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In this paper we formulate balance principles for an immiscible mixture of continua with microstructure
in the broadest sense to include, e.g., diffusion and adsorption phenomena, strain gradient effects and
chemical reactions, and introduce an additional balance of micromomentum for each constituent to de-
scribe the microstructural effects. Next, we describe a method for taking into account the general internal
constraints in entropy inequality, based on an ‘extended’ principle of thermodynamic determinism, and
obtain a set of ‘pure’ constitutive equations. Finally we consider some examples of interest for thermo-
mechanics of soils, such as granular materials dispersed in a fluid or the flow of fluids in a porous solid.
Particular solutions are obtained in linear approximations for mixtures of packed granular materials in
rarefied air, and solids with nano-pores filled by a gas.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A general formulation of balance principles for a mixture of
continua with microstructure in the widest sense was presented
in Giovine (2005) to study diffusion, adsorption and broader
chemical-physical phenomena. The theory generalizes the multi-
phase mixtures presented in Passman et al. (1984) where each
constituent has a simple geometric structure characterized only
by a scalar kinematic parameter, its volume fraction. In fact, by
considering kinematical parameters on a differentiable manifold,
we unify proposals (such as those in the essay Capriz, 1989 or
in Mariano, 2002) dealing with granular and porous media, or
Cosserat and micromorphic continua. An example of mixtures for
micromorphic materials has been studied in Twiss and Eringen
(1971/72), and applied to micropolar media, although, there, the
authors consider for each constituent of the mixture an additional
balance equation, parallel, in a certain sense, to the mass con-
stituent balance: that of microinertia moment. Instead, such equa-
tion has been shown to be a simple consequence of the definition
of the tensor field of microstructural inertia (see, e.g., Section 21
of Capriz (1989), or Egs. (4.12) and (34) of Capriz et al. (1982) and
Giovine (2008), respectively).

Moreover, in Giovine (2005) a new expression of the integral
balances of moment of momentum appears evident in the theory,
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in which the presence of the various microstructures is taken into
account, while the mass density fields can no longer be regarded
as determined by the deformation fields because chemical reac-
tions are present, thus the constitutive assumptions must allow for
a dependence on a larger number of variables (see, also, Capriz and
Podio Guidugli, 1974 for reacting mixtures of polar bodies).

The present work concerns the use of internal constraints
Capriz and Podio Guidugli (1984) in order to study the essential
features of some classical models of soils capable of describing
the effects of immiscibility and variable volume fractions, besides
those associated to microstructural interactions. In the so-called
immiscible mixtures the components do not form a mixture on
the molecular level, as it is the case for fluids, but remain sepa-
rated to the sub-structural level of observations: material systems
such as rocks, solid filters, granular and porous media, biologi-
cal tissues, clays, etc. belong to this class (see, for example, Sec-
tion 5A.4 of Bowen, 1984, otherwise Raats, 1984, or further the
Ch. 13 of Wilmanski, 2008). Furthermore, due to the complexity
of the interactions between components as well as among macro-
and micro-structure, it is assumed that the entropy flux is not
equal to the heat flux divided by the temperature, as suggested
in Miller (1967) and Goodman and Cowin (1972).

As special cases of our proposal we find the description of a
theory of fluid suspensions, an incompressible mixture of a con-
centrated granular material immersed in a fluid, and a mechanical
theory of poroelasticity, in which the constitutive equations for the
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solid elastic skeleton take into account for the micro-strain gradi-
ent effects due to the presence of nanopores.

Detailed numerical studies are also provided to describe the ef-
fects of microstructures, such as the influence of micro-rotations in
a quasi-linear dilatant granular material with rotating grains, or the
incidence of micro-vibrations in a linear thermoelastic solid with
big pores.

2. Kinematics and microstructures

In this section we discuss the kinematics of motion and the
equations of balance for a mixture of n continuous bodies B3;,
i=1,2,...,n, each endowed with its own microstructure, and, in
our developments and notations, we mainly follow the Lecture 5
of Truesdell, 1969.

We assume that all of them are able to occupy regions of the
three-dimensional Euclidean space &, at a certain time 7 in an in-
terval [T, T1] during which the motion is observed, and indeed
contemporaneously: for which every place x in the body is simul-
taneously occupied by a material particle x; of each constituent at
time 7. If X; is the place taken by a particle of B; in some reference
placement, the motion of B; is the smooth mapping

x=x(X.71) (1)

of B; onto a time-sequence of placements in space: each such mo-
tion has its own kinematics.

We shall use a subscript to indicate a constituent and a prime
to denote the material time derivative following the motion of that
constituent; therefore, v; and g; are the peculiar velocity and accel-
eration of constituent i, respectively:

0x; , 02x;
Vi = a—t’(xi, ) =X(x,7), G:= WZI

The ith peculiar velocity gradient L; and deformation gradient F; of
X; € B; are

X, ) =x{(x,7). (2)

ax;
ax;

respectively. Because of the assumptions made about the smooth-
ness of x;, it is

tj :=detF, > 0, (4)

L =gradv;(x,7) and E = X, 1), 3)

thus Flfl exists and, by the chain rule, it is easy to show that
Li=(FF ') (x.7) =D + W, (5)

where the standard decomposition of the velocity gradients are
used with D; := J(L;+LT) and W := J(L;—LT) the ith peculiar
rate of deformation and spin tensor, respectively.

Each body B; has its own bulk mass and consequently its mass
density per unit volume p; in the placement x; at time t, then the
density and the velocity of the mixture are defined by

pi=Y p and v:i=) &v, with E,—:%, (6)

respectively, where &; is the concentration of the ith constituent;
here and henceforth, ¥ stands for summation from i =1 to i = n.
Moreover, if we introduce the diffusion velocity of the ith con-
stituent in the mixture

U= vi -V, (7)

the following property holds:

Zgiui:ZSivi_<Z§i)v:O~ (8)

The hypothesis that the constituents 5; of the mixture have a La-
grangian microstructure (in the sense of Capriz, 1989) means that

each material element of a single body reveals a microscopic geo-
metric order at a closer look; then it is there assigned a measure
vi(x) of the peculiar microstructure, read on a smooth manifold M;
of finite dimension m;: e.g., the interval [0, V) of real number, with
U < 1, for the volume fractions of fluids in an immiscible mixture
Passman et al. (1984), the projective plane in the theory of liquid
crystals Ericksen (1991) or the space of definite positive symmetric
tensor in the theory of solids with large pores Giovine (1996). For
now, we do not fix the tensor rank of each order parameter v;.

Let us consider now two observers differing by a rotation of
characteristic vector q(t), with corresponding proper orthogonal
tensor

Q(t)=exp[—8q(r)][:=1—eq+%(8q)(8q)—-..], (9)

where exp is the basis of natural logarithms, & is Ricci’s three-
dimensional alternating tensor and I is the identity tensor. They
read two different values v; and (v;); of the ith order pa-
rameters connected by the following relation (see Section 3 of
Capriz, 1989 or Section 6 of Capriz and Virga, 1990):

(v)g = vi+ Aig +0(|q]). (10)

where A;(v;) is the infinitesimal generator of the local action of
the proper orthogonal group SO(3) over M; defined by:

d(Vi)q

dq q:O’

Ai(vy) = (11)

A; is a linear operator mapping vectors of %3 into elements of the
tangent space T, M; to M; at v; and, in its matrix representation,
has three columns and a number of rows equal to the dimension
m; of M;. For the examples above, the volume fraction of a fluid
is invariant for changes of observer, so 4; vanishes; in the theory
of uniaxial liquid crystals, the order parameter is a unit vector d
marking the alignment of rod-like molecules, therefore 4; coin-
cides with (ed); finally, in the theory of solids with large pores,
the order parameter is a symmetric tensor V, which changes as a
2nd order tensor, thus 4; has the following components (A;)qp, =
Vaysyﬂl - aaytvyﬁ (see, also, Section 3 of Capriz, 1989 and Section
3.1 of Mariano, 2014 for more general changes in observers, cur-
rently not of interest in this context). The convention that repeated
greek indices are summed is adopted throughout.

Now we suppose that, for each body 3;, exists a non-negative
kinetic energy k;(v;, w;), associated with each time-rate of change
of the ith microstructure

, Bvi .
W=V =52 + (grad v;) v; = v; + (grad v;) u;, (12)
that is the material time derivative of v; with respect to the pe-
culiar velocity v;, and which will be called, briefly, the ith mi-
crospeed; this kinetic energy «; is such that «;(v;,0) =0 and

‘;2(2’ +£ 0. Here, (-)(:= % + [grad ()] v) is the material time deriva-

1
tive with respect to the mixture velocity v given by (6),.
Moreover, we can define the density of kinetic co-energy x;(v;,
w;) related to «; by the Legendre transform:

_ i
8(,(),‘
that is, x; is a solution of the system of linear partial differential

equation of the first order (13) or, introducing coordinates v in a
local chart of the manifold M;,

Ki C Wi — Xis (13)

GO @) = 505

with the usual convention for the sum over repeated indices. Of
course, if x; were homogeneous of second degree in w;, then it

() — xi. (14)
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would coincide with k;. On the contrary, even if k; were homoge-
neous of second degree in w;, x; need not coincide with k; (see
Capriz and Giovine, 1997a).

We note that, when the manifold M; does not have an intrinsic
connection Capriz and Giovine (1997b), we cannot define a kinetic
energy k; associated with a time-rate of change w; of v;, a case
when the coordinates v; are rather termed internal (state) variables
and ruled by a first order evolution equation instead of a balance
equation (see, e.g., Eq. (5A.4.11) of Bowen, 1984).

3. Laws of balance for constituents

For a region V of space, we may consider the actions on the
part of the constituent body B; presently occupying V and calcu-
late the rates of growth per unit volume of mass ai+, linear mo-
mentum m;, micromomentum ¢;", rotational momentum z;", en-
ergy ei+ and entropy ’7,—+ within it. It is meaningful to note that
these quantities derive from interactions between constituents and
should therefore be recognized as terms of interchange, thus the
rules that underlie our formulation of the constituent balance laws
are the first two metaphysical principles of Truesdell (1969): (1)
all properties of the whole mixture must be mathematical conse-
quences of properties of the constituents; (2) so as to describe the
motion of a constituent, we may in imagination isolate it from the
rest of the mixture, provided we allow properly for the actions of
the other constituents upon it.

Each constituent B; undergoes actions of three kinds: (1) the
contact actions, represented by the stress T;, the microstress S;,
the heating and entropy fluxes gq; and p;, respectively; (2) the in-
ternal microactions per unit volume ¢;; (3) the prescribed actions
at a distance, depicted by the densities per unit mass of body force
b;, microforce §;, heating A; and entropy supply ;. Therefore, the
integral equations of balance for the constituent i of the mixture,
proposed in Giovine (2005), are assumed in the general form with
the growth terms included in the source terms:

/otfdl/z (fp,-dv) ,
/mi*dvz </p,~uidu) —/pibidu—%Tinda,
/¢;dv=(/pi§£{du>
1
0Y;
—/ |:,0,<a$)(: +8,’> —§i]du—7§8mda,

I
/(Z;“—H”x m,fr—i—AiTqSi*)dvz |:/pi(er1+AiTgiii>dvi|

_ / pi(r x bi + AT 8)dv — ?{ [r x Tin+ A] (Sin)]da,

/
/er dv= [/ p,-(e,-+ %vf+/<,->dv]

—/pi()»i+bi-1/i +8,~~a),~)dv+y§(q,~ — TiTU,' —SiTa),‘) -nda,

/n;’ dv= (/ p,—r},—dU) —/piw,-dv+fpi~nda. (15)

In the Eq. (15), s denotes integration over the volume V and dv
the element of volume; § denotes integration over its boundary
dV and da the element of surface, while n is the outward unit
vector normal to the boundary dV; the position vector field r is
given by (x —xg) with xy a fixed point in &; the transpose of the
(m; + 1)th order tensors A; (or &;) has the following components
(A,T)O,mﬁ[ = (Ai).o..p; & and n; are the ith peculiar internal energy
and entropy, respectively.

The formulation of the balance of rotational momentum in the
form (15)4 appears to be a novelty in the theories of general con-
tinua with microstructure, even if the deduction of its local form
will be in agreement with that inferred, e.g., from a theorem of
kinetic energy in Capriz (1989) and Giovine (2004), or obtained
with invariance requirements with respect to classes of changes
in observers Mariano (2005). Moreover, if we consider polar con-
tinua of Cosserat brothers or oriented materials of Toupin, the or-
der parameters v; and the operator .4; can be recognized as a
proper orthogonal tensor R and the 3rd-order tensor of compo-
nents: (Aj)qg, = €ayRy g, respectively; therefore, for a single po-
lar body, the balance (15)4 in local form reduces to the Cosserats’
law for balance of moment of momentum (205.10) of Truesdell and
Toupin (1960), or otherwise to the Toupin’s spin momentum bal-
ance (98.26) of Truesdell and Noll (1992) (when the same spin mo-
mentum vanishes), that is

skwT; = pil + divM, (16)

where the skew part of a tensor C is defined as skwC :=2-1(C —
CT), while the assigned couple field I and the couple stress tensor
M are now

lop :=Rias(8i)sp) and Mepg, = Rius(Si)spy (17)

respectively: here the square brackets specify the skew-symmetric
part with respect to indicated indices.

Finally, there are appropriate additional terms in the energy
Eq. (15)s5 corresponding to the work done by the respective field
terms in the balance of micromomentum.

For suitably smooth regions and fields, it is possible to apply
the divergence theorem and obtain the local statements of balance
Eq. (15) for each constituent B;:

OliJr = ,0,/ + pidivy;, (18)

+ + /
mi - Vi = poiV; —

dxi Oxi\ i .
¢fr_°‘i+a£ =Pi<8£> —Pi(a)s +5i) —divSi+ &, (20)
1 1 1

pibi —divT;, (19)

zf =T, — ATg; — (grad A)S;, (21)

€ —mf v —¢F w0 —af (€ - 27107 — k)

= pi€{ — piki+ divgi =T - L = §; - 0 = S; - grad (22)

n = o i+ pin; — piwi +div p;. (23)

We wish to observe that, to get Eq. (21), we used bal-
ances (18)-(20) and the invariance of x; under the galilean
group, i.e., (AiT)/g—ﬁ = _A:T% Further, in Eq. (23), we followed
Miiller (1967) by assuming that, in general, the entropy flux p; is
not equal to the heat flux g; over the peculiar temperature 6;: in
fact the components of the mixture are complex bodies as it is
the case, for example, for granular mixtures (see Wang and Hutter,
1999b; Giovine, 2010). In this regard, the multiphase theory for-
mulated in Passman et al. (1984), and based on the continua of
“Goodman & Cowin” type, ignores this assumption despite it be-
ing present in Goodman and Cowin (1972) itself: it could be ne-
glected only if the related body has particular material symmetries
(Miiller, 1967).
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4. Powers and objectivity

The kinetic energy 7; of the ith constituent B; occupying V in
the present configuration is defined by

1
Ti = /pi(jv,-z + /ci>dv, (24)

while the mechanical power P; developed on the ith constituent
occupying V is the rate of working of all forces acting on B; by the
exterior bodies:

P =P/ + PP, (25)

where the decomposition of the power P; into a proper part PP™,
the one that can be attributed to B; as if it was isolated, and an
exchange part P/", which accounts for the power of the direct
actions exerted on B; by other components, is motivated by the
second metaphysical principle for mixtures, for which each con-
stituent can be isolated from the rest provided that the interac-
tions with the others are accounted for. Precisely, they are

PP = /pi(vi'biJFa)i‘ai)dUerg[Ui‘(Ti”)eri (S§im)]da and

P = / |:v; (mf - v) + o <¢>;r —a; gf}’) + % (curl;) -zi*]dv,
1
(26)

where the curl of a vector u is defined as: curlu := —¢(gradu). The macro-
and micro-actions appearing in the expressions above all have contact and
bulk nature. In definition (26);, contact and bulk macro- and micro-actions
include all mechanical actions, as introduced on the right hand-side of bal-
ances (15). Instead, the second category of bulk actions, which appears in
(26), for Pf*, consists of macro- and micro-interactions expressed on the
ith constituent by all the other components: they are defined through the
rates of growth and their expressions become evident on the left hand-side
of balances (19)-(21) (see, also, Mariano, 2005; Magnarelli, 2009).

We are now able to obtain the expression for the net working
W; of the ith constituent according to a classical theorem of kinetic
energy first proved by Stokes for simple bodies (see Lecture 2 of
Truesdell, 1969). It is given by

Wi=Pi—T; (27)
and can be inferred in a standard way from the definition
(25) of the power P;, the divergence theorem and the balance
Egs. (19) and (20) of macro- and micro-momentum, respectively;
namely, taking the appropriate scalar product of both sides of
(19) by v;, operating similarly with w; on (20), integrating both
sides over the region V by parts where possible, taking account
for the balance of mass (18) and the Legendre transform (13) and
summing finally term by term.

The result (27) asserts that the working W is the power of the
forces exerted upon B; by the exterior of 5;, minus the rate of in-
crease in kinetic energy of B;, in an inertial frame. Therefore, we
are led to the following formula:

1
Wi=/(Ti~L,~+jz;’-curlvi+g“i~a),~+S,~~grada),~)dv, (28)

where the scalar density in the round brackets under the sign of
integral is the so-called net working per unit volume w; of the
body with microstructure B; in the mixture; w; is often called the
stress power (Truesdell, 1969; Capriz and Podio Guidugli, 1984).
In the following we shall give a suitable definition of a con-
tinuum with microstructure subject to perfect internal kinemati-
cal constraints, for which the expression of the stress power w;
plays an essential role, thus we furnish here a version of w; which
clearly shows its independence from the observer by means of the
use of the corotational time derivative V;, due to the spin ten-
sor W;, which is an objective measure of the microspeed w; (see,
e.g., Eq. (36.13) of Truesdell and Noll, 1992 or Section 2.8.2.4 of

Ichikawa and Selvadurai, 2012); precisely, if we introduce the spin
vector

. 1 o1 1
rii=—3 (FET) = 5 curlv;, (29)
we have the subsequent expression for j;:
Ui = wi — At (30)

(see comments in Remark 2 of Section 6 in Capriz, 1989), while the
standard decomposition (5), of the velocity gradient L; assumes
here the following form: L; = D; — er;.

At the end, we can obtain the requested objective version of the
stress power w; by the use of the balance of moment of momen-
tum (21):
wi=T-Li+zf 1+ &+ 8- grado
sym T;-D; —skw T; - (e1y) +Z -1+ i - 0 + S; - grad w;
sym T; - D; — [AT & + (grad A1) S| -1y + & - i + S; - grad o;

sym T - Dj+ & Uy + ;- grad by + (A]'S;) - gradr;, (31)

where, in the last row, D;, 7;, grad V; and gradr; are all frame in-
different.

These few formulas provide us with a specific mechanical
framework upon which a thermodynamic structure can be raised
for constrained immiscible mixtures.

Moreover, by introducing the expression (31); for the stress
power w; in the balance of energy (22), we obtain

E;F—Z;r-T'i—m:r~U,‘—¢i+~a)i—06i+(€,‘—2711)i2—l(,‘)
= pi€] — piri + divg; — w;. (32)

Before going further, we record here an expression for 77:‘+ obtained
by introducing the vector of extra entropy flux k;, which means
the difference between entropy flux p; and heat flux q; over the
peculiar temperature 6;, and assuming that the entropy supply o;
from the external world is equal to the energy supply A; divided
by the same temperature (see Miiller, 1967; Goodman and Cowin,
1972):

ki:pi_%;’ wi=%;, (33)
with, in general, k; #0 for bodies with microstructure, as we spec-
ified in previous section; thus, it is

Nt =i+ pin) — pifi ' A + divk; + div (6, qy). (34)

After, we can reduce it by elimination of the body heating A;
through (32) and by use of the concept of Helmholtz’s free energy
per unit mass

Y =€ — O, (35)

of the chain rule and of the balances of mass (18) in order to recast
the entropy Eq. (23) in the following form:

i = divki+ 6, [wi — pi(¥] + nib)) — 6" q; - grad
+Ei+ —ZiJr T —m? - Vi _¢1+ o —Ot;r('(ﬂi —2711/,42 —K,')].
(36)

5. Balance laws for the mixture

In our mixture, we assume that physical transfers, and even-
tual chemical reactions, are exchanges rather than true processes
of creation or destruction, thus we allow mass, linear momentum,
rotational momentum, and energy of any constituents to change
form, but do not allow the total mixture to produce these quanti-
ties, i.e., they are conserved for the whole mixture and, from bal-
ances (15), give rise to the following four axioms of balance for
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mixtures (that satisfy the third metaphysical principle of Truesdell:
the whole mixture behaves as a single body):

doaf =0, > mf=0>'z/=0 > & =0. (37)

In addition, following Lecture 5 of Truesdell (1969), we do not re-
strict n;" except for the requirement that the total growth of en-
tropy for the mixture remains non-negative, i.e., our axiom of dis-
sipation is

donf=0 (38)

(see, also, Wang and Hutter, 1999a). We can give a more expres-
sive form to the entropy inequality (38) by using the general equa-
tion of transport (5.16) of Truesdell (1969), which relates the time
derivative 1 of n =) &;n; following the mean motion of the mix-
ture to the time derivative 5] of n;, following the motion of the
body B;, that is:

=&+ %[Z aif i — v (3 pima) | (39)

Therefore, the summation of (23) over all constituents i gives the
so-called second law of thermodynamics for the mixture in the
form

D=pn—pu+divp=>0, (40)

where D =" n; is the dissipation, while

po=Yy Emi and pi= ) (pi+ pimith); 41)

we wish to observe that not only the net entropy flux, but also
diffusion may give rise to mixture entropy flux p: in fact we see
that, even if p; (:= > p;) = 0, the resultant rate of entropy increase
(divp) will not generally vanish if diffusion is occurring.

A reduced version of the dissipation inequality for microstruc-
tured mixtures (40) can be obtained by using in (38) the alterna-
tive expression (36) for nl.+, where the heat flux A; does not occur
due to the constitutive expression (33):

=D =Y |6 [pi(W/+mi6]) ~wi+6; " q; - grad 6;— € +27 -1
o7 o+ mE v o (Wi - 2710 - k) | —divk ]} < 0.
(42)

The balance principles (18)-(22) of mass, linear momentum, micro-
momentum, rotational momentum and energy make it possible
to remove from (42) any one member of each of the five lists
ozl.*, mi*, le* and elfr if we wish to.

A final axiom for the mixtures was added in Passman (1977)
and Passman et al. (1984) to take into account the role of the
particular microstructure treated therein, the volume fractions of
constituents. But here the growth of micromomentum ¢;" take
values on the cotangent space T; M; to M; at v; that is, obviously,
different for each constituent i, therefore, their sum is meaningless
in our framework. Instead, in Giovine (2005), we have proposed
more generally that the micromomentum growths must assure
the consistency of the axiom of dissipation with the constitutive
equations, as we shall discuss in the following (see, also, Giovine,
2003; Giovine, 2004; Magnarelli, 2010), that is,

> 67 (ki — ¢ ;) =0. (43)

Alternatively, it appears very interesting a recent proposal in
Mariano (2018) that suggests to modify the third metaphysical
principle of Truesdell, which states: “The motion of the mixture is
governed by the same equations of a single body”. Axioms (37) as-
sures the validity of the third principle, when all constituents are
described as simple bodies, but they do not suffice for mixtures
of complex bodies, when the constituent representations belong
to different modeling classes: what kind of single body should be
considered? Therefore, the extended proposal Mariano (2018) is

cogent, because it affirms that “the interactions between any pair
of constituents appear only at the common level of description
while the whole mixture behaves as a body admitting the richest
description among those of the constituents”.

Thus, at microstructural level, only for kinematic measures
v; read on ‘similar’ manifolds M;, of same dimension m;, we
can assign possible exchanges of micromomentum and con-
nections like formulas (37): this is the case of volume frac-
tions in Passman et al. (1984) where the whole mixture be-
haves as a single “Goodman & Cowin” granular materials (see
Goodman and Cowin, 1972) for which all micromomentum
growths are scalar quantities; moreover, the atypical immiscible
mixture in Giovine (2003), that describes the behaviour of soils
and where constituents are a porous solid with ellipsoidal mi-
crostructures filled by a compressible fluid, the scalar fluid gain
sums to zero only with the trace of the porous solid gain, that is a
symmetric tensor with the deviatoric part null.

At the end, in general, for our mixtures of continua with
microstructure, we shall have a single body with the richest
microstructure necessary to completely describe its macro- and
micro-motions, as we can see in Wilmanski (2002), Giovine (2005,
2018) and, also, in the examples below, where the additional axiom
of balance for micromomentum growths for mixtures is proposed
on a case-by-case basis.

6. Internal constraints in microstructured mixtures

In the previous sections we tacitly supposed that the triple of
variables x;, v;, 6;, for the constituent i, could take arbitrary val-
ues for each element of the body B;; however, there exists a wide
class of microstructured mixtures for which, when an element of
B; has reached a certain state, the complete placement x;, the mi-
crostate v;, the temperature 6; are somehow restricted: as exam-
ples, we may think of uniaxial liquid crystals, usually modeled
as perfect incompressible fluids with a unit vectorial microstruc-
ture, or of Cosserat’s continua, where their tensorial microstruc-
ture is constrained to be a proper orthogonal tensor, or, finally, of
a macroscopically rigid conductor where the introduction of a dif-
ferentiable internal constraint on the microstructure v;, only de-
pending by temperature variations, implies finite-speed heat con-
duction (Mariano, 2017). Therefore, if the choice is limited, we will
say that the body is subject to an internal constraint, and so is
the mixture itself. Accordingly we need to define here the class of
immiscible microstructured mixtures with internal constraints and
adopt an effective extended principle of thermodynamic determin-
ism in order to analyze the consequences of their presence and to
give a full thermodynamical description for a broad family of such
peculiar immiscible mixtures.

The thermo-mechanical theory of internal constraints in me-
dia with microstructure, such as those we conceive of here, is a
not trivial case of the abstract thermodynamical theory of con-
strained materials developed in Gurtin and Podio Guidugli (1973),
as generalized in Capriz and Podio Guidugli (1984). In particular,
to our knowledge, this is the first time that the constraints in a
microstructured mixture theory are treated with the formalism of
Capriz and Podio Guidugli (1984), in fact, usually, the theory of La-
grange multipliers is used. Hence, the body 3; is said to be inter-
nally constrained if the allowed velocity, microspeed and temper-
ature rate distributions v;, w; and 6/, respectively, are such that
not all values of the objective factors D; in the space of symmetric
tensors, V; in the tangent space T, M;, grad V; in the space of lin-
ear operators from the vectorial space of translations into Ty, M;,
gradr;, grad6; and grad 0] in the space of linear operators are ac-
cessible.

The Extended principle of thermodynamic determinism for mix-
tures of materials with microstructure subject to contraints asserts
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that each quantity, which in absence of the constraint is ruled by
a constitutive prescription, as T;, ¢;, S;, ..., is now the direct sum
of two components, one active and the other reactive:

LT=T"+T,G=("+¢, Si=8'+5], ... (44)

where only active components T¢, ¢f, Sf'.... have to be speci-
fied, through suitable constitutive relations, by the independent
thermo-kinetic variables. As for the reactive terms TIT, lT, S{
in general they remain undetermined unless some information
on the physical mechanism which causes the constraint is given
(see, also, Section 27 of Capriz, 1989 or, for the purely mechanical
case, Section IV.7 of Truesdell, 1977 and Section 9 of Capriz and
Virga, 1990). Following Green et al. (1970), we do not include re-
action terms [ for the free energies in (44): in fact, if we enclose
such quantities, the conclusion would be that they are constant in
every process.

However, as we anticipated before, we shall consider the class
of mixtures with perfect constraints, i.e., internally frictionless, for
which, in this thermo-mechanical context, reactive parts do not
produce entropy (see, also, Nunziato and Walsh, 1980): that is the
contribution of reactions to the left hand part of (42) is identically
zero for every process allowed by the constraints:

S {6 [pini 6] - wi + 6" q - grad 6; — €T+ Z" 1yt
+ @ o+ mT v o (Y - 2707 — k)| - divk]} =0,
(45)
where, in agreement with relation (31)g,
wj i=symT-D;+ ¢ - Ui+ 8] - grad i + (A]S]) - gradr;.  (46)

7. Constitutive choices in the thermomechanics of soils

For each body with microstructure 3;, a thermokinetic process
is a triple of fields on B; x % with values on £ x M; x ®*, namely

Xl‘(Xl‘,T), Qi(X,T); (47)

an associated caloro-dynamic process involves not only the classi-
cal fields T;, €;, g;, 1;, pi» ¥, but also, besides, microstructural ones
S;, ¢;, in addition to the growths

o (x, 1), € (x, 1), (48)

provided these be subject to the general balance axioms of the
thermodynamics of microstructured mixtures, namely, (18)-(22),
(36), (37) and (42), plus the (eventual) general axiom regarding mi-
cromomentum growths, as well as constraint conditions.

Therefore, to express the constitutive axioms, the prior fields
have to satisfy the general principles governing constitutive equa-
tions, which are: 1. Determinism, 2. Equipresence, 3. Local action, 4.
Material frame-indifference, 5. Dissipation (see note 12, Lecture 5 of
Truesdell, 1969). These principles are well known as those govern-
ing the constitutive relations for mixtures of simple bodies, and
must be appropriately interpreted in our context: Determinism is
specified in the previous section; Equipresence, “which forbids the
theorists from choosing independent variables by caprice” (see Lec-
ture 1 of Truesdell, 1969), imposes that the variables and analytic
restrictions at the outset be the same for all constitutive function-
als; Local action asserts that the response of components at any
points X; depends only on the thermokinetic process in the imme-
diate neighbour of X;; Material frame-indifference affirms that the
behavior of constituents is independent of the observer; Dissipa-
tion requires that the response of constituents satisfy the reduced
dissipation inequality (42) for every thermodynamics process.

We observe here that, to simplify the calculations and infer-
ences from the entropy principle, in many mixture theories the
Equipresence is sometimes replaced by the so-called principle of

Vi(X, T),

af (x. 7)., mi(x 1), zZr(x, 1),

Phase Separation, which reduces the equipresence only to the
growth functionals (48) (see, e.g., Ahmadi, 1980; Passman et al.,
1984; Wang and Hutter, 1999b), but there are also valid plausibil-
ity arguments to reject that choice, as we do in our context of soil
thermodynamics (see Wang and Hutter, 1999a for comments on
this question).

The last feature of the constitutive relations concerns the ma-
terial symmetries of each constituent, associated with its physi-
cal structure, therefore such symmetries must be appropriately re-
flected in the form of the constitutive equations of the whole mix-
ture.

In the following sections we wish to present applications for
immiscible mixtures of interest for the diffusion of pollutants, soil
micromechanics, granular flows or poroelasticity, for which the in-
dividual constituents remain physically separate and thus the vol-
ume fractions influence the constitutive responses, in accordance
with Bowen (1984).

Therefore, it is necessary to distinguish between the bulk mass
densities p; and the true mass densities y; of the ith constituent:
the first one represents the mass of the ith constituent per unit
of mixture volume; the second one is its mass per unit of true
volume, which is given as a fraction of the whole mixture by the
introduction of the volume fraction §;, a smooth scalar field rep-
resenting the proportion of space occupied by the ith component.
For the hypotheses made, the bulk densities p; are tied to the true
densities y; by the following relation

pi=yiBi, with B; €0, 1], (49)
and the total volume fraction is
Brot = Z Bi: (50)

the mixture is said saturated if Bror = 1, unsaturated if B <1, ie.,
when there are void spaces in the mixture. Finally, we write again
the mass balance (18) inserting the decomposition (49)

af =y Bi+ viB + vifidivy;. (51)
Furthermore, we would like to conclude this section by introduc-
ing an additional important special case concerning temperatures:
in particular, if the energy exchange between the constituents is so

efficient that the mixture can be characterized by a single temper-
ature

6;=60, fori=1,...,n, (52)

then such an assumption is tantamount to restricting considera-
tions to the mixture energy equation only, rather than to each en-
ergy equation separately Miiller (1968): in fact the terms in e;’
drop out of (42) because of (37)4, so the dissipation principle does
not restrict the growths of energy and we need then work only
with the mixture forms for reduced energy and entropy balances
(see, also, Lecture 5 of Truesdell, 1969 and Svendsen and Hutter,
1995; Wang and Hutter, 1999b). Moreover, in this ‘single tempera-
ture’ model, constituent interactions are limited to those associated
with mass, momentum, micromomentum and moment of momen-
tum.

About the reduced dissipation inequality (42), inserting condi-
tion (52) we have that

0D =Y {[pi(¥/ +10") —w; +67"q; - grad 6 + z" - 1;
+¢;.wi+m;.ui+a;(wf—%uf-xi)] ~0divk] <o,
(53)

where 0 := g—f + (grad0) v; = 6 + (grad 0) u;. Moreover, using the
resultant free energy 1 defined as the concentration-weighted
sum of the peculiar Helmholtz’s free energies per unit mass (35)

=Y &, (54)
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with the concentration &; given by (6)3, we obtain

0D = p(1ﬁ+n9) —w+0"q-gradd — 0 divk +

1
+Z[zi*~r,-+¢i+-wi+mi+~v,»—ai+<7v?+xi>]50,

S Ui
(55)

where

wi=>"w. q:=q+ Y pi(Vi+0n)u and

ki=k —07">" piu; (56)

with q;:= Xq; and k; := Xk; the net heating and extra-entropy flux,
respectively: as for (41),, also here the presence of diffusion can
increase the additional heating and extra-entropy fluxes, even if q;
and k; are null. From (41), and (56), 3, we have also that

k=p-0-1q. (57)

In addition, we write the condition (45) of perfect constraints for
reactions, when (52) holds,

pn O —w +071q -gradd — O divk" +

1
+>° [zi“ T+ @ wi+miT -y —a;fr<§v,.2 +/c,->] =0. (58)

8. Applications
8.1. Two-phase suspensions

In this first application we specialize our theory to a satu-
rated multiphase mixture of bodies with scalar microstructure,
where all the order parameters v; represent the volume fraction
B; of the ith constituent, as it is the case for granular materi-
als of Goodman and Cowin (1972) type, or for fluid suspensions
of Passman et al. (1984), or for saturated solid-fluid mixtures of
Wang and Hutter (1999a). All these scalar measures J; are not
affected by rigid rotations, so that the infinitesimal generators 4;
vanish, for each i, and V; = w; for relation (30).

We consider now a simple temperature model for a two-phase
motion of spherical particles, of subscript ,, suspended in a fluid,
of subscript 1, in circumstances where there are no chemical re-
actions: oti* = 0. The particles may be either solid or fluid and we
make no restriction concerning diluteness, while we suppose that
the saturation constraint By = 1 applies, so that

Bi=B=1-p1 and wi=(-1)'p", (59)

with g/ := % + (grad B) - v; the material time derivative of B with
respect to the peculiar velocity v;, for i = 1, 2. Moreover, the three
axioms for the mixture balances (37),34, plus the additional one
for micro-momentum growth ¢+, are now, fori =1, 2:

mt = (=1)imf, 2" = (-1)'z}, et := (D€l pT 1= (-1) @
(60)

The kinetic co-energies x;, i=1,2, are assumed to be quadratic
forms in w;, as is customary for immiscible fluid, or fluid-like, mix-
tures (see, e.g., Bedford and Drumbheller, 1983; Capriz and Giovine,
1987; Giovine, 2006; Giovine, 2017a); then x; coincides with the
kinetic energy «; and it is

Ki=Xi'= %Mi(ﬂi) w? = %M:‘(,Bi)(ﬂ/i)z- (61)

The kinetic energies express the inertia due to the local microvari-
ations of the volume of inclusions, as well as that related to the
admissible expansional motion of spherical boundaries (see, also,
Giovine, 1990; Giovine, 2008, other than references cited above, for
explicit evaluations of non-negative coefficient 1;(8;)).

With these hypotheses, the balance Egs. (51), (19), (20), (21),
(32) reduce to the following ones for i =1, 2:

o} + pidivy; =0, (62)

piv; —divT, — pib; = (=1)'m*, (63)
i vi, VAW oo . it
—D'oi| wip +§W(l3 ) ) —divS + & — pidi = (1) 7,

(64)

el = (=1)iz*, (65)

pé€—w+divg—pA
=zt (rn—r) = (B + ) +mt - (ur —uy). (66)

with u; defined in (7) and w and q given by (56);,, respectively,
while €:=X&;6; and A:=3X§&;); are the concentration-weighted
sums of the peculiar inner energies and heating supplies per unit
mass, respectively; we have

€=Y+0n. (67)

The mixture energy balance (66) is obtained by summing peculiar
energy Eq. (32) on i=1,2 and an expression, more pertinent to
the third metaphysical principle of Truesdell, could be easily ob-
tained by substituting values of m*, z+, ¢* given by (63), (64) and
(65) (see Eq. (2.18) of Truesdell, 1969).

We emphasize that ¢*, §;, divS; and ¢; in Eq. (64) are all scalar
fields and that the microstress vector S; is normally related to the
boundary microtractions, even if, in some cases, it could express
weakly non-local internal effects; §; is interpreted as an externally
controlled fluid pressure; ¢; includes interactive forces between
the gross and fine structures. Further, stress tensors T; are not ‘a
priori’ symmetric because, for (65) and the properties of the Ricci’s
alternating tensor &, we have that

1
skw T; = (=1)! 5 ezt (68)
while only their sum is, inasmuch

skw T :=skw Ty +skw T, = 0. (69)

We remark here that in the models based on ‘void theories’,
as, e.g., Passman and Batra (1984), Passman et al. (1984) and
Wang and Hutter (1999b), unexpectedly only the first microinertia
term are present in their balances of “equilibrated” forces (i.e., our
micromomentum balances (64)): in fact those equations remain
ambiguous because the complete Lagrangian derivative of the ki-
netic co-energy does not appear on the left hand side of the equa-
tions themselves.

For the presence of the perfect saturation constraint (59);,
we impose the extended principle of thermodynamic determinism
(44) and the condition (58) with (46), together with the identity
B''= B +u;-grad B deriving from (7), in order to obtain the fol-
lowing equation

pn 0 +0-1q -gradd — 0 divk" — symT{ -D; —symT; - D,
+ (& 55 +2¢")p + 57 - grad B — S} - grad B
+2'(rg = 1) + =[m"T = (¢ + ¢*)grad B] - uy
+[m* = (¢f - ¢*)grad B] -u; =0. (70)

If we observe that the constraint (59); leaves locally the choice of
0, 6, grad®, Dy, D,, B, grad 8’1, grad B2, (r, —r1), u; and u, to-
tally free, we deduce from (70) that the reactions are characterized
by the following requirements:
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n"=0, ¢ =0,divk =0, symT' =0, S =0, zt" =0, (71)
1 1

G+ =5-¢" and m' = (g5 - ¢™")grad B. (72)

Now we are able to obtain a set of pure balance equations which
rules the thermo-mechanical evolution of our model of a saturated
two-phase suspension; in fact, by splitting the stress tensors T; into
its symmetric and skew parts and by using the conditions (71),4
together with the balances of moment of momentum (68) into the
Cauchy balances (63), the following reaction-free expressions for it
follows:

pi(V — b;) — div (sym T® + (—1)1% 8z+">

= (=1)i(m*™ + 7" grad B), (73)
where
= &y — Pt (74)

and the expressions (72) for (¢ + ¢*") and m*" were used; more-
over, from the balance (64) with i = 2, it follows:

i 1" ldl‘(/ :
ﬂln:pz[az—ﬂzﬁ 2 _ 2 dﬂz(ﬂ/z) i|+leS§—§2a+¢+a:

(75)

here, we physically interpret the coupled reactions 7™ as the in-
terface pressure between constituents, i.e., the pressure that acts at
the interface between the phases necessary to maintain the con-
tact in order to satisfy the saturation constraint (see Appendix of
Bedford and Drumbheller, 1978).

Moreover, if we sum (64), for i=1,2, use (31)4 for w and
(67) for €}, and substitute reactions (71) in (66), we obtain

pll:'ulﬁm+;(Zl§(ﬂ/l)2]+92|:ﬂ2ﬂ”2+;%(ﬂ/z)z}

=div (8§ — 1) + (¢{ + %) — (&5 — ¢*9) + p262, — p181  and
(76)
p T+ 0% +divg® — p A
=Y [sym T*-Di+ (-1)' 5% - grad "]
— G+ + (L —pT)B?
+m* . (g —up) + 27 (1 —12). (77)

We would like to observe that also the active components of the
internal microactions ¢ and the growth rates of the micromoment
¢4, besides the reactive ones, are coupled in all the pure balances
and so their constitutive laws will always be linked.

In conclusion, only the active parts of all fields, which will
be the object of a constitutive prescription, appear in the Cauchy
Eq. (73) (with " given by (75)), in the equation for micromomen-
tum (76) and in the equation of evolution for the temperature of
the whole mixture (77): these are the pure equations which rule
the thermo-mechanical evolution of the body.

Once a motion is ensued from them, the corresponding reaction
7" to the constraint is obtained by the Eq. (75) (other than by
(71) and (72)) within the intrinsic indeterminacy generated from
the equation itself for ¢*" and ¢; (see, also, Section 205 and 227
of Truesdell and Toupin, 1960, or Remark 1, Section 3 of Capriz and
Podio Guidugli, 1977).

About constitutive equations for immiscible mixtures, we as-
sume that the overall response of the simple temperature model
for a two-phase suspension depends only on the set 7 of the fol-
lowing thermokinetic variables

T = {y1, ¥, B, grad v, grad y», grad B, 6, grad 6}; (78)

by imposing the principle of equipresence, we pos-
tulate that the dependent constitutive quantities
Yo n® g% k4 T8 ¢ 8L SEom*e, ¢t and z*t¢ are all twice contin-
uously differentiable functions with respect to all constitutive
fields and require the consistency with the reduced dissipation
inequality (55), when the perfect constraint condition (70) applies,
ie.

p(¥*+n"0) +6~"q" grad — 6 divk® — sym T - Dy

—sym T3 - Do+ (& + ¢™) B/ + (% — ¢5) B? + 7 - grad B!

—8Y-grad B2 +m*®. (uy —ug) +2%-(r; —r1) <0.  (79)
Since the constitutive relations allow dependency on the true den-
sities y;, the constituents have a fluid-like behavior and the frame-
indifference implies that all response functions are isotropic func-
tions of their variables Nunziato and Walsh (1980). Introducing the
dependency of the active components on the set (78), using the

mass conservations (51), with (x,.+ =0, the property (8) and the
identities
vi=v —ui-grady; = —yif' B — vidivu; — u; - grad y;,

B = p'—u;- grad B, gra.d,B = grad B —LTgrad B—(grad ?B)u;,
(80)

when the terms are appropriately ordered, produce the following
new inequality:

RV q° ak oy
p(n + 359 >9+(9 9@> grad9+pa a0 gradef
e —— ak _ ak? 2
+Zipw'grad%*‘9<fy'grad% Jgrady; rady, -grad Vr)*

9
_ [sym T+ py; 8‘/’ I+ pjsym (gradﬂ@ dgradﬁ)] }

11'” aye
+a
<m +,o grady1+,01 98 gradB | -u; — Bﬂ -grad B +
w“ oy ke 5
+a _ v . _Q_ - .
+ (m -p 37, grad y; — P 38 grad 8 | - u, eagradﬂ grad“p +

+|:z*‘1+/08<grad,3® 6drfdﬁ>i| S(rp—r1) +

(st oY grad (88— oo V) grad 2+
1 Ograd B dgrad B

+ﬂ”<§f+¢*”+m 33‘2 + ylg %) "ag?:uda grad’0 +
7ﬂ’2<§217,¢+07 lﬂ+Tyai)<O. (81)

Because the left-hand member is linear in the scalar fields 6 and B/,

the vector fields grad®, grad0 grad Vi, u;, (rp—ry) and grad B/, and the
symmetric tensor fields grad26, grad?f and D;, the classical arguments of
Coleman and Noll (1963) assure us that the coefﬁcients in the linear expres-
sions must all vanish, and hence:

+) The active part of the Helmholtz free energy ¥ ¢ is a func-
tion only of the array 7 = {y4, 1, B, grad 8,0} and is a potential
function for active parts of the entropy 1%, the symmetric part of
stress tensors sym T, the microstresses Sf, the growths of linear
and rotational momentum m*¢ and z*9, respectively, and the dif-
ference between the internal microactions ¢ and the micromo-
mentum ¢*%, in the sense that:

o__0Y° 58 Iy

dy
=g Si=n(-Pgrdp

grad 8’
(82)

Zﬁa
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1-8 aye
a __ ty _
sym T} = 5 il — sym |:y1(1 B)grad B ® agradﬂ}’
B aye
a__ oty _
sym T = 5 5l —sym | y» B grad B ® gradp | (83)
By Ay
m™ =nmlgrad B + ——2grady,, zt*=—pe| gradf @ —— |,
;grad B £y, 5472 pe| gradp dgrad B
(84)
(¢t =—nf-&'ni, -t =n5-&'nl, (85)
together with the compatibility condition on m*¢
1- Bt t
(mr{ +75)grad B + ﬂ grad y; + p, grady, =0, (86)
& 1332)
where
oy oy
C_ p. L2 7 =
T = 0 3B and 7/ =y, a0 for1=1,2, (87)

are the configuration and the thermodynamic pressures, respec-
tively, while the last term of stress tensors in (83) are of Ericksen’s
type (grad 8 ® %) and justify the ability of granular suspen-
sion to sustain shear in equilibrium; in constitutive relations (82)-
(86) we used the identities (6);3, (7) and (49), for i =1, 2.

*) Moreover, the active extra-entropy flux k¢ must be such
that

ak? 2 oka 2
agTdyi~grad y,_O,Wgrad 6 =0,
_ok rad?f =0 (88)
dgrad 8 & o

ke k9

dgrady;’ dgrad B
symmetric and, therefore, k% must be collinear to grady;, grad 8
and grad @ with the corresponding tensorial material coefficients
being skew-symmetric; on the other hand, the isotropy of k¢ re-
quires that any such material tensors must be symmetric (see
analogous computations for the constitutive part j. of the mixture
flux density j in Wang and Hutter, 1999a). To satisfy both condi-
tions these tensors must vanish, making k% independent of grad y;,
grad B and grad @, and yielding its reduced form

kaZi&a(Vlv y27ﬁ’9)7 (89)

but there is no isotropic vectorial function of only scalars, and
thus the reduced form (89) necessarily implies k% = 0 for thermo-
elastic two-phase suspensions. Accordingly, the reduced dissipation
inequality reduces to the following one:

9-1q°.gradf <0, (90)

which apparently expresses the classical Fourier inequality for a
single body, except that it is valid only for the active part of the
heat flux g% which, in addition, depends on the whole set 7.

+) Finally, as 9 is an isotropic function, its dependence on 7
implies that

YT) = ¥, y2. B, grad B - grad B, 0). (91)

Substituting (91) into Eq. (82),3 assert that the microstresses S;
have the following representation

St=-n(1-plegradB, S5=yfegradp, (92)

where the so-called modulus of dilatancy ¢ is given by the follow-
ing expression:

. aku
which means that and Jgradg  are all skew-

e

@ =0, v2.B.gradB -grad B,0) = ZW

(93)

and thus, for the two-phase suspensions of the type considered
here, the Cauchy stress tensor T; is symmetric and the moment of
momentum growth zt¢ vanishes identically:

Tf = (1 - B) (&7 '7{ 1 - y1 ¢ grad B @ grad ),

Tza=—ﬂ(é{lnzthryz(pgradﬂ®grad,3), zt9 = 0. (94)
Now we are able to write the set of pure balance equations, which
rules the thermo-elastic evolution of a two-phase suspension, in-
serting constitutive laws (84);, (85), (92), (93), (94), into balance
Eq. (51) (with o™ =0) and (73), for i = 1,2, (76) and (77) to ob-
tain:

=B =n[f"- 1 -p)divi], y;8=—y:(B?+Bdive,),
(95)

(1= By =div[(1-B)(& ' -y @ grad B ® grad B)]

t
47101 = By~ wgrad p— £ Lgrad y, — " grad

(96)

V2BV, = —div [B(&; ' 5 1+ v @ grad B @ grad B) | + y2ba

t
bz grad y, + ™" grad 8, (97)

+msgrad B + 57

(11— ﬂ)l:lhﬂm + ;(Zg(ﬂ”)z]

+y28 [Mzﬂ//z + %% (/3/2)2}

t t
= div (p g grad B) — (7r{ + 7§ —gw%
+y2B38; —y1(1 - B)d1, (98)
d 9y .,
,o@dt(a@)_dlvq —pA (99)

with
i n  1d
" = )’2/3[52 2 Zd’f;(ﬁ’z)z}

+div (2B @ grad B) + (&, ' — 75)

and where the evolution Eq. (77) for the temperature 6 of the mix-
ture is considerably simplified and, formally, is reduced to the clas-
sical one (99), the difference remains in the dependence on the set
T.

Next we quote from Passman et al. (1984) the mechanical bal-
ance equations (5C.7.5)-(5C.7.7), which should correspond to ours
(95)-(98) when we suppose isothermal flows of a two-phase mix-
ture of particles dispersed in an elastic fluid. In particular, identify-
ing the different pressures as follows: 7 = i, B, = 7T, Pa = 71{,
putting their viscous coefficients 4, Sq, Aq to zero, adding (5C.7.7)q
to (5C.7.6)q for a =1, 2, in order to delete the term (7w — py) con-
taining the reaction 7 and after subtracting (5C.7.7); to (5C.7.6),,
the substance of the analysis in Passman et al. (1984) would be
easily recovered, still getting rid of some kinematic terms, such as
Pkl (04)?/2, in their definition (5C.4.9) of the dissipation function;
moreover, the difference remains in the constitutive equations in
which we applied the classical Principle of Equipresence of Trues-
dell, instead of that of the Phase Separation.
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8.2. Concentrated suspensions with solid particles

For concentrated suspensions with density preserving con-
stituents, i.e., when true mass densities does not change, y; and
grad y; are no more independent variables and then must be
deleted from the list (78): the saturated two-phase immiscible
mixture is subjected to other two constraints, the incompressibility
of the suspending fluid and of the dispersed granular solid.

The balances of mass (62) are now

B =(1-B)dive;, B?=—Bdive, (100)

for which, using the definition of peculiar time derivatives and
summing (100), we obtain the condition of incompressibility for
the whole mixture:

divv = 0. (101)

Again, for the extended principle of thermodynamic determinism,
the conditions of perfect constraints (58) gives now the following
requirements for the reactive terms:

n'=0,q =0,divk =0, § =0, m" =0, z" =0, (102)

symT{ = (1-8)({+¢™) and symT, = B(& — ™I,

(103)
while, using the constraints of saturation and incompressibility in
the reduced dissipation inequality (55) and performing the same
calculations made in the previous section, we obtain that the active
part of the free energy /¢ is always a potential function but, here,

of the array 7 = {8, grad 8, 0}. The constitutive relations (82) still
hold for n% and Sf, whereas now it is

sym T{ = (1 —ﬂ)[(fl +¢* + )l - sym <V1 grad f ® dgrfciﬂ)}

sym T} = ﬂ[@z“ —¢* —mHI - sym ()’2 grad 8 ® %)] (104)

mt9=0, zt9=0 and k?=0, (105)

where 7f is defined in (87); and the last two results are valid for the
isotropy of ¥¢ and k¢ itself, as before.

According to reactions (102)g and (103), and constitutive laws
(68), (104) and (105),, we can obtain the following expressions for
Cauchy stress tensors:

Ty = symT{ +symT] —27'ez"

= (1-B)[G+¢*+7)I - ggradfogradf].  (106)
T, =symT{ +symT} +27 ' ez*

= B[(& - ¢* -7 -y, Pgrad B @ grad ], (107)
where
N e
@(B.grad B -gradB.0) =2 (108)

d(grad B -gradB)’
Now, using the reactions (102),5, the constitutive laws (82),3 and
the mass balances (100) in the micromomentum balances (64), we
get the following expressions

U+ ==+ —yidivi(d1 - B) g grad Bl + 1 (1 - B)

{31+(1—ﬁ)[u1(divv1)”+< (- - 1)(divv1>2]}, (109)

=@t =~ - ¢*) + y2 div(BPgrad f) +

+V2/3{/3|:Mz(divvz)’2 - < 'BCZ:,; +M2>(diVU2)2:| +52}, (110)

and, therefore, we are able to write the two pure balances of linear mo-
mentum, which governs the motion of a saturated two-phase granular sus-
pension with incompressible components, replacing the Cauchy stresses
(106) and (107) in the Eq. (63) and taking into account the expressions
(109) and (110) now obtained:

(1 —pw; =grad[(1-B)(1+¢D)]+ (1 - p)b +

+div[(1 - B) ({1 - y1 P grad B ® grad B)], (111)
V2BV, = grad[B(¢2 — ¢1)] + v2Bba —
—div[B(m5]+ y, P grad B ® grad B)]. (112)

The pure evolution equation for the mixture temperature # remains the
same, i.e., Eq. (99), as well as the Fourier inequality (90) with the active part
of the heat flux q* now depending on the set 7.

At the end, as soon as the motions of constituents are ensued
from (111) and (112), the corresponding unknown reactions, that is,
the saturation pressure ¢*" and the two pressures ¢{ and ¢ due
to the peculiar incompressibility of the components, are obtained
by the Eqgs. (109), (110) and the corresponding one to (98)

&+ 85 =~ +75) +div {12 — 11 (1 - B P grad B}
+V1(1—/3){(1—ﬁ)[m(divvl)’l+< /3)61/;1 m)

X (diV]/])21| + 81 }

+yzﬁ{ﬂ[uz (divi,)? - (1 ﬁdd’gz + u2> (divvz)z] + 52}.
(113)

Moreover, if the constituents are closely packed, we infer that mi-
crostructural inertial effects are negligible, and thus set u; = 0; in
absence of body forces, Eq. (113) reduces to

0+ 8 =—(@f +m5) +div{[y28 —y1(1 - B)lg grad B},  (114)

where the configuration pressures 7f and the dilatancy modulus
@ are functions of 7 therefore the total pressure in the solid and
fluid phases results from the effects of intergranular contact forces,
represented by 7, and the local variation in the stress fields due
to a non-homogeneous granules distribution, given by @.

Here, we compare our results with Wang and Hutter (1999b)
where, again, the Principle of Equipresence of Truesdell were sub-
stituted by that of the Phase Separation, while, furthermore, the
kinematic terms on the left hand side of their micromomentum
balances (33) and (34) remain ambiguous, because the full La-
grangian derivatives of the kinetic energy, due to micromotions, do
not seem complete: in fact, e.g., it is easily to demonstrate that,
for a material with rigid grains, the kinetic coefficient u, is pro-

portional to ,3*% (see Eq. (6); of Giovine, 2008) and so the second
term on the left hand side of our Eq. (64), for i = 2, misses in the
balance (33) of Wang and Hutter (1999b).

However, even now, we easily retrieve from our Eqgs. (109)-
(112) the essence of the constitutive analysis in Wang and Hut-
ter (1999b) of a fluid-saturated granular material with incompress-
ible thermoelastic constituents, when, there, the mass conserva-
tions (28) and (29) and the saturation constraint (30) are used in
the balance Eqs. (31)-(34), the viscous coefficients are null places
and the pressures are identified as it follows: 7 = ¢*', p; = ¢/ and

Bi= i = (-1 = mf.
8.3. Poroelastic materials

The last application of our theory concerns an isothermal flow
of a fluid component through the channels of a solid skeleton with
large pores, namely a part of soil (Giovine, 2000; Wilmanski, 2002;
Ehlers, 2002; Pence, 2012; Ehlers and Bidier, 2018), so the model
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is in some sense complementary to the previous one. Even now
every constituent is considered incompressible (so y; = constant;),
and therefore also the immiscible mixture is; moreover, the mix-
ing itself is regarded as if it happened without the creation of
voids, and so the saturation constraint is applied again. Following
Biot (1956), we consider virtual mass effects due to diffusion and
also introduce the microinertia associated with the rates of change
of the volume fraction of the fluid, as well as that due to the de-
formation of the lacunae in the vicinity of their boundaries.

We wish to observe that the model for the solid constituent
here considered is thought to have an affine microstructure with
kinematic parameters independent from the macro motion, in or-
der to include all other models. In particular, the presence of the
saturating fluid constituent supports this hypothesis, when the
pores are very large and constitute a structure of sparse trabecu-
lae, as it is the case of porous materials with evolving microstruc-
ture (Ponte-Castafileda and Zaidman, 1994; Giacobbe and Giovine,
2009) or of cancellous bone (Cowin et al., 1995): Cowin itself
(Cowin, 1998) pointed out the importance of the shape of the
pores in the description of bone canaliculi or of lacunae contain-
ing osteocytes, e.g., in the human bone the lacunae are roughly el-
lipsoidal with mean values along the axes of about 9pum, 22 pm
and 4um. Moreover, ‘Voids theories’ are recovered in the case
that pores are small and finely dispersed, as in Passman and Ba-
tra (1984), because our microstructure reduces to a spherical ten-
sor depending upon a single additional variable (Capriz and Po-
dio Guidugli, 1981). Furthermore, a very interesting intermediate
model, in which the ellipsoidal microstructure is partially con-
strained by the macro-motion, the isotropic part being free, falls
within the theory presented here and permit us to offer an inter-
pretation of constitutive prescriptions, involving the displacement
gradients of higher order than the first, which allows one to cir-
cumvent certain apparent inconsistencies with the second law of
thermodynamics (see, also, Giovine et al., 2008; Giovine, 2017b),
but is too elaborate and lengthy to be mentioned here explicitly: it
will be presented in a forthcoming work.

The microstructural kinematic variable v; for the skeleton is a
2nd order symmetric tensor with positive determinant V (e Sym™),
that is the left microstretch, which takes into account for contrac-
tions or expansions of the large pores in the material (see Giovine,
2003; Giovine, 2004; Giovine, 2005). Instead the fluid variable v,
is the volume fraction g, i.e., the proportion of space occupied by
the two-phase fluid constituent of the body. Therefore, we have
that the infinitesimal generator 4; of the local action of the proper
orthogonal group SO(3) over Sym™, defined in (11), has the follow-
ing components
(A )aﬂz = Vaygyﬁz - 80(}/Lvyﬁa (115)
while A, =0, because a proportion does not change for a ro-
tation. Consequently, the corotational time derivative of the mi-
crostretch V in (30) represents the Oldroyd’s time derivative
Oldroyd (1956) of V with rate the spin tensor W; = —é&ry:
V=V"T4(er)V-V(ery). (116)
The kinetic co-energy x; for materials with affine microstructure
is usually assumed to be a quadratic form in V1 with a costant
coefficient ¢ (Capriz, 1989; Giovine, 2003), thus
K1 =x1:=2" 1 (V'")?, (117)
while x, is as in (61),. We suppose further that the tensorial mi-
cromomentum growth for the porous phase is isotropic of coeffi-
cient —¢*, the opposite of that of the fluid.

We insert the hypotheses made in the mechanical balance
Egs. (51), (20), (21), (66) and reduce them to (100), (63), (64),,

(68), and the following ones:

o1V’ =divE —Z + piC — ¢, (118)

skwT; +271ezt = skw (VZ +gradV o %), (119)

pE€=w+zr(rp—12) +m" - (uy — ) + ¢ (V"' — ).
(120)

In these equations the fields divX, Z and C for the porous con-
stituent are all 2nd order symmetric tensors: the 3rd order mi-
crostress tensor X is normally related to boundary microtractions,
even if, in some cases, also here it could express weakly non-local
internal effects, Z includes interactive forces between the gross
and fine structures and C is interpreted as an externally controlled
pore pressure. Further, we used the balances for the whole mix-
ture (37) and introduced the following tensor product ‘©’ of com-
ponents (grad Vo X );; :=Vipk Zjnk-

From Eq. (63), for i = 2, we could obtain the Darcy’s law, if we
neglect the inertial terms and make suitable constitutive propos-
als on fields m, b, and T,. The balance of micromomentum (64),
for the volume fraction B generalizes the classical Langmuir’s evo-
lution equation, while the balance (118) for the microstretch V in-
cludes the Wilmanski’'s porosity balance as well as the equation
which rules the changes of internal surfaces area of the pores (see
Langmuir, 1918; Wilmanski, 1998; Albers, 2000, respectively).

Finally, we apply the saturation constraint by differentiating it
with respect to time and using the identity (80), and the definition
(59);:

0=p1+ B2 =Bi+ B, —us-grad B — u - grad i

=B+ B%+u;-grad B —u, - grad B; (121)
thus, for Eq. (100);, the differential link is:
B%=(1-pB)I-Dy+ (u; —uy)-grad . (122)

In the actual context with 6; = 6 constant and k null, the perfect
constraint condition (58) becomes
0 = symT/ -Dy +symT} -Dy +Z" - [V 4+ 2(er V] + & B2
+ X7 [gradV' +2(ery) (grad V)| +8) - grad B2 +2+7 - (ry —13)
+mtT (U —up) + ¢TIV - B72)
= [symT{ + (1 - B)(&; —¢*")1]-D1 +symT; - D,
+(Z + M) -V 27 gradV'! + 85 - grad B2
+[z" —2e(VZ +gradVo )] -1y -z -1,

M - (g~ ¢ grad B] - (g 1), (123)

where the symmetry properties of V, Z and ¥ were used. There-
fore, we have that the reactions have to satisfy the following rela-
tions:

symT/ = —(1 - B)w™"I,
=0, S8=0,

symT) =0, Z'=-¢*l,

mt" =ngigrad B, z7 =0, (124)

where 7" is the interface pressure between constituents (74).

At this point, as regards the constitutive equations, in order
to avoid a lot of specialization, we consider a very special case
in which the set of kinetic variables is the following one: P =
{B,d:=grad 8, F,V, U := gradV}; moreover, we observe that, in-
serting results (124) in the purely mechanical energy Eq. (120),
the mixture internal energy € replaces the free energy as poten-
tial function. If we now differentiate € (?) and substitute the result
along with (31), (116) and (122) into (120), by performing standard

and Structures, https://doi.org/10.1016/].ijsolstr.2019.07.021

Please cite this article as: P. Giovine, Internal constraints in the theories of immiscible mixtures for soils, International Journal of Solids



https://doi.org/10.1016/j.ijsolstr.2019.07.021

JID: SAS

[m5G;August 26, 2019;7:16]

12 P. Giovine/ International Journal of Solids and Structures xxx (xxxx) xxx

calculations as described above, the results can be written as

T
de d€
symTf:(l—,B)an+psym|:aF Ff UT@(E)U) :|

de de
sym Tf:ﬁ(a—nzf)l—psym(d@aad) ngpﬁ,

o€ de de
a +a +a _ -
Z+¢ I=r3v e =P * = <d®ad)
. o€ . de
= div <pd® Bd) [dlv (p 8d):|d (125)
where
niczp,-g—;, for1=1,2, and o =¢J—-¢™ (126)

are the configuration pressures of the i-constituents and the hydro-
static pressure acting on the mixture, respectively; in addition, two
compatibility conditions are valid on z+% and m*™® due to the bal-
ance laws for the mixture (37),3, as well as internal constraints:

T T
de d€ T d€
{d®8d+ﬁ<aﬂ> +0 ®<8z5> +

T

o€ de
+2[V(av) +U®az5:|}=0,
T
. de 1 de de de
dlv{ |:d®ad+zj ®<BU> :|}+,0|:8F1(gl”adﬁ)+azj6i|

de 8

— 7 di o€

Now, by inserting relations (124) and (125) in the balance Egs. (63),
(118), (64),, (119) and (68),, then using conditions (127) and
(128) and substituting (119) and (68), into Egs. (63), we obtain

(127)

(128)

(=B, =divly +y1(1-B)bs — (129)
V2BV, =divh +y,B8by + f (130)

(- B) v =div | p2€ 0 L a-pc  (131)
il =p) 8(5 —PW-F% - )

where the pure symmetric Cauchy stresses T; for the solid and the
fluid constituents are defined by

l = (1 _/3)(771 —7Tm)1+p5ym(§F T E),

T, := B(o — 79I, (132)
while the interaction force f between the phases is

. de
fi= |:nin —div (’08d)1|d’ (133)

Tin = div <,0 g;) o+ Vz,B{Sz - ,3|:,u2(divv2)/2

(;ﬂ%z +uz)(divvz)2“.

The effects of the microstructure describing the large pores appear
only in the extended stress of Ericksen’s type for the solid phase,
defined by

de de\
" T
E:= psym|:d®8d+25 ®<BU> :|

and in the micromomentum Eq. (131).

Finally, we can still propose a system of mechanical equations
of motion for an incompressible saturated poroelastic material,
which satisfies the constitutive principle of equipresence in addi-
tion to the other axioms usually considered for mixtures. There are
15 scalar unknowns, B, vy, v,, V, m;, and o, and 15 scalar differ-
ential Eqs. (100);, (122), (129), (130) and (131) and the one after
(133) for m,, for which we would also expect that the appropriate
initial and boundary conditions, as well as the surface tractions as-
sociated with T; and X9, are provided to resolve them.

The comparison in the poro-elastic mechanics for this last ex-
ample is with classical mixture theories of Bowen (1980) and
Pence (2012) for the isothermal flow. In particular, the Cauchy
stress tensor for the solid constituent of the transversely isotropic
case (see Eq. (82) of Pence, 2012) is directly recovered, if one binds,
even partially, the microstructural parameter V to the macro-
deformation and represents the Ericksen tensor (134) appropri-
ately. Instead, Bowen replaced the solid equation of linear momen-
tum by that of the mixture (see Eq. (3.32) of Bowen, 1980) that, in
our notations, is as follows

Z viBiv. =divT + Z viBibi:

therefore, by supposing that the microstructure is absent, and so
the potential € does not depend on d and U, up, =0 and 6, =0
we have

(134)

(135)

T(=Ti+T) = [-mn+ (1 = B)7f — Br5]1+ psym (gF d )
(136)

where we can easily recognize his stress tensor T;, when we put
W, = pe and A =y, — d%’%:;), and insert definitions (126); for the
configuration pressures 7 (see (3.22) of Bowen, 1980); moreover,

the expression of our Cauchy tensor T, for the fluid phase coincides
with (3.29) of Bowen (1980).

9. Peculiar solutions
9.1. Micro-rotations in a quasi-linear dilatant granular material

The example of dilatant granular media that we are dealing
with here, continua which are models of suspensions of rigid
spheres in a fluid, is, in a sense, complementary to that considered
in Section 8.3; rather, it could be thought of as an enriched sam-
ple of the concentrated suspensions of Section 8.2: in fact, now,
the peculiar microstructure of the solid phase is spherical, that
is, the rotations of the individual granules must be taken into ac-
count, in addition to the use of volume fraction 8 (see Capriz and
Podio Guidugli, 1981; Giovine, 2008).

In particular, we consider the flow of a large number of dis-
crete inelastic particles (), = const.) at relatively high concentra-
tions and with interstices filled by a gas or a fluid of neglectable
mass (y1~0), as it is for cohesionless soils, such as sand with
rough surface grains, or fluidized particulate beds. The admissible
micro-motions of the body consist of either the rotation R of the
same granules rigid with respect to each other, as well as the ho-
mogeneous dilatations, or contractions, of the macro-elements, i.e.,
radial motions due to the displacements of the grains relative to
the center of mass of the macro-element itself, as introduced by
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Reynolds (1885); the material macro-element of the granular ma-
terial has a fine structure and, in a mental magnification, we think
of it as a sort of quasi-particle, which consists of a rigid grain and
its immediate rigid neighbours (Giovine, 2008).

Therefore, the microstructural kinematic variable v, is now the
rotation R, while the infinitesimal generator A,, defined in (11),
has the following components

(A2)ap = EayRy g, (137)

for which the angular momentum balance (119), becomes now

T
de de
skw T2 =2 skw |:R<8R> + gradR (O] B(gradR):|’

while the pure mechanical balance equations of interest in the
problem are similar to those of the previous section, only by ex-
changing the subscript 1 with 2 (here the complementarity), with
the exception of the negligible Eq. (129).

In particular, they are Eqs. (100),, (130) and (131):

(138)

B2+ Bdive, =0, BV, =divh + .8 by, (139)
de de
/12 _
w2 BR? = div |:/3 T@rad R)] Bsr: (140)

where we suppose to zero all the growth rates, as well as the
micro-viscosities in the granular phase in absence of external mi-
crospin actions C.

A general treatment of the constitutive relations of T, and
(the partial derivatives of) € for dilatant granular assemblies
with rotating grains is given in Giovine (2008, 2010), while their
quasi-linear expression has recently appeared in Amoddeo and
Giovine (2019), where the classical model of Coulomb granular ma-
terial (Goodman and Cowin, 1972) is also obtained as a particular
case.

We consider, in detail, cohesionless granular media in which
mutual granular fluctuations are negligible, the dissipative part of
the Cauchy’s stress T, behaves like a viscous fluid with viscosity
coefficients A and i (Goodman and Cowin, 1971), and the con-
servative stress component depends on {3, grad 8, gradR} (see, in
general, Amoddeo and Giovine, 2019); therefore,

T, = [207,3 AB +6|grad B2 — B B? + 28 |grad R|? +J\(tru)]1+

+2aD—-2dgradB @ grad B — 44 (gradR)" ® (gradR)’
(141)

and

$a._ B de a 5 de

— a .__ - =
3(gradR) =26gradR, Z%:= =0. (142)

dR
The micro-elastic constant § of the hyperstress tensor £¢ depends
on the macro-elastic ones. In Ehlers and Scholz (2007) it has been
shown that “the (three) elastic constants of the granular microp-
olar theory (modeled as a Cosserat’s material) are strongly corre-
lated and that only two of them can be identified independently”,
and thus, it has been suggested a strict correlation of 8 with the
Coulomb’s constant @ related to T. In particular, Sis proportional
to & through the square of an intrinsic length scale that we put
equal to the initial grain radius (rg/+/5).

Moreover, the constant micro-kinetic coefficient u, := 5 2y,
for rigid grains appears in the Appendix A of Giovine (1999b)
where we assumed a special initial geometrical configurations of
the grains, supposed all spherical of constant radius rg in the ref-
erence placement.

For our numerical purposes, we specify balance Egs. (139) and
(140) to two-dimensional setting, for which the velocity v, has

only two components (¥, 7,) in the Oxy plane, the rotation R is
around the z-axis of angle ® only and b, is the gravity force g di-
rected along Oy. Thus, inserting (141) and (142), using the defini-
tion (12),, for i = 2, and placing the expressions now indicated for
5, o and by, we write the two-dimensional system of four me-
chanical equations for dilatant granular material as
ap

W—i—div(ﬂf/l,ﬁf}z) =0,

~ 2 2 ~
8<g:1>+dw{mg+,w+&{(g§) () }Aay
30 30\’ (928 92
i (12) - (32) T -aan(32+32)

(143)

31/1
—-(A+24 )Bx
apBap 000300 _ (30 Ay \|
ﬂvlul“l‘zaa 8y+48WW_M W‘i‘w —0,
(144)
3By o [ o BB <30 9O 90, 9y
5 +d1v{,3v1v2+2aa—w+45 9% 8y - W)
~2 D a2 31}2 3171 _ 3;‘3
B3+ PP = (h+27) 5 dy }\W_a x

(328 3B 30 30\’

(146)

d(Bw) 30 307
97 +d1v|:ﬂa)v1—2a ,Ba)v2—2a8y1|_0,

where @ :=©'2 is the grain angular velocity normal to the xy-
plane, while coefficients with overbar are those with the over hat
divided by the true mass density of the granules, e.g., & = %

The constant parameters are chosen for a closely packed system
composed by rigid spheres with equal radii r; = 0.4 x 10~ m, of
true mass density y, = 1.5 x 103 Kg-m~3, suspended in air at room
temperature of 20°C. The reference volume fraction B+ of the solid
is set at 70%, while the elasticity parameters of Coulomb were cal-
culated in Ehlers and Scholz (2007), i.e., the first is B =4.94 x 104
N-m~2 and the second & = 9.1 x 104 N, so the micro-elastic pa-
rameter is, at the end, § = 2.912 x 10~3 N. These parameters refer
to dry sand.

Due to the presence of air, the mixture is compressible and
since it is subject to small variations in pressure, temperature and
velocity gradients, both the shear (or kinematic) and the bulk (or
volume) viscosity 1 and fip, := d+ %/l, respectively, can be treated
as constants. When the distribution of granules is fairly uniform
throughout the air, in order to obtain the kinematic viscosity i we
can use the semi-empirical formula

ﬂ “
where 1 =183x10"> Pa-s is the shear viscosity of air
and ¢ ~ 67,81 is an interaction factor which depend on the

grain incompressibility other than the geometry of the involved

and Structures, https://doi.org/10.1016/].ijsolstr.2019.07.021

Please cite this article as: P. Giovine, Internal constraints in the theories of immiscible mixtures for soils, International Journal of Solids



https://doi.org/10.1016/j.ijsolstr.2019.07.021

JID: SAS

[m5G;August 26, 2019;7:16]

14 P. Giovine/International Journal of Solids and Structures xxx (XXxx) xxx

Table 1
Parameters for the model of dilatant granular material.

Par. Value Description

y2 15x10° Kg-m=  True mass density of dry sand

B- 0.7 Reference volume fraction

g 4x107*m Reference granule radius

2 1.2x107* Kg-m~!' Micro-kinetic coefficient

u®  1.83x107° Pa-s Shear viscosity coefficient of air at 20°C

1 8.87 x 1074 Pa-s Shear viscosity coefficient of the packed system
X 2.96 x 1074 Pa-s Second viscosity coefficient of the packed system
B 494 x10* N-m~2  First Coulomb’s elasticity parameter

a 9.1x10* N Second Coulomb’s elasticity parameter

5 2912x 103 N Micro-elastic coefficient

particles (see Egs. (9-4.22) and (9-5.3) of Happel and Bren-
ner, 1965), whereas the bulk to shear viscosity ratio is 1 (Savage,
1979; Pan and Johnsen, 2017), for which we have, finally, the value
(= Ay — %ﬂ) = 2.96 x 104 Pa-s. All the coefficients of this ex-
ample are summarized in Table 1.

In developing numerical tests, we limit ourselves to analyze the
influence of micro-rotations on macroscopic motion. We consider
a squared section A =[0,1] x[—1,0] m? of a three dimensional
vertical channel, perpendicular to two delimiting vertical plates,
spaced 1 m apart, along the horizontal direction x, in which the
granular material can flow in the vertical direction. We adopt a
uniform mapped mesh of [28 x 28] grid points and a time step
AT =0.0005 s, T€(0, 7g] and 79 =0.25 s. The dependent vari-
ables are volume fraction B, mass fluxes B#q, 87, and couple

(a)

= : E
1=004s Vv
VR
0.8
0.6
04
0.2
0
0 0.2 0.4 0.6 0.8 1
y(m)
()
0.395 =
t=0.04s v
VR
0.3948
0.3946
0.3944

0.3942

0.394

0.301 0.3012 0.3014 0.3016

y(m)

0.3018 0.302

flux B w, all depending on (x, y, T)e A x (0, o). Initial conditions
are f91(0) =0 m-s!, BD,(0) =0 m-s~! and Bw(0) =0.01 s~1,
while, for the initial volume fraction, we suppose that B(0) =
exp[—(0.15)~1|y|?], ie., we admit that an initial chunk of granu-
lar material is settled along the x direction, decreasing along the
y direction with a half-gaussian-like shape. The granular flow is
supposed entirely confined inside the A domain. Consequently, we
impose for the volume fraction 8 zero-flux boundary conditions on
all sides of the domain. We impose zero-flux boundary conditions
on the top side for the velocity, and Dirichlet boundary conditions
on all other sides with B9; = 89, =0 m-s~'. Finally, concerning
the angular velocity of the grain, zero-flux boundary conditions are
imposed on both top and bottom sides of the integration domain,
and Dirichlet conditions with Bw = 0.6 s~! on left and right sides.
In order to give a quantitative description of the granular dynam-
ics, we consider a ‘vertical cut line’, that is a vertical straight line
cutting the integration domain at x = 0.5 m, splitting the domain
up into two symmetric sub-domains.

In Figs. 1 and 2 we compare the profiles of 8 and B,, respec-
tively, obtained from our “complementary” microstretching model
(VR) with the voids theory Goodman and Cowin (1971) in the
purely elastic case (E), with zero ,EL,X,S, and the dissipative one
(V), with § = 0 only.

At each time step, the profiles appear almost identical in boxes
(a)-(b) of Figs. 1 and 2, hence a magnification of them is shown in
boxes (c)-(d), respectively. The magnifications in boxes (c) and (d)
put in evidence differences among E, V and VR profiles, in which
the contribution coming from E model is always weaker with re-
spect to the contribution coming from V model, in turn weaker

(b)

- e
t=012s v
VR
0.8
0.6
0.4
0.2
0
0 0.2 04 0.6 0.8 -1
y(m)
0.371
= e
t=0.12s v
VR
0.3708
0.3706
0.3704
0.3702
0.37
-0.377 03772 0.3774 -0.3776 0.3778 0.378

y(m)

Fig. 1. Parallel between the distributions of the volume fraction 8, for the E-, V- and VR-models, along the vertical cut line taken at: (a) T = 0.04 s; (b) T =0.12 s; (c) and

(d): 10° magnification of arbitrary portions of boxes (a) and (b), respectively.
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Fig. 2. Parallel between the distributions of the mass flux 87,, for the E-, V- and VR-models, along the vertical cut line taken at: (a) T = 0.04 s; (b) T =0.12 s; (c) and (d):

10% magnification of arbitrary portions of boxes (a) and (b), respectively.
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Fig. 3. Profiles of the mass flux Bw along the vertical cut line: (a) parallel between the profiles taken at T = 0.04 s and 7 = 0.12 s; (b) parallel among the profiles taken at

7=004s1t=0125s,17=0.16 sand T =0.20 s.

with respect to VR model contribution, at least till T =0.12 s (and
taking into account the absolute tolerance of 104 imposed to the
numerical procedure).

In Fig. 3 the profile of the Sw variable along the vertical cut line
is shown at different time steps. In box (a), until T = 0.12 s, the Bw
profiles fall in the 10-3 s~! range, but if compared to the profiles
obtained at the higher time steps, as in box (b), the former ap-
pear flatted due to the different scale of the profiles for T =0.16 s
and T = 0.20 s. (see, also, Amoddeo and Giovine, 2019 from where

figures are taken). Such results are consistent with the initial con-
ditions imposed to the model simulation: in fact, while 87, (0) =
B1,(0) =0 m-s!, instead Bw(0) =0.01 s~!, then, at t=0s, a
non-zero rotational contribution is already present, which is rele-
vant in the first stage of the granular dynamics. During the time
evolution, the Bw contribution is weak and confined within the
10> — 102 s~ range (see Figs. 3), while the growing 87, contri-
bution makes the differences between V and VR dynamics to van-
ish, even if a major contribution to the granular dynamics coming
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from the V model cannot be excluded, for T >0.20 s, on the basis
of physical considerations.

9.2. Micro-vibrations in a linear thermo-elastic porous solid

Consolidate soils can be considered as porous continua with a
fabric determined by the way grains are in contact, possibly linked
by cohesive forces. Under dynamic solicitations, such as those in-
duced by trains on a railway, vehicles on pounding roads or earth-
quakes, we may recognize interplay between macroscopic and mi-
croscopic vibrations. The phenomenon has its counterpart in the
dynamics of foams, the scheme developed in the previous sections
allows us to describe such a phenomenon with a certain detail.

We remark again that pore volume fraction is insufficient to
describe the microdeformations of the holes when they are large
Cowin and Nunziato (1979). In fact, the linear theory of porous
materials (as well as classical Cauchy’s one) does not predict
size effects in torsion as they occurs in the mechanics of bones
Cowin (1970) or rod-shaped specimens of dense polyurethane
foams Lakes (1986).

Instead the linear theories obtained from Cosserat brothers’
theory Eringen (1990) and/or the model of porous media with
ellipsoidal microstructure Giovine (1996), later renamed as mi-
crostrain continua Forest and Sievert (2006), were used to study
numerous applications to the model of media with affine mi-
crostructure. The latter is surely preferable when we consider soils
or cellular solids consisting of a solid matrix with large pores
filled by gas, because the effects of micro-rotations are trivial. As
an example of this complex microstructure, we show in Fig. 4
(see also Badiche et al. (2000)) a graphene foam sheet (spongy
graphene, 2 x 2 x 1.2 mm).

In order to compare the solutions of micro-vibrations in differ-
ent models (with voids, or microstretch or ellipsoidal microstruc-
ture), we linearize the system of differential balance equations in
the case in which the saturating fluid is a gas of negligible mass
(p2 ~0). Also we neglect macroscopic dynamics in the mixture, i.e.,
impose

(X, 1) =xX,1)-X;=0 for i=1,2. (148)

Then, we follow also analyses in Giovine (1999a, 2012). Particularly,
we consider a homogeneous isotropic, thermoelastic porous solid
initially undisturbed and at uniform temperature 6,. We suppose
further that all the external volume contributions vanish, as well as
the micromomentum growth ¢*¢, ie, b;=0,C=0, §, =0, A=0
and ¢+ = 0. Therefore, the only pure equations of interest in the
problem are micro-momentum balance (118) and thermal evolu-
tion (99),

o1 V"N =divE®—2Z% and p;07% =divq®, (149)

Fig. 4. Scanning electron micrograph of cellular structures of graphene foam.

respectively. For them we refer to constitutive relations (82); and
(124)3 4.

The linear representations of constitutive fields, depending on
the set {V;:=V —1I, gradV;, ¥ :=60 — 6, grad¢}}, have been al-
ready obtained in Giovine (1999a) (Egs. (28),3 and (30)). Together
with the Fourier law for g%, they reduce the balances (149) to

2 -
L,Vz1 = Vi AV + 2(Vf, — v2,) sym [grad (divV;)] + Argrad *(tr Vp) +
+[5L1diV2V] + j\.zA(tl'Vl) — 5\.3th1 — )_/319]] — 25\.4‘/], (150)
_ 00 -
0=11g, + 7240 + mapstrVa, (151)

where tr(-) denotes once again the trace, ie, in a flat metric,
trVy :=V; -I; moreover, v2,,v2, and A;, for i=1,...,4, are micro-
elastic constants, y3 depends on micro-mechanical and thermal
properties of the porous body; (316) is the specific heat at con-
stant strain, while 7, := &,(01,00) ! > 0, with &« the coefficient of
thermal conductivity (see, also, Giacobbe and Giovine, 2009).

We can uncouple the spherical and deviatoric components of
the linear balance of micromomentum (150) to obtain, respec-
tively,

92 1 2 = = _
8—;2) = <7u52m + VR, + 20 + 3A2)Av —3p30 +

3 3
+[2WE, — v2,) + 341 ]div (divVP) — (33 + 244) v and
(152)
9%vP 2 D 2 2 NI
Tz = Von AVP +2(05, — v5) {sym [grad (divv®)]}" +

+[§(v§m—vfm)+5»1](grad2v)’3—214VD, (153)

where v is the trace of V;, while its deviatoric part is defined by
VD=V, — vl
Consider solutions of the form

v=rpelb? VD =VelbT 9 = e, (154)

where 7, V and & are constant amplitudes, b is the frequency and
i is the imaginary unit. By inserting these expressions into equa-
tions, we get the system of algebraic equations

(b2 —3h3 —224)D = 3750, (P —2A)VP =0, 710 +pu1j5D =0,
(155)

with the restriction on the free energy density ¥/ to be positive
definite which implies
)_/1 (35\.3 + 25\.4) > 3#1)_/32, 5\4 >0

(see Egs. (30) and (31) of Giovine, 1999a).
Eventually, we get admissible values of frequency b for different
types of waves.

(156)

o) Dilatational modes:

bd = \/35\.3 + 25\.4 - 3#1)_/{1 )_/32, with ¥ = 3‘71], (157)

Vo =Va3=0/3, Vj=0, Vi#j 1§=—IL1)717]J73173

the cutoff frequency by of this micro-thermal oscillation is real,
for the restriction (156);, and we may expect one longitudi-
nal acoustical wave in the three-dimensional porous medium
to couple with the micro-modes to form four optical branches.
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Table 2 Table 3
Dimensional parameters for porous solids with ellipsoidal microstructure. Dimensional parameters for different models of porous solids.

Parameter PO NI SA Parameter  MA AL SMC EM

A3 2,16 x 102 52 3,70 x 10'! s—2 5,00 x 1010 =2 A3 537x10%° 597 x 10° 9,88 x 10° 5,52 x 10°

-3 2,71 x 1010 g2 °C-1 4,61 x10% s72 °C! 4,61 x10% s=2 °C! -3 2,19 x 10" 8,62 x 10° 1,03 x 107 9,19 x 10*

2 3,46 x 10° °C 534x107! °C 6,67 x 107! °C 7 2,76 x 10! 472x1072  560x10%  545x1072

ha 3,23 x 1012 52 5,57 x 10! s2 3,00 x 1010 52 0o 2,50 x 10! 2,00 x 10! 2,00 x 10! 2,00 x 10!

0o 2,20 x 10! °C 2,00 x 10! °C 2,50 x 10! °C bq 4,02 x 1010 424x103 1,88 x 103 1,29 x 10°

by 3,64 x 106 5! 1,49 x 106 571 4,68 x10° s7!

be = bs 2,54 x 105 571 1,06 x 106 s~! 2,45x10° s7!

o) Extensional modes with a constant volume:

be=\/5x4, WithV‘l] =—V22—V33,ﬁ=l§=0, \7l-j=0, Vl;ﬁ]
(158)

the cutoff frequency b of the micro-oscillations is real for in-
equality (156),, while no thermal vibration is present; we may
also expect one transverse acoustical wave to couple with the
micro-modes to form three optical mechanical branches.

Pure shear modes:

]
~

bs=+/Ag4, WithV;£0, Vi j V;=0 Vi, §=0: (159)

their cutoff frequency bs coincides with the real frequency be
of the extensional modes and even here micro-oscillations are
purely mechanical; the transverse acoustic wave in the mi-
crostructured medium couple again the micro-modes to form
three optic branches.

When we neglect thermic phenomena, our oscillating solutions
recover three of the mechanical micro-vibrations obtained for gen-
eral microstructure in Mindlin (1964).

The characteristic values of the frequencies given in Eqs. (157)-
(159) are fixed, once the material parameters s, V3, Vo=
w177 173, Ag, and Og in system (151)-(153) are specified. Here,
we want to compare micro-oscillations for some different mate-
rials for which they have been calculated experimentally: in par-
ticular, in Table 2 they refer to porous materials with nano-pores,
modeled linear thermoelastic solids with ellipsoidal microstruc-
ture with vanishing Cosserat’s couple modulus: high density rigid
polyurethane closed-cell foam (PO) Lakes (1986), nickel foams (NI)
(Badiche et al., 2000; Neff and Forest, 2007) and Berea sandstone
saturated with air (SA) (or similar) (Steeb et al.,, 2012; Khurana
et al., 2018).

Figs. 5 and 6 report dimensionless micro-vibration (154) for the
three porous solids in Table 2 in the longitudinal and transverse
cases (Egs. (157) and (158)-(159)), respectively. Wave frequencies
in foam materials are higher than seismic micro-vibrations in the
sandstone, more in the polymeric matrix than in the metallic one;
as noted above, transverse waves proceed unaffected by thermal
properties.

Now, we want to compare micro-vibrations for porous media
described in theory of voids, the microstretched model and ours,
the one with ellipsoidal microstructure, i.e., the general affine mi-
crostructure internally constrained to have null micro-rotation. In
particular, only for the third example we still observe transverse
waves with frequencies that do not disappear, because, obviously,
the parameter A4 vanishes in the first two.

Therefore, in Table 3 we summarize all significant parameters
of the mentioned models, at uniform room temperature 6y: for
the theory of voids, we consider the magnesium crystal like mate-
rial (MA) (Dhaliwal and Singh, 1980; Sharma et al., 2008); for the
thermo-microstretch-elastic solid (with vanishing Cosserat’s couple
modulus vanishing), aluminum matrix with randomly distributed
epoxy spheres (AL) (Gauthier, 1982; Kiris and Inan, 2008), a sheet
molding compound (SMC) of randomly oriented chopped glass

fibers in polyester matrix (Ayorinde and Yu, 2005; Kiris and Inan,
2008), and an electro-microelastic solid (EM), with zero dielectric
coefficients (Tomar and Khurana, 2008). The physical dimensions
of the parameters of Table 3 are shown in Table 2, as well as the
pertinent values for the (SA) material.

Finally, the cutoff frequency b, for the dilatational mode in
the magnesium-crystal-like-material, viewed as a thermoelastic
medium with voids, results to be very high with respect to one
computed on the basis of microstretch and microstrain models,
while the frequency obtained for electro-microstretch solids is
of the same order of the previous microstrain and micromor-
phic samples. Instead, the detected microstretch solids with zero
Cosserat’s couple constant, i.e., the aluminum-epoxy composite and
the polyester matrix with glass fibers, give lower frequencies than
microstrain ones. All the models presented in Table 3 do not show
transverse micro-vibrations.

10. Concluding remarks

In this paper the balance principles for an immiscible mix-
ture of continua with microstructure in the presence of chemical-
physical phenomena are presented by generalizing previous ther-
modynamic theories of multiphase mixtures. A new formulation
for the balances of moment of momentum is proposed and ad-
ditional terms are also included in the peculiar energy equations,
corresponding to the work done by the respective terms in the
micro-momentum balances, introduced, for each constituent of
mixture, to accommodate for the dynamical effects played by the
respective microstructural descriptors. Moreover, we assume that
the entropy flux of each constituent is not equal to the heat flux
divided by the temperature of the constituent itself.

Furthermore, a new procedure is presented to incorporate in-
ternal constraints, such as the saturation condition or the incom-
pressibility of the constituents, in the balance equations for immis-
cible mixtures of interest in the thermo-mechanics of the soils, and
some applications are considered. In particular, a first example is
studied in which a saturated fluid suspension is considered in de-
tail by imposing the general principles, that govern the constitutive
equations, including that of equipresence, usually substituted, in
this field, by that of phase separation. Secondly, the fluid suspen-
sion is specified as incompressible to comprise concentrated gran-
ular materials in the fluids and the complete Lagrangian derivative
of the kinetic energies due to micromotions, even if constrained.
Finally, an isothermal flow of a fluid component through the big
pores of a solid skeleton is examined, where the model for the
solid constituent is thought to have an ellipsoidal microstructure
with the fluid that fills all the interstices. The proposed model
is proved to be perfectly consistent with previous known theo-
ries, derived from theories of the voids or from the classical ones,
even if, also now, it satisfies all Truesdell’s metaphysical principles,
while those theories have failed in some respects. It had already
been used to describe the transport of pollutants with rainwater
in the soils.

It is remarkable that, for all the applications, it was possible
to obtain a set of reaction-free thermodynamic equations; more-
over, it has been found that the internal microactions are always
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Fig. 6. Extensional and shear modes with the same coefficient b, = bs.

coupled with the micromomentum growths, and therefore it re- which generalizes the voids theory and the Cosserat brothers’
mains very difficult to separate the relative influences on the mi- medium, and was tested on a vertical granular gravity flow to ob-
cromotions. tain numerical results showing that the effects due to the rotation

Besides, to perform numerical simulations on simplified mod- of granules are relevant in a first stage of the granular dynamics,
els, firstly it was quasi-linearized a continuum theory for a co- as well as those due to shear and bulk viscosities. Secondly, a lin-

hesionless viscous dilatant granular material with rotating grains, ear theory of a thermoelastic solid with nano-pores was used to
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study the propagation of micro-waves, with three admissible re-
sults: a dilatational micro-thermal oscillation and two solutions,
both with no thermal vibrations, with the same frequency and
with null trace: a shear mode and an extensional mode with con-
stant volume. Comparisons of wave frequencies were also made re-
vealing that, in foam materials, they are higher than seismic micro-
vibrations in the sandstone, more in the polymeric matrix than in
the metallic one.
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