞ
E2bh2

2

ð42Þ
From this equation it also follows that not only v but also v0 are continuous when no concentrated longitudinal forces or mo-
ments are applied to the adherends.

According to Eq. (42), the boundary conditions at the free left end is m0(�c) = 0. At midspan the shear deformation van-
ishes, i.e. m(L/2) = 0. Moreover, both v and v0 must be continuous at the support, x = 0. With these four conditions, the inte-
gration constants become
H1 ¼
1
2

ejL=2 þ ejL=2 � 2
ejL=2 þ e�jð4cþLÞ=2 ð43aÞ

H2 ¼ H1e�2jc ¼ 1
2

ejðL�4cÞ=2 þ e�jð4cþLÞ=2 � 2e�2jc

ejL=2 þ e�jð2cþL=2Þ ð43bÞ

H3 ¼ H1 �
1
2
¼ 1

2
e�jL=2 � e�jð4cþLÞ=2 � 2

ejL=2 þ e�jð4cþLÞ=2 ð43cÞ

H4 ¼ H2 �
1
2
¼ 1

2
ejðL�4cÞ=2 � ejL=2 � 2e�jc

ejL=2 þ e�jð4cþLÞ=2 ð43dÞ
The longitudinal force, N2, is obtained by integration of Eq. (1b)
N2ðxÞ ¼ b
Z x

�c
s½vð~xÞ�d~x ð44Þ
The bending moment in the adherends is determined from equilibrium and Eq. (35)
ðRg3 þ 1ÞM2ðxÞ ¼
� 1

2 ðh1 þ h2 þ 2tÞN2ðxÞ for �c 6 x 6 0
1
2 Px� 1

2 ðh1 þ h2 þ 2tÞN2ðxÞ for 0 6 x 6 L=2

(
ð45Þ
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With the bending moment determined, the deflection, w2(x), is determined by integration of Eq. (7b). With the boundary
conditions, w2(0) = 0 and w02(L/2) = 0, the compliance, Coh = w2(L/2)/P, takes the form
Coh

Cbt
¼ 1þ ð1þ gþ 2fÞ2

ðRg3 þ 1Þð1þ R�1g�1Þ
36

j3L3 H3fejL=2ð2� jLÞ � 2g þ H4f2� e�jL=2ð2þ jLÞg

 �

ð46Þ
where Cbt is the compliance of a three-layer beam according to ordinary beam theory
Cbt ¼
L3

4E2bh3
2

1þ R�1g�1

3ð1þ gþ 2fÞ2 þ ðRg3 þ 1Þð1þ R�1g�1Þ
ð47Þ
Eq. (46) is a generalization of the compliance derived for symmetric beams in Alfredsson et al. (2008). The compliance, Coh, is
a complex function of the geometry and material properties of the adherends and interlayer. In order to gain further insight,
beams without and with overhang are discussed separately below.

4.1. Beams without overhang

For beams without overhang (c = 0), Eq. (46) yields
C
Cbt
¼ 1þ 36ð1þ gþ 2fÞ2

ðRg3 þ 1Þð1þ R�1g�1Þ
1

j2L2 �
2

j3L3 tanh
jL
2

� �� �
ð48Þ
There are two effects of the interlayer thickness on the compliance: (i) With increasing interlayer thickness the beam thick-
ness increases, which tends to reduce the global compliance. This is termed ‘the thickness effect’. If only the thickness effect
is accounted for, the compliance equals Cbt, Eq. (47), i.e. the compliance predicted by ordinary beam theory; (ii) With increas-
ing interlayer thickness the shear flexibility of the interlayer increases, which will increase the global compliance. This is
called ‘the flexibility effect’ in Alfredsson et al. (2008). The flexibility effect is isolated by assuming that the interlayer thick-
ness is small compared to the thickness of the adherends, i.e. f� 1, Eq. (34c). For this case the global compliance, C, becomes
C
C0
¼ 1þ f ðbÞFðR;gÞ ð49Þ
where C0 is the compliance when the two adherends are rigidly connected with a layer of zero thickness
C0 ¼ Cbtðf ¼ 0Þ ¼ L3

4E2bh3
2

1þ R�1g�1

3ð1þ gÞ2 þ ðRg3 þ 1Þð1þ R�1g�1Þ
ð50Þ
The function f(b) quantifies the decoupling of the adherends that occurs by shear deformation of the interlayer
f ðbÞ ¼ 3
2

b 1�
ffiffiffi
b
2

r
tanh

ffiffiffi
2
b

s !" #
ð51Þ
where b is a de-coupling parameter
b ¼ 8ðRg3 þ 1Þ
3ð1þ gÞ2 þ ðRg3 þ 1Þð1þ R�1g�1Þ

E2

G
h2

L

� �2

f ð52Þ
The factor F in Eq. (49) is defined in terms of the adherend parameters R and g as
FðR;gÞ ¼ 3ð1þ gÞ2

ðRg3 þ 1Þð1þ R�1g�1Þ
ð53Þ
This factor describes the relative increase of the compliance from a fully coupled to a fully decoupled state (G varies from1
to 0). Fig. 7 displays the variation of F with the material and geometry factors, �R and �g, defined by
R ¼ E1

E1 þ E2
; �g ¼ h1

h1 þ h2
ð54a;bÞ
Fig. 7 shows that the maximum of F (Fmax = 3) is attained for balanced configurations, i.e. Rg2 = 1. The curves are symmetric
with respect to �R ¼ 1=2 and �g ¼ 1=2, which shows that the compliance remains the same if the adherends #1 and #2 are
switched.

Fig. 8 shows the decoupling function, f, plotted versus the decoupling factor, b (Eqs. (51) and (52)). b is varied by (for
example) varying the layer shear modulus, G. When G 	 0, b ?1, and the two adherends become effectively disconnected;
C ? (1+F)C0�Cslide, where Cslide is the compliance for two beams stacked frictionless on top of each other. For a layer that is
rigid in shear, G ?1, f (b) approaches zero, and the two adherends become fully coupled (C = C0).

To relate the ‘‘fully coupled” and ‘‘fully decoupled” asymptotic states in terms of values of the parameter b (Fig. 8), we
require 99 and 1% increases, respectively, of the maximum possible increase of the compliance (Eq. (49)). These extremes
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correspond, respectively, to f = 0.99 and 0.01 in Eq. (51), and b values of 79 (fully decoupled) and 0.0071 (fully coupled),
respectively.

4.2. Beams with overhang

As shown in the previous publication (Alfredsson et al., 2008), the presence of an overhang (c > 0) will restrict sliding
deformations of the adherends, and reduce the global compliance, i.e. Coh < C. However, the global compliance cannot be re-
duced indefinitely. For large values of the overhang the global compliance, Coh in Eq. (46), approaches an asymptotic value
C1
Cbt
¼ 1þ ð1þ gþ 2fÞ2

ðRg3 þ 1Þð1þ R�1g�1Þ
36

j3L3 ½jL� 3� ejL þ 4e�jL=2� ð55Þ
For jc > 3 the limit value of the compliance, C1, is a very good approximation to Coh, regardless of the span length. From Eqs.
(40) and (55) it follows that the limit value of the overhang is obtained at an overhang length of
c1 ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2h2t

G
Rg3 þ 1

3ð1þ gþ 2fÞ2 þ Rg3 þ 1ð Þ 1þ R�1g�1
� �

vuut ð56Þ
Hence, for any overhang length greater than c1, the compliance will be very close to the limit value of the compliance, C1.

5. Applied results

In order to study the influence of material unsymmetry on the compliance of the asymmetric beams, parametric analysis
is conducted. A specific beam is considered as a baseline. The top adherend is given the effective properties of a stiff surface
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Fig. 7. Variation of function F: (a) with �R for different values of g, and (b) with g for different values of �R.



−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

log(β)

f(β)

Fig. 8. Variation of function f with de-coupling parameter, b.

2104 K.S. Alfredsson et al. / International Journal of Solids and Structures 46 (2009) 2093–2110
layer representative for steel (E1 = 200 GPa, m = 0.3, h1 = 15 mm). The lower adherend is of equal thickness as the upper
adherend but much less stiff, representative for a glass fiber composite loaded in the fiber direction (E2 = 20 GPa, m = 0.1,
h2 = 15 mm). The adherends are joined by a rubber interlayer (G = 3 MPa, m = 0.49) and the layer thickness is varied. Three
span lengths are studied; L = 0.2, 0.5 and 1 m, while the overhang is kept constant (c = 50 mm).

To achieve insight in the response of the beam configurations considered, the variation of the decoupling parameter b, cf.
Eq. (52) is examined. Fig. 9 shows the variation of b with the interlayer thickness for span lengths, L = 0.2, 0.5 and 1 m. In the
interval of the interlayer thickness studied, 0.1 6 t 6 10 mm, full decoupling is expected only for the shortest span length,
L = 0.2 m, at an interlayer thickness close to 10 mm. However, overall, all three configurations in Fig. 9, are far from fully cou-
pled. b falls in the intervals {0.91–91}, {0.146–14.6} and {0.0365–3.65} for L = 0.2, 0.5 and 1 m, respectively. According to Eq.
(51) and Fig. 8, these values of b correspond to the following values of the function f appearing in Eq. (49); {0.53–0.99}, {0.16–
0.95} and {0.047–0.82}. For the present combination of adherends the factor F defined in Eq. (53) becomes, F = 0.99, which
implies that the maximum possible increase of the compliance over a fully coupled beam is 99%. For the span lengths, L = 0.2,
0.5 and 1 m, Eq. (49) reveals that the compliance is expected to increase by a maximum of 98, 94 and 81% as compared to a
fully coupled beam with zero interlayer thickness. These values are approximate and overestimate the compliance increase
since they are based on a negligible interlayer thickness. For some of the geometries considered the interlayer thickness is
comparable to the thickness of the adherends.

Results for the influence of the finite thickness of the layer on the compliance are shown in Fig. 10. The solid lines rep-
resent the results for incompressible interlayers (m = 0.5) and the dotted lines the results for a slightly compressible inter-
layer (m = 0.49). For short beams with thick interlayers, the compliance predicted assuming incompressibility falls below
the one obtained assuming compressibility. The effect of the compression on the compliance is smaller for large span
lengths.
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Fig. 9. Parametric study of steel/rubber/glass beam. Decoupling factor, b, is shown as a function of rubber layer thickness for different span lengths. Limits
for full decoupling/coupling are indicated. Data: E1 = 200 GPa, E2 = 20 GPa, h1 = h2 = 15 mm, c = 50 mm, G = 3 MPa, m = 0.49.
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The results above are compared to those obtained from a finite element model with m = 0.49 where the adherends as well
as the interlayer are modeled with continuum elements. For details of the FE-model the reader is referred to (Alfredsson
et al., 2008), where similar simulations are performed on symmetric beams. The results of the FE-model are indicated by
the discrete points in Fig. 10. Since less constraints are introduced in the FE-model, it yields compliance values which slightly
exceed those from the analytical beam theory models, but the difference is overall quite small. It is also seen that the increas-
ing trend of the compliance for large values of the interlayer thickness is well captured.

6. Experiments

The validity of the analyses presented above was examined by testing unsymmetric beams with a flexible interlayer in
three-point flexure. The beams consisted of dissimilar aluminum adherends connected by an adhesively bonded rubber
layer. Table 1 details the thicknesses and widths of the adherends and the rubber layer. The tests were conducted on asym-
metric beams at a constant span length, L = 20.3 cm, and at overhang lengths; c = 2.54, 5.08, 7.62, 10.2 and 12.7 cm. Such a
set of beam configurations was achieved by testing the beams with the longest overhang first. After the test, the beam was
removed from the fixture, and sections of 2.54 cm length were cut from each end. This procedure was repeated until the
overhang length was 2.54 cm on each side. Details of specimen preparation, testing and data reduction for the beam com-
pliance are presented in the earlier publication by Alfredsson et al. (2008). The publication also details measurement of the
shear modulus (G) of the rubber layer; G = 3.11 MPa. Young’s modulus (E1,2) of the aluminum adherends was measured from
a three-point flexure test on one of the adherends before assembly of the layered beam. This test provided E1,2 = 70 GPa, in
good agreement with handbook values.

Fig. 11 shows compliance of the beam vs. overhang length. The open circles represent experimental test data determined
as described above and the continuous curve represents predictions from Eq. (46). It is verified that the presence of an over-
hang reduces the compliance, and the test data are in very good agreement with the beam model predictions.

7. Concluding remarks

Layer-wise analysis of the stresses and deflection of a three-layer beam configuration consisting of two dissimilar ortho-
tropic adherends of different thicknesses that are joined together by a flexible interlayer has been presented. The adherends
are assumed to deform according to beam theory and the interlayer may deform in the thickness direction and in shear. The
Table 1
Dimensions of aluminum adherends and rubber interlayers used in experimental test program

Beam # h1 (mm) h2 (mm) b1 (mm) b2 (mm) t (mm)

1 6.53 6.22 51.0 50.7 0.76
2 6.53 12.6 51.0 51.0 0.76
3 6.53 12.6 51.9 51.9 3.0
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model is similar to the model presented by Frostig et al. (1991), although the present solution reveals a more complex inter-
action between extensional and shear stresses in the flexible interlayer.

Both compressible and incompressible interlayers are considered in the formulation and analytical solutions are obtained
for the case of three-point flexure loading. A closed-form solution is presented for the case of an incompressible interlayer
and equations expressing conditions on mechanical coupling of the adherends by the interlayer are derived in dimensionless
form. The analysis revealed that configurations where the moduli and thicknesses of the adherends (1 and 2) are matched
Fig. 11. Compliance as a function of overhang for unsymmetric beam configurations with a rubber layer. Data: L = .203 m. E1 = E2 = 70 GPa, G = 3.3 MPa,
m = 0.49, (a) t = .76 mm, h1 = 6.53 mm, h2 = 6.22 mm, b = 51.0 mm, (b) t = .76 mm, h1 = 6.53 mm, h2 = 12.6 mm, b = 51.0 mm, (c) t = 3 mm, h1 = 6.53 mm,
h2 = 12.6 mm, b = 51.9 mm.
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according to E1h2
1 ¼ E2h2

2 (balanced) have the largest potential for compliance increase by reduction of the interlayer shear
modulus.

The analytical solutions agreed closely with finite element results. Experimental measurements of compliance of various
unsymmetric beams consisting of aluminum adherends separated by a rubber interlayer were performed over a range of
overhang lengths in order to validate the analysis. Excellent agreement between measured and predicted compliance values
was observed.
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Appendix A. Elimination of displacements for a compressible interlayer

First the individual longitudinal beam displacements are eliminated by combining Eqs. (1) and (6)
u001ðxÞ ¼ �
sðxÞ
E1h1

; u002ðxÞ ¼
sðxÞ
E2h2

; ðA1a;bÞ
Subtraction of Eq. (A1a) from (A1b) and using Eq. (8a) gives
u00ðxÞ ¼ 1
E1h1

þ 1
E2h2

� �
sðxÞ ðA2Þ
The individual vertical beam displacements are eliminated by first combining Eqs. (2), (3) and (7)
wIV
1 ðxÞ ¼

6

E1h2
1

s0ðxÞ þ 12

E1h3
1

r1ðxÞ ðA3aÞ

wIV
2 ðxÞ ¼

6

E2h2
2

s0ðxÞ � 12

E2h3
2

r2ðxÞ ðA3bÞ
Subtraction of Eq. (A3a) from Eq. (A3b) and using Eqs. (4), (5) and (8b) gives
wIVðxÞ ¼ 6
1þ t

h2

E2h2
2

�
1þ t

h1

E1h2
1

 !
s0ðxÞ � 12

1

E1h3
1

þ 1

E2h3
2

 !
rsðxÞ ðA4Þ
This is Eq. (12a) in the main text. Eq. (A3) yield
1
2
ðh1 þ tÞwIV

1 ðxÞ ¼ 3
1þ t

h1

E1h1
s0ðxÞ þ 6

1þ t
h1

E1h2
1

r1ðxÞ ðA5Þ

1
2
ðh2 þ tÞwIV

2 ðxÞ ¼ 3
1þ t

h2

E2h2
s0ðxÞ � 6

1þ t
h2

E2h2
2

r2ðxÞ ðA6Þ
By use of Eq. (A2) we may write
3
1

E1h1
þ 1

E2h2

� �
s0ðxÞ ¼ 4

1
E1h1

þ 1
E2h2

� �
s0ðxÞ � u000ðxÞ ðA7Þ
From Eqs. (11), (A5), (A6) and (A7) it follows that:
v000ðxÞ ¼ 4
1þ 3

2
t

h1
þ 3

4
t

h1

� �2

E1h1
þ

1þ 3
2

t
h2
þ 3

4
t

h2

� �2

E2h2

0
B@

1
CAs0ðxÞ þ 6

1

E1h2
1

� 1

E2h2
2

 !
rsðxÞ ðA8Þ
which is Eq. (12b) in the main text.

Appendix B. Displacements of the adherends for a compressible interlayer

General expressions for the deflections of the adherends can be derived from Eq. (A3) with (13) and (15a,b),
wIV
1 ðxÞ ¼ A1v0ðxÞ þ B1wðxÞ; wIV

2 ðxÞ ¼ A2v0ðxÞ � B2wðxÞ ðB1a;bÞ
Here, Eq. (14) can be used to obtain alternative expressions for v0(x) and w(x)
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v0 ¼ Bv000 � DwIV

BC � AD
¼ B2vV � BDwVI � DðBC � ADÞwIV

ðBC � ADÞ2
ðB2aÞ

w ¼ Av000 � CwIV

BC � AD
¼ ABvV � ADwVI � CðBC � ADÞwIV

ðBC � ADÞ2
ðB2bÞ
Next, these expressions are inserted into Eqs. (B1), and integrated four times. The result is
w1ðxÞ ¼ A1
B2v0 � BDw00 � DðBC � ADÞw

ðBC � ADÞ2
þ B1

ABv0 � ADw00 � CðBC � ADÞw
ðBC � ADÞ2

þ I0
x3

L3 þ I1
x2

L2 þ I2
x
L
þ I3 ðB3aÞ

w2ðxÞ ¼ A2
B2v0 � BDw00 � DðBC � ADÞw

ðBC � ADÞ2
� B2

ABv0 � ADw00 � CðBC � ADÞw
ðBC � ADÞ2

þ I0
x3

L3 þ I1
x2

L2 þ I2
x
L
þ I3 ðB3bÞ
where eight new integration constants appear. Now, the difference of these two expressions is formed. By use of Eq. (15a,b) it
follows:
w2ðxÞ �w1ðxÞ ¼ wðxÞ þ ðI0 � I0Þ
x3

L3 þ ðI1 � I1Þ
x2

L2 þ ðI2 � I2Þ
x
L
þ ðI3 � I3Þ ðB4Þ
According to the definition of the deformation of the interlayer, w(x), Eq. (8b), we must have
ðI0 � I0Þ
x3

L3 þ ðI1 � I1Þ
x2

L2 þ ðI2 � I2Þ
x
L
þ ðI3 � I3Þ ¼ 0 ðB5Þ
and thus
I0 ¼ I0; I1 ¼ I1; I2 ¼ I2; I3 ¼ I3 ðB6a-dÞ
General solutions of the axial displacements in the adherends will be derived. From Eq. (A1) with (13) and (15c)
u001ðxÞ ¼ �
1
4

C1vðxÞ; u002ðxÞ ¼ þ
1
4

C2vðxÞ ðB7a;bÞ
Eq. (B2a) is integrated and combined with Eqs. (22) to obtain an expression for the shear deformation v(x)
v ¼ Bv00 � Dw000

BC � AD
þ K7 ðB8Þ
Next, this expressions is inserted into Eq. (B7) and integrated twice
u1ðxÞ ¼ �
1
4

C1
Bv� Dw0

BC � AD
þ 1

2
K7x2

� �
þ�I4

x
L
þ I5 ðB9aÞ

u2ðxÞ ¼ þ
1
4

C2
Bv� Dw0

BC � AD
þ 1

2
K7x2

� �
þ�I4

x
L
þ I5 ðB9bÞ
The integration constants, I4,5 and I4;5 are not independent. Their interrelation can be revealed by consideration of the shear
deformation v(x). Substitution of Eqs. (B3) and (B9) into Eqs. (8a) and (11) yields
vðxÞ ¼ Bv00 � Dw000

BC � AD
þ 1

8
CL2K7 þ

3
2

h1 þ h2 þ 2t
L

I0

� �
x2

L2 þ I4 � I4 þ
h1 þ h2 þ 2t

L
I1

� �
x
L

þ I5 � I5 þ
1
2

h1 þ h2 þ 2t
L

I2 þ
1
4

BC
BC � AD

K7

" #
ðB10Þ
According to Eqs. (B8) and (B10), we must have
1
8

CL2K7 þ
3
2

h1 þ h2 þ 2t
L

I0

� �
x2

L2 þ I4 � I4 þ
h1 þ h2 þ 2t

L
I1

� �
x
L

þ I5 � I5 þ
1
2

h1 þ h2 þ 2t
L

I2 þ
1
2

BC
BC � AD

K7

" #
¼ K7 ðB11Þ
Thus, the integration constants are interrelated through
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I0 ¼ �
1

12
CL3

h1 þ h2 þ 2t
K7; I4 ¼ I4 �

h1 þ h2 þ 2t
L

I1 ðB12a;bÞ

I5 ¼ I5 �
1
2

h1 þ h2 þ 2t
L

I2 þ 1� 1
4

BC
BC � AD

" #
K7 ðB12cÞ
Insertion of Eqs. (B6) and (B12) into Eqs. (B3) and (B9) gives Eqs. (25) and (26) in the main text.
Appendix C. Elimination of displacements for incompressible interlayers

The relations in Eqs. (35)–(38) can now be used to obtain a solution for the case of an incompressible interlayer. Eqs. (2)
and (4) describing vertical equilibrium of the adherends and the interlayer can be combined using Eqs. (4a) and (5). The re-
sult is
V 01ðxÞ þ V 02ðxÞ þ bts0ðxÞ ¼ 0 ðC1Þ
Integration yields
V1ðxÞ þ V2ðxÞ þ btsðxÞ ¼ VðxÞ ðC2Þ
where V is the total shear force transmitted by the cross section. This equation can also be obtained from vertical equilib-
rium, Fig. 4b. For the present three-point flexure case the total shear force is piecewise constant, i.e. VðxÞ ¼ �P=2, where the
plus/minus-sign refer to the left/right part of the system.

Combination of Eqs. (37) and (C2) with use of Eqs. (1b), (6b) and (7b) yields
Rg3 þ 1
� 	

w0002 ðxÞ �
6

h3
2

ð1þ gþ 2fÞu002 ¼ �
12V

E2bh3
2

ðC3Þ
Use of Eqs. (11) and (36) transforms Eq. (C3) into a relation between the second derivatives of u2 and v
Rg3 þ 1
� 	

1þ R�1g�1
� �

þ 3ð1þ gþ 2fÞ2
h i

u002ðxÞ ¼ Rg3 þ 1
� 	

v00ðxÞ þ 6V

E2bh3
2

ð1þ gþ 2fÞ ðC4Þ
With the second derivative of u2 from Eq. (C4) in the equation obtained by combining Eqs. (1b) and (6b), the following equa-
tion relating shear deformation and shear stress is found
Rg3 þ 1
� 	

E2h2v00ðxÞ ¼ Rg3 þ 1
� 	

1þ R�1g�1
� �

þ 3ð1þ gþ 2fÞ2
j k

½sðxÞ � s� ðC5Þ
where
s ¼ 6V
bh2

1þ gþ 2f

Rg3 þ 1ð Þ 1þ R�1g�1
� �

þ 3ð1þ gþ 2fÞ2
ðC6Þ
The equation is in agreement with the constant shear stress in the interlayer predicted by ordinary beam theory (Gere and
Timoshenko, 1984).

Introduction of the constitutive relation, Eq. (13a), into (C5) yields the following differential equation
v00ðxÞ � j2vðxÞ ¼ �j2st=G ðC7Þ
with
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rg3 þ 1ð Þ 1þ R�1g�1

� �
þ 3ð1þ gþ 2fÞ2

Rg3 þ 1
G

E2h2t

vuut
ðC8Þ
Eqs. (C6), (C7) and (C8) are identical to Eqs. (39), (38) and (40) in the main text.
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