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Abstract 

Mass transfer during the formation and emission of a dislocation loop without non-

conservative motions can be very tricky. We combine the molecular statics, nonsingular 

dislocation theory, finite element (FE) method and molecular dynamics (MD) approach to offer 

new insights. It is proved both theoretically and numerically that the formation and the dynamic 

emission of a full shear loop can grow a nanovoid. For the first time, a novel approach is 

proposed to create a shear loop via a hemispherical surface cut by the atomistic simulation. Such 

a formation process can produce a similar shear loop to that via a flat surface cut, and yet lead to 

void growth. We incorporate the non-singular dislocation theory into a FE model to calculate the 

potential energy regarding different surface cuts. Among possible cuts to create a shear loop, the 

potential energy would favour the one that grows a void under triaxial tension. We show that the 

arbitrariness regarding the surface cut of dislocation segments should also be recognized during 

the dynamic emission process. Under triaxial tension, we confirm the mass transfer during the 

cross-slipping of V-shape shear loops prior to the completion of prismatic loops. By comparison, 

the uniaxial tension case shows that a V-shape shear loop is not necessarily the precursor of a 
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prismatic loop. Hence, its mass transfer mechanism should be treated differently.  

Keywords: Void growth mechanism; molecular dynamics simulation; dislocation loop; 

material transport   

1. Introduction 

Void growth via geometrically-necessary dislocations such as prismatic loops and shear loops 

was proposed to be the primary mechanism under moderate to high strain rate (Lubarda et al. 

2004). Since then, void growth via geometrically-necessary dislocations has become a hot topic. 

Experimental evidences showed slip bands emanating from a growing void, while MD 

simulation revealed such void growth via shear loop emission (Traiviratana et al. 2008). Even 

with different crystal orientations (Bringa et al. 2010) and simulation size (Tang et al. 2012), 

void growth under uniaxial tension is primary due to the nucleation of shear loops. Potirniche et 

al. (2006) reported dislocation nucleation due to stress concentration in void-embedded thin film 

of Face-Centered Cubic (FCC) nickel, which immediately increases void size. Later, Cui and 

Chen (2015a, 2015b) revealed that those nucleated dislocations in a thin film of FCC metal are 

primarily incomplete shear loops. The emission of incipient shear loops should occur from the 

surface of the cylindrical nanovoid, once the image attraction from the void is balanced by the 

applied load (Lubarda 2011). Krasnikov and Mayer (2015) observed that incomplete shear loops 

can grow the void by drawing displacement vectors of individual atoms on the void surface. 

Even under shock loading condition, mass transfer via incomplete shear loops is the primary 

mechanism for void shrinkage (Xiang et al. 2017). Interestingly, these incomplete shear loops 

from shock loading can form frustum-like dislocation structures that remarkably resemble those 

reported elsewhere (Cui and Chen 2016, Cui and Chen 2017c). Most recently, Jing et al. (2018) 

observed and explained the void growth as the absorption or exit of edge segments (belonging to 
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incomplete shear loops). This nucleation of shear loop is not limited to void-embedded cases. 

Rather, it appears a general mechanism regarding FCC metals. Even for an initially defect-free 

case, such shear dislocation loops can be nucleated homogeneously (Salehinia and Bahr 2014). 

Similar edge segments or partial shear loops can also be nucleated from grain boundaries 

(Spearot et al. 2007, Tschopp and McDowell 2008). Thus, the understanding of void growth via 

geometrically-necessary dislocations should help in the design of structure or nanomaterials with 

improved integrity or advanced function. For example, nanovoids could act as sinks for better 

radiation resistance (Bringa et al. 2011). Meng and Jin (2011) showed that the growth of 

nanowires and nanotubes can be driven by screw dislocations, since they generate surface steps. 

Hence, the mass transfer mechanism of shear loops, which contain screw segments, may also 

provide new ideas to nanofabrication.     

Despite these overwhelming evidences supporting Lubarda et al. (2004), there appear strong 

theoretical challenges that deserve to be brought up in the very beginning of the paper:  

1. How can shear loops or edge segments, whose Burgers vector is in the loop plane, transfer 

mass out of/into the void? Would this violate mass conservation (Bulatov et al. 2010)? 

Besides, what is the difference in mass transfer between a shear loop and a prismatic loop? 

How should we evaluate the pertinent mass transfer?  

2. In the dynamic case, if the shear loop is gradually emitted, would the mass transfer be zero 

since the area swept by the dislocation segment is only inside the gliding plane (zero projected 

area onto the Burgers vector)?  

3. Must the amount of mass transferred be forfeited upon the completion of a full shear loop?  

4. Are V-shape shear loops able to grow void only because they are precursors of prismatic 

loops?  
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These questions are seemingly simple yet unexpectedly tricky. Questions 1 will be answered 

in section 2, while question 2-4 will be answered in section 3. Compared with our previous work, 

this paper brings brand-new insights, which is organized as follow. Section 2 describes a control 

volume-based approach to evaluate the mass transfer via geometrically-necessary dislocations 

like full shear loops. By comparison, only incomplete shear loops have been considered 

previously. Besides, we will shed light on the energetics associated with different surface cuts. 

The most likely surface cut under external load will thus be determined. Two kinds of atomistic 

simulations are involved. The first kind of simulation in section 2 applies the “cut, displace and 

paste” operation to create a full shear loop. Both the arbitrariness of the surface cut and the 

related void growth can thus be examined. To our best knowledge, such arbitrariness in creating 

a dislocation loop has never been reported before. The second kind of simulation in section 3 

focuses on the dynamic emission of shear loops and prismatic loops from initially dislocation-

free matrix under external load. Improved analysis on V-shape shear loops could better capture 

the mass transfer during their evolution. The visualization method of mass transfer will also be 

validated by the void growth via prismatic loops. The ongoing mass transfer during the 

conversion of V-shape loops into prismatic loops will be examined and should offer critical 

insights to aforementioned challenges.  

2. The quasi-static formation 

2.1 New theoretical insights   

The mass transport associated with geometrically necessary dislocations requires nontrivial 

understanding. The key fact is that the surface cut to create them can be arbitrary. We start with 

edge dislocation segments. Fig. 1 depicts three possible cuts for an edge dislocation segment. A 

prismatic loop only consists of edge segments, while s shear loop also contains edge, screw and 
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mixed segments. Both the prismatic loop and the shear loop can be created by a surface cut in 

their loop plane, which everyone should agree with. However, this rather leads to a less 

commonly accepted idea that an edge segment can have different surface cuts such as the vertical 

one in Fig. 1(a) or the horizontal one in Fig. 1(b). In fact, this precisely reflects which was 

proposed by Hirth and Lothe (1982) that a surface cut for an edge dislocation can be arbitrary as 

in Fig. 1(c). Another worth noting fact is that the surface cut and the possible gliding cylinder are 

not necessary in the same plane as seen in Fig. 1(a). Therefore, a surface cut of a shear loop can 

be outside its gliding plane. In fact, they should be unrelated due to arbitrariness, although they 

can sometimes and very often be in a same plane as seen in Fig. 1(b).   

  
 

Fig.1 Cross-sectional views of edge segments belonging to (a) a prismatic loop and (b) a shear 

loop, assuming both are created by a flat surface cut (short black dash). Figure (c) shows an edge 

segment created by an arbitrary cut (Hirth and Lothe 1982). Figure (a) shows that surface cut 

plane and the gliding plane are not necessarily the same. 

Since a shear loop contain edge segments, its surface cut should certainly be arbitrary too. To 

the stress field or strain energy of a complete shear loop, this arbitrariness can be eliminated by 

using Stokes‟ theorem. In sharp contrast, to mass transport, this arbitrariness is not eliminable by 

either Stokes‟ or Gauss‟ theorem. Since most of the previous researches focused on the stress 

field or strain energy of a dislocation loop, this arbitrariness was routinely ignored for the sake of 

simplicity yet without any problem. However, it is not the case for mass transport. Special 

attention should be paid to this arbitrariness regarding the formation and dynamic emission of 
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geometrically-necessary dislocations, especially shear loops. In fact, this arbitrariness has been 

acknowledged in at least three textbooks (Landau Lifshitz 1970, Hirth and Lothe 1982, Bower 

2009). According to Hirth and Lothe (1982), the following equation is for the amount of material 

to be removed or inserted for creating a dislocation loop.  

d  A
V Sb n                                                             (1) 

One should never exclusively choose A as the flat one, which forces the integrand 𝒃 ∙ 𝒏 (𝒃 is 

the Burgers vector and n is the surface norm) to be zero and fundamentally prohibits any local 

growth by the shear loop. Instead, the arbitrariness should always be respected when dealing 

with the mass transfer. The operation to create a dislocation loop is understood as follow (Hirth 

and Lothe 1982). In Fig. 2(a), one displaces the negative side of the arbitrary surface cut A by b 

relative to the positive side, and then pastes the surface together. A complete dislocation loop is 

then created, while the surface A becomes prefect again. For a shear loop, this surface cut A 

should remain arbitrary; otherwise the definition should read “depending on the Burgers vector” 

instead of “being arbitrary”. By respecting this fact, we immediately have the integrand 0 b n  

on most locations of A.  

                        

        (a) Control volume enclosing a shear loop        (b) Control volume intersecting a shear loop 
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(c) Control volume enclosing a prismatic loop 

Fig. 2 Control volumes and dislocation loops created by hemispherical cuts. The control volume 

here is not a void, but a certain material domain. The control volume in (a) has no mass flow, 

while those in (b,c) have.  

To rigorously evaluate mass transfer, let us first denote the measure for displacement, strain 

and stress, as [𝒖𝐷 , 𝜺𝐷 , 𝝈𝐷] respectively, which is induced by dislocations but with zero external 

load. For a control volume 𝑉𝐶𝑉 overlapping with the full shear loop and its surface cut in Fig. 

2(b), its volumetric change should be 

dD

CV
V

CV

V S


   u n ,                                                                 (2) 

By applying Gauss‟s theorem to the control volume, we obtain   

dD

CV
V

CV

V V   u .                                                                  (3) 

The divergence of the displacement is the sum of the trace of elastic strain and that of the 

eigenstrain due to dislocation:  

*d del

CV kk kk
V V

CV CV

V V V     ,                                                       (4) 

where both the elastic strain and the eigenstrain could contribute. For the shear loop in Fig. 2(b), 

the plastic eigenstrain takes the form (Landau Lifshitz 1970) 

* 1
2

( ) ( ) ( )ij i j j i inb n b n    x A x ,                                                  (5) 

where A=Ain+Aout denotes total surface cut and Ain the part inside this control volume, bi is the 
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component of the Burgers vector and 𝛿(𝑨𝑖𝑛 − 𝒙) is the Dirac function in the normal direction of 

the surface. By substituting Eq. (5) and ignoring the elastic growth, the volumetric change of the 

control volume in Fig. 2(b) should be nonzero: 

* * d d d 0CV kk
V A A

CV in out

V V S S         b n b n .                                  (6) 

By comparison, since the whole A=Ain+Aout is enclosed in Fig. 2(a), there is no volumetric 

change to this control volume: 

d 0
A A
in out

S


  b n .                                                      (7) 

Hence for the shear loop, the control volume in Fig. 2(b) has „mass flow‟ in or out. Despite of 

the gross zero in Eq. (7) for Fig. 2(a), mass has been redistributed inside. Indeed, for the material 

inside the dome-shape A, there should have mass transfer. By comparison, any control volume, 

as long as it encloses a prismatic loop, will always have volumetric change. In other words, the 

mass transfer is local for a shear loop, while nonlocal for a prismatic loop.       

 
                 

Fig. 3 A full shear loop with void growth in (a) and without void growth in (b, c). The surface cut 

A, by definition, should be inside the material. In (a), Cintersect is only the intersection between the 

surface cut A and the void surface. Hence, Sintersect is not a part of surface cut since it only has 

material on one side, whose bounding curve Cintersect is not a dislocation loop. For clarification, 

the Cloop was not emitted from the location of Cintersect. Fig. 1 has already clarified that surface cut 

plane and the gliding plane are not necessarily the same.  

Figures 3(a, b) show a nonflat surface cut with and without intersection, while Fig. 3(c) shows 

(a) (b) (c) 
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a flat surface cut. For the complete shear loop in Fig. 3(a), the same approach applies and the 

void growth should be nonzero:   

* *

intersect

d d d 0          void kk
V A S

matrix

V V S Sb n b n ,                            (8) 

where A denotes the elongated surface cut in Fig. 3(a). By comparison, if no intersection between 

void and the surface cut, there would be no void growth. Furthermore, Eq. (8) will later be 

verified by the atomistic simulation in the upcoming section.   

2.2 Potential energies evaluated by finite element method 

This arbitrariness gives rise to another question: among all the possible surface cuts to create a 

shear loop near a void, which one could be favoured by the principle of minimum potential 

energy? Such an analysis could be nontrivial, which requires FE method to solve for the image 

stress regarding different cuts. Meanwhile, classical dislocation theory would cause singularity 

along the loop. As a result, the non-singular dislocation theory is better to be incorporated into 

the FE calculation.   

To start, let us denote two measures of displacement, strain and stress: the fields induced by 

the applied load in a dislocation-free solid [𝒖𝑬𝒙𝒕, 𝜺𝑬𝒙𝒕, 𝝈𝑬𝒙𝒕]  and the fields induced by 

dislocations but with zero external load [𝒖𝐷 , 𝜺𝐷 , 𝝈𝐷] (Bower 2009). Both sets of fields satisfy 

traction-free condition on void surface. The total displacement, stress and strain fields are the 

superposition of the two. The total potential energy of a void-embedded solid under external 

loading can be expressed as (Bower 2009) 

ExtD I D Ext     ,                                               (9) 

The strain energy of a standalone dislocation is  
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1

2

D D

ij i j

A

b n dS   .                                                     (10) 

The minus sign is due to flipped surface normal direction (Hirth and Lothe 1982). The work done 

to introduce the dislocation into the external load 𝝈𝑬𝒙𝒕 is   

Ext

Void

D Ext Ext D

ij i j ij i j

A A

b n dS u n dS      .                                (11) 

Again, the minus sign is due to the flipped surface normal direction. It is worth noting that we 

here not only take the surface effect of the nanovoid into the consideration (Sharma, 2003), but 

also respect the fact the displacement caused by the dislocation should be nonzero at the nearby 

void surface. Since this displacement is a second-order infinitesimal with respect to the distance 

away from the cut (Landau and Lifshitz 1970), the second term could be relatively insignificant.  

The displacement due to dislocations consists of two parts:  

D D I

i i iu u u                                                           (12) 

The first one is given by the Burgers displacement equation below, while the second one is 

caused by the image effect of void and will be solved numerically.  

 
3

( ) d( ) d 1 d 1
( )

4 4 8 (1 )

D

A C C

grad
v  


    

  
    

b r - r lb r - r S b l
u r

| r - r | | r - r | | r - r |
,            (13) 

where r  is the radial vector of the point concerned, r  is the radial vector of the points either on area A or its 

bounding curve C to perform the integration, d l  is the differential line element and v  is the Poisson ratio. 

The change in potential energy by the image stress due to void is  

dI I

ij i j

A

b n S   .                                                         (14) 

The last is the potential energy of the applied load itself in an undislocated solid, which is 

independent of surface cuts ( d  is the differential volumetric element).  
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d dExt Ext Ext Ext

ij ij i i

R R

t u S  


    ,                                        (15) 

For a standalone dislocation loop C, its strain energy can be converted into a line integral (Cai et 

al. 2006, Bower 2009).  

2 2

2 2

d d d d
8 4 (1 )

d d d d
4 (1 )

D

i j i j i j k k

k k i jC C C C

i i j j i j j i

k k k kC C C C

R R
bb x x bb x x

x x v x x

R R
bb x x v bb x x

v x x x x

 

 

 

 






 

    
    

  
   

      

   

   

,                   (16) 

where  is the shear modulus. To remove the singularity along the curve, the nonsingular 

dislocation theory is applied here, which resembles classical expressions except that the 

displacement vector is modified as 2( ) k kR x x  x . If taking the shape in Fig. 3(a), the 

surface A will be bounded by two curves: the loop and the intersection curves. Hence, Stokes' 

theorem is applicable to the strain energy and Eq. (16) is still valid. Yet, the line integral should 

not only concern the loop curve, since the arbitrary surface cut could carve an arbitrary 

intersection curve on the void surface. Respecting the direction of the two curves in Fig. 3(a), we 

have: 

secloop inter tC C C  .                                                   (17) 

In a similar fashion, the stress due to dislocation loop is modified as: 

3

3 3

[ d d ]
8

d
4 (1 )



 



 



 












   

  

  
           





D

ij mi m j mj m i

p pC

mk m ij k

i j p pC

B
b x b x

x x x

B B
b x

v x x x x x x

,                    (18) 

where mk  is the permutation tensor. The function 2 2

1 2( ) (1 ) k k k kB m x x m x x      x  is 

designed to remove singularity near the dislocation core by convolution, where 
1 0.9038  ,
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2 0.5451   with the cut-off distance   to be determined later and the fitting coefficient

0.6575m  . If dislocation motion were to be considered, a second convolution of Eq. (18) should 

be taken, which converts ( )B x into ( )R x . Since the aim here is to compute the image stress, the 

second convolution is not needed. Nevertheless, the strain energy of a circular shear loop, by 

numerically integrating Eq. (16), will be compared with that given by Cai el al. (2006). The same 

treatment will be applied to Eq. (13) to eliminate the singularity in calculating Π𝐷𝐸𝑥𝑡
. 

 

Fig. 4 The meshed FE model. The hemispherical surface cut is not shown.   

The total stress, due to the presence of void, must satisfy the traction-free boundary condition 

on the void surface. Hence, the image stress must satisfy:   

       0I D   σ n σ n                                 on void surface       (19) 

Even if the size effect of nanovoid is to be considered, Eq. (19) remains the same since the 

surface tension can be treated as a surface load. Once knowing the stress generated by the 

dislocation, the image stress can be obtained through solving the stress equilibrium equation 

numerically. In this way, the non-singular dislocation theory is incorporated into the finite 

element calculation. The center of the circular shear loop (Rloop=8.5nm) coincides with the center 

of a cubic material domain (85nm×85nm×85nm). The spherical void (R0=12.75nm) is centered 

at (-8.5nm, 0nm, 14.45nm). The elastic constants applied in the calculation are E=120 GPa and v 
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=0.33 for bulk copper. The calculation takes two steps. The first step is to obtain the surface 

stress due to the presence of dislocation and the second step is to obtain image stress. Void 

surface is meshed with triangular elements. No volumetric mesh is needed at the first step. Inside 

the material domain, only the void and the surface cut as shown in Fig. 4 are meshed. Numerical 

line integration along Cloop  for the flat cut (Cloop and Cinersect for the hemispherical cut) is carried 

out to evaluate the surface stress and the result is saved. At step 1, the number of triangular 

elements meshed on the surface cut is 2632. At step 2, the material domain is meshed with 

tetrahedral elements. The stress on void surface from step 1 serves as the surface load for the 

domain calculation. Along with periodic boundary condition, the image stress field in the domain 

is then obtained by the FE method. The shape function is quadratic. In step 2, the total number of 

the tetrahedral elements is 199092. The minimum element length of local refinement surrounding 

the dislocation line is 0.68 nm. The dislocation line is meshed with 0.255 nanometer-length edge 

elements. The mesh strategy is based on extensive mesh convergence tests. The numerical 

integration is performed with an integration order of 4. The numerically-integrated fields 

(displacement, strain and stress) induced by dislocations is first validated by those derived from 

the classical analytical solution (Ohr 1972) by setting 0  . Further, the nonsingular strain 

energy for a circular dislocation loop is validated by the nonsingular dislocation theory (Cai et al. 

2006), which reads:  

2 2

2

2 8 1
2 ln 2

8 1 2
ana

b v R
R

v R

 


 


    

        
     

,                                   (20) 

where R is the radius of the loop and   is the cut-off distance. Any cut without intersecting the 

void is the same to the flat cut, since both its stress and strain energy can be fully converted into 

a line integral that only concerns the loop itself. A good agreement between Π𝐷∞ and Π𝑎𝑛𝑎
𝐷∞  can 
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be seen from Table 1 for the flat surface cut with different core cut-off ρ. Interestingly, take ρ=b 

for example,  Π𝐼 + Π𝐷∞ of the flat cut is almost the same to that of the hemispherical cut as seen 

in Table 1. Additional calculations with differently-sized or elongated hemispheres confirmed 

this issue (not shown for brevity). Without considering the external load, which annihilates the 

term Π𝐷𝐸𝑥𝑡
+ Π𝐸𝑥𝑡, a flat cut and a hemispherical cut are equally likely. That is to say, the sum 

of these two terms almost stay the same for the two different cuts. As seen in Table 1, different 

cut-off distances ρ barely affect this conclusion.  

Table 1  

Potential energies by FE calculation for different surface cuts. Any cut without intersecting the 

void is same to the flat cut. The magnitude of Burgers vector is 0.255 nm for a perfect 

dislocation in FCC copper. 

Different cut-off:           ρ=b                      ρ=2b 

Surface cut: Flat Hemispherical Flat Hemispherical 

       Π𝐼(eV) -20.000 -220.75 -19.894 -171.07 

Π𝐷∞ (eV) 360.72 562.41 293.81 443.38 

Π𝑎𝑛𝑎
𝐷∞  (eV)  367.22  300.00  

Π𝐼 + Π𝐷∞(eV) 340.72 341.66 273.92 272.31 

 

Since the fourth term Π𝐸𝑥𝑡 in the total potential energy is for the undislocated configuration, it 

should be the same for any surface cut. The remaining term that truly matters is thus only Π𝐷𝐸𝑥𝑡
, 

which is the work done to introduce the dislocation under the external load. Assuming a nearly 

equal triaxial tension 
Ext

ij ij   and neglecting the second term in Eq. (11), it is intuitive to see 

that  

ExtD

A

dS V       b n .                                             (21) 
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Obviously, 0V   is more energetically favourable than 0V  . For prismatic loops, this leads to 

the well-known understanding that their formation under triaxial load causes voids to grow. 

Similarly, the hemispherical surface cut as shown in the inset of Fig. 5 would be favoured under 

triaxial tension. Due to the presence of void and the anisotropy of the crystalline, the shear stress 

at certain slip plane can induce dislocations under triaxial loading, which is well-known. Next, 

we consider the image effect and the surface effect due to the nanovoid (Sharma, 2003).  

3
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                                      (23) 

The stress components are written in spherical coordinates. The parameter μ is the shear 

modulus, K is the bulk modulus, KS=12.932 N/m is the surface modulus for [1 1 1] crystal 

direction (Sharma et al. 2003, Zhao et al. 2014), R0 is the radius of nanovoid, τ0 is residual 

surface tension (Sharma et al. 2003) and σ
∞
 is the remote triaxial stress. Such treatment 

introduced the intrinsic size to the classical elasticity theory. The size effect of the nanovoid 

induces a surface tension, which can be viewed as an additional load on the void surface. The 

resulted stress field is no long an equal-triaxial one, yet Eq. (21) can still be helpful for an 

intuitive understanding.  
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Fig. 5 The potential energy of the hemispherical cut subtracting that of the flat cut versus the 

external triaxial stress. Surface cuts without intersecting the void are the same to the flat cut. The 

potential energy of the load itself is irrelevant to the dislocations. 

Fig. 5 indicates that the potential energy with the image effect and the size effect would still 

favour the hemispherical surface cut that grows the void under remote triaxial tension. Further, 

the larger the external stress is, the more the hemispherical cut could be favoured as seen in Fig. 

5. Different cut-off distances ρ barely affect this conclusion in Fig. 5. 

2.3 The quasi-static atomistic simulation   

In reality, the nucleation of dislocation loops can be either homogeneous inside the material or 

heterogeneous at some surface (Hirth and Lothe 1982). Full dislocation loops can appear without 

incomplete ones being precursors. Indeed, the seemingly abstract operation to create a full 

dislocation loop (Hirth and Lothe 1982) is not unrealistic at all. The critical resolved shear stress 

for either homogeneous or heterogeneous nucleation could depend on temperature or the type of 

dislocation (Hirth and Lothe 1982). Other factors such as crystalline orientation could also play a 
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role in nucleation (Lubarda 2011). Narayan and Washburn (1972) introduced dislocation loop by 

plastic deformation near free surfaces as seen in Fig. 6. Once these dislocation loops situate 

beyond a critical distance from surfaces, they would not move. Homogeneous nucleation of 

shear dislocation loops in a defect-free FCC crystal was also reported by the atomistic simulation 

(Salehinia and Bahr 2014). Besides, the introduction of dislocation loops is the first step to study 

related configuration, energy, mobility and interaction with other defects (Li et al. 2015). 

Therefore, reliable and physical approaches to introduce dislocation loops into un-dislocated 

solid are of great scientific importance and continue to progress (Dang et al. 2017). Our focus 

here is the accompanying mass transfer, which has rarely been considered before.         

 
 

Fig. 6 Dislocation loops created by plastic deformation near a free surface (Reprinted with 

permission from Narayan and Washburn 1972. Copyright 1972, AIP Publishing LLC). 

The preceding section clarified the fact that the generation of a shear loop can induce void 

growth, depending on the surface cut. The “cut, displace and paste” operation proposed by Hirth 

and Lothe (1982) is theoretically sound. However, experimentally, it appears unlikely to control 

surface cuts. Besides, examining arbitrary cuts appears unachievable to the transmission electron 

microscope, since the scale is beyond the local core structure. For atomistic simulations, things 

become much easier. We can exactly control the surface cut. A flat surface cut can certainly 

generate a shear dislocation loop (Dang et al. 2017). If the cut is exclusively chosen as the flat 

one, there would be no need for the “paste” operation and consequently no mass transfer. Hence, 

we only need to examine the case of non-flat surface cuts. Since the scope of this work is limited 
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to the formation rather the evolution of dislocation loops, no external stress is applied to evolve 

the loop.  

Actually, a non-flat surface cut to generate a shear dislocation loop has been reported 

inadvertently. Zhou et al. (2012) created a shear loop by uniformly displacing atoms within 

hexagonal cylindrical region over a simulation period of 0.1 ns. Notably, this uniform 

displacement of atoms is not equivalent to the elastic deformation of a shear loop created by a 

flat cut. The latter one should be a second-order infinitesimal with respect to the distance away 

from the cut (Landau and Lifshitz 1970). To a control volume or a void overlapping with the 

hexagonal cylindrical region, such creation of a dislocation loop would grow or shrink it. For the 

first time, our atomistic simulation below aims to reproduce the operation proposed by Hirth and 

Lothe (1982) regarding the arbitrariness.  
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(e) View from [1 1 1] direction of (b)  

Fig. 7 The hemispherical surface cut (green outlayer and dark-blue inner layer) in (a) creates a 

standalone shear dislocation loop in (b). The same surface cut yet missing a piece in (c) creates a 

shear dislocation loop in (d) near a void. The rendered blue lines represent dislocation curves, 

while the gray areas represent stacking fault areas. The light blue atoms represent void surface. 

All other atoms are made invisible. Figure (e) remarkably resembles that generated by a flat cut 

in Fig. 5 of Dang et al. (2017).       

The proposed atomistic simulation to reproduce the operation regarding arbitrary cuts can be 

summarized as follow.  

1. To start, the simulation box (49.9nm×49.9nm×49.9nm) is first filled with face-centered 

cubic (FCC) copper atoms. The total atom count is roughly 10 million. The ratio of the 

box length to the radius of dislocation loop is bigger than 6, which helps converge the 

long-range stress field to that of an infinitesimal loop (Dang et al. 2017). Since the cut is 

non-flat, this ratio is applied in all three directions. The x, y and z directions align with 

the [1 0 0], [0 1 0] and [0 0 1] crystal orientations, respectively. Periodic boundaries are 

adopted for all three directions. This simple orientation gives better result in periodicity. 

The periodicity ensures that the void is the only free surface. The standalone case in Figs. 

7(a, b) contains no void. The case in Figs. 7(c, d) introduces a void of diameter 14.46nm, 

centered at (25.98nm, 21.32nm, 16.67nm) measured from the corner of the box. All 

simulations are carried out by Large-scale Atomic/Molecular Massively Parallel 
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Simulator (LAMMPS) and the Mishin‟s embedded atom method (EAM) potential for 

copper (Mishin et al. 2001) is applied throughout the paper. The series of potentials 

developed by Mishin and his co-authors show better agreement with experiments in 

several aspects (Dang et al. 2017). After the dislocation-free geometries are created, 

energy minimization using the conjugate gradient method is performed.  

2. The cut operation is translated into identifying atoms constituting the surface cut layer, 

which cannot be infinitely thin in atomistic simulations. Take the void-free case for 

example, two layers of atoms are involved in Fig. 7(a). The green, outer hemispherical 

shell is of inner diameter 14.46nm and outer diameter 15.33 nm. The blue, inner 

hemispherical shell is of inner diameter 12.72 nm and outer diameter 14.46nm. They 

share the same center with the simulation box. The green one outside (negative side) is to 

displace, while the blue one inside is to hold. As a tip to only use built-in commands of 

LAMMPS, one can create an almost infinitely-large sphere, through manipulating its 

sphere center, to intersect a small sphere for an arbitrarily-rotated hemispherical shell.  

3. The move command of LAMMPS is used to gradually displace atoms at a constant rate to 

their final positions. The displacement vector is 1/2[-1 0 1], the Burgers vector of a 

perfect dislocation in FCC metal. The simulation is run under the NVT ensemble at 0.1K 

for 20000 time step with 1fs for each step. The NVT ensemble is imposed on the atoms 

excluding those in two layers. The near-zero temperature prevents thermal activation and 

limits thermal vibration of atoms. The simulation run allows the system to attain elastic 

deformation to accommodate the move operation. The thickness of the inner blue layer is 

twice that of the outer green layer in Fig. 7(a). The main reason is to insulate atoms of the 

inner layer from the interaction of atoms outside the outer layer.  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

21 

 

4. The last step is to paste the surface together. The simplest way is to shift the atoms inside 

the hemispherical shell with the same amount of displacement vector. Indeed, the normal 

displacement of atoms on the loop plane is found negligibly small after the above 

simulation run. Afterwards, the discontinuity across the hemispherical cut disappears, 

while no new discontinuity arises. The paste operation is done by post-processing the 

dumped file containing atom information and thus no need for running additional 

simulation.      

5. With the presence of void, the overall operation remains the same. The only difference is 

that hemispherical shells are missing a piece due to intersecting with the void in Fig. 7(c). 

The only discontinuity left is the dislocation loop itself as seen in Fig. 7(b). The perfect shear 

loop dissociated into partial dislocations during the simulation in Figs. 7(b, d). The Burgers 

vector of the outer Shockley partial is 1/6[-1 -1 2], while 1/6[-2 1 1] for the inner one. They were 

dissociated from the perfect dislocation of a Burgers vector 1/2[-1 0 1]. This certainly makes 

sense, since the dissociated Shockley partials are more energetically favourable. The dislocation 

networks in Figs. 7(b, d) are calculated by the software ATOMVIEWER (Begau et al. 2012). We 

have confirmed them by using software OVITO (Stukowski 2010), which yielded exactly the 

same dislocation configuration as in Fig. 7. Figure 7(e) remarkably resembles that by using a flat 

cut in Fig. 5 of Dang et al. (2017) with small semi-major axis. They also found a smooth 

dissociated dislocation core as the result of energy minimization. Although the hemispherical cut 

is somehow arbitrarily chosen, the dislocation loop tends to be more circular once getting larger 

(Scattergood and Bacon 1974, Dang et al. 2017). In this work, not only a non-flat surface cut is 

applied, but also the image effect from the nearby void is involved. Even not regarding the mass 

transfer, the atomistic simulations dealing with arbitrary surface cut could shed some new light 
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on the discrete dislocation dynamics (DDD) simulation to reflect this arbitrariness.  

 

Fig. 8. Atomic displacement field (magnitude) as measured from initially dislocation-free 

configuration for (a) a standalone shear loop and (b) a shear loop generated near a void. The 

software ATOMEYE (Li 2003) is employed in plotting. The cutting plane for the 2-D plot is (1 -

2 1). The dashed circle in (b) marks the initial void profile. 

Table 2  

Void growth due to the generation of a shear dislocation loop  

 Void growth ratio (∆V/V0) 

 Simulation Theoretical, Eq. (24) 

Hemispherical surface cut   1.275% 1.162% 

 

Next to examine is the displacement field and void growth after introducing the dislocation 

loop. For the void-free case, the largest values are inside the hemispherical dome due to the paste 

operation. During the simulation run, elastic deformation builds up due to displacing the 

hemispherical shell as seen in Fig. 8(a). For the void-embedded case, part of the void surface is 

within the paste zone and hence acquires some growth. The initial void volume fraction for the 

dislocation-free state is 1.2766%. After the paste operation, the void volume fraction of the 

system rises to 1.2929% as a consequence of the hemispherical cut. The ratio of void growth can 
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be calculated by relating its incremental change to its initial volume as 

0 0

d
A

SV

V V



 b n

.                                                        (24) 

The surface A for the integral in Eq. (24) is the intersection area defined in Fig. 3(a). In the 

atomistic simulation, the way to paste the two sides of the cut together has to be specified. By 

comparison, Eq. (24) does not specify the way, as long as the cut is enclosed by the chosen 

control volume, as discussed in the preceding section. As listed in table 2, the atomistic 

simulation leads to a void growth ratio of 1.275% due to the hemispherical cut. By comparison, 

Eq. (24) yields a growth ratio of 1.162% by performing the integration on the intersected area of 

the void surface. The difference is apparently due to the additional elastic deformation.  

3. The dynamic formation/emission 

3.1 The new insight  

 
Fig. 9 Increment of A for the motion of a full shear loop (Hirth and Lothe 1982, Bower 2009) 

 

It is true that once a dislocation loop is completed, the further conservative motion would 

not induce any new mass transfer. During the motion of a dislocation loop, surface elements 

𝛿𝐀 = 𝛿𝐫 × 𝑑𝐥 are added to the surface cut A that generates the loop in the first place. As seen in 

Fig. 9, neither the glide nor expansion of a full shear loop will induce further mass transfer since 

the additional 𝛿𝐀 would only be flat. This is exclusively valid for a complete loop, as stated in 

the textbooks (Hirth and Lothe 1982, Bower 2009). However, one might ask: is this truly 

inapplicable to dislocation segments? In other words, would the expansion and glide of 
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dislocation segments, before completing a loop, unable to induce mass transfer? Indeed, the 

dynamic expansion of incomplete shear loops as seen in MD simulation could be viewed as both: 

(1) the dynamic formation of new dislocation segments and (2) the gliding and expansion of the 

existing segments. We believe that this pivotal question can be answered by the proof by 

contradiction in Fig. 10.   

 
Fig. 10 Proof by contradiction: if the initiation, expansion and glide of dislocation segments were 

prohibited to grow voids, a prismatic loop in (b) evolved from (a) cannot grow voids either. Four 

control volumes ①②③④ disassemble the shear loop and the prismatic loop into only 

dislocation segments. Green planes are gliding planes instead of surface cuts.    

The logic in Fig. 10 is simple: if the initiation, expansion and glide of dislocation segments 

were prohibited to transfer mass, the prismatic loop cannot grow voids either. The control 

volumes disassemble the loops into only dislocation segments in Fig. 10. During the V-shape 

shear loop evolves into a full prismatic loop, within each control volume, only the initiation, 

expansion and glide of dislocation segments are involved. If 𝛿𝑨 were flat for each segment in 

each control volume, the total A would always stay flat, which results in ∆𝑉 = 0 for each control 

volume even after the completion of the prismatic loop in Fig. 10(b). That is to say, such a 

prismatic loop would also be prohibited to grow voids. This contradicts not only common 

understandings, but also experimental and MD observations. Indeed, in the upcoming subsection, 

we will rely on MD simulations for further confirmation. In short, Fig. 9 is inapplicable to 
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dislocation segments. The surface A until the completion of a dislocation loop should stay 

arbitrary and allow void growth. Furthermore, this amount of growth is not necessary to be 

forfeited upon the completion of a dislocation loop, as seen in Fig. 11(c). Obviously, the amount 

of growth ∫ 𝒃 ∙ 𝒏d𝑆 ≠ 0
𝐴

 for the surface cut A in Fig. 11(c). In contrast, once completed, the 

shear loop will not induce further growth via gliding. In reality, a single, isolated full shear loop 

gradually leaving the void can be rare since multiple dislocations can be emitted simultaneously 

once critical stress is reached. Detached, yet interconnected faulted shear loops can be found in 

previous MD simulations (Cui and Chen 2016), whose mass transfer can be understood by the 

schematic in Fig. 11. 

Fig. 11 The surface cut A that still grows a void upon completion of the shear loop. The 

transferred mass is not necessarily to be forfeited. After the completion, conservative motions 

(i.e. gliding or expansion) only add a flat increment to A and hence no further growth. 

3.2 MD simulations   

Although MD simulations of defective structure under tension or compression have been 

extensively reportedly (Traiviratana et al. 2008,  Bringa et al. 2010, Tang et al. 2012, Krasnikov 

and Mayer 2015, Cui and Chen 2016, Cui and Chen 2017a, Xiang et al. 2017, Jing et al. 2018), 

we here offer new understanding from several aspects. First, although prismatic loops are known 

to induce mass transfer, the local mass redistribution associated with their transformation from 

shear loops has never been investigated. Neither has the mass transfer during the cross-slip of 
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shear loops, although these cross-slipped V-shape shear loops have already been studied in the 

MD simulation of nano-indentation long ago. Second, we will clarify that these V-shape shear 

loops are not necessary the precursors of prismatic loops and hence cannot be already deemed as 

prismatic loops. Third, the square-frustum structure of dislocation under uniaxial tension will be 

re-examined to clarify that they should not be counted as a dislocation loop with prismatic 

character. The triaxial tension case in subsection 3.2.1 is for the first aspect, while the uniaxial 

tension case in subsection 3.2.2 is for the second and third aspects. For the uniaxial tension, we 

focus on the V-shape shear loop and the disproof of its prismatic character, which has never been 

reported.  

3.2.1 Prismatic loops formed by shear loops under triaxial tension    

The void-embedded geometry is created by removing the copper atoms within a spherical 

region (r=3.615 nm) centered in a cubic simulation box (30.4nm×30.4nm×30.4 nm). The total 

atom count is approximately 2.4 million. The initial void volume fraction is 0.71%. The 

boundaries of the simulation box are made periodic for all three directions. A fixed time step of 

1fs is applied throughout the simulation. Energy minimization is first performed by using a 

conjugate gradient algorithm to attain a minimum energy configuration, followed by a relaxation 

step to reach an equilibrium-state configuration under the designated temperature. The equal 

triaxial load with a strain rate of 2×10
8
 s

-1
 is then applied at all directions. The initial temperature 

for the dynamic run is 1K and no thermostat or barostat is applied. The MD post-processing 

software ATOMVIEWER (Begau et al. 2012) is employed in post-processing the MD data. It 

combines the modified Nye-tensor method and the dislocation line extraction method to derive 

Burgers vectors and dislocation network without constructing Burgers circuits explicitly. In 

general, the simulation results confirmed the established process of prismatic loops to form under 
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triaxial tension through cross-slip of shear loops (Tang et al. 2012). Yet, the mass transfer pattern, 

during and after the formation of prismatic loop, has rarely been examined. Hence, our attention 

is paid to the mass transfer only.    

Under the equal-triaxial tension, the central void started to expand elastically and no any form 

of dislocation was seen until the strain reached the value of 1.94%. Incipient shear loops started 

to appear only after a strain of 2.36% and then developed rapidly into coordinated structures. The 

prevailing pattern is that Shockley partial dislocations grow on planes {111}, since they are more 

energetically favourable than perfect ones. In Fig. 12(a), highlighted dislocation segments belong 

to a shear loop during cross-slip, which later turns into a prismatic loop as also highlighted in 

Fig. 14(a). No prismatic loop was found in Fig. 12. The seemingly prismatic one is only a visual 

illusion, which actually involve a V-shape shear loop and another unrelated partial dislocation in 

the rear side. 

 

                         (a) Without RFT atoms                                                           (b) With RFT atoms 

Fig. 12 Incomplete shear loops highlighted in yellow prior to prismatic loop formation at a strain 

of 2.484% and the corresponding mass transfer pattern. The light blue atoms in (a) represents 

void surface. The rendered lines are dislocations. The critical length for relatively farthest-

travelled (RFT) atoms is 0.15 nm. 
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Fig. 13 Schematic drawing for mass transfer associated with an incomplete shear loop 

Recall that we defined [𝒖𝑬𝒙𝒕, 𝜺𝑬𝒙𝒕, 𝝈𝑬𝒙𝒕]. Thus, the relative displacement actually excludes 

𝒖𝑬𝒙𝒕 − 𝒖𝑰 from the total, where 𝒖𝑰 is the image one. At the very least, the unwanted image one 

of the external load will not exaggerate the void growth, since this image stress offsets the tensile 

traction on void surface. The RFT atoms are identified once the relative displacements exceed 

some critical level. As an improvement, the end of elastic stage, instead of the unstrained system 

(Cui and Chen 2016), is taken as the reference configuration for better illustrations. In 

ATOMVIEWER, the simplest way to do so is to assign virtual element type to RFT atoms once 

they are identified and enable the show elements function. As expected, the RFT atoms in Fig. 

14(b) correctly capture the mass transfer via the emission of prismatic loops, which could be 

taken as a validation of the method itself. The void growth, exactly as the classical 

understanding, can be induced by prismatic loops. The RFT atoms are enclosed in the prismatic 

cylinders swept by gliding prismatic loops. The leading RFT atoms ahead of the prismatic 

cylinder connect to the trailing partial dislocations. Based on the validation, RFT atoms in Fig. 

12(b) confirm that shear loops can also induce mass removal/insertion. These RFT atoms in Fig. 

12(b) are enclosed by the leading partials. Also, the fact that RFT atoms gather at one side of a 

certain slip plane rules out them being the elastic deformation, which should be antisymmetric 

with respect to the loop plane (Ohr, 1972). The schematic drawing in Fig. 13 describes that RFT 
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atoms could take a combined shape of the mass transfer region caused by two dislocation 

segments. Indeed, Eq. (21) states that the energy due to the work done to introduce the 

dislocation into external load, favours the surface cut that can grow void under a triaxial loading. 

It is not only true for the well-known void growth via prismatic loops, but also should be true for 

the void growth via shear loops. 

 

                         (a) Without RFT atoms                                                           (b) With RFT atoms  

Fig. 14 Dislocation network formed at a strain of 2.592% around void under a triaxial tension 

and the mass transfer pattern during void growth. The highlighted prismatic loop evolved from 

the also highlighted shear loops in Fig. 12. Its slight opening is due to reaching the periodic 

boundary.  

In Fig. 14, a total of 12 rows of prismatic loops are emitted, although some are unseeable in 

the rear side. Most of prismatic loops have detached from the void, although some still has its 

stacking fault area connected to the void. 
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Fig. 15 Schematic drawing for mass transfer associated with prismatic loop 

Fig. 15 depicts the mass transfer of a prismatic loop gliding away from the void, adapted from 

the MD simulation. The prismatic loop has not only formed but also glided to its current 

position. Assuming no climb is involved, the mass transport caused by the gliding motion of the 

prismatic loop can be evaluated as   

  * ( d ) 0motion
C

V      b r l .                                                   (21) 

The triple product in the above equation is obviously zero since the motion is a pure slip, i.e. 

these vectors 𝒃, 𝛿𝒓 and d𝒍 are in a same plane. Indeed, neither the conservative motion of a shear 

loop nor that of a prismatic loop can cause additional void growth. Hence, the concerned void 

growth exclusively comes from the formation.  

* * * *

Void formation motion formationV V V V                                       (22) 

Given this fact, the prismatic loop can be deemed as if formed at the current position for 

evaluating mass transfer. By choosing the control volume as shown in Fig. 15, its volumetric 

change can be calculated as    

* * d dformation kk
V A

CV

V V S      b n                                         (23) 

The minus sign indicates shrinkage of the control volume, which implies the growth of the void. 

We then reach a very interesting conclusion that the gliding of a prismatic loop, though causes no 
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further growth of void, is extending the effective mass transfer region into the material. Indeed, 

the motion of an edge dislocation can be visualized as a moving caterpillar, whose hump 

represents the added layer of atoms, is propelled away from the void due to the load.    
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Fig. 16 Corresponding void volume fraction under triaxial tension. 

In Fig. 16, the curve of void volume fraction versus strain certainly confirms the above 

findings. The void growth is almost linear and elastic with no shear loop present. The drastic 

increase of void size is triggered when there are only shear loops in the system. There is barely a 

change in the slope during the shift from shear loops only to prismatic loop‟s prevailing in Fig. 

16. If shear loops were really unable to grow the void, the drastic change would rather be when 

prismatic loops are first formed. The void growth is a continuous process ever since the 

beginning of dislocation emission. The reason behind is simply that shear loops can grow the 

void. Near the end of the curve, the subsequent growth of void is due to a new round of shear 

loop emission and hence new prismatic loop emission.   

3.2.2 The coordinated dislocation structure formed by shear loops under uniaxial tension    

Although the simulation itself is similar to many previous works, we here only focus on the 
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V-shape shear loop and the disproof of its prismatic character. The loading here is with uniaxial 

strain. Only the x direction is stretched and lengths of the other two directions are fixed. The 

dislocation emission only occurs after a strain of 5.25% in Fig. 17(a). The emerging incomplete 

shear loops abruptly grow into coordinated square-frustum structure as seen in Fig. 17(b). As 

seen in Table 3, the leading and trailing partial dislocations farthest away from the void in Fig. 

17(b) do not constitute a dislocation loop. Apparently, their Burgers vectors of supposed perfect 

dislocations if undissociated are not the same. Unlike a prismatic loop spanning two slip planes, 

these leading and trailing partials are in four slip planes. According to the last row in Table 3, 

only segments 3 and 4 have the same Burgers vector if undissociated. Hence, they constitute a V-

shape shear loop. However, this V-shape shear loop has never turned into a prismatic loop. 

Therefore, V-shape shear loops are not necessarily precursors of prismatic loops. Void growth 

occurs with only shear loops in the system.  

 

      (a) strain=5.25%                    (b) strain=5.4%                    (c) strain =5.4% (with RFT atoms) 

Fig. 17 Dislocation network around void under uniaxial tension and the mass transfer pattern 

during void growth. The light blue atoms in (a) represents void surface. The rendered lines are 

dislocations. The critical length to identify RFT atoms is 0.15 nm. Figure (a) is used as the 

reference configuration for RFT atoms. 

Table 3  

The Burgers vectors of the dislocation segments marked inside Fig. 17(b)  
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Dislocation segment: 1 2 3 4 

Slip plane (-1 1 -1) (-1 -1 -1) (-1 -1 1) (-1 1 1) 

b of the leading partial 1/6[-1 1 2] 1/6[-1 2 -1] -1/6[1 1 2] 1/6[-1 1 -2] 

b of the trailing partial 1/6[-2 -1 1] 1/6[-2 1 1] 1/6[-2 1 -1] -1/6[2 1 1] 

b if undissociated   1/2[-1 0 1]    1/2[-1 1 0] -1/2[1 0 1] -1/2[1 0 1] 

The prevailing dislocations in the system are still Shockley partials. Unlike the triaxial-tension 

case, prismatic loop has never been observed. For the dynamic emission of shear loops and their 

coordinated structure, the caterpillar analogy of dislocation motion is still helpful. The mass 

transfer region is expanding and extending with the growth of leading partial dislocation. The 

dislocation segments of the square-frustum structure are not only gliding but also gaining length. 

Due to the arbitrary surface cut, their formation is responsible for the mass transfer and hence 

void growth. Without the completion of prismatic loop, the void growth is dominated by shear 

loops and their coordinated structure. In Fig. 12, the initial void growth is almost linear and 

elastic. The drastic growth of void size occurs only after the formation of incomplete shear loops. 

Unlike the triaxial-tension case, only incomplete shear loops are seen and no prismatic loop is 

observed. As marked in Fig. 12, the count of non-closed shear loops increases from initially 6 to 

26 when some of them reach periodic boundaries. The highlighted V-shape shear loop in Fig. 17 

is among the first few emitted and contributes substantially to the gain of void volume. With no 

prismatic loop ever completed, void growth is still a continuous process due to the multiplication 

of non-closed shear loops and their coordinated structure as seen in Fig. 18. Since there is no 

closed loop, Eq. (21) for evaluating mass transfer of a moving, closed dislocation loop by 

definition is not applicable and hence cannot invalidate this growth mechanism by non-closed 

loops. Also, direct or indirect evidence of void growth via shear loops in MD simulation can be 

found in the literatures (Traiviratana et al. 2008, Bringa et al. 2010, Tang et al. 2012, Krasnikov 

and Mayer 2015, Cui and Chen 2016, Cui and Chen 2017a, Xiang et al. 2017, Jing et al. 2018). 
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Void growth via incomplete shear loops were observed when thermo-mechanical constraints, 

strain rates, simulation sizes (Cui and Chen 2017c, Cui and Chen 2018) and even initial void 

shape (Cui and Chen 2015a, 2015b) were altered. Nonetheless, there could be occasions that 

incipient shear loops have little influence in mass transfer, probably concerning the way of 

loading. For instance, the formation of incipient shear loops barely affected the decreasing 

porosity of the nanoporous metal under uniaxial compression (Cui and Chen 2017b). After all, 

the cut to create dislocation loops can be arbitrary, depending on the situation. 
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Fig. 18 Corresponding void volume fraction under uniaxial tension.  

4. Conclusions 

We combine the molecular statics, nonsingular dislocation theory, finite element method and 

molecular dynamics approach to offer new insights into the mass transfer regarding 

geometrically-necessary dislocations. Our major findings are as follows, which answer those 

challenges mentioned in the introduction.  

1. We prove that the generation of full shear loops, not only incomplete ones, can also grow 
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voids 

2. Among all possible cuts, the potential energy could favour the one that grows the nearby 

void under triaxial tension. 

3. An approach via MD simulation adapted from the “cut, displace and paste” operation has 

been established, which, for the first time, successfully creates a shear dislocation loop via 

a hemispherical cut. 

4. Through proof by contradiction, we show that surface cuts of dislocation segments during 

dynamic emission should stay arbitrary. The transferred mass by a full shear loop is not 

necessarily to be forfeited upon its completion. The V-shape shear loops can already 

induce mass transfer before turning into prismatic loops under the triaxial tension. Rather, 

it is the prismatic loop that later “inherits” this ongoing mass transfer.  

5. We reveal that the leading dislocations at the opening of coordinated dislocation structures 

should not be mistaken as a loop with prismatic character. These V-shape shear loops 

under the uniaxial tension never turned into prismatic loops until the end of loading. Most 

of them form square frustum-like dislocation structure. It can at least be sure that V-shape 

shear loops are not necessarily precursors of prismatic loops. They grow voids only 

because that their surface cuts can be arbitrary. 
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