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ABSTRACT – A recent study of a porous ductile material under pure shear has indicated that no failure is 
predicted, whereas a number of micro-mechanical analyses for simple shear have shown that a maximum shear 
stress is reached and failure occurs. Both simple shear and pure shear are characterized by zero stress triaxiality 
and in both types of stress states the analyses show that the voids collapse to micro-cracks. The possibility of 
failure in pure shear is further investigated here by studying the effect of an initial imperfection in the form of a 
row of circular cylindrical voids inclined to the principal tensile stress. A number of previous investigations have 
shown that such imperfections can lead to plastic flow localization in a shear band and subsequently lead to 
void- sheet fracture inside the band. The present analyses confirm that the imperfection results in localization 
failure, even at moderate or rather low stress triaxiality. But in pure shear, with zero stress triaxiality, no failure 
is predicted. Initially the imperfection results in increasing shearing along the row of voids, but this tendency 
towards increasing shearing is interrupted if the voids collapse to micro-cracks. For the largest imperfection 
considered, i.e. a relatively large ratio of the void radius to void spacing, there is still a range of stress states in 
the vicinity of pure shear, where no localization is predicted, and for smaller imperfections this range is larger. 
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1. INTRODUCTION 

 

In ductile metals fracture typically occurs by the nucleation of voids that subsequently grow 

to coalescence. Sometimes, when shear localization takes place before final failure, voids 

grow to coalescence while they are being smeared out in what is called void-sheet failure. 

Such void-sheet failure was early observed in experiments (Rogers, 1960). In early 

applications of the Gurson model it was found that shear localization is predicted (Yamamoto, 

1978; Tvergaard, 1981; Saje et al., 1982) resulting in subsequent void-sheet failure, both in 

cases where the bands initiate at a bifurcation from a homogeneous stress state and in cases 

where they grow from an imperfection. For a metal with two populations of voids the Gurson 

model has been used (Tvergaard, 1982) to show the failure mechanism, where localization 

occurs between two larger voids, leading to local void-sheet failure between the larger voids. 

There has also been numerical studies for a single layer of voids in a ductile solid (Tvergaard, 

1989; Barsoum and Faleskog, 2011; Tekoglu et al., 2014), which directly show that this 

imperfection can result in void-sheet failure. Many research articles on ductile fracture 
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predictions have been summarized in a number of reviews (Garrison and Moody, 1987; 

Tvergaard, 1990; Benzerga and Leblond, 2010).  

        Recently there has been increasing interest in the behaviour of voids under low stress 

triaxiality. Barsoum and Faleskog (2007a) have carried out full 3D analyses for shear 

specimens containing spherical voids in order to model their experiments (Barsoum and 

Faleskog, 2007b) on ductile fracture in a double notched tube specimen loaded in combined 

tension and torsion. In a number of plane strain cell model analyses for a material containing 

a periodic array of circular cylindrical voids Tvergaard (2008, 2009, 2012),  Dahl et al. (2012) 

and Nielsen et al. (2012) have shown that in stress states similar to simple shear the voids are 

flattened out to micro-cracks, which rotate and elongate until interaction with neighbouring 

micro-cracks gives coalescence. When the micro-cracks form, it is important to account for 

the contact between crack surfaces, where large contact stresses develop.  

       In recent experimental investigations for ductile fracture in shear, Bao and Wierzbicki 

(2004), Beese et al. (2010) and Dunand and Mohr (2011) have used special butterfly 

specimens to study the effect of the stress triaxiality and of the Lode angle, for two different 

aluminium alloys and a TRIP steel. Haltom et al. (2013) have used a tubular specimen in 

tension-torsion while Ghahremaninezhad and Ravi-Chandar (2013) have used a modified 

Arcan test to study the same Al 6061-T3. 

        One motivation for looking at failure under shear conditions is the slant type of fracture 

observed in the tearing of thin metallic sheets, where the final fracture surface often shows a 

void-sheet failure. Earlier studies (Saje et al., 1982; Tvergaard, 1989) relate to this type of 

situation, where typically failure occurs in a void-sheet under a positive stress triaxiality. 

        Deformation under low stress triaxiality can also be applied by subjecting the material to 

tensile loading in a fixed direction, with compressive loading in the transverse direction. Then 

material lines along these two loading directions do not rotate during the plastic deformations. 

When the hydrostatic tension is precisely zero, this mode of deformation is called pure shear. 

Tvergaard (2015a) recently studied a material containing a periodic array of voids subject to 

stress states in the vicinity of pure shear, using numerical solutions for a characteristic unit 

cell model. It was found that the voids close up to micro-cracks, but no failure mechanism 

was found and there were no maxima on the stress strain curves in pure shear. By a very 

different approach, using homogenisation theory for a ductile material, Song et al. (2015) also 

compared simple shear to pure shear. Their model does not account for contact when the 
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voids become micro-cracks, but for a high volume fraction they find localization in simple 

shear before the voids have closed up, while there is no localization in pure shear.  

        The void patterns considered in (Tvergaard, 2015a) maintain a high degree of symmetry 

during large deformations, but less symmetric imperfections could still result in failure. 

Therefore, the present study considers a single layer of voids in a ductile solid, which could 

initiate a shear localization leading to void-sheet failure, even though no failure in pure shear 

was predicted by Tvergaard (2015a) or Song et al. (2015). 

 

 

2. PROBLEM FORMULATION AND NUMERICAL PROCEDURE 

 

The initial imperfection in the material to be analysed here is represented by a row of 

uniformly spaced circular cylindrical holes with the radius  0R  and the spacing  02D  (see Fig. 

1), with the initial angle of inclination  
0ψ   between the void-sheet and the 1x -axis. The block 

of material is assumed to be very large relative to the void spacing, and far away from the 

voids the principal true stresses are  1σ   and   2σ    in the  1x - and 2x -directions, respectively. 

The corresponding principal logarithmic strains in the far field are denoted  1ε  and 2ε , 

respectively. In the near vicinity of the void-sheet the stress and strain fields will differ 

significantly from the uniform far field, but at some distance from the row of voids there will 

be little difference. 

        The plane strain analyses here follow much of the formulations in Tvergaard (1989), 

mixed in with some of the formulations from Tvergaard (2012). Thus, a unit cell as that 

shown in Fig. 1 is drawn around each of the voids in the inclined void-sheet. All of these unit 

cells undergo identical deformations, and periodicity conditions apply along the sides of the 

unit cells. The initial width of the unit cell is 02A  in the 1x -direction and the initial height is 

02B  in the  2x -direction, so that the half void spacing is 
0 0 0/ cosD A ψ=  .  When the ratio  

0 0/B A  is chosen large enough, the stress and strain fields in the top and bottom parts of the 

unit cell will be practically identical to the far field, and this is used to define the loads on the 

unit cell. In most of the present analyses it is chosen to use  0 0/ 2B A =  . 

        Finite strains are accounted for, based on a convected coordinate Lagrangian formulation 

of the field equations, with a Cartesian  ix  coordinate system used as reference and with the 
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displacement components on reference base vectors denoted by  iu . The metric tensors in the 

reference configuration and the current configuration, respectively, are 
ijg   and  

ijG   with 

determinants  g  and  G , and  ( )1/ 2
ij ij ij

G gη = −   is the Lagrangian strain tensor. In terms of 

the displacement components  iu   on the reference base vectors the Lagrangian strain tensor 

is 

 ( ), , , ,

1

2

k

ij i j j i i k ju u u uη = + +  (1) 

where  
,( ) j

  denotes covariant differentiation in the reference frame. The contravariant 

components  ijτ   of the Kirchhoff stress tensor on the current base vectors are related to the 

components of the Cauchy stress tensor  ijσ   by  /ij ij
G gτ σ=  .  A finite strain formulation 

for a 
2J  flow theory material with the Mises yield surface is applied, where the incremental 

stress-strain relationship takes the form  ij ijk

k
Lτ η= �

�
� � , with the instantaneous moduli specified 

in (Hutchinson, 1973; Tvergaard, 1976). The true stress-logarithmic strain curve in uniaxial 

tension is taken to follow the power law 
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with Young's modulus  E , the initial yield stress  
Y

σ  and the power hardening exponent N  . 

Poisson's ratio is  ν  . 

        As in (Tvergaard, 2012) the corners of the unit cell are denoted A, B, C and D. When the 

top and bottom edges of the unit cell are assumed to satisfy compatibility and equilibrium 

with the far field, the current angle of inclination  ψ   of the void-sheet and the width of the 

unit cell are determined by the far field strains 

 2 1( )

0tan tane
ε εψ ψ−=   (3) 

 11 1

02 ( 1)B Au u A e
ε− = −   (4) 

 12 2

0 02 ( tan tan )B Au u A e
ε ψ ψ− = −   (5) 

and it is assumed here that   1

Au  = 2

Au  = 0 .  Furthermore, compatibility requires that the 

displacements vary linearly along the edge AB 

 
1 1 1 1 2 2 2 2

1 1 0 1 1 0( ) ( ) / 2 , ( ) ( ) / 2
A B A A B A

u u u u D u u u u Dη η η η= + − = + −   (6) 
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Equations analogous to (6) are also required for the edge DC, expressed in terms of the corner 

displacements  i

D
u  and  i

C
u .  Here, the two displacement components at D will be found from 

the two equilibrium requirements, and then the displacements at C are known, since the edge 

lines DC and AB are required to be parallel and have equal length. 

        Along the edge DC the requirement of equilibrium between the edge tractions  iT  on the 

unit cell and the far field principal stresses can be written as 

 
02

2 1 1

2 2 0

0

(2 )

D

C DT d A u uη σ= + −∫   (7) 

 
02

1 2 2

2 1 0 0

0

(2 sin )

D

C DT d D u uη σ ψ= − + −∫   (8) 

 
 In the analyses, periodic boundary conditions are used on the unit cell model along the 

sides AD and BC to express compatibility and equilibrium with the neighbouring cells along 

the inclined row of voids. Thus, the following relations have to be satisfied between the 

displacements and the nominal tractions on the two sides 

 ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2

1 2 1 2,A B A Bu u u u u u u uξ ξ ξ ξ− = − − = −  (9) 

 ( ) ( ) ( ) ( )1 1 2 2

1 2 1 2,T T T Tξ ξ ξ ξ= − = −  (10) 

where  1ξ  and  2ξ  are length measuring coordinates defined in Fig. 1. A standard penalty 

method is used to approximately satisfy these periodic boundary conditions, as has been 

explained in detail in (Tvergaard, 2012). 

        The far field solution is taken to have a fixed ratio  κ    of the principal stresses, such that 

 
1 2

/σ σ κ=   (11) 

First the far field solution is determined, so that  the values of  principal logarithmic strains  

1ε  and 
2ε ,  and of  

1σ  ,  are known as functions of 
2σ ,  and these values are used in Eqs. (3) 

to (8) at each stage of the incremental solution. For the unit cell an average logarithmic strain 

in the 2
x -direction is calculated from the elongation of the cell-side  AD as 

 ( )2 2

2 0ln 1 ( ) / (2 )av

D Au u Bε = + −   (12) 

Since the strains in the cell far from the void will be close to those in the far field, and the 

material near the void will strain more, it is clear that  2

avε  will become larger than  2ε .  If 

plastic flow localization occurs along the row of voids, the straining in the far field will stop, 

as elastic unloading occurs, and thus the ratio  
2 2/av

d dε ε  becomes infinite. For numerical 
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reasons a finite ratio, after that plastic yielding has initiated in the far field, is used here as the 

localization condition 

 
2 2/ 10av

d dε ε >   (13) 

although this occurs slightly before the real localization.  

        When localization  has occurred according to the condition (13), the computation is 

continued by specifying no further change in the far field, thus approximately representing 

elastic unloading in the far field. Instead, the average strain  
2

avε  is increased incrementally, 

and the average tensile stress  
2

avσ  is calculated from the nodal forces on the edge DC. 

        Two different methods are considered here to approximately model crack surface contact 

and frictionless sliding that initiates when the void closes up in a micro-crack:  

        Method A is that proposed in Tvergaard (2009), where the length  �  of the ellipsoidal 

cross-section of the void is calculated as the largest distance between two surface points, and 

the average width  w  of the void is calculated from the current void volume  
v

V  per unit 

length in the  3
x  direction as  /vw V= � .  Then, instead of a detailed representation of crack 

surface contact as the void develops into a micro-crack, the approximation is made that the 

average aspect ratio of the void is required to satisfy the inequality 

 /w ρ≥�  (14) 

When the aspect ratio reaches the limit according to Eq. (14) an internal loading is applied to 

the void surface and this load is gradually increased so that the inequality (14) is not violated. 

Only traction components perpendicular to the line of length  �   between the two end points 

of the void are applied, such that no load component will tend to increase the length of the 

void. 

        Method B makes use of individual nodal forces between nodes on either side of the 

crack. For each node the local opening  w  of the crack, normal to the line of length  �  

between end points, is calculated. If  
c

w w<  an opening force is applied to this nodal point 

and simultaneously two opening forces are applied to the two nearest nodes on the opposite 

side of the crack, such that these three forces are in self-equilibrium. Thus, in Method B the 

critical opening  
cw  is kept constant along the crack, except very near the crack-tips where a 

parabolic step down is used. 

        The numerical solutions are obtained by a linear incremental solution procedure, based 

on the incremental principle of virtual work. As in (Tvergaard, 2012) the displacement fields 

are approximated in terms of 8-noded isoparametric elements, and volume integrals in the 
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principle of virtual work are carried out by using  2 2×   point Gauss integration within each 

element. Using the penalty method to approximately satisfy the periodic boundary conditions 

results in additional stiffness matrices, which are entered directly into the global stiffness 

matrix. An example of a mesh used for some of the numerical analyses is shown in Fig. 2. 

 Remeshing is used a few times in each computation to avoid severe mesh distortion, in 

particular where material flows around the sharp crack tips. The remeshing procedure applied 

was first introduced in one of the authors finite strain programmes by Pedersen (1998), and 

has been further developed in (Tvergaard 1997). The values of field quantities in the 

integration points of the new mesh are determined by interpolation in the old mesh. To do 

this, it is necessary to determine the location of each new nodal point and integration point in 

the old mesh, i.e. the element number and the appropriate values of the local coordinates  ξ   

and  η   inside that element, where the region of the element is specified by  1 1ξ− ≤ ≤   and  

1 1η− ≤ ≤  .  This is done by repeated use of a Newton-Raphson iteration. 

 

3. RESULTS 

 

In the computations to be presented here the material parameters are taken to be  

/ 0.002Y Eσ =  ,  0.3ν =  and  0.1N = .  Different values are considered for the initial void 

radius and the stress ratio  κ  in (11), while the initial aspect ratio of the region analysed is 

mostly taken to be  
0 0

/ 2B A = .  The initial angle of inclination 
0

ψ   between the void-sheet 

and the 1
x -axis is here taken to be  30o  because this was found in (Tvergaard, 1989) to be 

near the most critical angle for shear band localization along the row of voids. A few other 

values of  
0

ψ  will also be tested. 

        Fig. 3a shows the evolution of the principal stress 2σ  in the far field versus the average 

strain  
2

avε  defined in (12),  for  
0 0

/ 0.175R D =   and for different values of the stress ratio  κ .  

Fig. 3b shows the corresponding evolution of the angle ϕ  between the 1
x -axis and the line of 

length  �  connecting the two end points of the elongated void (see also Eq. (14)).  Initially, 

while the void cross-section is circular, the value of the angle  ϕ   is not well defined, as is 

seen in Fig. 3b for small strains. For the three larger values of  κ   in Figs. 3a and 3b 

localization of plastic flow is predicted by reaching the condition (13). Thus, for  0.0κ = ,  i.e. 

uniaxial plane strain tension, localization occurs at  
2

0.085avε =   (or at  
2

0.034ε = ).  For  
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0.125κ = −  localization occurs at  
2

0.132avε =   (or at  
2

0.064ε = ), while for  0.25κ = −  

localization occurs at  
2 0.192avε =   (or at  

2 0.110ε = ). In the remaining three cases contact 

between the crack surfaces initiates before any localization has been predicted, and no 

subsequent localization is predicted either while the material deforms around the closed 

cracks. For 1.0κ = − ,  i.e. for pure shear, contact initiates near the point  
2 0.168avε =   (or  

2
0.140ε = ), while for  0.75κ = −  contact initiates near  

2 0.187avε =   (or  
2

0.152ε = ), and for  

0.5κ = −  contact initiates near  2 0.218avε =   (or  2 0.167ε = ).  Contact is here modelled using 

the Method B described below Eq. (14). It is noted in Fig. 3a that the curves for the three 

larger values of  κ  have reached a stress maximum, corresponding to the prediction of 

material failure, whereas on the other three curves, where no localization is predicted, the 

stress keeps growing with increasing strain. 

        In relation to Fig. 3b it is noted that 90oϕ =  would be the result if there was no influence 

of the gradually increasing shearing around the imperfection represented by the inclined row 

of voids. Thus for  
0 0oψ =  there would be no imperfection to initiate shearing, and the void 

axis would remain parallel to the 2
x -axis  ( 90oϕ = ). In Fig. 3b, where the inclined 

imperfection creates a band of increasing shearing, it is seen that the elongated voids rotate 

clockwise in this band, such that the values of the angle  ϕ   decay as the tensile strain is 

increased. This reduction of  ϕ   is most pronounced for 0.0κ = ,  where plastic flow 

localization occurs first, but it is also clear for the two other cases, where localization in a 

shear band is predicted.  

        The curve for  1.0κ = −  in Fig. 3b shows that, as for the other curves, the value of the 

angle  ϕ   decays as the strain is increased, but this stops at the point where crack surface 

contact initiates, and afterwards the micro-crack rotates backwards towards the value  90o .  

The curve for  0.75κ = −  behaves the same way, except that here the change to anti- 

clockwise rotation occurs a little later, because the initiation of crack surface contact occurs a 

little later. For  0.5κ = −  the change to a growing value of the angle  ϕ   is just occurring at 

the end of the curve shown in Fig. 3b, since this is where contact initiates. 

        The purpose of the present investigation is to see if a less symmetric imperfection than 

those considered in (Tvergaard, 2015a) could still result in failure under pure shear 

conditions. The inclined layer of voids is considered here, because it is known from 

(Tvergaard, 1989) that this imperfection can initiate shear localization leading to void-sheet 
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failure, and indeed such void-sheet failure is predicted in Fig. 3 for the three larger values of  

κ .  But Fig. 3 also shows that for stress states close to pure shear this development towards 

shear failure is interrupted when the voids close up to form micro-cracks. Thus the present 

studies support the conclusion in (Tvergaard, 2015a) that no failure and no stress maximum is 

predicted for stress states near pure shear. 

        A plot of the normalized average strain  
2 2/avε ε  vs.  

2
ε  is shown in Fig. 4 for the cases 

also illustrated in Fig. 3. For  0.0κ =  and the two curves closest to this case the slope grows 

very large at the end, indicating that the average strain in the cell keeps growing while 

straining stops in the infinite solid outside the cell, as is typical for plastic strain localization 

developing from an initial imperfection. The other three curves, for stress states closer to pure 

shear, show no such tendency towards localization. Thus, Fig. 4 confirms the conclusions 

drawn on the basis of Fig. 3. 

        Fig. 5 shows the deformed unit cell with contours of effective plastic strain at three 

stages of the computation for  1.0κ = −  in Fig. 3. In Fig. 5a, at  
2 0.135avε =  and  78.6oϕ = ,  

the void surfaces are not yet in contact, and the elongated void is still rotating in the clockwise 

direction. In Fig. 5b, at  
2 0.184avε = ,  contact has occurred while the angle of orientation of 

the crack passed a minimum of  77.3o ,  but the value of the angle has now again increased to  

79.0oϕ = .  At the last stage reached in this computation, Fig. 5c  at  
2 0.261avε = ,  the value of 

the angle has grown to  84.4oϕ = ,  as was also seen on the curve in Fig. 3b.  In Fig. 5a it is 

clear that a band of more intense straining has developed along the inclined row of voids. In 

Fig. 5c this band of more intense straining is still visible, but it has not developed towards a 

stronger localization, since both the strains inside the band and those outside have increased 

by about the same amount. This is also seen from the fact that the difference between the 

average strain and the far field strain,  
2 2

avε ε− ,  has not increased. 

        In real materials there is often a particle inside the voids, and analyses have shown that 

this plays a role by not allowing the voids to collapse (Tvergaard, 1989; Siruguet and 

Leblond, 2004). In the present studies with large transverse compression and large void 

elongation there would be both regions of contact to the inclusion and regions of contact 

between adjacent void surfaces. Due to this more complex contact situation the inclusions 

have been neglected in the present studies. 

        The boundary conditions (3) to (8) are formulated such that the behavior of the voids 

will depend only on the evolution of the far field stress and strain history, but not on the 



  

 

 

10

chosen value of the unit cell aspect ratio  
0 0

/B A  if this ratio is chosen large enough, since 

then the stress and strain fields in the cell far from the void will essentially coincide with the 

far field. To test this, the computation for  1.0κ = −  illustrated in Figs. 3 and 5 has been 

compared with a similar computation using the double value of the unit cell aspect ratio, 

0 0/ 4B A = .  The evolution of the stress  
2σ   and the angle  ϕ   are compared in Figs. 6a and 

5b as functions of the far field strain  
2

ε ,  since it is the dependence on the far field that 

should be independent of the unit cell aspect ratio. In Fig. 6a the two curves coincide, as 

expected since both quantities belong to the far field, but it is noted that due to Eq. (7)  2σ  is 

also the average tensile stress in the unit cell. Fig. 6b shows that the values of the angle  ϕ  

differ only little between the two computations, the trends in the evolution are the same, 

including the change from a decaying angle to an increasing angle near the points where void 

surface contact initiates. If the evolution of  ϕ   had been plotted against the average strain  

2

avε ,  as in Fig. 3b, the agreement would not be as good, since the ratio  
2 2/avε ε  is larger for 

smaller values of the aspect ratio  
0 0

/B A  due to the increased strain level in the local region 

around the void.  

        The length of the void or micro-crack  � ,   used in Eq. (14), has the initial value  02R  for 

a circular cylindrical void,  and thus the initial value of the ratio  
0/ D�  is  0.35  in the 

computations of Fig. 6. At the end of the computation for  
0 0

/ 4B A =  in Fig. 6, where  

2
0.223ε = ,  the normalized length is  

0
/ 0.629D =� ,  while the value is  

0
/ 0.622D =�  in the 

computation for  0 0/ 2B A =  at 2 0.223ε = .   Thus, not only the evolution of the angle  ϕ   as a 

function of   
2ε ,  as shown in Fig. 6b, but also the corresponding growth of the micro-crack 

length  �  appear to be rather independent of the unit cell aspect ratio  
0 0

/B A  ,  as long as this 

ratio is not too small. 

        As mentioned above, the initial angle of inclination 
0

ψ   between the row of voids and 

the 1
x -axis has been taken to be  30o  because this was found (Tvergaard, 1989) to be near the 

most critical angle for shear band localization. A few computations with different values of 

the angle are carried out here to check the dependence on  0ψ   in a case like that for  1.0κ = −  

in Figs. 3 and 5, where shear band localization does not occur. Fig. 7a shows that the levels of 

the stress vs. strain curves are not very sensitive to the value of  
0ψ  ,  and near the end where 

void surface contact has occurred the stress levels are nearly identical. Fig. 7b shows much 
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more difference. For  
0

20oψ =  there is very little tendency towards shearing along the row of 

voids (nothing like that shown in Fig. 5a), and the value of the angle  ϕ   remains nearly 

constant, around  88o  .  On the other hand, for  0 40oψ =  there is significant shearing initially, 

leading to a clear reduction of the angle  ϕ ,  but then void surface contact initiates rather 

early and the value of  ϕ  grows back towards  90o .  When comparing to the full curve for  

0 30oψ = ,  the curves corresponding to the two other angles of inclination are closer to  90o  at 

larger strains, so it appears that these cases were less close to reach a localization before this 

tendency was stopped by the occurrence of void surface contact. 

        While all other computations in the present paper have used method B to approximately 

represent the void surface contact when the voids collapse to a micro-crack, one computation 

for  
0

30oψ =  and 1.0κ = −  has been carried out using method A, as described around Eq. 

(14), with  0.15ρ =  .  This computation is illustrated by the dotted curves in Fig. 7, where the 

full curves illustrate exactly the same case with the only difference that contact is 

approximated by method B. In Fig. 7a the two curves are practically indistinguishable, and in 

Fig. 7b they are very close both before and after the onset of contact. The deformed meshes at 

the end of these two computations are shown in Fig. 8. It is noted that method A, which has 

been used in a number of previous investigations (Tvergaard, 2009, 2012), prescribes only an 

average opening of the micro-crack, while method B attempts to keep the opening constant 

along the crack. Anyway, the comparison in Fig. 7 shows that the results obtained by these 

two approximations are very similar. 

        The effect of the hardening exponent  N  is considered in Fig. 9 for the case of pure 

shear,  1.0κ = − .  As expected (Fig. 9a), the more high hardening material,  0.2N = ,  gives 

higher stress levels, while low hardening gives lower stress, but none of the curves reach zero 

slope as no localization is predicted. Fig. 9b shows that the minimum, where micro-crack 

closure initiates, occurs a bit later for the high hardening material and earlier for the low 

hardening material. At all three hardening levels the elongated voids first rotate in the 

clockwise direction, with the shearing, but after crack closure the micro-cracks rotate back in 

the anticlockwise direction. 

        The void spacing considered here may seem small relative to the void radius, but it 

should be recalled that the void volume fraction in these analyses is essentially zero, because 

the strip of material represented by the unit cell is connected to the infinite void free material 
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through the boundary conditions (3)-(8). Thus, the particular imperfection considered here is a 

special cluster in the form of a single row of voids. 

        To check the influence of the void size, curves like those in Fig. 3 have also been 

computed for other values of the  
0 0/R D  .    Fig.  10 shows results for  

0 0/ 0.25R D = ,  with 

no other parameters changed relative to those used in the computations illustrated in Fig. 3.  

The main difference from Fig. 3 is that also the computation for  0.5κ = −  leads to the 

prediction of localization in a shear band. Furthermore, the four cases that result in 

localization in Fig. 10 show generally larger rotations of the voids in the shear field that 

develops along the row of voids (i.e. smaller values of  ϕ ), so it is clear that the stronger 

imperfection represented by the larger voids amplifies the tendency to reach a final void-sheet 

failure. In the two remaining cases, for pure shear or near pure shear, void surface contact 

occurs and subsequently the shear rotation of the voids is terminated so that no localization 

occurs, as was also found in Fig. 3.  

        Again in Fig. 11 the only difference from the cases considered in Figs. 3 and 10 is the 

relatively smaller voids,  
0 0

/ 0.125R D = .  Here, localization is predicted only for the two 

larger values of   κ .  For the case  0.25κ = −  void surface contact has initiated a little before 

the end of the curves shown, so here is not going to be localization. The curves for the three 

smaller values of  κ   show clearly a minimum in Fig. 11b, so that the value of the angle  ϕ   

again starts to increase while the deformations continue with crack surface contact. 

        Among the six different values of   κ   considered in Figs. 3, 10 and 11 it is seen that 

plastic flow localization is predicted for four of the values in the case of the strongest 

imperfection (Fig. 10), for three of the values in the case of the intermediate imperfection 

(Fig. 3), and only for two of the values in the case of the smallest imperfection (Fig. 11). But 

the common picture is that no localization has been found for pure shear or for the near 

vicinity of pure shear. 

 

 

4. DISCUSSION 

 

The analyses in the present paper have been carried out to further study the possibility of 

failure in a porous ductile material under conditions of pure shear. At zero stress triaxiality it 

has been found that for simple shear a maximum shear stress is reached with subsequent 

failure prediction (Tvergaard, 2009, 2012; Dahl et al., 2012), whereas for pure shear no stress 
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maximum was reached and no instability was detected (Tvergaard, 2015a). Both in simple 

shear and in pure shear it has been found that the voids close up to micro-cracks early on, and 

the failures predicted in simple shear involve the interaction of such micro-cracks, which 

rotate and elongate during continued shear deformations. Even though a bifurcation into a 

shear band was not found in the study of pure shear, there is the possibility that a shear band 

instability could develop from an initial imperfection that would gradually amplify an inclined 

shear zone in the material.  

        The initial imperfection chosen here is an inclined row of voids, since it has been found 

in a number of previous studies that under moderate or higher stress triaxiality this type of 

imperfection will lead to shear localization and final void-sheet failure in the shear band. 

Indeed, the present results show that shear localization is predicted for moderate stress 

triaxiality corresponding to uniaxial plane strain tension, and even for a range of smaller 

stress triaxialities than that. But for pure shear, with zero stress triaxiality, and for a range of 

low stress triaxialities near pure shear no shear localization and no stress maximum are found. 

As expected a larger imperfection, i.e. a larger ratio of the void radius to void spacing, 

increases the stress range where localization is predicted, but even for the largest imperfection 

considered here there is no localization prediction in the near vicinity of pure shear. For the 

smallest imperfection considered localization predictions are limited to stress states near 

uniaxial plane strain tension or higher stress triaxialities. 

        It may be claimed that under the large transverse compressive stresses in pure shear the 

collapsed voids are pressed together so effectively that even physical intuition would say that 

there could be no failure, and this was part of the argument in the Discussion of (Tvergaard, 

2015a). But it is known from previous studies of shear band instabilities that there is often a 

significant imperfection sensitivity, and therefore the present study has focused on a rather 

strong imperfection of the type that could trigger shear bands, in order to see if this would 

lead to a failure prediction. 

        A plane strain programme is used for the present analyses, which cannot account for the 

3D effects associated with spherical voids. Some impression of the approximation involved in 

a plane strain analysis with cylindrical voids can be obtained from the analyses of Nielsen et 

al. (2012) for simple  shear. There, a comparison of spherical voids and cylindrical voids has 

shown that for the same local void volume fraction earlier failure is predicted by cylindrical 

voids, but not much earlier. Thus, it can be expected that the same local void volume fraction 

of spherical voids inside the void-sheet would give localization a little later than predicted for 
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cylindrical voids. Even with some random distribution of such spherical voids in the void-

sheet the behavior is not expected to differ much from uniformly spaced spherical voids, as 

long as voids have not started to coalesce. 

        Initially flat or elongated cylindrical voids could also be of interest. A recent study for 

such void shapes under simple shear (Tvergaard, 2015b) has shown that during deformation 

the voids develop into shapes very similar to those resulting from voids that are initially 

circular cylindrical. 

        It should be emphasized that the results obtained here are relevant to  
2

J  flow theory. As 

was discussed in (Tvergaard, 2015a) the predictions would be very different if formation of a 

vertex on the yield surface was assumed, as described by 
2J  corner theory (Christoffersen and 

Hutchinson, 1979). Then shear band localization would occur early (Hill and Hutchinson, 

1975), and for  0.1N =  the critical strain would be around  0.3 (Hutchinson and Tvergaard, 

1981), also in pure shear.  Not only the present studies but practically all studies of void 

growth and void interaction would be strongly affected by an assumption that the material 

forms a vertex on the yield surface, since large strains usually develop, so that rather early 

loss of ellipticity would be predicted in the material near voids. 

        Recent experimental results for an Aluminium alloy (Morgeneyer et al., 2014), based on 

in situ 3D tomography/laminography, have shown that shear localization can occur prior to 

voiding, while voids later grow in the band to give failure. This early localization may be due 

to a vertex on the yield surface, as would also be predicted by crystal plasticity, but even 

though a number of alloys do show a vertex type of response (Hecker, 1976), it requires a test 

to show that for a particular material. 

        The method used in the present analyses is different from that used in (Tvergaard, 

2015a), but the results confirm those obtained previously, where no maximum stress was 

reached and no shear band instability was found in pure shear. The imperfection considered in 

the present study does initiate a band of extra shearing along the inclined row of voids, but for 

stress states corresponding to pure shear, or near pure shear, the voids collapse to micro-

cracks before localization is predicted, and subsequently no localization occurs. As long as 

the extra shearing develops along the imperfection, the elongated voids rotate in the shear 

direction, but after that void surface contact has occurred the micro-cracks start to rotate in the 

opposite direction, approaching a situation where the cracks are aligned with the principal 

tensile stress, i.e. a situation similar to that considered by (Tvergaard, 2015a). Thus, even with 
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an imperfection designed to promote shear fracture no failure is predicted here under pure 

shear. 

        While in the present analyses of pure shear the tendency towards shear localization is 

interrupted by voids collapsing to micro-cracks, it is noted that in the previous studies of 

simple shear, or stress states near simple shear, the voids have collapsed to micro-cracks 

before a maximum shear stress is reached and failure is predicted (Tvergaard, 2009, 2012). 

An important difference seems to be that in simple shear neighbouring  micro-cracks keep 

rotating towards each other while they elongate and develop an increasing overlap, which 

develops into micro-crack coalescence. 

        The pure shear stress state with axial tension and transverse compression is somewhat 

similar to that under rolling with big roller diameters, if the plate subject to rolling is 

simultaneously under axial tension. Since very large strains can be sustained in rolling 

without any material failure, it is perhaps not surprising that no failure is predicted in the 

present analyses for pure shear. Also in some forging operations pure shear can occur.  On the 

other hand, the stress state in simple shear is much like that in a tube under torsion, where 

failure has been predicted in a number of different investigations. 
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Figure captions: 

Fig.1.  A unit cell used to analyze a material with a row of uniformly spaced circular cylindrical holes with initial 

radius  
0

R  and spacing  
0

2D .  The initial angle of inclination between the void-sheet and the 
1

x -axis is 
0

ψ  . 

Fig. 2. Example of a mesh used for the numerical analysis. 

Fig. 3a. Curves of the true tensile stress 
2

σ  in the far field vs. the average logarithmic strain 
2

avε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.175R D =   and various values of  

1 2
/σ σ κ= .   

Fig. 3b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the average 

logarithmic strain 
2

avε ,  for 
0 0

/ 2B A = ,  
0 0

/ 0.175R D =   and various values of  
1 2

/σ σ κ= .   

Fig. 4. Curves of the ratio 
2 2/avε ε  vs the remote logarithmic strain 

2
ε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.175R D =   and 

various values of  
1 2

/σ σ κ= .   

Fig. 5ab. Deformed unit cells with contours of effective plastic strain corresponding to the computation with 

1.0κ −= ,  
0 0

/ 2B A =   and  
0 0

/ 0.175R D =  in Fig. 3.   (a) At  
2

0.135
avε =  .  (b) At  

2
0.184

avε =  . 

Fig. 5c. Deformed unit cell with contours of effective plastic strain corresponding to the computation with 

1.0κ −= ,  
0 0

/ 2B A =   and  
0 0

/ 0.175R D =  in Fig. 3.   (c) At  
2

0.261
avε =  . 

Fig. 6a. Curves of the true tensile stress 
2

σ  in the far field vs. the far field logarithmic strain 
2ε ,  for 

0 0
/ 0.175R D = ,  1.0κ −=   and either 

0 0
/ 2B A =   or  

0 0
/ 2B A = . 

Fig. 6b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the far field 

logarithmic strain 
2

ε ,  for 
0 0

/ 0.175R D = ,  1.0κ −=   and either 
0 0

/ 2B A =   or  
0 0

/ 2B A = . 

Fig. 7a. Curves of the true tensile stress 
2

σ  in the far field vs. the average logarithmic strain 
2

avε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.175R D =   and  1.0κ −= .  Curves are shown for  

0
20

oψ =  and for  
0

40
oψ = ,  while the 

other two curves have  
0

30
oψ = .   One curve is based on contact method A, while the other three curves are 

based on method B. 

Fig. 7b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the average 

logarithmic strain 
2

avε ,  for 
0 0

/ 2B A = ,  
0 0

/ 0.175R D =   and  1.0κ −= .  Curves are shown for  
0

20
oψ =  

and for  
0

40
oψ = ,  while the other two curves have  

0
30

oψ = .   One curve is based on contact method A, 

while the other three curves are based on method B. 

Fig. 8. Deformed meshes at the end of two different computations with 1.0κ −= ,  
0 0

/ 2B A =   and  

0 0
/ 0.175R D = .   (a) Contact method B, at  

2
0.261

avε =  .  (b) Contact method A, at  
2

0.275
avε =  .   

Fig. 9a. Curves of the true tensile stress 
2

σ  in the far field vs. the average logarithmic strain 
2

avε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.175R D = ,  1.0κ −=  and  various values of the hardening exponent  N  .   
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Fig. 9b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the average 

logarithmic strain 
2

avε ,  for 
0 0

/ 2B A = ,  
0 0

/ 0.175R D = ,  1.0κ −=  and  various values of the hardening 

exponent  N  .   

Fig. 10a. Curves of the true tensile stress 
2

σ  in the far field vs. the average logarithmic strain 
2

avε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.25R D =   and various values of  

1 2
/σ σ κ= .   

Fig. 10b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the average 

logarithmic strain 
2

avε ,  for 
0 0

/ 2B A = ,  
0 0

/ 0.25R D =   and various values of  
1 2

/σ σ κ= .   

Fig. 11a. Curves of the true tensile stress 
2

σ  in the far field vs. the average logarithmic strain 
2

avε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.125R D =   and various values of  

1 2
/σ σ κ= .   

Fig. 11b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the average 

logarithmic strain 
2

avε ,  for 
0 0

/ 2B A = ,  
0 0

/ 0.125R D =   and various values of  
1 2

/σ σ κ= .   
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Fig.1.  A unit cell used to analyze a material with a row of uniformly spaced circular cylindrical holes with initial 

radius  
0

R  and spacing  
0

2D .  The initial angle of inclination between the void-sheet and the 
1

x -axis is 
0

ψ  . 
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Fig. 2. Example of a mesh used for the numerical analysis. 

 

 

 

Fig. 3a. Curves of the true tensile stress 
2

σ  in the far field vs. the average logarithmic strain 
2

avε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.175R D =   and various values of  

1 2
/σ σ κ= .   
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Fig. 3b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the average 

logarithmic strain 
2

avε ,  for 
0 0

/ 2B A = ,  
0 0

/ 0.175R D =   and various values of  
1 2

/σ σ κ= .   
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 Fig. 4. Curves of the ratio 
2 2/avε ε  vs the remote logarithmic strain 2ε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.175R D =   and 

various values of  
1 2

/σ σ κ= .   
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Fig. 5ab. Deformed unit cells with contours of effective plastic strain corresponding to the computation with 

1.0κ −= ,  
0 0

/ 2B A =   and  
0 0

/ 0.175R D =  in Fig. 3.   (a) At  
2

0.135
avε =  .  (b) At  

2
0.184

avε =  . 
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Fig. 5c. Deformed unit cell with contours of effective plastic strain corresponding to the computation with 

1.0κ −= ,  
0 0

/ 2B A =   and  
0 0

/ 0.175R D =  in Fig. 3.   (c) At  
2

0.261
avε =  . 

 

 

Fig. 6a. Curves of the true tensile stress 
2

σ  in the far field vs. the far field logarithmic strain 
2ε ,  for 

0 0
/ 0.175R D = ,  1.0κ −=   and either 

0 0
/ 2B A =   or  

0 0
/ 2B A = . 
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Fig. 6b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the far field 

logarithmic strain 2ε ,  for 
0 0

/ 0.175R D = ,  1.0κ −=   and either 
0 0

/ 2B A =   or  
0 0

/ 2B A = . 
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Fig. 7a. Curves of the true tensile stress 
2

σ  in the far field vs. the average logarithmic strain 
2

avε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.175R D =   and  1.0κ −= .  Curves are shown for  

0
20

oψ =  and for  
0

40
oψ = ,  while the 

other two curves have  
0

30
oψ = .   One curve is based on contact method A, while the other three curves are 

based on method B. 
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Fig. 7b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the average 

logarithmic strain 
2

avε ,  for 
0 0

/ 2B A = ,  
0 0

/ 0.175R D =   and  1.0κ −= .  Curves are shown for  
0

20
oψ =  

and for  
0

40
oψ = ,  while the other two curves have  

0
30

oψ = .   One curve is based on contact method A, 

while the other three curves are based on method B. 
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Fig. 8. Deformed meshes at the end of two different computations with 1.0κ −= ,  
0 0

/ 2B A =   and  

0 0
/ 0.175R D = .   (a) Contact method B, at  

2
0.261

avε =  .  (b) Contact method A, at  
2

0.275
avε =  .   
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Fig. 9a. Curves of the true tensile stress 
2

σ  in the far field vs. the average logarithmic strain 
2

avε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.175R D = ,  1.0κ −=  and  various values of the hardening exponent  N  .   
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Fig. 9b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the average 

logarithmic strain 
2

avε ,  for 
0 0

/ 2B A = ,  
0 0

/ 0.175R D = ,  1.0κ −=  and  various values of the hardening 

exponent  N  .   
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Fig. 10a. Curves of the true tensile stress 
2

σ  in the far field vs. the average logarithmic strain 
2

avε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.25R D =   and various values of  

1 2
/σ σ κ= .   

 

 

Fig. 10b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the average 

logarithmic strain 
2

avε ,  for 
0 0

/ 2B A = ,  
0 0

/ 0.25R D =   and various values of  
1 2

/σ σ κ= .   
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Fig. 11a. Curves of the true tensile stress 
2

σ  in the far field vs. the average logarithmic strain 
2

avε ,  for 

0 0
/ 2B A = ,  

0 0
/ 0.125R D =   and various values of  

1 2
/σ σ κ= .   
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Fig. 11b. Curves of the angle ϕ  between the 
1

x -axis and the axis of the elongated void vs. the average 

logarithmic strain 
2

avε ,  for 
0 0

/ 2B A = ,  
0 0

/ 0.125R D =   and various values of  
1 2

/σ σ κ= .   



  

 

 

36

 

 

• Imperfection in the form of an inclined sheet of voids.   

• Ductile material subject to stress states in the vicinity of pure shear.   

• Voids close up to form micro-cracks, which remain closed. 

• Different initial void sizes and hardening are considered. 

• No void sheet localization found for the low stress triaxialities. 

 


