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shear stiffness constraints
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Abstract

This paper investigates the optimal architecture of planar micro lattice materials for minimum

weight under simultaneous axial and shear stiffness constraints. A well-established structural topol-

ogy optimization approach is used, where the unit cell is composed of a network of beam elements

(Timoshenko beams are used instead of truss elements to allow modeling of bending-dominated

architectures); starting from a dense unit cell initial mesh, the algorithm progressively eliminates

inefficient elements and resizes the essential load-bearing elements, finally converging to an opti-

mal unit cell architecture. This architecture is repeated in both directions to generate the infinite
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lattice. Hollow circular cross-sections are assumed for all elements, although the shape of the cross-

section has minimal effect on most optimal topologies under the linear elasticity assumption made

throughout this work. As optimal designs identified by structural topology optimization algorithms

are strongly dependent on initial conditions, a careful analysis of the effect of mesh connectivity,

unit cell aspect ratio and mesh density is conducted. This study identifies hierarchical lattices

that are significantly more efficient than any isotropic lattice (including the widely studied trian-

gular, hexagonal and Kagomé lattices) for a wide range of axial and shear stiffness combinations.

As isotropy is not always a design requirement (particularly in the context of sandwich core de-

sign, where shear stiffness is generally more important than compressive stiffness), these optimal

architectures can outperform any established topology. Extension to 3D lattices is straightforward.

Keywords: Elastic Properties; Topology Optimization; Periodic Lattices; Micro-architected
Materials, Lightweight Materials

1 Introduction

Metallic cellular materials possess unique combinations of low weight, high stiffness and

strength, and enable substantial energy absorption at relatively low crushing stress (Evans

et al., 2010, 2001). Additionally, when designed with interconnected porosity, the open

volume in the architecture can be exploited for active cooling or energy storage, providing

unique opportunities for multifunctionality (Bell et al., 2005; Valdevit et al., 2006a). These

attributes make metallic cellular solids uniquely suited as cores of sandwich structures for

applications ranging from lightweight aerospace structures to blast-resistant armors (for both

land and sea vehicles) (Evans et al., 2010; Wadley et al., 2010), and actively cooled panels

for combustor walls of next-generation hypersonic vehicles (Valdevit et al., 2011, 2008).

From a mechanical standpoint, the core of a well-designed sandwich panel needs to possess

2



  

excellent shear stiffness and strength (to support the internal shear force that develops under

transverse loads on the panel) as well as compressive stiffness and strength along the through-

thickness direction of the panel (to resist indentation under concentrated transverse loads)

(Allen, 1969).

At a given relative density (defined as the mass density of the cellular medium divided by

the mass density of the solid constituent), topologically architected cellular structures (e.g.,

periodic architectures) are vastly superior to stochastic foams, by virtue of a more efficient

stress transfer mechanism between the macroscale and the unit-cell level: when appropriately

designed, each unit-cell element (whether a truss or a shell feature) will largely experience

tension or compression under the applied external loads, with minimal bending (Deshpande

et al., 2001; Evans et al., 2001). This guarantees full exploitation of the mechanical properties

of the base material, providing the cellular material exceptional mechanical efficiency (in

terms of specific stiffness and strength). Over the past decade, a number of cellular topologies

were investigated and characterized, ranging from truss-like concepts (Deshpande et al., 2001;

Zok et al., 2003, 2004) to prismatic (honeycomb-type) designs (Valdevit et al., 2004; Zok

et al., 2005). Prismatic designs with the channels in the plane of the sandwich panel (hence

offering open porosity) can be thought of as two-dimensional topologies, extruded in the

third direction. The most common 2D topologies are hexagonal, triangular, and Kagomé

designs, regular lattices in which all elements have the same length (Christensen, 1995;

Gibson and Ashby, 1999). The effective mechanical properties of these simple lattices are

readily extracted in analytical form. Importantly, because of the three-fold symmetry, all

three designs are in-plane isotropic.

Although isotropy is a desirable property in a number of applications, it is not essen-

tial (or even advantageous) for the core of a sandwich panel: appropriately tailoring the
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anisotropy (e.g., independently choosing compressive and shear stiffness and strength) may

in principle result in much more weight efficient designs. Besides isotropy, the choice of

periodic architectures with simple unit cells and very few length scales was traditionally

justified by manufacturability requirements. Recently, with the development and advance-

ment of a plethora of additive manufacturing techniques (e.g., stereolithography, select laser

sintering, direct metal manufacturing (Gibson et al., 2010), SPPW-based manufacturing (Ja-

cobsen et al., 2007; Schaedler et al., 2011), the ability to fabricate extremely complex and

hierarchical architectures has been rapidly growing.

In most studies, optimal designs of lightweight cellular materials have been identified

by optimizing the geometric parameters of a predefined lattice-type architecture (Valdevit

et al., 2004, 2006b). Although this technique allows analytical description for appropriately

chosen topologies, it relies on the intuition of the designer in the selection of the lattice

topology. Topology optimization presents a more elegant approach (Cadman et al., 2013).

In its classic continuum form, a unit cell is meshed with finite elements, each of which can

be assigned either of two phases (e.g., solid and void). The optimizer progressively reassign

elements until an optimal phase distribution is achieved. Design of cellular materials has

been greatly investigated using topology optimization method, for example, by Sigmund

(1995) in design of materials with prescribed mechanical properties, Sigmund and Torquato

(1997) in design of multiphase materials for extreme thermal expansion, Silva et al. (1997)

in design of piezoelectric microstructures, Dobson and Cox (1999) for design of photonic

crystals for band-gaps, and Sigmund and Jensen (2003) for design of materials and structures

for phononic band-gaps. Further elaborations of this technique, such as multi-scale optimal

design (Liu et al., 2008), analysis of the effects of boundaries (Yan et al., 2006), and optimal

design of isotropic cellular solids with prescribed effective moduli and conductivity (Hyun and
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Torquato, 2002) have been presented. Recently, more complicated materials systems have

been analyzed, for example functionally graded materials with desired effective properties

(Paulino et al., 2009), and materials with prescribed nonlinear properties (Wang et al., 2014).

Although extremely powerful, continuum topology optimization does not guarantee that

the optimal topology be a lattice design. If this is desired, truss-like (or discrete as opposed to

continuum) topology optimization is the ideal approach. Starting from a dense mesh of lattice

members (Dorn et al., 1964) for a unit cell, truss (or beam)-based topology optimization

seeks the best connectivity by removing inefficient elements and resizing the cross-section

of the most efficient ones. See Bendsøe and Sigmund (2003) and Rozvany (1996) for more

details on topology optimization of truss-like structures. This technique was first applied

to the optimization of effective properties of a cellular medium (inverse homogenization) in

Sigmund (1994); recently, Asadpoure et al. (2014) extended this approach to integrate the

fabrication cost of lattices in the objective function.

In this context, this article numerically investigates the minimum-density designs of pe-

riodic 2D lattices under arbitrary combinations of prescribed axial (e.g., compressive) and

shear moduli. Optimal lattice architectures are extracted using a formal structural topol-

ogy optimization algorithm, and the stiffnesses of each design are calculated via the Finite

Element method, utilizing beam elements to model all lattice members. Given the intense

recent interest in hollow micro-lattices as an architecture that could provide exceptionally

low density and a wide length scale hierarchy (Maloney et al., 2013; Schaedler et al., 2011;

Valdevit et al., 2013), in all the calculations the cross-section of each lattice member is

assumed to be circular and hollow. However, because most optimal designs support loads

primarily by axial deformation (as opposed to bending) of the members, the actual shape of

the cross-section has minimal effect on the results (see section 3.2).
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The article is presented as follows. Section 2 defines the minimum relative density prob-

lem with axial and shear elastic constraints on a unit cell of the lattice. The unit cell

consists of Timoshenko beam elements with hollow circular cross-section, whose existence,

thickness, and radius are modeled as continuous design variables, in order to take advantage

of gradient-based optimizers. The finite element analysis, including the required boundary

conditions for obtaining axial and shear moduli, are presented in section 2.2. The sensitivity

analysis required for the gradient-based optimizer is derived in section 2.3, followed by the

details of the algorithm used for the topology optimization in section 2.4. Optimized solu-

tions, compared to the well-known bounds on isotropic cellular materials and with the most

commonly available 2D lattices (triangular, hexagonal and Kagomé designs), are presented

in section 3. In the same section, the effects of lattice hierarchy is discussed. Conclusions

follow. The appendices include a mesh sensitivity analysis, discussing the effect of initial

mesh density, domain shape and upper bound on the lattice member radius.

2 The topology optimization problem

2.1 Problem statement

The objective of the optimization is to find the minimum weight of a two-dimensional periodic

lattice material under simultaneous axial and shear stiffness constraints, i.e. the optimized

lattice maintains a minimum axial stiffness as well as a minimum shear stiffness. A structural

topology optimization algorithm is used. The unit cell of the lattice is initially seeded with

a dense mesh of structural finite elements; beam elements are used as opposed to truss

elements, in order to allow load carrying by bending rather than solely by axial deformation.

Although optimally designed lattices are almost always statically determinate (and hence
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carry load by axial deformation of each member), allowing for bending deformation might be

important for extremely anisotropic designs where the required axial and shear stiffness are

vastly different. As the optimization procedure progresses, inefficient elements are eliminated

and the cross-sections of the remaining elements are resized, ultimately converging to the

optimal minimum-density lattice architecture. A binary design variable, xe
x, is assigned to

each lattice element to represent its existence (i.e., xe
x = 1 if the element e exists, otherwise

xe
x = 0). The need for the introduction of this additional variable is explained later in this

section. The formal optimization problem on a discretized domain Ω (representing a unit

cell or fraction thereof) can be expressed as follows:

min
x

ρ (x) =
∑

∀e∈Ω

xe
xv

e (xc)

V Ω
(1)

s.t. CΩ
E (x) ≤ C∗

E (2)

CΩ
G (x) ≤ C∗

G (3)

xe
x =











1 if solid

0 if void
, ∀e ∈ Ω (4)

where x is the vector of design variables, consisting of the binary variables for existence

of elements (xx) and the real design variables defining the cross-section (xc); ρ (x) is the

relative density of the lattice, V Ω is the volume of the design domain Ω; ve is the volume

of the element e; CΩ
E and CΩ

G are the compliances of the design domain under uniaxial

compressive and shear states of stress, respectively; and C∗
E and C∗

G are upper bounds on

the compliances, consistent with the prescribed axial and shear stiffness requirements (see

section 2.2.2 for details). The notations ve (xe
c), C

Ω
E (x), and CΩ

G (x) are used to emphasize
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dependence on the design variables in Eqs. (1) - (4). Geometric constraints must be applied

to fully complete the formulation. Although the method for this investigation can be applied

to any cross sectional shapes, we restrict the problem to designing periodic micro-structures

consisting of circular hollow tube elements. The cross-section of each element can thus be

represented by two design variables, radius and thickness. For this section, one obvious

design constraint is that the thickness of an element e (te) must be less than or equal to

its radius (re). To avoid imposing varying bounds on one of the design variables for every

element (which would require additional constraints with the chosen optimizer - see section

2.4), the thickness of each element is defined as a fraction of its radius, i.e.

te(xe
t , r

e) =xe
tr

e (5)

where xe
t is the design variable for thickness of element e, and is defined between 0 and 1.

In order to keep all the design variables between 0 and 1, the radius of element e can be

represented by

re(xe
r) =rmaxx

e
r (6)

where rmax is the maximum radius and xe
r ∈ [0 1] is the design variable for the radius of

element e. In summary, the entire design variable for element e can be expressed in vector

form as:

xT = {xT
x xT

c } (7)

= {xT
x xT

t xT
r } (8)
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where xT
c = {xT

t xT
r } are design variables associated with the geometric parameters of cross-

sections (thickness and radius).

The optimization problem stated by Eqs. (1) - (4) is dependent on the constituent

material. This dependence can be eliminated by scaling WΩ (x), CΩ
E (x), C∗

E, C
Ω
G (x), and

C∗
G with the corresponding values for the solid design domain filled with the constituent

material.

Solving the optimization problem described above for a combination of discrete variables

(xx) and continuous variables (xt and xr) for a large-scale problem is cumbersome. To enable

the use of Gradient-Based (GB) optimizers and thus dramatically reduce the numerical

complexity, the binary constraint in Eq. (4) is relaxed, i.e., xe
x is allowed to take any

values in the [0 1] interval. The convergence to intermediate values between 0 and 1 is then

penalized using the Solid Isotropic Material with Penalization (SIMP) method (Bendsøe,

1989; Rozvany et al., 1992). The following SIMP method is utilized:

Ee(xe
x) = Emin + (xe

x)
η (E − Emin) (9)

where E is the Young’s modulus of the constituent material (assumed to be the same for

all elements), Ee is the Young’s modulus of element e, Emin is a small number to keep the

stiffness matrix positive definite when xe
x = 0, and η is the penalizing exponent. As η ap-

proaches a large number, e.g. 5, the intermediate densities become inefficient. For example,

suppose η = 3 and xe = 0.5. This penalizing model reduces the stiffness to about one fourth

of the original stiffness; but it does not have any effects on the volume fractions in Eq. (1).

Therefore, retaining elements with intermediate volume fractions becomes inefficient. This

model thus helps optimizers approach a 0/1 solution. It is worth mentioning that this penal-
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ization strategy is only appropriate for binary variables, or generally variables that should

take one of only two possible values in the final solution. The variables xt and xr are not

necessarily at their bounds in the optimal solution (a wide range of elements areas should

be allowed); thus, penalizing these variables with this approach would unreasonably bias the

optimal design toward solutions with only extremely small or extremely large elements. This

justifies the introduction of xx as the penalization variable. One should nevertheless note

that there is no guarantee that existing GB methods converge to global minima; rather, they

may capture local minima. Among these local minima, some of them may be more desirable.

For example, solutions with fewer elements may be of interest for ease of fabrication. To

bias the optimizer towards solutions with relatively few elements, a penalty function can be

added to the objective function in Eq. (1) as follows:

min
x

(1 + ωpnel (xx)) ρ (x) = (1 + ωpnel (xx))
∑

∀e∈Ω

xe
xv

e (xc)

V Ω
(10)

s.t. CΩ
E (x) ≤ αECE (11)

CΩ
G (x) ≤ αGCG (12)

0 ≤ xe
x ≤ 1 ∀e ∈ Ω (13)

0 < xmin ≤ xe
t ≤ 1 ∀e ∈ Ω (14)

0 < xmin ≤ xe
r ≤ 1 ∀e ∈ Ω (15)

where CE and CG are the compliances of the design domain entirely filled with the constituent

material and subjected to uniaxial compressive and shear states of stress, respectively (see

section 2.2.2 for details), αE and αG express the prescribed minimum relative axial and

10



  

shear stiffness in non-dimensional form, respectively, ωp is a penalizing weight for existence

of each element, nel (xx) is the number of existing elements (i.e., elements for which xe
x > 0),

and xmin is a small number to keep the stiffness matrix positive definite. In these equations,

nel (xx) should be differentiable, since we aim to use a GB optimizer. Therefore, a regularized

Heaviside step function can be used to make nel (xx) a smooth function, defined as follows:

nel (xx) =
∑

∀e∈Ω

H(xe
x) (16)

where H is the regularized Heaviside step function (Guest et al., 2004) as

H (xe
x) = 1− exp (−βxe

x) + xe
x exp (−β) (17)

When β approaches infinity, the above function approximates the Heaviside function more

and more accurately. One may thus start with a small value of β, for example 1, and

gradually increase this parameter to a large value, for example 100, to gradually penalize

smaller values of xe
x.

2.2 Finite element formulation

2.2.1 Theory

The elastic stiffness (axial and shear) of the periodic lattice is calculated with the Finite

Elements method. The procedure is fully general and is applicable to both two-dimensional

and three-dimensional lattices, with appropriate choices of boundary conditions. As men-

tioned before, beam elements are used throughout to model axial and flexural deformation

of each lattice member. Once the global stiffness matrix K is assembled, the unknown nodal
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displacements and reaction forces can be obtained solving the following linear problem:







Kff (x) Kfg (x)

Kgf (x) Kgg (x)













df (x)

dg






=







ff (x)

fg (x)






(18)

where K is the stiffness matrix, d is the displacement vector, f is the force vector, and

subscripts f and g correspond to degrees of freedom that are free and prescribed, respectively.

In Eq. (18), df and fg (reactions) are unknown. We first solve the equation for df , i.e.

Kffdf = ff − Kfgdg; subsequently, fg can be easily obtained by the second equation, i.e.

fg = Kgfdf +Kggdg.

Although the algorithm generally converges to a unit cell architecture comprising very

slender members, the initial dense mesh can incorporate stocky elements (i.e., elements with

a slenderness ratio < 5). As shear deformation can be significant for these (thick) elements,

Timoshenko beam theory is used to obtain bending stiffness. The following shear coefficient

is recommended for hollow tubes to accurately model shear deformation (Cowper, 1966):

κe
G =

6 (1 + ν) (1 + αe
r)

2

(7 + 6ν) (1 + αe
r)

2 + (20 + 12ν)αe
r
2

(19)

where κe
G is the shear coefficient for element e, ν is the Poisson’s ratio of the constituent

material, and αe
r = 1− te/re.

2.2.2 Compliance calculations

Once the nodal displacements and the reaction forces are obtained from Eq. 18, the com-

pliance of a design within design domain Ω can be calculated with the following generalized
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formulation (Niu et al., 2011)

CΩ (x) = fTf (x)df (x)− fTg (x)dg (20)

This formulation can be used for both axial and shear stiffness, with the appropriate

choice of applied displacements and boundary conditions. For generality, the boundary con-

ditions are presented in three dimensions, rendering the algorithm presented herein capable

of optimizing 3D lattices. Reduction to the 2D case is trivial and is represented in figure

1. A prismatic unit cell is assumed, with dimensions LX , LY , and LZ along the X, Y , and

Z directions, respectively. As the desired unit cell architecture is required to have reflec-

tion symmetry about the X, Y , and Z axes, the design domain Ω is chosen as one eighth

(one quarter for 2D case) of the lattice unit cell. The compliance of the design domain

under uniaxial loading along the Y direction can be calculated with the following prescribed

displacements and boundary conditions (Li, 2008):

uX |X=0 = 0, uX |X=LΩ

X

= εXXL
Ω
X

uY |Y=0 = 0, uY |Y=LΩ

Y

= εY YL
Ω
Y

uZ |Z=0 = 0, uZ |Z=LΩ

Z

= εZZL
Ω
Z (21)

where uX , uY , and uZ are translational degrees of freedom along X, Y , and Z, respectively,

LΩ
X , L

Ω
Y , and LΩ

Z are the dimensions of the design domain Ω and εXX , εY Y and εZZ are the

normal strains along X, Y , and Z, respectively. It should be noted that εY Y is the prescribed

(applied) uniform strain along the Y axis, whereas εXX and εZZ are the resulting uniform

strains along the X and Z axes required to ensure a one-dimensional state of stress along
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the Y direction. In FEM modeling, only one equation number (degree of freedom number)

is used for all translational degrees of freedom along these directions at X = LΩ
X and Z = LΩ

Z

in order to ensure a uniform strain distribution at these boundaries. The rotational degrees

of freedom are chosen to be compatible with the translational degrees of freedom for axial

stiffness at these boundaries and are as follows:

θY,Z |X=0
= 0, θY,Z |X=LΩ

X

= 0

θX,Z |Y=0
= 0, θX,Z |Y=LΩ

Y

= 0

θX,Y |Z=0
= 0, θX,Y |Z=LΩ

Z

= 0 (22)

where θX , θY , and θZ are rotational degrees of freedom about the X, Y , and Z axes, respec-

tively. With this choice of boundary conditions, satisfying the constraint in Eq. 11 is exactly

equivalent to prescribing a minimum for the Young’s modulus of the lattice (Elattice), i.e.

αE ≤ Elattice/E, with E the Young’s modulus of the constituent material.

The compliance of the design domain under uniaxial shear in the XY plane (i.e., lateral

translation in the X direction of the plane Y = LΩ
Y ) can be calculated with the following

prescribed displacements and boundary conditions (Li, 2008):

uY,Z |X=0
= 0, uY,Z |X=LΩ

X

= 0

uX,Z |Y=0
= 0, uX |Y=LΩ

Y

= γY XL
Ω
Y , uZ |Y=LΩ

Y

= 0

uZ |Z=0 = 0, uZ |Z=LΩ

Z

= 0 (23)
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and their corresponding compatible rotational degrees of freedom are

θX |X=0 = 0, θX |X=LΩ

X

= 0

θY |Y=0 = 0, θY |Y=LΩ

Y

= 0

θX,Y |Z=0
= 0, θX,Y |Z=LΩ

Z

= 0 (24)

With this choice of boundary conditions, satisfying the inequality in Eq. 12 is exactly

equivalent to imposing a minimum for the shear modulus of the lattice (Glattice), i.e., αG ≤

Glattice/G, with G the shear modulus of the constituent material.

While the boundary conditions presented in Eqs. (21) - (22) and Eqs. (23) - (24) allow

enforcement of axial and shear stiffness constraints along specific directions, one can easily

retrieve boundary conditions for all other stiffness components.

It is however worth noting that only half of the weight and stiffness of elements whose

both ends lie at the same boundary should be considered in Eqs. (10) and (11) - (12), as

these elements are shared with other unit cells within a periodic lattice. Boundary conditions

presented in Eqs. (21) - (22) and Eqs. (23) - (24) are individually applied to the lattice to

evaluate Eq. (11) and Eq. (12), respectively.

Figure 1 illustrates the boundary conditions required to model 1/4 of a 2D design domain

for evaluating the axial compliance along Y axis and shear compliance in the plane XY .

Therefore, uZ and θX,Y are inactive for these boundary conditions. Again, notice that

although the translational degrees of freedom at X = LΩ
X in figure 1a are free, a single

equation number should be used for these degrees of freedom to ensure uniform strain along

the X direction.

It is worth mentioning that the proposed approach for the extraction of axial and shear

15



  

X

Y

(a) BC’s for axial stiffness

X

Y

(b) BC’s for shear stiffness

Figure 1: Boundary Conditions (BC) for a 2D lattice used to evaluate (a) Compliance
corresponding to the axial stiffness constraint, using uniform prescribed translation along Y
direction at Y = LΩ

Y ; (b) Compliance corresponding to the shear stiffness constraint, using
uniform prescribed translation along the X direction at Y = LΩ

Y .

moduli only requires two analyses, while the conventional homogenization approach (Bour-

gat, 1979; Guedes and Kikuchi, 1990; Sigmund, 1994) requires 3 and 6 distinct analyses in 2D

and 3D respectively, to fully characterize the unit cell elastic properties. Furthermore, the

proposed approach allows modeling one quarter of unit cell; given that the cost of inverting

the stiffness matrix is cubic in the number of degrees of freedom, this reduces the computa-

tional cost 64-fold (1/43 ). Therefore, compared to the classic homogenization algorithm, the

proposed approach decreases the computational cost by roughly two orders of magnitudes,

i.e. 2/3× 1/43; the advantage would be even larger in 3D.

2.3 Sensitivities with respect to design variables

The Method of Moving Asymptotes (MMA) (Svanberg, 1987, 1995) is used to solve the

structural topology optimization problem. As in any Gradient-Based (GB) approach, the
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key step in the optimization process is efficiently computing derivatives of the objective

functions and constraints. Since topology optimization problems are commonly large-scale,

using traditional numerical methods such as the finite difference method is not numerically

efficient. We thus use an analytical method to compute derivatives efficiently.

In deriving the derivatives of functions in Eqs. (10) - (12) with respect to design variables,

two groups of functions can be recognized. One group is explicitly a function of design

variables, for which derivatives are straightforward to compute. In Eq. (10), nel and ρ are

explicitly functions of design variables, i.e. x, and their derivatives with respect to xe are:

dnel

dxe
x

=β exp (−βxe
x) + exp (−β) (25)

dnel

dxe
i

=0, i = r, t (26)

dρ

dxe
x

=
ve

V Ω
(27)

dρ

dxe
i

=
xe
x

V Ω

dve

dxe
i

, i = r, t (28)

where d/dxe
i denotes the (full) derivative with respect to xe

i . The dependence on design vari-

ables (x) in these equations is dropped for simplicity. The second group contains functions

that are not explicitly dependent on the design variables. For example, CΩ in Eq. (20) is a

function of df that is a function of inverse of Kff . This implicit dependence makes compu-

tation of the derivatives cumbersome. For such a function, we use the adjoint method and

consequently take the derivative of the function with addition of the equilibrium equation

with an arbitrary constant vector λλλ, i.e.

dCΩ

dxe
i

=
d

dxe
i

(

CΩ + λλλT (Kffdf +Kfgdg − ff )
)

, i = x, r, t (29)

17



  

By substituting Eq. (20) and Eq. (18) for fg into Eq. (29), and after some manipulations,

this equation can be rewritten as:

dCΩ

dxe
i

=

(

dfTf
dxe

i

− dT
g

dKfg

dxe
i

)

(df − λλλ) + λλλT dKff

dxe
i

df − dT
g

dKgg

dxe
i

dg

+
ddT

f

dxe
i

(Kffλλλ− (ff −Kfgdg)) , i = x, r, t (30)

To avoid computation of ddf/dx
e
i , the last term on the right hand side of Eq. (30) can

be eliminated by choosing λλλ as:

λλλ = −K−1
ff (ff −Kfgdg) = −df (31)

Eq. (29) can then be rewritten as:

dCΩ

dxe
i

= 2
dfTf
dxe

i

df − dT dK

dxe
i

d, i = x, r, t (32)

Because compliance calculations require no applied force (see section 2.2.2), this equation,

expressed at elemental level, simplifies to:

dCΩ

dxe
i

= −dT dK

dxe
i

d = −deT dK
e

dxe
i

de, i = x, r, t (33)

2.4 Solution algorithm

The optimization problem stated in Eqs. (10) - (15) is solved with the following algorithm:

1. Start with an initial guess for the design variables (x).

2. Form the element stiffness matrices, Ke, and assemble them into the global stiffness
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matrix K.

3. Solve Eq. (18) for unknown displacement df and unknown force (reaction) fg.

4. Compute the sensitivity of the objective function in Eq. (10) and constraints in Eqs.

(11) - (12) with respect to the design variables x using Eqs. (25) - (28) and (33).

5. Update the design variables using the Method of Moving Asymptotes (MMA) (Svan-

berg, 1987, 1995).

6. Check convergence; if not converged and the iteration not exceeded maximum iteration,

for example 200, go to step (2).

7. Check continuation step for η (and β if ωp 6= 0); if this (these) parameter(s) has (have)

not reached its (their) maximum value(s) and a satisfactory solution is not reached do

continuation step on that (those) parameter(s) and go to step (2).

8. If there is any element with xe
x < xxmin remove those elements from design domain,

reset η (and β if ωp 6= 0) to its (their) initial value(s), and go to step (1); otherwise

stop.

where in step (8), xxmin is a small number, for example 0.001, used as a threshold to re-

move inefficient elements from the periodic lattice. One may notice that the same constant

threshold for element removal can be applied for any combinations of compressive and shear

stiffness constraints. This is a clear advantage of utilizing the variable xx for element removal

(the bounds on xx are always 0/1, regardless of the applied stiffness constraints).

In all problems, MMA, which is efficient for a large scale optimization problem with few

constraints, starts from a uniform distribution of design variables, for example xe
i = 1 ∀e ∈
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Ω and i = x, r, t, in step (1). A number of different initial guesses are also utilized for each

optimization problem as explained in section 3.2. Finally, notice that this specific optimizer

requires the application of fixed bounds on each design variable. Therefore, the proposed

definition for the thickness variable in Eq. (5) avoids the need of imposing the additional

constraint te ≤ re, as the radius changes. It is noted that we can use any gradient-based

optimizer instead of MMA in step (5).

3 Minimum density 2D lattices with prescribed Young’s

and Shear moduli

The optimization algorithm described in section 2 (Eqs. (10) - (15)) is applied to the

investigation of the optimal topology of 2D periodic lattices for minimum relative density

under simultaneous enforcement of compressive and shear stiffness constraints (i.e., specified

minimum acceptable values of Young’s and Shear moduli). The cross-section of each lattice

member is assumed to be circular and hollow, and the base material is isotropic with Poisson’s

ratio (ν) equal to 0.3. The effect of the magnitude of the applied compressive and shear

stiffness constraints on the optimal topology (and the minimum density) of the lattices is

initially discussed. Subsequently, the effects of mesh connectivity, domain size aspect ratio,

mesh density, maximum allowable element radius and coefficient of penalization on number

of elements are investigated.

The Young’s and shear moduli constraints in Eqs. (11)-(12), i.e. αE and αG, are chosen to

be all possible combinations of {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}, requiring the solution

of a total of 36 optimization problems. For the calculations of Young’s and Shear Modulus,

the boundary conditions stated by Eqs. (21)-(22) and Eqs. (23)-(24) - suitably reduced to
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the 2D case (see figure 1) - are applied, respectively. For each optimization iteration, two

finite element analyses are performed, one to impose the Young’s modulus constraint and

one to impose the shear modulus constraint.

The penalization coefficient against the number of elements in the final mesh (Eq. (10))

obviously has a large effect on the optimal designs (both in terms of optimal relative density

and optimal architecture). Although a full investigation of the effect of this parameter on

the optimal lattice topologies is beyond the scope of this investigation, a suitable value

for this parameter is chosen as follows. Optimization problems are solved for the cases

ωp = 0, ωp = 0.001, and ωp = 0.01. Not surprisingly, the simplicity of the optimal topology

is proportional to the value of ωp; but although the relative densities (objective function)

for the cases ωp = 0 and ωp = 0.001 are nearly identical (with the latter having 80% fewer

elements in the final unit cell architecture), designs obtained with ωp = 0.01 are considerably

heavier. Hence, a value of ωp = 0.001 is used for all subsequent calculations.

3.1 Initial mesh

As discussed in section 2.2.2, only a quarter of a unit cell is modeled, thus imposing two axes

of symmetry on the unit cell topology. Two fundamentally different initial mesh topologies

are possible: (a) a locally connected mesh (figure 2a), where lattice nodes are connected by

vertical, horizontal, and diagonal lattice elements to their nearest neighbors with every other

node in the horizontal and vertical directions is missing the diagonal connections, and (b)

a fully connected mesh (figure 2b), where each pair of nodes is connected by one element

(overlapping elements are removed as needed). The specific mesh illustrated in figure 2a

has 11 × 11 lattice nodes, for a total of 320 lattice elements. The fully connected mesh in

figure 2b consists of a 5 × 5-node lattice, for a total of 240 lattice elements. To attempt
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(a) Locally connected mesh (b) Fully connected mesh

Figure 2: Initial meshes used to model one quarter of a square unit cell; (a) locally connected
mesh, where lattice nodes are connected by vertical, horizontal, and diagonal lattice elements
to their nearest neighbors with every other node in the horizontal and vertical directions is
missing the diagonal connections, (b) fully connected mesh, where each pair of nodes is
connected by one element (overlapping elements are removed as needed).

a meaningful comparison, the number of the nodes in each mesh is chosen to result in

roughly equivalent number of elements. Mesh sensitivity studies on both ground structures

are reported in the appendix. For both meshes, each individual lattice element is modeled

with a single Timoshenko beam finite element; the maximum radius, rmax, is set to Le
min/5

and maintained fixed during the optimization, where Le
min is the length of shortest element

within the mesh, to ensure that the Timoshenko beam theory can be applied. The locally

connected mesh automatically guarantees that elements cross only at the lattice nodes on

the square grid, whereas in the fully connected mesh a large number of additional element

crossings appear; for the sake of simplicity, only crossings that occur at the square lattice

grid points are assumed to be lattice nodes. This simplification is conservative, in the sense

that introducing lattice nodes at each crossing would result in a stiffer structure.
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Figure 3: One quarter of the optimized unit cells for select combinations of the pair (αE, αG),
for the locally connected mesh in figure 2a. The color of the element represents its cross-
section. Different color scalings are used for different optimized designs.
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Figure 4: One quarter of the optimized unit cells for select combinations of the pair (αE, αG),
for the fully connected mesh in figure 2b. The color of the element represents its cross-section.
Different color scalings are used for different optimized designs.
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3.2 Minimum density designs

Figure 3 displays one quarter of the optimized unit cells for select combinations of αE and

αG, for the locally connected mesh in figure 2a. Clearly, very few elements remain in the final

domain. The color of the element represents its cross-sectional area (blue=thin, red=thick).

Different color scalings are used for different optimized designs, and thus members with the

same color in different optimized designs do not necessarily have the same cross-sectional

area. Notice that in figure 3a all elements in each topology have the same cross-sectional

area, while in figure 3b two group of elements emerge: a group of ”weak” elements (blue), and

a group of ”strong” elements (red). Often an extra group of intermediate elements develops,

as illustrated in figure 3c. Moreover, in a few optimized designs, the cross-sectional area of

elements changes along collinear elements, resembling a continuous taper, as shown in figure

3d along the vertical elements.

Figure 4 displays one quarter of the optimized unit cells for select combinations of αE and

αG, for the fully connected mesh in figure 2b. Similarly to the previous mesh connectivity, in

some optimized designs, only one group of elements exist, see e.g. figure 4a; in most of them,

two groups of ”weak” and ”strong” elements develops, as shown in in figure 4b; and finally,

in some designs, three groups of elements emerge (”weak”, ”intermediate” and ”strong”),

as shown in figure 4c. Also for this mesh connectivity, examples of collinear elements with

varying cross-sectional area appear, as shown in the diagonal elements in figure 4d.

Optimal topologies are extracted for all combinations of (αE, αG), using uniform initial

guesses based on the ground topologies shown in figure 2. Some combinations of parameters

resulted in relatively simple topologies, whereas others yielded much more complex designs.

To minimize the risk of converging to local minima, for each combination of (αE, αG), the

optimization process is subsequently repeated using the optimal topologies for all other (αE,
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αG) combinations as initial guesses. The topology with the minimum objective function is

then chosen as the final solution for each (αE, αG). We notice that although this procedure

allows dramatic simplification of the optimal topologies, for every case in which the initial

optimal topology is replaced with a simpler one, the density of the final design is very close

to that of the initial optimum, confirming that this problem possesses a number of local

minima with nearly equivalent performance.

Some general observations can be drawn from the optimal designs of figures 5-6. These

conclusions hold for both mesh connectivities.

• Most topologies include two families of bars: vertical and diagonal members; the for-

mer are clearly efficient in compression, whereas the latter are optimal in shear. For

situations where αG >> αE, the bending stiffness of diagonal members is sufficient to

meet the axial stiffness constraint on the lattice, and no vertical elements appear.

• Between 16% and 28% of optimized designs all elements have the same cross-sectional

area, between 61% and 69% two groups of elements (”weak and ”strong”) develop,

and for the remaining 11% to 14% of the cases, three groups of elements (”weak”,

”intermediate” and ”strong”) emerge.

• The same topology is optimal for all designs with the same ratio of shear to axial

stiffness (i.e., same αG/αE) - albeit with different elements size - except for extremely

stiff designs; for these cases, the upper bound on element areas is achieved and more

complex optimal topologies are identified.

• There are few patterns that can be reproduced by swapping weak and strong elements,

such as optimized designs for (αE, αG) = (10−6, 10−6) and (αE, αG) = (10−6, 10−5) in

figure 5.
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• Although not all elements in the same class (e.g., ”strong”) have identically the same

area, a clear banding of areas in one, two or three groups curiously appears, as clearly

illustrated in figure 5.

Finally, notice that the existence of non-strong elements in the optimal solution (partic-

ularly at high stiffness), in spite of the penalization they receive from ωp in Eq. (10), is a

testament of the structural benefit of hierarchy and complexity. Moreover, it is worth men-

tioning that the vast majority of these optimized designs are stretching dominated lattices,

for which the shape of the member cross-section is inconsequential. Hence the results and

conclusions of this work can be applied almost identically to 2D lattices of any cross-section.

The relative density of optimized lattices for the local mesh connectivity is displayed in

figure 7. Although the actual lattice topologies are significantly different for the local and

full mesh connectivities (see figs. 5 and 6), the relative densities are essentially identical in

both cases and the density map for the full connectivity mesh would be indistinguishable

from that of figure 7. For both mesh connectivities, most of equipotential contour lines in

figure 7 are slightly longer along the αE axis, indicating that the shear constraint is generally

harder to satisfy. For all combinations of (αE, αG), the shear constraint is active, while for

specific combinations, the axial stiffness constraint can be inactive. This is the reason why

the same design emerges for the first four optimized patterns in the last row of figure 5. For

example, the optimized design for (αE, αG) = (10−6, 10−1) in figure 5 is axially about 900

times stiffer than required.

Figure 8 displays the ratio of the axial moduli in the unconstrained (X) and constrained

(Y ) directions for the optimized designs shown in figures 5-6. Notice that optimized lattices

with high shear to axial stiffness ratio, i.e. αG ≥ αE, have nearly cubic symmetry. This is

due to the fact that these lattices possess strong diagonal elements, which provide equal axial

26



  

αE = 10−6
αE = 10−5

αE = 10−4
αE = 10−3

αE = 10−2
αE = 10−1

αG = 10−6

 

 

3.18×10−5

3.25×10−5

3.32×10−5

3.39×10−5

3.46×10−5

    
 

 

3.46×10−5

1.06×10−4

1.76×10−4

2.47×10−4

3.18×10−4

    
 

 

3.46×10−5

1.62×10−3

3.20×10−3

4.78×10−3

6.37×10−3

    
 

 

3.46×10−5

1.59×10−2

3.18×10−2

4.78×10−2

6.37×10−2

     

 

3.46×10−5

1.59×10−1

3.18×10−1

4.77×10−1

6.37×10−1

    
 

 

1.73×10−5

1.99×10−1

3.98×10−1

5.97×10−1

7.96×10−1

    

αG = 10−5

 

 

3.18×10−5

1.10×10−4

1.89×10−4

2.68×10−4

3.46×10−4

    
 

 

3.18×10−4

3.25×10−4

3.32×10−4

3.39×10−4

3.46×10−4

    
 

 

3.46×10−4

1.06×10−3

1.76×10−3

2.47×10−3

3.18×10−3

    
 

 

3.46×10−4

1.62×10−2

3.20×10−2

4.78×10−2

6.37×10−2

     

 

3.46×10−4

1.59×10−1

3.18×10−1

4.78×10−1

6.37×10−1

    
 

 

1.74×10−4

2.01×10−1

4.02×10−1

6.04×10−1

8.05×10−1

    

αG = 10−4

 

 

2.94×10−5

8.88×10−4

1.75×10−3

2.61×10−3

3.46×10−3

    
 

 

3.18×10−4

1.10×10−3

1.89×10−3

2.68×10−3

3.46×10−3

    
 

 

3.18×10−3

3.25×10−3

3.32×10−3

3.39×10−3

3.46×10−3

    
 

 

3.46×10−3

1.06×10−2

1.76×10−2

2.47×10−2

3.18×10−2

     

 

3.46×10−3

8.22×10−2

1.61×10−1

2.40×10−1

3.18×10−1

    
 

 

1.76×10−3

2.21×10−1

4.41×10−1

6.61×10−1

8.80×10−1

    

αG = 10−3

 

 

0.00× 10
0

8.66×10−3

1.73×10−2

2.60×10−2

3.46×10−2

    
 

 

2.94×10−4

8.88×10−3

1.75×10−2

2.61×10−2

3.47×10−2

    
 

 

3.15×10−3

1.10×10−2

1.89×10−2

2.68×10−2

3.46×10−2

    
 

 

3.18×10−2

3.25×10−2

3.32×10−2

3.39×10−2

3.46×10−2

     

 

3.46×10−2

1.06×10−1

1.76×10−1

2.47×10−1

3.18×10−1

    
 

 

1.98×10−2

2.62×10−1

5.04×10−1

7.45×10−1

9.87×10−1

    

αG = 10−2

 

 

0.00× 10
0

8.66×10−2

1.73×10−1

2.60×10−1

3.46×10−1

    
 

 

0.00× 10
0

8.66×10−2

1.73×10−1

2.60×10−1

3.46×10−1

    
 

 

2.87×10−3

8.88×10−2

1.75×10−1

2.61×10−1

3.47×10−1

    
 

 

2.13×10−2

1.03×10−1

1.85×10−1

2.67×10−1

3.49×10−1

     

 

3.05×10−1

3.15×10−1

3.25×10−1

3.36×10−1

3.46×10−1

    
 

 

1.71×10−1

3.50×10−1

5.28×10−1

7.07×10−1

8.86×10−1

    

αG = 10−1

 

 

0.00× 10
0

2.16×10−1

4.33×10−1

6.49×10−1

8.66×10−1

    
 

 

0.00× 10
0

2.16×10−1

4.33×10−1

6.49×10−1

8.66×10−1

    
 

 

0.00× 10
0

2.16×10−1

4.33×10−1

6.49×10−1

8.66×10−1

    
 

 

8.08×10−1

8.37×10−1

8.66×10−1

8.95×10−1

9.24×10−1

     

 

6.57×10−2

1.39×10−1

2.12×10−1

2.85×10−1

3.58×10−1

    
 

 

3.37×10−1

5.03×10−1

6.69×10−1

8.34×10−1

1.00×100

    

Figure 5: 3× 3 optimized patterns produced by replication of the optimized symmetric unit
cell patterns for all combinations of of the pair (αE, αG) for the locally connected mesh
shown in figure 2a. The color of the element represents its cross-sectional area (blue=thin,
red=thick). Different color scalings are used for different optimized designs. Each color bar
displays the cross-sectional area of each element, normalized with maximum allowable area,
i.e. πr2max.
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Figure 6: 3× 3 optimized patterns produced by replication of the optimized symmetric unit
cell patterns for all combinations of of the pair (αE, αG) using the fully connected mesh
shown in figure 2b. The color of the element represents its cross-sectional area (blue=thin,
red=thick). Different color scalings are used for different optimized designs. Each color bar
displays the cross-sectional area of each element, normalized with maximum allowable area,
i.e. πr2max.
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Figure 7: Relative density, ρ, of the optimized unit cells obtained using the locally and fully
connected meshes in figure 2 for designs shown in figures 5 and 6.

stiffness in the X and Y direction by bending. On the contrary, for topologies with αG <

αE, these diagonal members are weak and their effect on axial stiffness becomes negligible

compared to that of the axial members. As axial members are only aligned with the Y

direction (for which constraints are applied), this results in enormous difference between the

two axial moduli. As an example, optimized topologies for αG ≥ 10000αE (top left quadrant

in figure 8) have the same axial moduli in both directions, whereas for 10000αG ≤ αE

(bottom right quadrant in figure 8) the axial modulus in the X direction is more than four

orders of magnitude lower than that in Y direction.

For further investigation on effects of the domain aspect ratio, the maximum cross-

section radius, and the number of initial elements in the mesh, the reader is referred to the

appendices.
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(a) Locally connected mesh
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(b) Fully connected mesh

Figure 8: Ratio of axial moduli of the lattice in the X and Y directions, EX/EY , with X the
unconstrained direction and Y the constrained direction, for the optimized lattices shown in
(a) figure 5; (b) figure 6.

3.3 Comparison with Hashin-Shtrickman bounds and classic isotropic

lattices

In order to investigate the efficiency of the results shown in figure 5, we compare them with

Hashin-Shtrikman (H-S) bounds for isotropic two-phase (solid-void) composites, that can be

obtained as follows (Hashin and Shtrikman, 1963):

αHS
E 6

ρ

3− 2ρ
(34)

αHS
G 6

ρK

(1− ρ) (K + 2G) +K
(35)

where αHS
E and αHS

G are the relative axial and shear moduli of the cellular material at the

H-S bounds, respectively, G and K are the shear and the bulk moduli of the constituent

material, respectively, and ρ denotes the relative density of the composite material.
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As optimized designs shown in figures 5-6 are not required to be isotropic, this comparison

helps quantifying the effect of anisotropy on the mechanical efficiency of the lattices. It is

worth noticing that the hollow circular lattices discussed in this work are not proper 2D two-

phase materials. Nonetheless, consider that for nearly any value of the shear or compressive

stiffness constraints, the lattices are fundamentally stretching dominated (at least along the

stiffer loading direction). As such, the stiffness contribution that arises from member bending

is insignificant. This indicates that nearly the same stiffness can be achieved with prismatic

cross-sections, where all the members have the same out-of-plane thickness. This would be

equivalent to a 2D two-phase (solid-void) system, for which the H-S bounds would apply.

Figure 9 shows the relative densities of the topology optimized lattices depicted in figure 5,

normalized against the relative density of the H-S bounds. The key conclusion is that for

all combinations of axial and shear moduli, the (not-necessarily isotropic) lattices obtained

in this work (and depicted in figure 5) are more mechanically efficient than the best (H-S)

isotropic materials.

The dashed line in figure 9 illustrates the limit of existence for isotropic materials with

Young’s and shear moduli simultaneously at the bound; that is, no isotropic material exists

with combinations of relative Young’s and shear moduli that lie below this line; notice that

this is the region where the optimized anisotropic lattices extracted in this work show the

largest advantage over optimal isotropic lattices.

It is instructive to compare the performance of our optimized lattices with that of classic

2D lattice designs, in particular hexagonal, fully triangular , and Kagomé designs (Chris-

tensen, 1995; Gibson and Ashby, 1999).

This is accomplished in figure 10 for lattices with a relative density of ρ = 0.15. The

values of both moduli for hexagonal and fully triangular have been obtained by (Christensen,
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1995; Gibson and Ashby, 1999)

αH
E =

3

2
ρ3 (36)

αH
G =

3 (1 + ν)

4
ρ3 (37)

αFT
E =

1

3
ρ (38)

αFT
G =

1 + ν

4
ρ (39)

where αH
E and αH

G are relative axial and shear moduli of hexagonal design and αFT
E and

αFT
G are relative axial and shear moduli of fully triangular design, respectively. It is worth

mentioning that the elastic properties of a Kagomé design are the same as those of a fully

triangular lattice(Christensen, 2000).

Obviously, Kagomé and fully triangular lattices are the most efficient in the group, as

they are both stretching dominated architectures (the same is not true for the hexagonal

design, that is bending dominated under the applied loads). Notice that the shape of the

cross-section is important only for bending dominated lattices: a hollow cross-section (which

would result in a more fair comparison with the lattices studied in this work) would elevate

the stiffness of the hexagonal lattice beyond what displayed in figure 10, i.e. relative moduli

obtained by Eqs. (36)-(37), without modifying the performance of the triangular and Kagomé

lattice, i.e. relative moduli obtained by Eqs. (38)-(39). Nonetheless, the hexagonal lattice

will always be less stiff than the other two isotropic designs. It is also worth mentioning that

optimized anistropic lattices with a relative density of 15% can be designed with the same

Young’s modulus as a Kagomé lattice but with shear modulus 44% higher; or alternatively,

the same shear modulus but Young’s modulus 64% higher; or Young’s modulus and shear
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Figure 9: Normalized relative density, ρ, of the optimized unit cells shown in figure 5 against
H-S bounds for isotropic two-phase (solid-void) composites. There exists no isotropic ma-
terial whose Young’s modulus and shear modulus are at the bounds of elastic constraints
represented in Eqs. (11)-(12) below the dashed line.

modulus 31% and 23% higher, respectively. Much larger benefits are possible for situations

where the required shear modulus is much higher than the required Young’s modulus or

viceversa.

3.4 Effect of hierarchy

Many of the the optimal topologies in figures 5 and 6 are obviously hierarchical, i.e., they

contain sub-lattices with elements of vastly different cross-sections. As manufacturing of

hierarchical designs presents obvious challenges versus simpler geometries, it is instructive

to assess the usefulness of hierarchy in achieving lightweight lattices with prescribed elastic

properties. In order to probe the importance of topological hierarchy, we repeat the optimiza-

tion studies leading to the topologies in figure 5 and figure 6, imposing the conditions that

all elements in the lattice have the same radius and thickness, i.e., the same cross-sections.
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Figure 10: Relative axial and shear moduli of hexagonal fully triangular and Kagomé lattices,
together with the optimized lattices extracted using the proposed method. All lattices share
the same relative density of 15%, i.e. ρ = 0.15.

The relative density of the uniform cross-section designs, normalized against the corre-

sponding density of optimized hierarchical structures presented in figure 5, is depicted in

figure 11. Notice that most optimized uniform cross-section topologies for combinations of

axial and shear moduli where αE ≤ αG have similar or slightly larger relative densities com-

paring to hierarchical topologies. This is not surprising, as some topologies with αE ≤ αG in

figures (5, 6) already had uniform thickness and radius. On the other hand, for the region

where αE � αG, using uniform cross-sections leads to significantly heavier designs (by more

than 30%). The choice of initial mesh has a larger effect on the density of optimal uniform

cross-section designs than for variable cross-section lattices. For locally connected meshes,

optimized uniform cross-section structures with αE ≤ αG and αE � αG are respectively

0.2% and 29.9% heavier than variable cross-section designs; these numbers change to 3.9%

and 38.6% for the case of fully connected meshes.

From a manufacturing perspective, for the case αE ≤ αG, optimized lattices with uni-

form cross-sections might be more cost-effective than design with non-uniform thickness and
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(a) Locally connected mesh
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(b) Fully connected mesh

Figure 11: Normalized relative density, ρ, of the optimized unit cells with uniform thickness
and radius obtained using (a) the locally connected mesh in figure 2a; (b) the fully connected
mesh in figure 2b. All the values are normalized against corresponding values for optimized
structures shown in figure 5.

radius, at nearly the same performance. This conclusion is not entirely obvious, though, as

cross-section uniformity does not correlate with topological simplicity: most of the optimized

unit cells for uniform cross-section designs on average have about three times more elements

than for the non-uniform case. Ultimately, the optimal solution from a manufacturabil-

ity standpoint will depend on the manufacturing approach used and the relative values of

fabrication and material costs.

4 Conclusions

This paper investigates the optimal topology of lightweight two-dimensional periodic lattices

under simultaneous axial and shear stiffness constraints. The stiffness analysis is performed

with the Finite Elements method, on a unit cell consisting of a network of lattice elements

modeled as Timoshenko beams with a hollow circular cross-section. The method for stiffness

calculation is the same for 2D and 3D lattices, for both axial and shear stiffness, as long as
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appropriate boundary conditions are adopted. For each choice of axial and shear stiffness

constraints, minimum density lattice designs are identified with a topology optimization

algorithm; starting from a dense mesh of elements, the algorithm systematically emotes

inefficient elements and resizes the cross-section of the remaining ones, finally converging to

an optimal solution. The design variables in the optimization problem are existence of each

element and the geometric variables related to the hollow tube cross-section, i.e., element

thickness and radius. The objective function is the lattice relative density, weighted on the

number of elements to simplify the optimized structure. The algorithm developed here is

applied to the density minimization of 2D lattices subject to 36 combinations of axial and

shear stiffness constraints., spanning six orders of magnitude on Young’s and shear moduli

of the lattice.

In the optimized topologies, three groups of architectures emerge: (i) architectures where

all the elements have uniform cross-section (between 16% and 28% of the total); (ii) architec-

tures with two distinct sub-lattices, each consisting of elements with uniform cross-section

(between 61% and 69% of the total); and (iii) architectures with three or more distinct

sub-lattices, each with its own uniform cross-section (between 11% and 14% of the total).

Not surprisingly, the same topology is optimal for all designs with the same ratio of shear

to axial stiffness (i.e., same αG/αE) - albeit with different elements size - except for ex-

tremely stiff designs; for these cases, the upper bound on element areas is achieved and

more complex optimal topologies are identified. It is worth noting that even though all the

elements within the final optimal solutions share the same penalization from ωp regardless

of their cross-section, the appearance of non-strong sub-lattices in the optimal designs shows

their importance on the efficiency of the whole lattice and is ultimately a testament of the

structural benefit of hierarchy and complexity.
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By comparing the optimized solutions with the well-known H-S bounds, we show that

the optimized topologies are consistently lighter than the best isotropic cellular materials

(with weight savings between 67% and 5%). The advantage is more significant for required

combinations of axial and shear stiffness that are unattainable by isotropic materials, i.e.,

requirements on the Young’s modulus that are much more stringent than for the shear mod-

ulus. Furthermore, comparing optimized lattices with classic lattices, including hexagonal,

triangular, and Kagomé designs, shows that for a relative density of 15%, the optimal lat-

ticed identified in this work can be designed with 64% higher Young’s modulus for the same

shear modulus, or 44% higher shear modulus for the same Young’s modulus, or 31% and

23% higher Young’s and shear modulus, respectively.

Next, we examine the effect of the emerging hierarchy in the optimized designs, by

comparing the lattices extract in this work with designs optimized in the presence of a

uniform cross-section constraint. For conditions where αE ≤ αG, the effect of hierarchy is

negligible and uniform cross-section lattices perform nearly as well as hierarchical designs;

in contrast, for the region where αE � αG, imposing cross-section uniformity results in

significantly heavier designs.

Further mesh sensitivity studies are reported in the Appendix. An investigation in the

role of domain aspect ratio shows that square unit cells are most efficient if locally connected

initial meshes are used, whereas the domain aspect ratio plays a negligible role in the case

of fully connected initial meshes. It is also verified that the maximum cross-section radius

adopted, i.e. rmax, and the number of initial elements (mesh density) have minimal effects

on the optimized solutions.

This work shows that topologically optimized 2D lattices can be much more weight-

efficient than conventional designs for conditions where isotropy is not required, particularly
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when vastly different values of shear and Young’s modulus are imposed. The algorithm

presented here is equally applicable to the analysis of 3D lattices, although the visualiza-

tion of optimal topologies becomes more cumbersome. Possible future extension of the

present work will consider the problem of density minimization under simultaneous axial

and shear strength constraints, as well as simultaneous applications of stiffness and strength

constraints.
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Appendices

A Effect of domain size aspect ratio

The design domains for the initial meshes depicted in figure 2 are square. It is interesting to

explore the effect of the aspect ratio of the unit cell on the optimal topologies and relative

densities. Figure 12 shows locally connected initial meshes with four domain aspect ratios,

i.e αL = LΩ
X/L

Ω
Y = {0.50, 0.75, 1.50, 2.00}. Figure 13 depicts the relative density of optimized

unit cells with different domain aspect ratios, for all combinations of (αE, αG), normalized

with the relative densities of the optimal topologies for the square domain. Locally connected
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  (a) αL = 0.50 (b) αL = 0.75 (c) αL = 1.50 (d) αL = 2.00

Figure 12: Initial locally connected meshes used to model one quarter of a square unit cell
with different domain aspect ratios.

unit cells are used for all calculations. For the locally connected initial mesh shown in figure

2a, almost all the normalized relative densities are equal to or greater than 1, indicating that

the square domain, αL = 1.00, provides the best optimized topologies. The heavier relative

densities occur for αE ≤ αG. In general, the farther the domain from a square, the heavier

the resulting optimized topologies.

If a fully connected initial mesh is chosen (figure 14), the conclusions change. In this

case, regardless of the aspect ratio of the domain, topologies with diagonal bars oriented at

an angle close to 45◦ can always be extracted. As a result, the effect of the domain aspect

ratio on the relative density of the optimized topologies is negligible (figure 15).

B Effect of maximum radius (rmax)

In each optimization, the maximum radius (rmax) is set to Le
min/5. To explore the effect

of this parameter, here we reduce the maximum radius by a reduction coefficient, αr, vary-

ing from 0.50 to 0.90, and re-optimize the lattice designs for all combinations of the pair

of (αE, αG). As before, we optimize one quarter of the unit cell, using the initial locally

connected mesh shown in 2a. Figure 16 illustrates the relative densities, normalized against
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(d) αL = 2.00

Figure 13: Normalized relative density, ρ, against corresponding relative density of the
optimized unit cell for the square domain shown in 7 for optimized unit cells obtained using
the initial fully connected meshes shown in figure 12.

(a) αL = 0.50 (b) αL = 0.75 (c) αL = 1.50 (d) αL = 2.00

Figure 14: Initial fully connected meshes used to model one quarter of a square unit cell
with different domain aspect ratios.
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(c) αL = 1.50
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(d) αL = 2.00

Figure 15: Normalized relative density, ρ, against corresponding relative density of the
optimized unit cell for the square domain shown in 6 for optimized unit cells obtained using
the initial fully connected meshes shown in figure 14.
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(c) αr = 0.90

Figure 16: Normalized relative density, ρ, against corresponding relative density of the
optimized unit cell for the designs shown in 6 for optimized unit cells obtained using the
initial locally connected meshes shown in figure 2a.

the corresponding relative density of the optimized unit cell for the square domain shown

in 6, for optimized unit cells with three different values of the radius reduction coefficient.

The results clearly show that the effect of maximum radius is not significant: on average,

applying a radius reduction coefficient equal to 0.50, 0.70, and 0.90 leads to designs that are

0.35%, 0.18%, and 0.17% denser than for the case αr = 1.00, respectively.

C Effect of number of initial elements (initial nel)

The last parameter that is investigated is the initial mesh density, i.e., the number of initial

elements in the mesh (initial nel). In order to study its effect, we use three different initial

domains: (i) the initial 11×11-node locally connected mesh shown in figure 2a, consisting of

320 beam elements; (ii) a 5× 5-node locally connected mesh with 56 beam elements (figure

17a); and (iii) a 21 × 21-node locally connected mesh, consisting of 1240 beam elements

(figure 17b). For all three meshes, rmax = LΩ
X/100 is chosen.

The relative densities of the optimized designs for the two meshes depicted in figure 17
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(a) 5 × 5-node locally connected
mesh

(b) 21× 21-node locally connected
mesh

Figure 17: Initial meshes used to model one quarter of a square unit cell; (a) A 5× 5-node
locally connected mesh consisting of 56 beam elements, (b) A 21×21-node locally connected
mesh consisting of 1240 beam elements.

(cases (ii) and (iii) above) are reported in figure 18, normalized by the relative densities of

mesh (i). Notice that the optimized designs for the 5 × 5-node locally connected mesh do

not fulfill the stiffness constraint when either of αE or αG is equal to 10−1; but otherwise,

these three meshes converge to the same relative density for all different combinations of

(αE, αG). The conclusion is that the results are not mesh density sensitive, and therefore,

using a mesh with more nodes and elements is not required.
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