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a b s t r a c t 

In this paper we formulate balance principles for an immiscible mixture of continua with microstructure 

in the broadest sense to include, e.g., diffusion and adsorption phenomena, strain gradient effects and 

chemical reactions, and introduce an additional balance of micromomentum for each constituent to de- 

scribe the microstructural effects. Next, we describe a method for taking into account the general internal 

constraints in entropy inequality, based on an ‘extended’ principle of thermodynamic determinism, and 

obtain a set of ‘pure’ constitutive equations. Finally we consider some examples of interest for thermo- 

mechanics of soils, such as granular materials dispersed in a fluid or the flow of fluids in a porous solid. 

Particular solutions are obtained in linear approximations for mixtures of packed granular materials in 

rarefied air, and solids with nano-pores filled by a gas. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

A general formulation of balance principles for a mixture of

ontinua with microstructure in the widest sense was presented

n Giovine (2005) to study diffusion, adsorption and broader

hemical-physical phenomena. The theory generalizes the multi-

hase mixtures presented in Passman et al. (1984) where each

onstituent has a simple geometric structure characterized only

y a scalar kinematic parameter, its volume fraction. In fact, by

onsidering kinematical parameters on a differentiable manifold,

e unify proposals (such as those in the essay Capriz, 1989 or

n Mariano, 2002 ) dealing with granular and porous media, or

osserat and micromorphic continua. An example of mixtures for

icromorphic materials has been studied in Twiss and Eringen

1971/72 ), and applied to micropolar media, although, there, the

uthors consider for each constituent of the mixture an additional

alance equation, parallel, in a certain sense, to the mass con-

tituent balance: that of microinertia moment. Instead, such equa-

ion has been shown to be a simple consequence of the definition

f the tensor field of microstructural inertia (see, e.g., Section 21

f Capriz (1989) , or Eqs. (4.12) and (34) of Capriz et al. (1982) and

iovine (2008) , respectively). 

Moreover, in Giovine (2005) a new expression of the integral

alances of moment of momentum appears evident in the theory,
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n which the presence of the various microstructures is taken into

ccount, while the mass density fields can no longer be regarded

s determined by the deformation fields because chemical reac-

ions are present, thus the constitutive assumptions must allow for

 dependence on a larger number of variables (see, also, Capriz and

odio Guidugli, 1974 for reacting mixtures of polar bodies). 

The present work concerns the use of internal constraints

apriz and Podio Guidugli (1984) in order to study the essential

eatures of some classical models of soils capable of describing

he effects of immiscibility and variable volume fractions, besides

hose associated to microstructural interactions. In the so-called

mmiscible mixtures the components do not form a mixture on

he molecular level, as it is the case for fluids, but remain sepa-

ated to the sub-structural level of observations: material systems

uch as rocks, solid filters, granular and porous media, biologi-

al tissues, clays, etc. belong to this class (see, for example, Sec-

ion 5A.4 of Bowen, 1984 , otherwise Raats, 1984 , or further the

h. 13 of Wilmanski, 2008 ). Furthermore, due to the complexity

f the interactions between components as well as among macro-

nd micro-structure, it is assumed that the entropy flux is not

qual to the heat flux divided by the temperature, as suggested

n Müller (1967) and Goodman and Cowin (1972) . 

As special cases of our proposal we find the description of a

heory of fluid suspensions, an incompressible mixture of a con-

entrated granular material immersed in a fluid, and a mechanical

heory of poroelasticity, in which the constitutive equations for the
s of immiscible mixtures for soils, International Journal of Solids 
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solid elastic skeleton take into account for the micro-strain gradi-

ent effects due to the presence of nanopores. 

Detailed numerical studies are also provided to describe the ef-

fects of microstructures, such as the influence of micro-rotations in

a quasi-linear dilatant granular material with rotating grains, or the

incidence of micro-vibrations in a linear thermoelastic solid with

big pores. 

2. Kinematics and microstructures 

In this section we discuss the kinematics of motion and the

equations of balance for a mixture of n continuous bodies B i ,

i = 1 , 2 , . . . , n, each endowed with its own microstructure, and, in

our developments and notations, we mainly follow the Lecture 5

of Truesdell, 1969 . 

We assume that all of them are able to occupy regions of the

three-dimensional Euclidean space E, at a certain time τ in an in-

terval [ τ 0 , τ 1 ] during which the motion is observed, and indeed

contemporaneously: for which every place x in the body is simul-

taneously occupied by a material particle x i of each constituent at

time τ . If X i is the place taken by a particle of B i in some reference

placement, the motion of B i is the smooth mapping 

x = x i (X i , τ ) (1)

of B i onto a time-sequence of placements in space: each such mo-

tion has its own kinematics. 

We shall use a subscript to indicate a constituent and a prime

to denote the material time derivative following the motion of that

constituent; therefore, v i and a i are the peculiar velocity and accel-

eration of constituent i , respectively: 

v i := 

∂x i 
∂τ

(X i , τ ) = x ′ i (x, τ ) , a i := 

∂ 2 x i 
∂τ 2 

(X i , τ ) = x ′′ i (x, τ ) . (2)

The i th peculiar velocity gradient L i and deformation gradient F i of

X i ∈ B i are 

L i = grad v i (x, τ ) and F i = 

∂x i 
∂X i 

(X i , τ ) , (3)

respectively. Because of the assumptions made about the smooth-

ness of x i , it is 

ιi := det F i > 0 , (4)

thus F −1 
i 

exists and, by the chain rule, it is easy to show that 

L i = 

(
F ′ i F 

−1 
i 

)
(x, τ ) = D i + W i , (5)

where the standard decomposition of the velocity gradients are

used with D i := 

1 
2 (L i + L T 

i 
) and W i := 

1 
2 (L i − L T 

i 
) the i th peculiar

rate of deformation and spin tensor, respectively. 

Each body B i has its own bulk mass and consequently its mass

density per unit volume ρ i in the placement x i at time τ , then the

density and the velocity of the mixture are defined by 

ρ := 

∑ 

ρi and v := 

∑ 

ξi v i , with ξi = 

ρi 

ρ
, (6)

respectively, where ξ i is the concentration of the i th constituent;

here and henceforth, � stands for summation from i = 1 to i = n .

Moreover, if we introduce the diffusion velocity of the i th con-

stituent in the mixture 

u i = v i − v , (7)

the following property holds: ∑ 

ξi u i = 

∑ 

ξi v i −
(∑ 

ξi 

)
v = 0 . (8)

The hypothesis that the constituents B i of the mixture have a La-

grangian microstructure (in the sense of Capriz, 1989 ) means that
Please cite this article as: P. Giovine, Internal constraints in the theorie
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ach material element of a single body reveals a microscopic geo-

etric order at a closer look; then it is there assigned a measure

i ( x ) of the peculiar microstructure, read on a smooth manifold M i 

f finite dimension m i : e.g., the interval [0, ν̄) of real number, with

¯ < 1 , for the volume fractions of fluids in an immiscible mixture

assman et al. (1984) , the projective plane in the theory of liquid

rystals Ericksen (1991) or the space of definite positive symmetric

ensor in the theory of solids with large pores Giovine (1996) . For

ow, we do not fix the tensor rank of each order parameter ν i . 

Let us consider now two observers differing by a rotation of

haracteristic vector q ( τ ), with corresponding proper orthogonal

ensor 

(τ ) = exp [ −ε q (τ )] 
[ 

:= I − ε q + 

1 

2 

(ε q )(ε q ) − . . . 

] 
, (9)

here exp is the basis of natural logarithms, ε is Ricci’s three-

imensional alternating tensor and I is the identity tensor. They

ead two different values ν i and ( ν i ) q of the i th order pa-

ameters connected by the following relation (see Section 3 of

apriz, 1989 or Section 6 of Capriz and Virga, 1990 ): 

(νi ) q = νi + A i q + o(| q | ) , (10)

here A i (νi ) is the infinitesimal generator of the local action of

he proper orthogonal group SO(3) over M i defined by: 

 i (νi ) := 

d(νi ) q 
dq 

∣∣∣∣
q =0 

; (11)

 i is a linear operator mapping vectors of � 

3 into elements of the

angent space T νi 
M i to M i at ν i and, in its matrix representation,

as three columns and a number of rows equal to the dimension

 i of M i . For the examples above, the volume fraction of a fluid

s invariant for changes of observer, so A i vanishes; in the theory

f uniaxial liquid crystals, the order parameter is a unit vector d

arking the alignment of rod-like molecules, therefore A i coin-

ides with ( εd ); finally, in the theory of solids with large pores,

he order parameter is a symmetric tensor V , which changes as a

 nd order tensor, thus A i has the following components (A i ) αβι =
 αγ ε γβι − ε αγ ιV γβ (see, also, Section 3 of Capriz, 1989 and Section

.1 of Mariano, 2014 for more general changes in observers, cur-

ently not of interest in this context). The convention that repeated

reek indices are summed is adopted throughout. 

Now we suppose that, for each body B i , exists a non-negative

inetic energy κ i ( ν i , ω i ), associated with each time-rate of change

f the i th microstructure 

 i := ν ′ 
i = 

∂νi 

∂τ
+ ( grad νi ) v i = ˙ νi + ( grad νi ) u i , (12)

hat is the material time derivative of ν i with respect to the pe-

uliar velocity v i , and which will be called, briefly, the i th mi-

rospeed; this kinetic energy κ i is such that κi (νi , 0) = 0 and
∂ 2 κi 

∂ω 2 
i 

� = 0 . Here, ˙ (·) (:= 

∂(·) 
∂τ

+ [ grad (·)] v ) is the material time deriva-

ive with respect to the mixture velocity v given by (6) 2 . 

Moreover, we can define the density of kinetic co-energy χ i ( ν i ,

 i ) related to κ i by the Legendre transform: 

i = 

∂χi 

∂ω i 

·ω i − χi , (13)

hat is, χ i is a solution of the system of linear partial differential

quation of the first order (13) or, introducing coordinates να
i 

in a

ocal chart of the manifold M i , 

i (ν
α
i ; (ω i ) 

γ ) = 

∂χi 

∂(ω i ) β
· (ω i ) 

β − χi , (14)

ith the usual convention for the sum over repeated indices. Of

ourse, if χ were homogeneous of second degree in ω , then it
i i 

s of immiscible mixtures for soils, International Journal of Solids 
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ould coincide with κ i . On the contrary, even if κ i were homoge-

eous of second degree in ω i , χ i need not coincide with κ i (see

apriz and Giovine, 1997a ). 

We note that, when the manifold M 

ī 
does not have an intrinsic

onnection Capriz and Giovine (1997b) , we cannot define a kinetic

nergy κ
ī 

associated with a time–rate of change ω 

ī 
of ν

ī 
, a case

hen the coordinates ν
ī 

are rather termed internal (state) variables

nd ruled by a first order evolution equation instead of a balance

quation (see, e.g., Eq. (5A.4.11) of Bowen, 1984 ). 

. Laws of balance for constituents 

For a region V of space, we may consider the actions on the

art of the constituent body B i presently occupying V and calcu-

ate the rates of growth per unit volume of mass α+ 
i 
, linear mo-

entum m 

+ 
i 
, micromomentum φ+ 

i 
, rotational momentum z + 

i 
, en-

rgy ε+ 
i 

and entropy η+ 
i 

within it. It is meaningful to note that

hese quantities derive from interactions between constituents and

hould therefore be recognized as terms of interchange, thus the

ules that underlie our formulation of the constituent balance laws

re the first two metaphysical principles of Truesdell (1969) : (1)

ll properties of the whole mixture must be mathematical conse-

uences of properties of the constituents; (2) so as to describe the

otion of a constituent, we may in imagination isolate it from the

est of the mixture, provided we allow properly for the actions of

he other constituents upon it. 

Each constituent B i undergoes actions of three kinds: (1) the

ontact actions, represented by the stress T i , the microstress S i ,
he heating and entropy fluxes q i and p i , respectively; (2) the in-

ernal microactions per unit volume ζ i ; (3) the prescribed actions

t a distance, depicted by the densities per unit mass of body force

 i , microforce δi , heating λi and entropy supply ϖi . Therefore, the

ntegral equations of balance for the constituent i of the mixture,

roposed in Giovine (2005) , are assumed in the general form with

he growth terms included in the source terms: 
 

α+ 
i 

dv ≡
(∫ 

ρi dv 
)′ 
, 

 

m 

+ 
i 

dv ≡
(∫ 

ρi v i dv 
)′ 

−
∫ 
ρi b i dv −

∮ 
T i n da, 

 

φ+ 
i 

dv ≡
(∫ 

ρi 

∂χi 

∂ω i 

dv 
)′ 

−
∫ [

ρi 

(
∂χi 

∂νi 

+ δi 

)
− ζi 

]
dv −

∮ 
S i n da, 

 (
z + 

i 
+ r × m 

+ 
i 

+ A 

T 
i φ

+ 
i 

)
dv ≡

[∫ 
ρi 

(
r × v i + A 

T 
i 

∂χi 

∂ω i 

)
dv 

]′ 

−
∫ 
ρi 

(
r × b i + A 

T 
i δi 

)
dv −

∮ [
r × T i n + A 

T 
i (S i n ) 

]
d a, 

 

ε+ 
i 

dv ≡
[ ∫ 

ρi 

(
εi + 

1 

2 

v 2 i + κi 

)
dv 

] ′ 
−

∫ 
ρi ( λi + b i · v i + δi ·ω i ) dv + 

∮ (
q i − T T i v i − S T i ω i 

)
· n d a, 

 

η+ 
i 

dv ≡
(∫ 

ρi ηi dv 
)′ 

−
∫ 
ρi � i dv + 

∮ 
p i · n da. (15) 

n the Eq. (15) , ∫ denotes integration over the volume V and dv

he element of volume; � denotes integration over its boundary

V and da the element of surface, while n is the outward unit 

ector normal to the boundary ∂V; the position vector field r is

iven by (x − x 0 ) with x 0 a fixed point in E; the transpose of the

(m i + 1) th order tensors A i (or S i ) has the following components

(A 

T 
i 
) α... βι = (A i ) ια... β ; εi and ηi are the i th peculiar internal energy

nd entropy, respectively. 
Please cite this article as: P. Giovine, Internal constraints in the theorie
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The formulation of the balance of rotational momentum in the

orm (15) 4 appears to be a novelty in the theories of general con-

inua with microstructure, even if the deduction of its local form

ill be in agreement with that inferred, e.g., from a theorem of

inetic energy in Capriz (1989) and Giovine (2004) , or obtained

ith invariance requirements with respect to classes of changes

n observers Mariano (2005) . Moreover, if we consider polar con-

inua of Cosserat brothers or oriented materials of Toupin, the or-

er parameters ν i and the operator A i can be recognized as a

roper orthogonal tensor R and the 3 rd -order tensor of compo-

ents: ( A i ) αβι = ε αγ ιR γβ , respectively; therefore, for a single po-

ar body, the balance (15) 4 in local form reduces to the Cosserats’

aw for balance of moment of momentum (205.10) of Truesdell and

oupin (1960) , or otherwise to the Toupin’s spin momentum bal-

nce (98.26) of Truesdell and Noll (1992) (when the same spin mo-

entum vanishes), that is 

kw T i = ρi l + div M, (16) 

here the skew part of a tensor C is defined as skw C := 2 −1 (C −
 

T ) , while the assigned couple field l and the couple stress tensor

 are now 

 αβ := R [ αδ(δi ) δβ] and M αβι = R [ αδ( S i ) δβ] ι (17)

espectively: here the square brackets specify the skew-symmetric

art with respect to indicated indices. 

Finally, there are appropriate additional terms in the energy

q. (15) 5 corresponding to the work done by the respective field

erms in the balance of micromomentum. 

For suitably smooth regions and fields, it is possible to apply

he divergence theorem and obtain the local statements of balance

q. (15) for each constituent B i : 

+ 
i 

= ρ ′ 
i + ρi div v i , (18) 

 

+ 
i 

− α+ 
i 

v i = ρi v ′ i − ρi b i − div T i , (19)

+ 
i 

− α+ 
i 

∂χi 

∂ω i 

= ρi 

(
∂χi 

∂ω i 

)′ 
− ρi 

(
∂χi 

∂νi 

+ δi 

)
− div S i + ζi , (20) 

 

+ 
i 

= ε T i − A 

T 
i ζi − ( grad A 

T 
i ) S i , (21)

+ 
i 

− m 

+ 
i 

· v i − φ+ 
i 

·ω i − α+ 
i 

(
εi − 2 

−1 v 2 i − κi 

)
= ρi ε

′ 
i − ρi λi + div q i − T i · L i − ζi ·ω i − S i · grad ω i , (22) 

+ 
i 

= α+ 
i 
ηi + ρi η

′ 
i − ρi � i + div p i . (23) 

e wish to observe that, to get Eq. (21) , we used bal-

nces (18) - (20) and the invariance of χ i under the galilean

roup, i.e. , 
(
A 

T 
i 

)′ ∂χi 
∂ω i 

= −A 

T 
i 

∂χi 
∂νi 

. Further, in Eq. (23) , we followed

üller (1967) by assuming that, in general, the entropy flux p i is

ot equal to the heat flux q i over the peculiar temperature θ i : in

act the components of the mixture are complex bodies as it is

he case, for example, for granular mixtures (see Wang and Hutter,

999b; Giovine, 2010 ). In this regard, the multiphase theory for-

ulated in Passman et al. (1984) , and based on the continua of

Goodman & Cowin” type, ignores this assumption despite it be-

ng present in Goodman and Cowin (1972) itself: it could be ne-

lected only if the related body has particular material symmetries

 Müller, 1967 ). 
s of immiscible mixtures for soils, International Journal of Solids 
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4. Powers and objectivity 

The kinetic energy T i of the i th constituent B i occupying V in

the present configuration is defined by 

T i ≡
∫ 
ρi 

(
1 

2 

v 2 i + κi 

)
dv , (24)

while the mechanical power P i developed on the i th constituent

occupying V is the rate of working of all forces acting on B i by the

exterior bodies: 

P i = P 

pro 
i 

+ P 

exc 
i , (25)

where the decomposition of the power P i into a proper part P 

pro 
i 

,

the one that can be attributed to B i as if it was isolated, and an

exchange part P 

pro 
i 

, which accounts for the power of the direct

actions exerted on B i by other components, is motivated by the
second metaphysical principle for mixtures, for which each con-
stituent can be isolated from the rest provided that the interac-
tions with the others are accounted for. Precisely, they are 

P pro 
i 

:= 

∫ 
ρi ( v i · b i + ω i · δi ) dv + 

∮ 
[ v i · (T i n ) + ω i · (S i n ) ] d a and 

P exc 
i := 

∫ [
v i ·

(
m 

+ 
i 

− α+ 
i 

v i 
)

+ ω i ·
(
φ+ 

i 
− α+ 

i 

∂χi 

∂ω i 

)
+ 

1 

2 
( curl v i ) · z + 

i 

]
dv , 

(26)

where the curl of a vector u is defined as: curl u := −ε( grad u ) . The macro-

and micro-actions appearing in the expressions above all have contact and

bulk nature. In definition (26) 1 , contact and bulk macro- and micro-actions

include all mechanical actions, as introduced on the right hand-side of bal-

ances (15) . Instead, the second category of bulk actions, which appears in

(26) 2 for P exc 
i 
, consists of macro- and micro-interactions expressed on the

i th constituent by all the other components: they are defined through the

rates of growth and their expressions become evident on the left hand-side

of balances (19) –(21) (see, also, Mariano, 2005; Magnarelli, 2009 ). 

We are now able to obtain the expression for the net working

W i of the i th constituent according to a classical theorem of kinetic

energy first proved by Stokes for simple bodies (see Lecture 2 of

Truesdell, 1969 ). It is given by 

W i ≡ P i − ˙ T i (27)

and can be inferred in a standard way from the definition

(25) of the power P i , the divergence theorem and the balance

Eqs. (19) and (20) of macro- and micro-momentum, respectively;

namely, taking the appropriate scalar product of both sides of

(19) by v i , operating similarly with ω i on (20) , integrating both

sides over the region V by parts where possible, taking account

for the balance of mass (18) and the Legendre transform (13) and

summing finally term by term. 

The result (27) asserts that the working W i is the power of the

forces exerted upon B i by the exterior of B i , minus the rate of in-

crease in kinetic energy of B i , in an inertial frame. Therefore, we

are led to the following formula: 

W i = 

∫ (
T i · L i + 

1 

2 

z + 
i 

· curl v i + ζi ·ω i + S i · grad ω i 

)
dv , (28)

where the scalar density in the round brackets under the sign of

integral is the so-called net working per unit volume w i of the

body with microstructure B i in the mixture; w i is often called the

stress power ( Truesdell, 1969; Capriz and Podio Guidugli, 1984 ). 

In the following we shall give a suitable definition of a con-

tinuum with microstructure subject to perfect internal kinemati-

cal constraints, for which the expression of the stress power w i 

plays an essential role, thus we furnish here a version of w i which

clearly shows its independence from the observer by means of the

use of the corotational time derivative ν̆i , due to the spin ten-

sor W i , which is an objective measure of the microspeed ω i (see,

e.g., Eq. (36.13) of Truesdell and Noll, 1992 or Section 2.8.2.4 of
Please cite this article as: P. Giovine, Internal constraints in the theorie

and Structures, https://doi.org/10.1016/j.ijsolstr.2019.07.021 
chikawa and Selvadurai, 2012 ); precisely, if we introduce the spin

ector 

 i := −1 

2 

ε 
(
F ′ i F 

−1 
i 

)
= 

1 

2 

curl v i , (29)

e have the subsequent expression for ν̆i : 

˘i = ω i − A i r i (30)

see comments in Remark 2 of Section 6 in Capriz, 1989 ), while the

tandard decomposition (5) 2 of the velocity gradient L i assumes

ere the following form: L i = D i − εr i . 

At the end, we can obtain the requested objective version of the

tress power w i by the use of the balance of moment of momen-

um (21) : 

 i = T i · L i + z + 
i 

· r i + ζi ·ω i + S i · grad ω i 

= sym T i · D i − skw T i · (εr i ) + z + 
i 

· r i + ζi ·ω i + S i · grad ω i 

= sym T i · D i −
[
A 

T 
i ζi + 

(
grad A 

T 
i 

)
S i 

]
· r i + ζi ·ω i + S i · grad ω i 

= sym T i · D i + ζi · ν̆i + S i · grad ̆νi + 

(
A 

T 
i S i 

)
· grad r i , (31)

here, in the last row, D i , ν̆i , grad ̆νi and grad r i are all frame in-

ifferent. 

These few formulas provide us with a specific mechanical

ramework upon which a thermodynamic structure can be raised

or constrained immiscible mixtures. 

Moreover, by introducing the expression (31) 1 for the stress

ower w i in the balance of energy (22) , we obtain 

+ 
i 

− z + 
i 

· r i − m 

+ 
i 

· v i − φ+ 
i 

·ω i − α+ 
i 

(
εi − 2 

−1 v 2 i − κi 

)
= ρi ε

′ 
i − ρi λi + div q i − w i . (32)

efore going further, we record here an expression for η+ 
i 

obtained

y introducing the vector of extra entropy flux k i , which means

he difference between entropy flux p i and heat flux q i over the

eculiar temperature θ i , and assuming that the entropy supply ϖi 

rom the external world is equal to the energy supply λi divided

y the same temperature (see Müller, 1967; Goodman and Cowin,

972 ): 

 i = p i −
q i 
θi 

, � i = 

λi 

θi 

, (33)

ith, in general, k i � = 0 for bodies with microstructure, as we spec-

fied in previous section; thus, it is 

+ 
i 

= α+ 
i 
ηi + ρi η

′ 
i − ρi θi 

−1 λi + div k i + div ( θi 
−1 

q i ) . (34)

fter, we can reduce it by elimination of the body heating λi 

hrough (32) and by use of the concept of Helmholtz’s free energy

er unit mass 

 i := εi − θi ηi , (35)

f the chain rule and of the balances of mass (18) in order to recast

he entropy Eq. (23) in the following form: 

+ 
i 

= div k i + θi 
−1 

[
w i − ρi 

(
ψ 

′ 
i + ηi θ

′ 
i 

)
− θi 

−1 
q i · grad θi 

+ ε+ 
i 

− z + 
i 

· r i − m 

+ 
i 

· v i − φ+ 
i 

·ω i − α+ 
i 

(
ψ i − 2 

−1 v 2 i − κi 

)]
. 

(36)

. Balance laws for the mixture 

In our mixture, we assume that physical transfers, and even-

ual chemical reactions, are exchanges rather than true processes

f creation or destruction, thus we allow mass, linear momentum,

otational momentum, and energy of any constituents to change

orm, but do not allow the total mixture to produce these quanti-

ies, i.e. , they are conserved for the whole mixture and, from bal-

nces (15) , give rise to the following four axioms of balance for
s of immiscible mixtures for soils, International Journal of Solids 
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t  
ixtures (that satisfy the third metaphysical principle of Truesdell:

he whole mixture behaves as a single body): 
 

α+ 
i 

= 0 , 
∑ 

m 

+ 
i 

= 0 , 
∑ 

z + 
i 

= 0 , 
∑ 

ε+ 
i 

= 0 . (37)

n addition, following Lecture 5 of Truesdell (1969) , we do not re-

trict η+ 
i 

except for the requirement that the total growth of en-

ropy for the mixture remains non-negative, i.e. , our axiom of dis-

ipation is 
 

η+ 
i 

≥ 0 (38) 

see, also, Wang and Hutter, 1999a ). We can give a more expres-

ive form to the entropy inequality (38) by using the general equa-

ion of transport (5.16) of Truesdell (1969) , which relates the time

erivative ˙ η of η = 

∑ 

ξi ηi following the mean motion of the mix-

ure to the time derivative η′ 
i 

of ηi , following the motion of the

ody B i , that is: 

˙ = 

∑ 

ξi η
′ 
i + 

1 

ρ

[ ∑ 

α+ 
i 
ηi − div 

(∑ 

ρi ηi u i 

)] 
. (39) 

herefore, the summation of (23) over all constituents i gives the

o-called second law of thermodynamics for the mixture in the

orm 

 = ρ ˙ η − ρμ+ div p ≥ 0 , (40)

here D = 

∑ 

η+ 
i 

is the dissipation, while 

:= 

∑ 

ξi � i and p := 

∑ 

(p i + ρi ηi u i ) ; (41)

e wish to observe that not only the net entropy flux, but also

iffusion may give rise to mixture entropy flux p : in fact we see

hat, even if p I (:= 

∑ 

p i ) = 0 , the resultant rate of entropy increase

div p) will not generally vanish if diffusion is occurring. 

A reduced version of the dissipation inequality for microstruc-

ured mixtures (40) can be obtained by using in (38) the alterna-

ive expression (36) for η+ 
i 
, where the heat flux λi does not occur

ue to the constitutive expression (33) : 

D = 

∑ {
θi 

−1 
[
ρi 

(
ψ 

′ 
i +ηi θ

′ 
i 

)
−w i + θi 

−1 
q i · grad θi −ε+ 

i 
+ z + 

i 
· r i 

+ φ+ 
i 

·ω i + m 

+ 
i 
· v i + α+ 

i 

(
ψ i − 2 

−1 v 2 i − κi 

)]
−div k i 

}
≤ 0 . 

(42) 

he balance principles (18) - (22) of mass, linear momentum, micro-

omentum, rotational momentum and energy make it possible

o remove from (42) any one member of each of the five lists
+ 
i 
, m 

+ 
i 
, φ+ 

i 
, z + 

i 
, and ε+ 

i 
if we wish to. 

A final axiom for the mixtures was added in Passman (1977)

nd Passman et al. (1984) to take into account the role of the

articular microstructure treated therein, the volume fractions of

onstituents. But here the growth of micromomentum φ+ 
i 

take

alues on the cotangent space T ∗νi 
M i to M i at ν i that is, obviously,

ifferent for each constituent i, therefore, their sum is meaningless

n our framework. Instead, in Giovine (2005) , we have proposed

ore generally that the micromomentum growths must assure

he consistency of the axiom of dissipation with the constitutive

quations, as we shall discuss in the following (see, also, Giovine,

003; Giovine, 2004; Magnarelli, 2010 ), that is, 
 

θ−1 
i 

(
α+ 

i 
κi − φ+ 

i 
·ω i 

)
= 0 . (43) 

lternatively, it appears very interesting a recent proposal in

ariano (2018) that suggests to modify the third metaphysical

rinciple of Truesdell, which states: “The motion of the mixture is

overned by the same equations of a single body”. Axioms (37) as-

ures the validity of the third principle, when all constituents are

escribed as simple bodies, but they do not suffice for mixtures

f complex bodies, when the constituent representations belong

o different modeling classes: what kind of single body should be

onsidered? Therefore, the extended proposal Mariano (2018) is
Please cite this article as: P. Giovine, Internal constraints in the theorie

and Structures, https://doi.org/10.1016/j.ijsolstr.2019.07.021 
ogent, because it affirms that “the interactions between any pair

f constituents appear only at the common level of description

hile the whole mixture behaves as a body admitting the richest

escription among those of the constituents”. 

Thus, at microstructural level, only for kinematic measures

i read on ‘similar’ manifolds M i , of same dimension m i , we

an assign possible exchanges of micromomentum and con-

ections like formulas (37) : this is the case of volume frac-

ions in Passman et al. (1984) where the whole mixture be-

aves as a single “Goodman & Cowin” granular materials (see

oodman and Cowin, 1972 ) for which all micromomentum

rowths are scalar quantities; moreover, the atypical immiscible

ixture in Giovine (2003) , that describes the behaviour of soils

nd where constituents are a porous solid with ellipsoidal mi-

rostructures filled by a compressible fluid, the scalar fluid gain

ums to zero only with the trace of the porous solid gain, that is a

ymmetric tensor with the deviatoric part null. 

At the end, in general, for our mixtures of continua with

icrostructure, we shall have a single body with the richest

icrostructure necessary to completely describe its macro- and

icro-motions, as we can see in Wilmanski (2002) , Giovine (2005,

018) and, also, in the examples below, where the additional axiom

f balance for micromomentum growths for mixtures is proposed

n a case-by-case basis. 

. Internal constraints in microstructured mixtures 

In the previous sections we tacitly supposed that the triple of

ariables x i , ν i , θ i , for the constituent i , could take arbitrary val-

es for each element of the body B i ; however, there exists a wide

lass of microstructured mixtures for which, when an element of

 i has reached a certain state, the complete placement x i , the mi-

rostate ν i , the temperature θ i are somehow restricted: as exam-

les, we may think of uniaxial liquid crystals, usually modeled

s perfect incompressible fluids with a unit vectorial microstruc-

ure, or of Cosserat’s continua, where their tensorial microstruc-

ure is constrained to be a proper orthogonal tensor, or, finally, of

 macroscopically rigid conductor where the introduction of a dif-

erentiable internal constraint on the microstructure ν i , only de-

ending by temperature variations, implies finite-speed heat con-

uction ( Mariano, 2017 ). Therefore, if the choice is limited, we will

ay that the body is subject to an internal constraint, and so is

he mixture itself. Accordingly we need to define here the class of

mmiscible microstructured mixtures with internal constraints and

dopt an effective extended principle of thermodynamic determin-

sm in order to analyze the consequences of their presence and to

ive a full thermodynamical description for a broad family of such

eculiar immiscible mixtures. 

The thermo-mechanical theory of internal constraints in me-

ia with microstructure, such as those we conceive of here, is a

ot trivial case of the abstract thermodynamical theory of con-

trained materials developed in Gurtin and Podio Guidugli (1973) ,

s generalized in Capriz and Podio Guidugli (1984) . In particular,

o our knowledge, this is the first time that the constraints in a

icrostructured mixture theory are treated with the formalism of

apriz and Podio Guidugli (1984) , in fact, usually, the theory of La-

range multipliers is used. Hence, the body B i is said to be inter-

ally constrained if the allowed velocity, microspeed and temper-

ture rate distributions v i , ω i and θ ′ 
i 
, respectively, are such that

ot all values of the objective factors D i in the space of symmetric

ensors, ν̆i in the tangent space T νi 
M i , grad ̆νi in the space of lin-

ar operators from the vectorial space of translations into T νi 
M i ,

rad r i , grad θ i and grad θ ′ 
i 

in the space of linear operators are ac-

essible. 

The Extended principle of thermodynamic determinism for mix-

ures of materials with microstructure subject to contraints asserts
s of immiscible mixtures for soils, International Journal of Solids 
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that each quantity, which in absence of the constraint is ruled by

a constitutive prescription, as T i , ζi , S i , . . . , is now the direct sum

of two components, one active and the other reactive: 

T i = T a i + T r i , ζi = ζ a 
i + ζ r 

i , S i = S a i + S r i , . . . (44)

where only active components T a 
i 
, ζ a 

i 
, S a 

i 
, . . . have to be speci-

fied, through suitable constitutive relations, by the independent

thermo-kinetic variables. As for the reactive terms T r 
i 
, ζ r 

i 
, S r 

i 
, . . . ,

in general they remain undetermined unless some information

on the physical mechanism which causes the constraint is given

(see, also, Section 27 of Capriz, 1989 or, for the purely mechanical

case, Section IV.7 of Truesdell, 1977 and Section 9 of Capriz and

Virga, 1990 ). Following Green et al. (1970) , we do not include re-

action terms ψ 

r 
i 

for the free energies in (44) : in fact, if we enclose

such quantities, the conclusion would be that they are constant in

every process. 

However, as we anticipated before, we shall consider the class

of mixtures with perfect constraints, i.e. , internally frictionless, for

which, in this thermo-mechanical context, reactive parts do not

produce entropy (see, also, Nunziato and Walsh, 1980 ): that is the

contribution of reactions to the left hand part of (42) is identically

zero for every process allowed by the constraints: ∑ {
θi 

−1 
[
ρi η

r 
i θ

′ 
i − w 

r 
i + θi 

−1 
q r i · grad θi − ε+ r 

i 
+ z + r 

i 
· r i + 

+ φ+ r 
i 

·ω i + m 

r+ 
i 

· v i + α+ r 
i 

(
ψ i − 2 

−1 v 2 i − κi 

)]
− div k r i 

}
= 0 , 

(45)

where, in agreement with relation (31) 4 , 

w 

r 
i := sym T r i · D i + ζ r 

i · ν̆i + S r i · grad ̆νi + 

(
A 

T 
i S r i 

)
· grad r i . (46)

7. Constitutive choices in the thermomechanics of soils 

For each body with microstructure B i , a thermokinetic process

is a triple of fields on B i × � with values on E × M i × � 

+ , namely

x i (X i , τ ) , νi (x, τ ) , θi (x, τ ) ; (47)

an associated caloro-dynamic process involves not only the classi-

cal fields T i , ε i , q i , ηi , p i , ψ i , but also, besides, microstructural ones

S i , ζi , in addition to the growths 

α+ 
i 
(x, τ ) , m 

+ 
i 
(x, τ ) , φ+ 

i 
(x, τ ) , z + 

i 
(x, τ ) , ε+ 

i 
(x, τ ) , (48)

provided these be subject to the general balance axioms of the

thermodynamics of microstructured mixtures, namely, (18) - (22),

(36), (37) and (42) , plus the (eventual) general axiom regarding mi-

cromomentum growths, as well as constraint conditions. 

Therefore, to express the constitutive axioms, the prior fields

have to satisfy the general principles governing constitutive equa-

tions, which are: 1. Determinism , 2. Equipresence , 3. Local action , 4.

Material frame-indifference , 5. Dissipation (see note 12, Lecture 5 of

Truesdell, 1969 ). These principles are well known as those govern-

ing the constitutive relations for mixtures of simple bodies, and

must be appropriately interpreted in our context: Determinism is

specified in the previous section; Equipresence, “which forbids the

theorists from choosing independent variables by caprice” (see Lec-

ture 1 of Truesdell, 1969 ), imposes that the variables and analytic

restrictions at the outset be the same for all constitutive function-

als; Local action asserts that the response of components at any

points X i depends only on the thermokinetic process in the imme-

diate neighbour of X i ; Material frame-indifference affirms that the

behavior of constituents is independent of the observer; Dissipa-

tion requires that the response of constituents satisfy the reduced

dissipation inequality (42) for every thermodynamics process. 

We observe here that, to simplify the calculations and infer-

ences from the entropy principle, in many mixture theories the

Equipresence is sometimes replaced by the so-called principle of
Please cite this article as: P. Giovine, Internal constraints in the theorie
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hase Separation, which reduces the equipresence only to the

rowth functionals (48) (see, e.g., Ahmadi, 1980; Passman et al.,

984; Wang and Hutter, 1999b ), but there are also valid plausibil-

ty arguments to reject that choice, as we do in our context of soil

hermodynamics (see Wang and Hutter, 1999a for comments on

his question). 

The last feature of the constitutive relations concerns the ma-

erial symmetries of each constituent, associated with its physi-

al structure, therefore such symmetries must be appropriately re-

ected in the form of the constitutive equations of the whole mix-

ure. 

In the following sections we wish to present applications for

mmiscible mixtures of interest for the diffusion of pollutants, soil

icromechanics, granular flows or poroelasticity, for which the in-

ividual constituents remain physically separate and thus the vol-

me fractions influence the constitutive responses, in accordance

ith Bowen (1984) . 

Therefore, it is necessary to distinguish between the bulk mass

ensities ρ i and the true mass densities γ i of the i th constituent:

he first one represents the mass of the i th constituent per unit

f mixture volume; the second one is its mass per unit of true

olume, which is given as a fraction of the whole mixture by the

ntroduction of the volume fraction β i , a smooth scalar field rep-

esenting the proportion of space occupied by the i th component.

or the hypotheses made, the bulk densities ρ i are tied to the true

ensities γ i by the following relation 

i = γi βi , with βi ∈ ]0 , 1[ , (49)

nd the total volume fraction is 

tot = 

∑ 

βi ; (50)

he mixture is said saturated if βtot = 1 , unsaturated if β tot < 1, i.e. ,

hen there are void spaces in the mixture. Finally, we write again

he mass balance (18) inserting the decomposition (49) 

+ 
i 

= γ ′ 
i βi + γi β

′ 
i + γi βi div v i . (51)

urthermore, we would like to conclude this section by introduc-

ng an additional important special case concerning temperatures:

n particular, if the energy exchange between the constituents is so

fficient that the mixture can be characterized by a single temper-

ture 

i = θ, for i = 1 , . . . , n, (52)

hen such an assumption is tantamount to restricting considera-

ions to the mixture energy equation only, rather than to each en-

rgy equation separately Müller (1968) : in fact the terms in ε+ 
i 

rop out of (42) because of (37) 4 , so the dissipation principle does

ot restrict the growths of energy and we need then work only

ith the mixture forms for reduced energy and entropy balances

see, also, Lecture 5 of Truesdell, 1969 and Svendsen and Hutter,

995; Wang and Hutter, 1999b ). Moreover, in this ‘single tempera-

ure’ model, constituent interactions are limited to those associated

ith mass, momentum, micromomentum and moment of momen-

um. 

About the reduced dissipation inequality (42) , inserting condi-

ion (52) we have that 

θ D = 

∑ {[
ρi 

(
ψ 

′ 
i + ηi θ

′ i ) − w i + θ−1 q i · grad θ + z + 
i 

· r i 

+ φ+ 
i 

·ω i + m 

+ 
i 

· v i + α+ 
i 

(
ψ i −

1 

2 

v 2 i −κi 

)] 
− θ div k i 

} 

≤ 0 , 

(53)

here θ ′ i := 

∂θ
∂τ

+ ( grad θ ) v i = 

˙ θ + ( grad θ ) u i . Moreover, using the

esultant free energy ψ defined as the concentration-weighted

um of the peculiar Helmholtz’s free energies per unit mass (35) 

 = 

∑ 

ξi ψ i , (54)
s of immiscible mixtures for soils, International Journal of Solids 
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ith the concentration ξ i given by (6) 3 , we obtain 

θ D = ρ
(

˙ ψ + η ˙ θ
)

− w + θ−1 q · grad θ − θ div k + 

+ 

∑ 

[ 
z + 

i 
· r i + φ+ 

i 
·ω i + m 

+ 
i 

· v i − α+ 
i 

(
1 

2 

v 2 i + κi 

)] 
≤ 0 , 

(55) 

here 

 := 

∑ 

w i , q := q I + 

∑ 

ρi ( ψ i + θ ηi ) u i and 

k := k I − θ−1 
∑ 

ρi ψ i u i (56) 

ith q I := �q i and k I := �k i the net heating and extra-entropy flux,

espectively: as for (41) 2 , also here the presence of diffusion can

ncrease the additional heating and extra-entropy fluxes, even if q I 
nd k I are null. From (41) 2 and (56) 2,3 , we have also that 

 = p − θ−1 q. (57) 

n addition, we write the condition (45) of perfect constraints for

eactions, when (52) holds, 

ηr ˙ θ − w 

r + θ−1 q r · grad θ − θ div k r + 

+ 

∑ 

[ 
z + r 

i 
· r i + φ+ r 

i 
·ω i + m 

+ r 
i 

· v i − α+ r 
i 

(
1 

2 

v 2 i + κi 

)] 
= 0 . (58) 

. Applications 

.1. Two-phase suspensions 

In this first application we specialize our theory to a satu-

ated multiphase mixture of bodies with scalar microstructure,

here all the order parameters ν i represent the volume fraction

i of the i th constituent, as it is the case for granular materi-

ls of Goodman and Cowin (1972) type, or for fluid suspensions

f Passman et al. (1984) , or for saturated solid-fluid mixtures of

ang and Hutter (1999a) . All these scalar measures β i are not

ffected by rigid rotations, so that the infinitesimal generators A i 

anish, for each i , and ν̆i = ω i for relation (30) . 

We consider now a simple temperature model for a two-phase

otion of spherical particles, of subscript 2 , suspended in a fluid,

f subscript 1 , in circumstances where there are no chemical re-

ctions: α+ 
i 

= 0 . The particles may be either solid or fluid and we

ake no restriction concerning diluteness, while we suppose that

he saturation constraint βtot = 1 applies, so that 

:= β2 = 1 − β1 and ω i = (−1) i β ′ i , (59)

ith β ′ i := 

∂β
∂τ

+ ( grad β) · v i the material time derivative of β with

espect to the peculiar velocity v i , for i = 1 , 2 . Moreover, the three

xioms for the mixture balances (37) 2,3,4 , plus the additional one

or micro-momentum growth φ+ , are now, for i = 1 , 2 : 

 

+ := (−1) i m 

+ 
i 
, z + := (−1) i z + 

i 
, ε+ := (−1) i ε+ 

i 
, φ+ := (−1) i φ+ 

i 
. 

(60) 

he kinetic co-energies χ i , i = 1 , 2 , are assumed to be quadratic

orms in ω i , as is customary for immiscible fluid, or fluid-like, mix-

ures (see, e.g., Bedford and Drumheller, 1983; Capriz and Giovine,

987; Giovine, 2006; Giovine, 2017a ); then χ i coincides with the

inetic energy κ i and it is 

i = χi := 

1 

2 

μi (βi ) ω 

2 
i = 

1 

2 

μi (βi )(β
′ i ) 2 . (61)

he kinetic energies express the inertia due to the local microvari-

tions of the volume of inclusions, as well as that related to the

dmissible expansional motion of spherical boundaries (see, also,

iovine, 1990; Giovine, 2008 , other than references cited above, for

xplicit evaluations of non-negative coefficient μ ( β )). 
i i 
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With these hypotheses, the balance Eqs. (51) , (19), (20), (21),

32) reduce to the following ones for i = 1 , 2 : 

′ 
i + ρi div v i = 0 , (62)

i v ′ i − div T i − ρi b i = (−1) i m 

+ , (63)

(−1) i ρi 

(
μi β

′′ i + 

1 

2 

dμi 

dβ
(β ′ i ) 2 

)
− div S i + ζi − ρi δi = (−1) i φ+ , 

(64) 

 T i = (−1) i z + , (65)

˙ ε − w + div q − ρ λ

= z + · (r 1 − r 2 ) − φ+ (β ′ 1 + β ′ 2 ) + m 

+ · (u 1 − u 2 ) . (66) 

ith u i defined in (7) and w and q given by (56) 1,2 , respectively,

hile ε := �ξ i ε i and λ := �ξ i λi are the concentration-weighted

ums of the peculiar inner energies and heating supplies per unit

ass, respectively; we have 

= ψ + θη. (67) 

he mixture energy balance (66) is obtained by summing peculiar

nergy Eq. (32) on i = 1 , 2 and an expression, more pertinent to

he third metaphysical principle of Truesdell, could be easily ob-

ained by substituting values of m 

+ , z + , φ+ given by (63), (64) and

65) (see Eq. (2.18) of Truesdell, 1969 ). 

We emphasize that φ+ , δi , div S i and ζ i in Eq. (64) are all scalar

elds and that the microstress vector S i is normally related to the

oundary microtractions, even if, in some cases, it could express

eakly non-local internal effects; δi is interpreted as an externally

ontrolled fluid pressure; ζ i includes interactive forces between

he gross and fine structures. Further, stress tensors T i are not ‘a

riori’ symmetric because, for (65) and the properties of the Ricci’s

lternating tensor ε, we have that 

kw T i = (−1) i 
1 

2 

ε z + , (68)

hile only their sum is, inasmuch 

kw T := skw T 1 + skw T 2 = 0 . (69)

e remark here that in the models based on ‘void theories’,

s, e.g., Passman and Batra (1984) , Passman et al. (1984) and

ang and Hutter (1999b) , unexpectedly only the first microinertia

erm are present in their balances of “equilibrated” forces ( i.e. , our

icromomentum balances (64) ): in fact those equations remain

mbiguous because the complete Lagrangian derivative of the ki-

etic co-energy does not appear on the left hand side of the equa-

ions themselves. 

For the presence of the perfect saturation constraint (59) 1 ,

e impose the extended principle of thermodynamic determinism

44) and the condition (58) with (46) , together with the identity
′ i = 

˙ β + u i · grad β deriving from (7) , in order to obtain the fol-

owing equation 

ρ ηr ˙ θ + θ−1 q r · grad θ − θ div k r − sym T r 1 · D 1 − sym T r 2 · D 2 

+ (ζ r 
1 − ζ r 

2 + 2 φ+ r ) ˙ β + S r 1 · grad β ′ 1 − S r 2 · grad β ′ 2 

+ z + r · (r 2 − r 1 ) + −
[
m 

+ r − (ζ r 
1 + φ+ r ) grad β

]
· u 1 

+ 

[
m 

+ r − (ζ r 
2 − φ+ r ) grad β

]
· u 2 = 0 . (70) 

f we observe that the constraint (59) 1 leaves locally the choice of

, ˙ θ, grad θ , D 1 , D 2 , ˙ β, grad β ′ 1 , grad β ′ 2 , (r 2 − r 1 ) , u 1 and u 2 to-

ally free, we deduce from (70) that the reactions are characterized

y the following requirements: 
s of immiscible mixtures for soils, International Journal of Solids 
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ηr = 0 , q r = 0 , div k r = 0 , sym T r i = 0 , S r i = 0 , z + r = 0 , (71)

ζ r 
1 + φ+ r = ζ r 

2 − φ+ r and m 

+ r = (ζ r 
2 − φ+ r ) grad β. (72)

Now we are able to obtain a set of pure balance equations which

rules the thermo-mechanical evolution of our model of a saturated

two-phase suspension; in fact, by splitting the stress tensors T i into

its symmetric and skew parts and by using the conditions (71) 4 
together with the balances of moment of momentum (68) into the

Cauchy balances (63) , the following reaction-free expressions for it

follows: 

ρi (v ′ i − b i ) − div 

(
sym T a i + (−1) i 

1 

2 

ε z + a 
)

= (−1) i (m 

+ a + π in grad β) , (73)

where 

π in := ζ r 
2 − φ+ r (74)

and the expressions (72) for (ζ r 
1 + φ+ r ) and m 

+ r were used; more-

over, from the balance (64) with i = 2 , it follows: 

π in = ρ2 

[
δ2 −μ2 β

′′ 2 − 1 

2 

dμ2 

dβ

(
β ′ 2 )2 

]
+ div S a 2 − ζ a 

2 + φ+ a : 

(75)

here, we physically interpret the coupled reactions π in as the in-

terface pressure between constituents, i.e. , the pressure that acts at

the interface between the phases necessary to maintain the con-

tact in order to satisfy the saturation constraint (see Appendix of

Bedford and Drumheller, 1978 ). 

Moreover, if we sum (64) , for i = 1 , 2 , use (31) 4 for w and

(67) for εI , and substitute reactions (71) in (66) , we obtain 

ρ1 

[
μ1 β

′′ 1 + 

1 

2 

dμ1 

dβ

(
β ′ 1 )2 

]
+ ρ2 

[
μ2 β

′′ 2 + 

1 

2 

dμ2 

dβ

(
β ′ 2 )2 

]
= div (S a 2 − S a 1 ) + (ζ a 

1 + φ+ a ) − (ζ a 
2 − φ+ a ) + ρ2 δ2 − ρ1 δ1 and

(76)

ρ ˙ (ψ 

a + θηa ) + div q a − ρ λ

= 

∑ [
sym T a i · D i + (−1) i S a i · grad β ′ i ]

− (ζ a 
1 + φ+ a ) β ′ 1 + (ζ a 

2 − φ+ a ) β ′ 2 

+ m 

+ a · (u 1 − u 2 ) + z + a · (r 1 − r 2 ) . (77)

We would like to observe that also the active components of the

internal microactions ζ a 
i 

and the growth rates of the micromoment

φ+ a , besides the reactive ones, are coupled in all the pure balances

and so their constitutive laws will always be linked. 

In conclusion, only the active parts of all fields, which will

be the object of a constitutive prescription, appear in the Cauchy

Eq. (73) (with π in given by (75) ), in the equation for micromomen-

tum (76) and in the equation of evolution for the temperature of

the whole mixture (77) : these are the pure equations which rule

the thermo-mechanical evolution of the body. 

Once a motion is ensued from them, the corresponding reaction

π in to the constraint is obtained by the Eq. (75) (other than by

(71) and (72) ) within the intrinsic indeterminacy generated from

the equation itself for φ+ r and ζ r 
2 

(see, also, Section 205 and 227

of Truesdell and Toupin, 1960 , or Remark 1, Section 3 of Capriz and

Podio Guidugli, 1977 ). 

About constitutive equations for immiscible mixtures, we as-

sume that the overall response of the simple temperature model

for a two-phase suspension depends only on the set T of the fol-

lowing thermokinetic variables 

T = { γ1 , γ2 , β, grad γ1 , grad γ2 , grad β, θ, grad θ}; (78)
Please cite this article as: P. Giovine, Internal constraints in the theorie
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y imposing the principle of equipresence, we pos-

ulate that the dependent constitutive quantities

 

a , ηa , q a , k a , T a 
i 
, ζ a 

i 
, S a 

i 
, m 

+ a , φ+ a and z + a are all twice contin-

ously differentiable functions with respect to all constitutive

elds and require the consistency with the reduced dissipation

nequality (55) , when the perfect constraint condition (70) applies,

.e. : 

ρ
(

˙ ψ 

a + ηa ˙ θ
)

+ θ−1 q a · grad θ − θ div k a − sym T a 1 · D 1 

− sym T a 2 · D 2 +(ζ a 
1 + φ+ a ) β ′ 1 +(φ+ a − ζ a 

2 ) β
′ 2 + S a 1 · grad β ′ 1 

−S a 2 · grad β ′ 2 + m 

+ a · (u 2 − u 1 ) + z + a · (r 2 − r 1 ) ≤ 0 . (79)

ince the constitutive relations allow dependency on the true den-

ities γ i , the constituents have a fluid-like behavior and the frame-

ndifference im plies that all response functions are isotropic func-

ions of their variables Nunziato and Walsh (1980) . Introducing the

ependency of the active components on the set (78) , using the

ass conservations (51) , with α+ 
i 

= 0 , the property (8) and the

dentities 

˙ γi = γ ′ 
i − u i · grad γi = −γi β

−1 
i 
β ′ 

i − γi div u i − u i · grad γi , 

˙ β = β ′ i −u i · grad β, ˙ grad β = grad β ′ i −L T i grad β−( grad 

2 β) u i , 

(80)

hen the terms are appropriately ordered, produce the following
ew inequality: 

ρ

(
ηa + 

∂ψ 

a 

∂θ

)
˙ θ + 

(
q a 

θ
− θ

∂k a 

∂θ

)
· grad θ + ρ

∂ψ 

a 

∂ grad θ
· ˙ grad θ −

+ 

∑ 

{
ρ

∂ψ 

a 

∂ grad γi 

· ˙ grad γi − θ

(
∂k a 

∂γi 

· grad γi + 

∂k a 

∂ grad γi 

· grad 2 γi 

)
−

−
[

sym T a i + ργi 

∂ψ 

a 

∂γi 

I + ρi sym 

(
grad β �

∂ψ 

a 

∂ grad β

)]
· D i 

}
−

−
(

m 

+ a + ρ
∂ψ 

a 

∂γ1 

grad γ1 + ρ1 
∂ψ 

a 

∂β
grad β

)
· u 1 − θ

∂k a 

∂β
· grad β + 

+ 

(
m 

+ a − ρ
∂ψ 

a 

∂γ2 

grad γ2 − ρ2 
∂ψ 

a 

∂β
grad β

)
· u 2 − θ

∂k a 

∂ grad β
· grad 2 β + 

+ 

[
z + a + ρ ε 

(
grad β �

∂ψ 

a 

∂ grad β

)]
· (r 2 − r 1 ) + 

+ 

(
S a 1 + ρ1 

∂ψ 

a 

∂ grad β

)
· grad β ′ 1 −

(
S a 2 − ρ2 

∂ψ 

a 

∂ grad β

)
· grad β ′ 2 + 

+ β ′ 1 
(
ζ a 

1 + φ+ a + ρ1 
∂ψ 

a 

∂β
+ 

ρ γ1 

1 − β

∂ψ 

a 

∂γ1 

)
− θ

∂k a 

∂ grad θ
· grad 2 θ + 

−β ′ 2 
(
ζ a 

2 − φ+ a − ρ2 
∂ψ 

a 

∂β
+ 

ρ γ2 

β

∂ψ 

a 

∂γ2 

)
≤ 0 . (81)

ecause the left-hand member is linear in the scalar fields ˙ θ and β ′ i ,
he vector fields grad θ , ˙ grad θ, ˙ grad γi , u i , (r 2 − r 1 ) and grad β ′ i , and the

ymmetric tensor fields grad 2 θ , grad 2 β and D i , the classical arguments of

oleman and Noll (1963) assure us that the coefficients in the linear expres-

ions must all vanish, and hence: 

• ) The active part of the Helmholtz free energy ψ 

a is a func-

ion only of the array ˆ T = { γ1 , γ2 , β, grad β, θ} and is a potential

unction for active parts of the entropy ηa , the symmetric part of

tress tensors sym T a 
i 
, the microstresses S a 

i 
, the growths of linear

nd rotational momentum m 

+ a and z + a , respectively, and the dif-

erence between the internal microactions ζ a 
i 

and the micromo-

entum φ+ a , in the sense that: 

a = −∂ψ 

a 

∂θ
, S a 1 = −γ1 (1 − β) 

∂ψ 

a 

∂ grad β
, S a 2 = γ2 β

∂ψ 

a 

∂ grad β
, 

(82)
s of immiscible mixtures for soils, International Journal of Solids 
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sym T a 1 = 

1 − β

ξ1 

π t 
1 I − sym 

[
γ1 (1 − β) grad β �

∂ψ 

a 

∂ grad β

]
, 

sym T a 2 = − β

ξ2 

π t 
2 I − sym 

[
γ2 β grad β �

∂ψ 

a 

∂ grad β

]
, (83) 

 

+ a = π c 
2 grad β + 

βπ t 
2 

ξ2 γ2 

grad γ2 , z + a = −ρ ε 
(

grad β �
∂ψ 

a 

∂ grad β

)
(84) 

a 
1 + φ+ a = −π c 

1 − ξ−1 
1 π

t 
1 , ζ a 

2 − φ+ a = π c 
2 − ξ−1 

2 π
t 
2 , (85)

ogether with the compatibility condition on m 

+ a 

(π c 
1 + π c 

2 ) grad β + 

(1 − β) π t 
1 

ξ1 γ1 

grad γ1 + 

βπ t 
2 

ξ2 γ2 

grad γ2 = 0 , (86)

here 

c 
i = ρi 

∂ψ 

a 

∂β
and π t 

i = γ 2 
i 

∂ψ 

a 

∂γi 

, for 1 = 1 , 2 , (87)

re the configuration and the thermodynamic pressures, respec-

ively, while the last term of stress tensors in (83) are of Ericksen’s

ype ( grad β �
∂ψ a 

∂ grad β
) and justify the ability of granular suspen-

ion to sustain shear in equilibrium; in constitutive relations (82) -

86) we used the identities (6) 1,3 , (7) and (49) , for i = 1 , 2 . 

• ) Moreover, the active extra-entropy flux k a must be such

hat 

∂k a 

∂ grad γi 

· grad 

2 γi = 0 , 
∂k a 

∂ grad θ
· grad 

2 θ = 0 , 

∂k a 

∂ grad β
· grad 

2 β = 0 , (88) 

hich means that ∂k a 

∂ grad γi 
, ∂k a 

∂ grad β
and 

∂k a 

∂ grad θ
are all skew-

ymmetric and, therefore, k a must be collinear to grad γ i , grad β
nd grad θ with the corresponding tensorial material coefficients

eing skew-symmetric; on the other hand, the isotropy of k a re-

uires that any such material tensors must be symmetric (see

nalogous computations for the constitutive part j c of the mixture

ux density j in Wang and Hutter, 1999a ). To satisfy both condi-

ions these tensors must vanish, making k a independent of grad γ i ,

rad β and grad θ , and yielding its reduced form 

 

a = 

ˆ k a (γ1 , γ2 , β, θ ) , (89)

ut there is no isotropic vectorial function of only scalars, and

hus the reduced form (89) necessarily implies k a = 0 for thermo-

lastic two-phase suspensions. Accordingly, the reduced dissipation

nequality reduces to the following one: 

−1 q a · grad θ ≤ 0 , (90) 

hich apparently expresses the classical Fourier inequality for a

ingle body, except that it is valid only for the active part of the

eat flux q a which, in addition, depends on the whole set T . 
• ) Finally, as ψ 

a is an isotropic function, its dependence on 

ˆ T 
mplies that 

 

a ( ̂  T ) = 

ˆ ψ 

a (γ1 , γ2 , β, grad β · grad β, θ ) . (91)

ubstituting (91) into Eq. (82) 2,3 assert that the microstresses S i 
ave the following representation 

 

a 
1 = −γ1 (1 − β) ϕ grad β, S a 2 = γ2 β ϕ grad β, (92)

here the so-called modulus of dilatancy ϕ is given by the follow-

ng expression: 

 = ˆ ϕ (γ1 , γ2 , β, grad β · grad β, θ ) = 2 

∂ ˆ ψ 

a 

∂( grad β · grad β) 
(93)
d
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nd thus, for the two-phase suspensions of the type considered

ere, the Cauchy stress tensor T i is symmetric and the moment of

omentum growth z + a vanishes identically: 

T a 1 = (1 − β) 
(
ξ−1 

1 π
t 
1 I − γ1 ϕ grad β � grad β

)
, 

T a 2 = −β
(
ξ−1 

2 π
t 
2 I + γ2 ϕ grad β � grad β

)
, z + a = 0 . (94) 

ow we are able to write the set of pure balance equations, which

ules the thermo-elastic evolution of a two-phase suspension, in-

erting constitutive laws (84) 1 , (85), (92), (93), (94) , into balance

q. (51) (with α+ a = 0 ) and (73) , for i = 1 , 2 , (76) and (77) to ob-

ain: 

′ 
1 (1 −β) = γ1 

[
β ′ 1 − (1 −β) div v 1 

]
, γ ′ 

2 β = −γ2 

(
β ′ 2 + β div v 2 

)
,

(95) 

γ1 (1 − β) v ′ 1 = div 
[
(1 − β) 

(
ξ−1 

1 π
t 
1 I − γ1 ϕ grad β � grad β

)]
+ γ1 (1 − β) b 1 − π c 

2 grad β − βπ t 
2 

ξ2 γ2 

grad γ2 − π in grad β, 

(96) 

γ2 βv ′ 2 = −div 
[
β
(
ξ−1 

2 π
t 
2 I + γ2 ϕ grad β � grad β

)]
+ γ2 βb 2 

+ π c 
2 grad β + 

βπ t 
2 

ξ2 γ2 

grad γ2 + π in grad β, (97) 

γ1 (1 − β) 

[
μ1 β

′′ 1 + 

1 

2 

dμ1 

dβ

(
β ′ 1 )2 

]

+ γ2 β

[
μ2 β

′′ 2 + 

1 

2 

dμ2 

dβ

(
β ′ 2 )2 

]

= div (ρ ϕ grad β) − (π c 
1 + π c 

2 ) −
π t 

1 

ξ1 

+ 

π t 
2 

ξ2 

+ γ2 βδ2 − γ1 (1 − β) δ1 , (98) 

θ
d 

dτ

(
∂ψ 

a 

∂θ

)
= div q a − ρ λ (99) 

ith 

in = γ2 β

[
δ2 −μ2 β

′′ 2 − 1 

2 

dμ2 

dβ
(β ′ 2 ) 2 

]
+ div (γ2 β ϕ grad β) + (ξ−1 

2 π
t 
2 − π c 

2 ) 

nd where the evolution Eq. (77) for the temperature θ of the mix-

ure is considerably simplified and, formally, is reduced to the clas-

ical one (99) , the difference remains in the dependence on the set
ˆ 
 . 

Next we quote from Passman et al. (1984) the mechanical bal-

nce equations (5C.7.5)-(5C.7.7), which should correspond to ours

95) - (98) when we suppose isothermal flows of a two-phase mix-

ure of particles dispersed in an elastic fluid. In particular, identify-

ng the different pressures as follows: π = π in , βa = π c 
i 
, p a = π t 

i 
,

utting their viscous coefficients μa , s a , λa to zero, adding (5C.7.7) a 
o (5C.7.6) a for a = 1 , 2 , in order to delete the term (π − p a ) con-

aining the reaction π and after subtracting (5C.7.7) 1 to (5C.7.6) 2 ,

he substance of the analysis in Passman et al. (1984) would be

asily recovered, still getting rid of some kinematic terms, such as

a k 
′ 
a (ϕ 

′ 
a ) 

2 / 2 , in their definition (5C.4.9) of the dissipation function;

oreover, the difference remains in the constitutive equations in

hich we applied the classical Principle of Equipresence of Trues-

ell, instead of that of the Phase Separation. 
s of immiscible mixtures for soils, International Journal of Solids 
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o  

l  

E  
8.2. Concentrated suspensions with solid particles 

For concentrated suspensions with density preserving con-

stituents, i.e. , when true mass densities does not change, γ i and

grad γ i are no more independent variables and then must be

deleted from the list (78) : the saturated two-phase immiscible

mixture is subjected to other two constraints, the incompressibility

of the suspending fluid and of the dispersed granular solid. 

The balances of mass (62) are now 

β ′ 1 = (1 − β) div v 1 , β ′ 2 = −β div v 2 , (100)

for which, using the definition of peculiar time derivatives and

summing (100) , we obtain the condition of incompressibility for

the whole mixture: 

div v = 0 . (101)

Again, for the extended principle of thermodynamic determinism,

the conditions of perfect constraints (58) gives now the following

requirements for the reactive terms: 

ηr = 0 , q r = 0 , div k r = 0 , S r i = 0 , m 

+ r = 0 , z + r = 0 , (102)

sym T r 1 = (1 − β)(ζ r 
1 + φ+ r ) I and sym T r 2 = β(ζ r 

2 − φ+ r ) I, 

(103)

while, using the constraints of saturation and incompressibility in
the reduced dissipation inequality (55) and performing the same
calculations made in the previous section, we obtain that the active
part of the free energy ψ 

a is always a potential function but, here,

of the array ˜ T = { β, grad β, θ} . The constitutive relations (82) still
hold for ηa and S a 

i 
, whereas now it is 

sym T a 1 = (1 − β) 

[
(ζ a 

1 + φ+ a + π c 
1 ) I − sym 

(
γ1 grad β �

∂ψ 

a 

∂ grad β

)]
, 

sym T a 2 = β

[
(ζ a 

2 − φ+ a − π c 
2 ) I − sym 

(
γ2 grad β �

∂ψ 

a 

∂ grad β

)]
, (104)

m 

+ a = 0 , z + a = 0 and k a = 0 , (105)

where π c 
i 

is defined in (87) 1 and the last two results are valid for the

isotropy of ψ 

a and k a itself, as before. 

According to reactions (102) 6 and (103) , and constitutive laws

(68), (104) and (105) 2 , we can obtain the following expressions for

Cauchy stress tensors: 

T 1 = sym T a 1 + sym T r 1 − 2 

−1 ε z + 

= (1 − β) 
[
(ζ1 + φ+ + π c 

1 ) I − γ1 ˜ ϕ grad β � grad β
]
, (106)

T 2 = sym T a 2 + sym T r 2 + 2 

−1 ε z + 

= β
[
(ζ2 − φ+ − π c 

2 ) I − γ2 ˜ ϕ grad β � grad β
]
, (107)

where 

˜ ϕ (β, grad β · grad β, θ ) = 2 

∂ψ 

a 

∂( grad β · grad β) 
. (108)

Now, using the reactions (102) 4,5 , the constitutive laws (82) 2,3 and
the mass balances (100) in the micromomentum balances (64) , we
get the following expressions 

ζ r 
1 + φ+ r = −(ζ a 

1 + φ+ a ) − γ1 div [(1 − β) ˜ ϕ grad β] + γ1 (1 − β) {
δ1 + (1 − β) 

[
μ1 ( div v 1 ) ′ 1 + 

(
1 

2 
(1 − β) 

dμ1 

dβ
−μ1 

)
( div v 1 ) 2 

]}
, (109)

ζ r 
2 − φ+ r = −(ζ a 

2 − φ+ a ) + γ2 div (β ˜ ϕ grad β) + 

+ γ2 β

{
β

[
μ2 ( div v 2 ) ′ 2 −

(
1 

2 
β

dμ2 

dβ
+ μ2 

)
( div v 2 ) 2 

]
+ δ2 

}
, (110)
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nd, therefore, we are able to write the two pure balances of linear mo-

entum, which governs the motion of a saturated two-phase granular sus-

ension with incompressible components, replacing the Cauchy stresses

106) and (107) in the Eq. (63) and taking into account the expressions

109) and (110) now obtained: 

1 (1 − β) v ′ 1 = grad [(1 − β)(ζ1 + φ+ )] + γ1 (1 − β) b 1 + 

+ div [(1 − β)(π c 
1 I − γ1 ˜ ϕ grad β � grad β)] , (111)

2 βv ′ 2 = grad [ β(ζ2 − φ+ )] + γ2 βb 2 −
−div [ β(π c 

2 I + γ2 ˜ ϕ grad β � grad β)] . (112)

he pure evolution equation for the mixture temperature θ remains the

ame, i.e. , Eq. (99) , as well as the Fourier inequality (90) with the active part

f the heat flux q a now depending on the set ˜ T . 
At the end, as soon as the motions of constituents are ensued

rom (111) and (112) , the corresponding unknown reactions, that is,

he saturation pressure φ+ r and the two pressures ζ r 
1 

and ζ r 
2 

due

o the peculiar incompressibility of the components, are obtained

y the Eqs. (109) , (110) and the corresponding one to (98) 

ζ r 
1 + ζ r 

2 = −(π c 
1 + π c 

2 ) + div { [ γ2 β − γ1 (1 − β)] ̃  ϕ grad β] } 
+ γ1 (1 − β) 

{
(1 − β) 

[
μ1 ( div v 1 ) ′ 1 + 

(
1 

2 

(1 − β) 
dμ1 

dβ
−μ1 

)

× ( div v 1 ) 2 
]

+ δ1 

}

+ γ2 β

{
β

[
μ2 ( div v 2 ) ′ 2 −

(
1 

2 

β
dμ2 

dβ
+ μ2 

)
( div v 2 ) 2 

]
+ δ2 

}
. 

(113)

oreover, if the constituents are closely packed, we infer that mi-

rostructural inertial effects are negligible, and thus set μi = 0 ; in

bsence of body forces, Eq. (113) reduces to 

r 
1 + ζ r 

2 = −(π c 
1 + π c 

2 ) + div { [ γ2 β − γ1 (1 − β)] ̃  ϕ grad β} , (114)

here the configuration pressures π c 
i 

and the dilatancy modulus

˜  are functions of ˜ T : therefore the total pressure in the solid and

uid phases results from the effects of intergranular contact forces,

epresented by π c 
i 
, and the local variation in the stress fields due

o a non-homogeneous granules distribution, given by ˜ ϕ . 
Here, we compare our results with Wang and Hutter (1999b)

here, again, the Principle of Equipresence of Truesdell were sub-

tituted by that of the Phase Separation, while, furthermore, the

inematic terms on the left hand side of their micromomentum

alances (33) and (34) remain ambiguous, because the full La-

rangian derivatives of the kinetic energy, due to micromotions, do

ot seem complete: in fact, e.g., it is easily to demonstrate that,

or a material with rigid grains, the kinetic coefficient μ2 is pro-

ortional to β− 2 
3 (see Eq. (6) 1 of Giovine, 2008 ) and so the second

erm on the left hand side of our Eq. (64) , for i = 2 , misses in the

alance (33) of Wang and Hutter (1999b) . 

However, even now, we easily retrieve from our Eqs. (109)–

112) the essence of the constitutive analysis in Wang and Hut-

er (1999b) of a fluid-saturated granular material with incompress-

ble thermoelastic constituents, when, there, the mass conserva-

ions (28) and (29) and the saturation constraint (30) are used in

he balance Eqs. (31)–(34) , the viscous coefficients are null places

nd the pressures are identified as it follows: π = φ+ r , p i = ζ r 
i 

and

i = ζ a 
i 

− (−1) i φ+ a = π c 
i 

. 

.3. Poroelastic materials 

The last application of our theory concerns an isothermal flow

f a fluid component through the channels of a solid skeleton with

arge pores, namely a part of soil ( Giovine, 20 0 0; Wilmanski, 20 02;

hlers, 2002; Pence, 2012; Ehlers and Bidier, 2018 ), so the model
s of immiscible mixtures for soils, International Journal of Solids 
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s in some sense complementary to the previous one. Even now

very constituent is considered incompressible (so γi = constant i ),

nd therefore also the immiscible mixture is; moreover, the mix-

ng itself is regarded as if it happened without the creation of

oids, and so the saturation constraint is applied again. Following

iot (1956) , we consider virtual mass effects due to diffusion and

lso introduce the microinertia associated with the rates of change

f the volume fraction of the fluid, as well as that due to the de-

ormation of the lacunae in the vicinity of their boundaries. 

We wish to observe that the model for the solid constituent

ere considered is thought to have an affine microstructure with

inematic parameters independent from the macro motion, in or-

er to include all other models. In particular, the presence of the

aturating fluid constituent supports this hypothesis, when the

ores are very large and constitute a structure of sparse trabecu-

ae, as it is the case of porous materials with evolving microstruc-

ure ( Ponte-Castañeda and Zaidman, 1994; Giacobbe and Giovine,

009 ) or of cancellous bone ( Cowin et al., 1995 ): Cowin itself

 Cowin, 1998 ) pointed out the importance of the shape of the

ores in the description of bone canaliculi or of lacunae contain-

ng osteocytes, e.g., in the human bone the lacunae are roughly el-

ipsoidal with mean values along the axes of about 9 μm, 22 μm

nd 4 μm. Moreover, ‘Voids theories’ are recovered in the case

hat pores are small and finely dispersed, as in Passman and Ba-

ra (1984) , because our microstructure reduces to a spherical ten-

or depending upon a single additional variable ( Capriz and Po-

io Guidugli, 1981 ). Furthermore, a very interesting intermediate

odel, in which the ellipsoidal microstructure is partially con-

trained by the macro-motion, the isotropic part being free, falls

ithin the theory presented here and permit us to offer an inter-

retation of constitutive prescriptions, involving the displacement

radients of higher order than the first, which allows one to cir-

umvent certain apparent inconsistencies with the second law of

hermodynamics (see, also, Giovine et al., 2008; Giovine, 2017b ),

ut is too elaborate and lengthy to be mentioned here explicitly: it

ill be presented in a forthcoming work. 

The microstructural kinematic variable ν1 for the skeleton is a

 nd order symmetric tensor with positive determinant V (∈ Sym 

+ ) ,
hat is the left microstretch, which takes into account for contrac-

ions or expansions of the large pores in the material (see Giovine,

0 03; Giovine, 20 04; Giovine, 20 05 ). Instead the fluid variable ν2 

s the volume fraction β , i.e. , the proportion of space occupied by

he two-phase fluid constituent of the body. Therefore, we have

hat the infinitesimal generator A 1 of the local action of the proper

rthogonal group SO(3) over Sym 

+ , defined in (11) , has the follow-

ng components 

(A 1 ) αβι = V αγ ε γβι − ε αγ ιV γβ , (115)

hile A 2 = 0 , because a proportion does not change for a ro-

ation. Consequently, the corotational time derivative of the mi-

rostretch V̆ in (30) represents the Oldroyd’s time derivative

ldroyd (1956) of V with rate the spin tensor W 1 = −εr 1 : 

˘
 = V 

′ 1 + (εr 1 ) V − V (εr 1 ) . (116)

he kinetic co-energy χ1 for materials with affine microstructure

s usually assumed to be a quadratic form in V 

′ 1 with a costant

oefficient μ1 ( Capriz, 1989; Giovine, 2003 ), thus 

1 = χ1 := 2 

−1 μ1 (V 

′ 1 ) 2 , (117)

hile χ2 is as in (61) 2 . We suppose further that the tensorial mi-

romomentum growth for the porous phase is isotropic of coeffi-

ient −φ+ , the opposite of that of the fluid. 

We insert the hypotheses made in the mechanical balance

qs. (51) , (20), (21), (66) and reduce them to (100), (63), (64) ,
2 

Please cite this article as: P. Giovine, Internal constraints in the theorie
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68) 2 and the following ones: 

1 μ1 V 

′′ 1 = div � − Z + ρ1 C − φ+ I, (118)

kw T 1 + 2 

−1 ε z + = skw ( V Z + grad V ��) , (119)

˙ ε = w + z + · (r 1 − r 2 ) + m 

+ · (u 1 − u 2 ) + φ+ (tr V 

′ 1 − β ′ 2 ). 
(120) 

n these equations the fields div �, Z and C for the porous con-

tituent are all 2 nd order symmetric tensors: the 3 rd order mi-

rostress tensor � is normally related to boundary microtractions,

ven if, in some cases, also here it could express weakly non-local

nternal effects, Z includes interactive forces between the gross

nd fine structures and C is interpreted as an externally controlled

ore pressure. Further, we used the balances for the whole mix-

ure (37) and introduced the following tensor product ‘ �’ of com-

onents (grad V ��) ij := V ih,k �jhk . 

From Eq. (63) , for i = 2 , we could obtain the Darcy’s law, if we

eglect the inertial terms and make suitable constitutive propos-

ls on fields m, b 2 and T 2 . The balance of micromomentum (64) 2 
or the volume fraction β generalizes the classical Langmuir’s evo-

ution equation, while the balance (118) for the microstretch V in-

ludes the Wilmanski’s porosity balance as well as the equation

hich rules the changes of internal surfaces area of the pores (see

angmuir, 1918; Wilmanski, 1998; Albers, 20 0 0 , respectively). 

Finally, we apply the saturation constraint by differentiating it

ith respect to time and using the identity (80) 2 and the definition

59) 1 : 

 = 

˙ β1 + 

˙ β2 = β ′ 
1 + β ′ 

2 − u 1 · grad β1 − u 2 · grad β2 

= −β ′ 1 + β ′ 2 + u 1 · grad β − u 2 · grad β; (121) 

hus, for Eq. (100) 1 , the differential link is: 

′ 2 = (1 − β) I · D 1 + (u 2 − u 1 ) · grad β. (122)

n the actual context with θi = θ̄ constant and k null, the perfect

onstraint condition (58) becomes 

 = sym T r 1 · D 1 + sym T r 2 · D 2 + Z r · [ V ′ 1 + 2(εr 1 ) V ] + ζ r 
2 β

′ 2 

+ �r · [ grad V ′ 1 +2(εr 1 )( grad V )]+S r 2 · grad β ′ 2 +z + r · (r 1 − r 2 ) 

+ m 

+ r · (u 1 − u 2 )+ φ+ r (I · V ′ 1 − β ′ 2 ) 
= [ sym T r 1 + (1 − β)(ζ r 

2 − φ+ r ) I] · D 1 + sym T r 2 · D 2 

+ (Z r + φ+ r I) · V ′ 1 + �r · grad V ′ 1 + S r 2 · grad β ′ 2 

+ [ z + r − 2 ε(V Z r + grad V ��r )] · r 1 − z + r · r 2 

+ [ m 

+ r − (ζ r 
2 − φ+ r ) grad β] · (u 1 − u 2 ) , (123) 

here the symmetry properties of V, Z and � were used. There-

ore, we have that the reactions have to satisfy the following rela-

ions: 

sym T r 1 = −(1 − β) π in I, sym T r 2 = 0 , Z r = −φ+ r I, 

�r = 0 , S r 2 = 0 , m 

+ r = π in grad β, z + r = 0 , (124) 

here π in is the interface pressure between constituents (74) . 

At this point, as regards the constitutive equations, in order

o avoid a lot of specialization, we consider a very special case

n which the set of kinetic variables is the following one: P =
 β, d := grad β, F 1 , V, � := grad V } ; moreover, we observe that, in-

erting results (124) in the purely mechanical energy Eq. (120) ,

he mixture internal energy ε replaces the free energy as poten-

ial function. If we now differentiate ε(P) and substitute the result

long with (31), (116) and (122) into (120) , by performing standard
s of immiscible mixtures for soils, International Journal of Solids 
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calculations as described above, the results can be written as 

sym T a 1 = (1 − β) π c 
1 I + ρ sym 

[ 

∂ε

∂F 1 
F T 1 − � 

T 
�

(
∂ε

∂� 

)T 
] 

, 

sym T a 2 = β(σ − π c 
2 ) I − ρ sym 

(
d �

∂ε

∂d 

)
, S a 2 = ρ

∂ε

∂d 
, 

Z a + φ+ a I = ρ
∂ε

∂V 

, �a = ρ
∂ε

∂� 

, z + a = −ρ ε 
(

d �
∂ε

∂d 

)
, 

m 

+ a = div 

(
ρ d �

∂ε

∂d 

)
−

[
div 

(
ρ
∂ε

∂d 

)]
d, (125)

where 

π c 
i = ρi 

∂ε

∂β
, for 1 = 1 , 2 , and σ = ζ a 

2 − φ+ a (126)

are the configuration pressures of the i -constituents and the hydro-

static pressure acting on the mixture, respectively; in addition, two

compatibility conditions are valid on z + a and m 

+ a due to the bal-

ance laws for the mixture (37) 2,3 , as well as internal constraints: 

ε 

{ 

d �
∂ε

∂d 
+ F 1 

(
∂ε

∂F 1 

)T 

+ � 

T 
�

(
∂ε

∂� 

)T 

+ 

+ 2 

[ 

V 

(
∂ε

∂V 

)T 

+ � �
∂ε

∂� 

] } 

= 0 , (127)

div 

{ 

ρ

[ 

d �
∂ε

∂d 
+ � 

T 
�

(
∂ε

∂� 

)T 
] } 

+ ρ

[
∂ε

∂F 1 
( grad F 1 ) + 

∂ε

∂� 

� 

]

= � 

T 

[
div 

(
ρ
∂ε

∂� 

)]
+ 

[
div 

(
ρ
∂ε

∂d 

)]
d. (128)

Now, by inserting relations (124) and (125) in the balance Eqs. (63) ,

(118), (64) 2 , (119) and (68) 2 , then using conditions (127) and

(128) and substituting (119) and (68) 2 into Eqs. (63) , we obtain 

γ1 (1 − β) v ′ 1 = div ˜ T 1 + γ1 (1 − β) b 1 − f, (129)

γ2 βv ′ 2 = div ˜ T 2 + γ2 β b 2 + f (130)

γ1 (1 − β) μ1 V 

′′ 1 = div 

(
ρ
∂ε

∂� 

)
− ρ

∂ε

∂V 

+ γ1 (1 − β) C, (131)

where the pure symmetric Cauchy stresses ˜ T i for the solid and the

fluid constituents are defined by 

˜ T 1 := (1 − β)(π c 
1 − πin ) I + ρ sym 

(
∂ε

∂F 1 
F T 1 − E 

)
, 

˜ T 2 := β(σ − π c 
2 ) I, (132)

while the interaction force f between the phases is 

f := 

[
πin − div 

(
ρ
∂ε

∂d 

)]
d, (133)

with 

πin = div 

(
ρ
∂ε

∂d 

)
− σ + γ2 β

{
δ2 − β

[
μ2 ( div v 2 ) ′ 2 

−
(

1 

2 

β
dμ2 

dβ
+ μ2 

)
( div v 2 ) 2 

]}
. 
Please cite this article as: P. Giovine, Internal constraints in the theorie
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he effects of the microstructure describing the large pores appear

nly in the extended stress of Ericksen’s type for the solid phase,

efined by 

 := −ρ sym 

[ 

d �
∂ε

∂d 
+ � 

T 
�

(
∂ε

∂� 

)T 
] 

, (134)

nd in the micromomentum Eq. (131) . 

Finally, we can still propose a system of mechanical equations

f motion for an incompressible saturated poroelastic material,

hich satisfies the constitutive principle of equipresence in addi-

ion to the other axioms usually considered for mixtures. There are

5 scalar unknowns, β , v 1 , v 2 , V, π in and σ , and 15 scalar differ-

ntial Eqs. (100) 1 , (122), (129), (130) and (131) and the one after

133) for π in , for which we would also expect that the appropriate

nitial and boundary conditions, as well as the surface tractions as-

ociated with 

˜ T i and �a , are provided to resolve them. 

The comparison in the poro-elastic mechanics for this last ex-

mple is with classical mixture theories of Bowen (1980) and

ence (2012) for the isothermal flow. In particular, the Cauchy

tress tensor for the solid constituent of the transversely isotropic

ase (see Eq. (82) of Pence, 2012 ) is directly recovered, if one binds,

ven partially, the microstructural parameter V to the macro-

eformation and represents the Ericksen tensor (134) appropri-

tely. Instead, Bowen replaced the solid equation of linear momen-

um by that of the mixture (see Eq. (3.32) of Bowen, 1980 ) that, in

ur notations, is as follows 
 

γi βi v ′ i = div ˜ T + 

∑ 

γi βi b i ; (135)

herefore, by supposing that the microstructure is absent, and so

he potential ε does not depend on d and � , μ2 = 0 and δ2 = 0 ,

e have 

˜ 
 (:= 

˜ T 1 + 

˜ T 2 ) = [ −πin + (1 − β) π c 
1 − βπ c 

2 ] I + ρ sym 

(
∂ε

∂F 1 
F T 1 

)
, 

(136)

here we can easily recognize his stress tensor T I , when we put

I = ρε and λ = πin − ∂(ρ1 ε) 
∂β

, and insert definitions (126) 1 for the

onfiguration pressures π c 
i 

(see (3.22) of Bowen, 1980 ); moreover,

he expression of our Cauchy tensor ˜ T 2 for the fluid phase coincides

ith (3.29) of Bowen (1980) . 

. Peculiar solutions 

.1. Micro-rotations in a quasi-linear dilatant granular material 

The example of dilatant granular media that we are dealing

ith here, continua which are models of suspensions of rigid

pheres in a fluid, is, in a sense, complementary to that considered

n Section 8.3 ; rather, it could be thought of as an enriched sam-

le of the concentrated suspensions of Section 8.2 : in fact, now,

he peculiar microstructure of the solid phase is spherical, that

s, the rotations of the individual granules must be taken into ac-

ount, in addition to the use of volume fraction β (see Capriz and

odio Guidugli, 1981; Giovine, 2008 ). 

In particular, we consider the flow of a large number of dis-

rete inelastic particles ( γ2 = const.) at relatively high concentra-

ions and with interstices filled by a gas or a fluid of neglectable

ass ( γ 1 ≈ 0), as it is for cohesionless soils, such as sand with

ough surface grains, or fluidized particulate beds. The admissible

icro-motions of the body consist of either the rotation R of the

ame granules rigid with respect to each other, as well as the ho-

ogeneous dilatations, or contractions, of the macro-elements, i.e. ,

adial motions due to the displacements of the grains relative to

he center of mass of the macro-element itself, as introduced by
s of immiscible mixtures for soils, International Journal of Solids 
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eynolds (1885) ; the material macro-element of the granular ma-

erial has a fine structure and, in a mental magnification, we think

f it as a sort of quasi–particle, which consists of a rigid grain and

ts immediate rigid neighbours ( Giovine, 2008 ). 

Therefore, the microstructural kinematic variable ν2 is now the

otation R , while the infinitesimal generator A 2 , defined in (11) ,

as the following components 

(A 2 ) αβι = ε αιγ R γ β , (137)

or which the angular momentum balance (119) 2 becomes now 

kw T 2 = γ2 skw 

[ 

R 

(
∂ε

∂R 

)T 

+ grad R �
∂ε

∂( grad R ) 

] 

, (138) 

hile the pure mechanical balance equations of interest in the

roblem are similar to those of the previous section, only by ex-

hanging the subscript 1 with 2 (here the complementarity), with

he exception of the negligible Eq. (129) . 

In particular, they are Eqs. (100) 2 , (130) and (131) : 

′ 2 + β div v 2 = 0 , γ2 βv ′ 2 = div ˆ T 2 + γ2 β b 2 , (139)

2 β R 

′′ 2 = div 

[
β

∂ε

∂( grad R ) 

]
− β

∂ε

∂R 

, (140) 

here we suppose to zero all the growth rates, as well as the

icro-viscosities in the granular phase in absence of external mi-

rospin actions C . 

A general treatment of the constitutive relations of ˆ T 2 and

the partial derivatives of) ε for dilatant granular assemblies

ith rotating grains is given in Giovine (2008, 2010) , while their

uasi-linear expression has recently appeared in Amoddeo and

iovine (2019) , where the classical model of Coulomb granular ma-

erial ( Goodman and Cowin, 1972 ) is also obtained as a particular

ase. 

We consider, in detail, cohesionless granular media in which

utual granular fluctuations are negligible, the dissipative part of

he Cauchy’s stress ˆ T 2 behaves like a viscous fluid with viscosity

oefficients ˆ λ and ˆ μ ( Goodman and Cowin, 1971 ), and the con-

ervative stress component depends on { β , grad β , grad R } (see, in

eneral, Amoddeo and Giovine, 2019 ); therefore, 

ˆ 
 2 = 

[ 
2 ˆ αβ �β + ˆ α | grad β| 2 − ˆ β β2 + 2 ̂

 δ | grad R | 2 + ̂

 λ( tr D ) 
] 

I + 

+2 ˆ μD − 2 ˆ α grad β � grad β − 4 ̂

 δ ( grad R ) T � ( grad R ) T 

(141)

nd 

ˆ a := β
∂ε

∂( grad R ) 
= 2 ̂

 δ grad R, ˆ Z a := β
∂ε

∂R 

= 0 . (142)

he micro-elastic constant ˆ δ of the hyperstress tensor �a depends

n the macro-elastic ones. In Ehlers and Scholz (2007) it has been

hown that “the (three) elastic constants of the granular microp-

lar theory (modeled as a Cosserat’s material) are strongly corre-

ated and that only two of them can be identified independently”,

nd thus, it has been suggested a strict correlation of ˆ δ with the

oulomb’s constant ˆ α related to ˆ T 2 . In particular, ˆ δ is proportional

o ˆ α through the square of an intrinsic length scale that we put

qual to the initial grain radius (r g / 
√ 

5 ) . 

Moreover, the constant micro-kinetic coefficient μ2 := 

1 
5 r 

2 
g γ2 

or rigid grains appears in the Appendix A of Giovine (1999b) ,

here we assumed a special initial geometrical configurations of

he grains, supposed all spherical of constant radius r g in the ref-

rence placement. 

For our numerical purposes, we specify balance Eqs. (139) and

140) to two-dimensional setting, for which the velocity v has
2 
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nly two components ( ̂ v 1 , ̂  v 2 ) in the Oxy plane, the rotation R is

round the z -axis of angle � only and b 2 is the gravity force g di-

ected along Oy . Thus, inserting (141) and (142) , using the defini-

ion (12) 2 , for i = 2 , and placing the expressions now indicated for
ˆ , μ2 and b 2 , we write the two-dimensional system of four me-

hanical equations for dilatant granular material as 

∂β

∂τ
+ div (β ˆ v 1 , β ˆ v 2 ) = 0 , (143)

∂(β ˆ v 1 ) 
∂τ

+ div 

{ 

β ˆ v 2 1 + β̄β2 + ᾱ

[ (
∂β

∂x 

)2 

−
(
∂β

∂y 

)2 
] 

− λ̄
∂ ̂  v 2 
∂y 

+ 

+2 δ̄

[ (
∂�

∂x 

)2 

−
(
∂�

∂y 

)2 
] 

− 2 ᾱβ

(
∂ 2 β

∂x 2 
+ 

∂ 2 β

∂y 2 

)

−
(
λ̄+ 2 ̄μ

)∂ ̂  v 1 
∂x 

, 

β ˆ v 1 ̂  v 2 + 2 ̄α
∂β

∂x 

∂β

∂y 
+ 4 δ̄

∂�

∂x 

∂�

∂y 
− μ̄

(
∂ ̂  v 1 
∂y 

+ 

∂ ̂  v 2 
∂x 

)}
= 0 , 

(144) 

∂(β ˆ v 2 ) 
∂τ

+ div 

{
β ˆ v 1 ̂  v 2 + 2 ̄α

∂β

∂x 

∂β

∂y 
+ 4 ̄δ

∂�

∂x 

∂�

∂y 
− μ̄

(
∂ ̂  v 1 
∂y 

+ 

∂ ̂  v 2 
∂x 

)
, 

ˆ v 2 2 + β̄β2 −
(
λ̄+ 2 ̄μ

)∂ ̂  v 2 
∂y 

− λ̄
∂ ̂  v 1 
∂x 

− ᾱ

[ (
∂β

∂x 

)2 

−
(
∂β

∂y 

)2 
] 

−

−2 ̄αβ

(
∂ 2 β

∂x 2 
+ 

∂ 2 β

∂y 2 

)
− 2 ̄δ

[ (
∂�

∂x 

)2 

−
(
∂�

∂y 

)2 
] } 

= −βg, 

(145)

∂(βω) 

∂τ
+ div 

[
βω ̂

 v 1 − 2 ᾱ
∂�

∂x 
, βω ̂

 v 2 − 2 ᾱ
∂�

∂y 

]
= 0 , (146) 

here ω := �
′ 2 is the grain angular velocity normal to the xy -

lane, while coefficients with overbar are those with the over hat

ivided by the true mass density of the granules, e.g., ᾱ = 

ˆ α
γ2 

. 

The constant parameters are chosen for a closely packed system

omposed by rigid spheres with equal radii r g = 0 . 4 × 10 −3 m, of

rue mass density γ2 = 1 . 5 × 10 3 Kg ·m 

−3 , suspended in air at room

emperature of 20 ◦C. The reference volume fraction β∗ of the solid

s set at 70%, while the elasticity parameters of Coulomb were cal-

ulated in Ehlers and Scholz (2007) , i.e. , the first is ˆ β = 4 . 94 × 10 4 

 · m 

−2 and the second ˆ α = 9 . 1 × 10 4 N, so the micro-elastic pa-

ameter is, at the end, ˆ δ = 2 . 912 × 10 −3 N. These parameters refer

o dry sand. 

Due to the presence of air, the mixture is compressible and

ince it is subject to small variations in pressure, temperature and

elocity gradients, both the shear (or kinematic) and the bulk (or

olume) viscosity ˆ μ and ˆ μb := ̂

 λ+ 

2 
3 ˆ μ, respectively, can be treated

s constants. When the distribution of granules is fairly uniform

hroughout the air, in order to obtain the kinematic viscosity ˆ μ we

an use the semi-empirical formula 

ˆ μ

μ0 
= 1 + 

ˆ φβ∗, (147) 

here μ0 = 1 . 83 × 10 −5 Pa · s is the shear viscosity of air

nd 

ˆ φ ≈ 67 , 81 is an interaction factor which depend on the

rain incompressibility other than the geometry of the involved
s of immiscible mixtures for soils, International Journal of Solids 
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Table 1 

Parameters for the model of dilatant granular material. 

Par. Value Description 

γ 2 1.5 × 10 3 Kg · m 

−3 True mass density of dry sand 

β ∗ 0.7 Reference volume fraction 

r g 4 × 10 −4 m Reference granule radius 

μ2 1 . 2 × 10 −4 Kg · m 

−1 Micro-kinetic coefficient 

μ0 1 . 83 × 10 −5 Pa · s Shear viscosity coefficient of air at 20 ◦C 

ˆ μ 8 . 87 × 10 −4 Pa · s Shear viscosity coefficient of the packed system 

ˆ λ 2 . 96 × 10 −4 Pa · s Second viscosity coefficient of the packed system 

ˆ β 4.94 × 10 4 N · m 

−2 First Coulomb’s elasticity parameter 

ˆ α 9.1 × 10 4 N Second Coulomb’s elasticity parameter 
ˆ δ 2 . 912 × 10 −3 N Micro-elastic coefficient 
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particles (see Eqs. (9-4.22) and (9-5.3) of Happel and Bren-

ner, 1965 ), whereas the bulk to shear viscosity ratio is 1 ( Savage,

1979; Pan and Johnsen, 2017 ), for which we have, finally, the value
ˆ λ (= ˆ μb − 2 

3 ˆ μ) = 2 . 96 × 10 −4 Pa · s. All the coefficients of this ex-

ample are summarized in Table 1 . 

In developing numerical tests, we limit ourselves to analyze the

influence of micro-rotations on macroscopic motion. We consider

a squared section � = [0 , 1] × [ −1 , 0] m 

2 of a three dimensional

vertical channel, perpendicular to two delimiting vertical plates,

spaced 1 m apart, along the horizontal direction x , in which the

granular material can flow in the vertical direction. We adopt a

uniform mapped mesh of [28 × 28] grid points and a time step

�τ = 0 . 0 0 05 s, τ ∈ (0, τ 0 ] and τ0 = 0 . 25 s. The dependent vari-

ables are volume fraction β , mass fluxes β ˆ v 1 , β ˆ v 2 and couple
Fig. 1. Parallel between the distributions of the volume fraction β , for the E-, V- and VR

(d): 10 3 magnification of arbitrary portions of boxes (a) and (b), respectively. 
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ux β ω, all depending on ( x, y, τ ) ∈ �× (0, τ 0 ]. Initial conditions

re β ˆ v 1 (0) = 0 m · s −1 , β ˆ v 2 (0) = 0 m · s −1 and βω(0) = 0 . 01 s −1 ,

hile, for the initial volume fraction, we suppose that β(0) =
xp [ −(0 . 15) −1 | y | 2 ] , i.e. , we admit that an initial chunk of granu-

ar material is settled along the x direction, decreasing along the

 direction with a half-gaussian-like shape. The granular flow is

upposed entirely confined inside the � domain. Consequently, we

mpose for the volume fraction β zero-flux boundary conditions on

ll sides of the domain. We impose zero-flux boundary conditions

n the top side for the velocity, and Dirichlet boundary conditions

n all other sides with β ˆ v 1 = β ˆ v 2 = 0 m · s −1 . Finally, concerning

he angular velocity of the grain, zero-flux boundary conditions are

mposed on both top and bottom sides of the integration domain,

nd Dirichlet conditions with βω = 0 . 6 s −1 on left and right sides.

n order to give a quantitative description of the granular dynam-

cs, we consider a ‘vertical cut line’, that is a vertical straight line

utting the integration domain at x = 0 . 5 m, splitting the domain

p into two symmetric sub-domains. 

In Figs. 1 and 2 we compare the profiles of β and β ˆ v 2 , respec-

ively, obtained from our “complementary” microstretching model

VR) with the voids theory Goodman and Cowin (1971) in the

urely elastic case (E), with zero ˆ μ, ̂  λ, ̂  δ, and the dissipative one

V), with 

ˆ δ = 0 only. 

At each time step, the profiles appear almost identical in boxes

a)-(b) of Figs. 1 and 2 , hence a magnification of them is shown in

oxes (c)-(d), respectively. The magnifications in boxes (c) and (d)

ut in evidence differences among E, V and VR profiles, in which

he contribution coming from E model is always weaker with re-

pect to the contribution coming from V model, in turn weaker
-models, along the vertical cut line taken at: (a) τ = 0 . 04 s; (b) τ = 0 . 12 s; (c) and 

s of immiscible mixtures for soils, International Journal of Solids 
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Fig. 2. Parallel between the distributions of the mass flux β ˆ v 2 , for the E-, V- and VR-models, along the vertical cut line taken at: (a) τ = 0 . 04 s; (b) τ = 0 . 12 s; (c) and (d): 

10 3 magnification of arbitrary portions of boxes (a) and (b), respectively. 

Fig. 3. Profiles of the mass flux βω along the vertical cut line: (a) parallel between the profiles taken at τ = 0 . 04 s and τ = 0 . 12 s; (b) parallel among the profiles taken at 

τ = 0 . 04 s, τ = 0 . 12 s, τ = 0 . 16 s and τ = 0 . 20 s. 
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ith respect to VR model contribution, at least till τ = 0 . 12 s (and

aking into account the absolute tolerance of 10 −4 imposed to the

umerical procedure). 

In Fig. 3 the profile of the βω variable along the vertical cut line

s shown at different time steps. In box (a), until τ = 0 . 12 s, the βω
rofiles fall in the 10 −3 s −1 range, but if compared to the profiles

btained at the higher time steps, as in box (b), the former ap-

ear flatted due to the different scale of the profiles for τ = 0 . 16 s

nd τ = 0 . 20 s. (see, also, Amoddeo and Giovine, 2019 from where
Please cite this article as: P. Giovine, Internal constraints in the theorie

and Structures, https://doi.org/10.1016/j.ijsolstr.2019.07.021 
gures are taken). Such results are consistent with the initial con-

itions imposed to the model simulation: in fact, while β ˆ v 1 (0) =
ˆ v 2 (0) = 0 m · s −1 , instead βω(0) = 0 . 01 s −1 , then, at t = 0 s, a

on-zero rotational contribution is already present, which is rele-

ant in the first stage of the granular dynamics. During the time

volution, the βω contribution is weak and confined within the

0 −5 − 10 −2 s −1 range (see Figs. 3 ), while the growing β ˆ v 2 contri-

ution makes the differences between V and VR dynamics to van-

sh, even if a major contribution to the granular dynamics coming
s of immiscible mixtures for soils, International Journal of Solids 
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from the V model cannot be excluded, for τ > 0.20 s, on the basis

of physical considerations. 

9.2. Micro-vibrations in a linear thermo-elastic porous solid 

Consolidate soils can be considered as porous continua with a

fabric determined by the way grains are in contact, possibly linked

by cohesive forces. Under dynamic solicitations, such as those in-

duced by trains on a railway, vehicles on pounding roads or earth-

quakes, we may recognize interplay between macroscopic and mi-

croscopic vibrations. The phenomenon has its counterpart in the

dynamics of foams, the scheme developed in the previous sections

allows us to describe such a phenomenon with a certain detail. 

We remark again that pore volume fraction is insufficient to

describe the microdeformations of the holes when they are large

Cowin and Nunziato (1979) . In fact, the linear theory of porous

materials (as well as classical Cauchy’s one) does not predict

size effects in torsion as they occurs in the mechanics of bones

Cowin (1970) or rod-shaped specimens of dense polyurethane

foams Lakes (1986) . 

Instead the linear theories obtained from Cosserat brothers’

theory Eringen (1990) and/or the model of porous media with

ellipsoidal microstructure Giovine (1996) , later renamed as mi-

crostrain continua Forest and Sievert (2006) , were used to study

numerous applications to the model of media with affine mi-

crostructure. The latter is surely preferable when we consider soils

or cellular solids consisting of a solid matrix with large pores

filled by gas, because the effects of micro-rotations are trivial. As

an example of this complex microstructure, we show in Fig. 4

(see also Badiche et al. (20 0 0) ) a graphene foam sheet (spongy

graphene, 2 × 2 × 1.2 mm). 

In order to compare the solutions of micro-vibrations in differ-

ent models (with voids, or microstretch or ellipsoidal microstruc-

ture), we linearize the system of differential balance equations in

the case in which the saturating fluid is a gas of negligible mass

( ρ2 ≈ 0). Also we neglect macroscopic dynamics in the mixture, i.e. ,

impose 

ū i (X i , τ ) := x i (X i , τ ) − X i = 0 for i = 1 , 2 . (148)

Then, we follow also analyses in Giovine (1999a, 2012) . Particularly,

we consider a homogeneous isotropic, thermoelastic porous solid

initially undisturbed and at uniform temperature θ0 . We suppose

further that all the external volume contributions vanish, as well as

the micromomentum growth φ+ a , i.e. , b i = 0 , C = O, δ2 = 0 , λ = 0

and φ+ a = 0 . Therefore, the only pure equations of interest in the

problem are micro-momentum balance (118) and thermal evolu-

tion (99) , 

ρ1 μ1 V 

′′ 1 = div �a − Z a and ρ1 θ ˙ ηa = div q a , (149)
Fig. 4. Scanning electron micrograph of cellular structures of graphene foam. 
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espectively. For them we refer to constitutive relations (82) 1 and

124) 3,4 . 

The linear representations of constitutive fields, depending on

he set { V 1 := V − I, grad V 1 , ϑ := θ − θ0 , grad ϑ} , have been al-

eady obtained in Giovine (1999a) ( Eqs. (28) 2,3 and (30) ). Together

ith the Fourier law for q a , they reduce the balances (149) to 

∂ 2 V 1 
∂τ 2 

= v 2 sm 

�V 1 + 2(v 2 tm 

− v 2 sm 

) sym [ grad ( div V 1 ) ] + ̄λ1 grad 2 ( tr V 1 ) + 

+ 

[
λ̄1 div 2 V 1 + ̄λ2 �( tr V 1 ) − λ̄3 tr V 1 − γ̄3 ϑ 

]
I − 2 ̄λ4 V 1 , (150)

 = γ̄1 
∂ϑ 

∂τ
+ γ̄2 �ϑ + μ1 ̄γ3 tr ˙ V 1 , (151)

here tr ( · ) denotes once again the trace, i.e. , in a flat metric,

r V 1 := V 1 · I ; moreover, v 2 sm 

, v 2 tm 

and λ̄i , for i = 1 , . . . , 4 , are micro-

lastic constants, γ̄3 depends on micro-mechanical and thermal

roperties of the porous body; ( ̄γ1 θ0 ) is the specific heat at con-

tant strain, while γ̄2 := ξ∗(ρ1 ∗θ0 ) 
−1 ≥ 0 , with ξ ∗ the coefficient of

hermal conductivity (see, also, Giacobbe and Giovine, 2009 ). 

We can uncouple the spherical and deviatoric components of

he linear balance of micromomentum (150) to obtain, respec-

ively, 

∂ 2 ν

∂τ 2 
= 

(
1 

3 

v 2 sm 

+ 

2 

3 

v 2 tm 

+ 2 ̄λ1 + 3 ̄λ2 

)
�ν − 3 ̄γ3 ϑ + 

+ 

[
2(v 2 tm 

− v 2 sm 

) + 3 ̄λ1 

]
div ( div V 

D ) − (3 ̄λ3 + 2 ̄λ4 ) ν and 

(152)

∂ 2 V 

D 

∂τ 2 
= v 2 sm 

�V 

D + 2(v 2 tm 

− v 2 sm 

) 
{

sym 

[
grad ( div V 

D ) 
]}D + 

+ 

[ 
2 

3 

(v 2 tm 

− v 2 sm 

) + ̄λ1 

] 
( grad 

2 ν) D − 2 ̄λ4 V 

D , (153)

here ν is the trace of V 1 , while its deviatoric part is defined by

 

D := V 1 − 1 
3 νI. 

Consider solutions of the form 

= ˆ ν e ibτ , V 

D = 

ˆ V e ibτ , ϑ = 

ˆ ϑ e ibτ , (154)

here ˆ ν, ˆ V and 

ˆ ϑ are constant amplitudes, b is the frequency and

 is the imaginary unit. By inserting these expressions into equa-

ions, we get the system of algebraic equations 

(b 2 − 3 ̄λ3 − 2 ̄λ4 ) ̂  ν = 3 ̄γ3 
ˆ ϑ , (b 2 − λ̄4 ) ̂  V 

D = O, γ̄1 
ˆ ϑ + μ1 ̄γ3 ̂  ν = 0 ,

(155)

ith the restriction on the free energy density ψ 

a to be positive

efinite which implies 

¯1 

(
3 ̄λ3 + 2 ̄λ4 

)
> 3 μ1 ̄γ

2 
3 , λ̄4 > 0 (156)

see Eqs. (30) and (31) of Giovine, 1999a ). 

Eventually, we get admissible values of frequency b for different

ypes of waves. 

◦) Dilatational modes : 

b d = 

√ 

3 ̄λ3 + 2 ̄λ4 − 3 μ1 ̄γ
−1 

1 
γ̄ 2 

3 
, with ˆ ν = 3 ̂

 V 11 , (157)

ˆ V 22 = 

ˆ V 33 = ˆ ν/ 3 , ˆ V i j = 0 , ∀ i � = j, ˆ ϑ = −μ1 ̄γ
−1 

1 γ̄3 ̂  ν : 

the cutoff frequency b d of this micro-thermal oscillation is real,

for the restriction (156) 1 , and we may expect one longitudi-

nal acoustical wave in the three-dimensional porous medium

to couple with the micro-modes to form four optical branches. 
s of immiscible mixtures for soils, International Journal of Solids 
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Table 2 

Dimensional parameters for porous solids with ellipsoidal microstructure. 

Parameter PO NI SA 

λ̄3 2,16 × 10 12 s −2 3,70 × 10 11 s −2 5,00 × 10 10 s −2 

−γ̄3 2,71 × 10 10 s −2 ◦C −1 4,61 × 10 9 s −2 ◦C −1 4,61 × 10 9 s −2 ◦C −1 

˜ γ 3,46 × 10 0 ◦C 5,34 × 10 −1 ◦C 6,67 × 10 −1 ◦C 

λ̄4 3,23 × 10 12 s −2 5,57 × 10 11 s −2 3,00 × 10 10 s −2 

θ 0 2,20 × 10 1 ◦C 2,00 × 10 1 ◦C 2,50 × 10 1 ◦C 

b d 3,64 × 10 6 s −1 1,49 × 10 6 s −1 4,68 × 10 5 s −1 

b e = b s 2,54 × 10 6 s −1 1,06 × 10 6 s −1 2,45 × 10 5 s −1 
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Table 3 

Dimensional parameters for different models of porous solids. 

Parameter MA AL SMC EM 

λ̄3 5,37 × 10 20 5,97 × 10 6 9,88 × 10 5 5,52 × 10 9 

−γ̄3 2,19 × 10 17 8,62 × 10 5 1,03 × 10 7 9,19 × 10 4 

˜ γ 2,76 × 10 1 4,72 × 10 −2 5,60 × 10 −2 5,45 × 10 −2 

θ 0 2,50 × 10 1 2,00 × 10 1 2,00 × 10 1 2,00 × 10 1 

b d 4,02 × 10 10 4,24 × 10 3 1,88 × 10 3 1,29 × 10 5 
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◦) Extensional modes with a constant volume : 

b e = 

√ 

λ̄4 , with 

ˆ V 11 = − ˆ V 22 − ˆ V 33 , ̂  ν = 

ˆ ϑ = 0 , ˆ V i j = 0 , ∀ i � = j :

(158) 

the cutoff frequency b e of the micro-oscillations is real for in-

equality (156) 2 , while no thermal vibration is present; we may

also expect one transverse acoustical wave to couple with the

micro-modes to form three optical mechanical branches. 

◦) Pure shear modes : 

b s = 

√ 

λ̄4 , with 

ˆ V i j � = 0 , ∀ i � = j, ˆ V ii = 0 , ∀ i, ˆ ϑ = 0 : (159)

their cutoff frequency b s coincides with the real frequency b e 
of the extensional modes and even here micro-oscillations are

purely mechanical; the transverse acoustic wave in the mi-

crostructured medium couple again the micro-modes to form

three optic branches. 

When we neglect thermic phenomena, our oscillating solutions

ecover three of the mechanical micro-vibrations obtained for gen-

ral microstructure in Mindlin (1964) . 

The characteristic values of the frequencies given in Eqs. (157) –

159) are fixed, once the material parameters λ̄3 , γ̄3 , ˜ γ :=
1 ̄γ

−1 
1 
γ̄3 , λ̄4 , and θ0 in system (151) –(153) are specified. Here,

e want to compare micro-oscillations for some different mate-

ials for which they have been calculated experimentally: in par-

icular, in Table 2 they refer to porous materials with nano-pores,

odeled linear thermoelastic solids with ellipsoidal microstruc-

ure with vanishing Cosserat’s couple modulus: high density rigid

olyurethane closed-cell foam (PO) Lakes (1986) , nickel foams (NI)

 Badiche et al., 20 0 0; Neff and Forest, 2007 ) and Berea sandstone

aturated with air (SA) (or similar) ( Steeb et al., 2012; Khurana

t al., 2018 ). 

Figs. 5 and 6 report dimensionless micro-vibration (154) for the

hree porous solids in Table 2 in the longitudinal and transverse

ases ( Eqs. (157) and (158) - (159) ), respectively. Wave frequencies

n foam materials are higher than seismic micro-vibrations in the

andstone, more in the polymeric matrix than in the metallic one;

s noted above, transverse waves proceed unaffected by thermal

roperties. 

Now, we want to compare micro-vibrations for porous media

escribed in theory of voids, the microstretched model and ours,

he one with ellipsoidal microstructure, i.e. , the general affine mi-

rostructure internally constrained to have null micro-rotation. In

articular, only for the third example we still observe transverse

aves with frequencies that do not disappear, because, obviously,

he parameter λ̄4 vanishes in the first two. 

Therefore, in Table 3 we summarize all significant parameters

f the mentioned models, at uniform room temperature θ0 : for

he theory of voids, we consider the magnesium crystal like mate-

ial (MA) ( Dhaliwal and Singh, 1980; Sharma et al., 2008 ); for the

hermo-microstretch-elastic solid (with vanishing Cosserat’s couple

odulus vanishing), aluminum matrix with randomly distributed

poxy spheres (AL) ( Gauthier, 1982; Kiris and Inan, 2008 ), a sheet

olding compound (SMC) of randomly oriented chopped glass
Please cite this article as: P. Giovine, Internal constraints in the theorie

and Structures, https://doi.org/10.1016/j.ijsolstr.2019.07.021 
bers in polyester matrix ( Ayorinde and Yu, 2005; Kiris and Inan,

008 ), and an electro-microelastic solid (EM), with zero dielectric

oefficients ( Tomar and Khurana, 2008 ). The physical dimensions

f the parameters of Table 3 are shown in Table 2 , as well as the

ertinent values for the (SA) material. 

Finally, the cutoff frequency b d for the dilatational mode in

he magnesium-crystal-like-material, viewed as a thermoelastic 

edium with voids, results to be very high with respect to one

omputed on the basis of microstretch and microstrain models,

hile the frequency obtained for electro-microstretch solids is

f the same order of the previous microstrain and micromor-

hic samples. Instead, the detected microstretch solids with zero

osserat’s couple constant, i.e. , the aluminum-epoxy composite and

he polyester matrix with glass fibers, give lower frequencies than

icrostrain ones. All the models presented in Table 3 do not show

ransverse micro-vibrations. 

0. Concluding remarks 

In this paper the balance principles for an immiscible mix-

ure of continua with microstructure in the presence of chemical-

hysical phenomena are presented by generalizing previous ther-

odynamic theories of multiphase mixtures. A new formulation

or the balances of moment of momentum is proposed and ad-

itional terms are also included in the peculiar energy equations,

orresponding to the work done by the respective terms in the

icro-momentum balances, introduced, for each constituent of

ixture, to accommodate for the dynamical effects played by the

espective microstructural descriptors. Moreover, we assume that

he entropy flux of each constituent is not equal to the heat flux

ivided by the temperature of the constituent itself. 

Furthermore, a new procedure is presented to incorporate in-

ernal constraints, such as the saturation condition or the incom-

ressibility of the constituents, in the balance equations for immis-

ible mixtures of interest in the thermo-mechanics of the soils, and

ome applications are considered. In particular, a first example is

tudied in which a saturated fluid suspension is considered in de-

ail by imposing the general principles, that govern the constitutive

quations, including that of equipresence, usually substituted, in

his field, by that of phase separation. Secondly, the fluid suspen-

ion is specified as incompressible to comprise concentrated gran-

lar materials in the fluids and the complete Lagrangian derivative

f the kinetic energies due to micromotions, even if constrained.

inally, an isothermal flow of a fluid component through the big

ores of a solid skeleton is examined, where the model for the

olid constituent is thought to have an ellipsoidal microstructure

ith the fluid that fills all the interstices. The proposed model

s proved to be perfectly consistent with previous known theo-

ies, derived from theories of the voids or from the classical ones,

ven if, also now, it satisfies all Truesdell’s metaphysical principles,

hile those theories have failed in some respects. It had already

een used to describe the transport of pollutants with rainwater

n the soils. 

It is remarkable that, for all the applications, it was possible

o obtain a set of reaction-free thermodynamic equations; more-

ver, it has been found that the internal microactions are always
s of immiscible mixtures for soils, International Journal of Solids 
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Fig. 5. Dilatational modes of coefficient b d . 

Fig. 6. Extensional and shear modes with the same coefficient b e = b s . 
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coupled with the micromomentum growths, and therefore it re-

mains very difficult to separate the relative influences on the mi-

cromotions. 

Besides, to perform numerical simulations on simplified mod-

els, firstly it was quasi-linearized a continuum theory for a co-

hesionless viscous dilatant granular material with rotating grains,
Please cite this article as: P. Giovine, Internal constraints in the theorie

and Structures, https://doi.org/10.1016/j.ijsolstr.2019.07.021 
hich generalizes the voids theory and the Cosserat brothers’

edium, and was tested on a vertical granular gravity flow to ob-

ain numerical results showing that the effects due to the rotation

f granules are relevant in a first stage of the granular dynamics,

s well as those due to shear and bulk viscosities. Secondly, a lin-

ar theory of a thermoelastic solid with nano-pores was used to
s of immiscible mixtures for soils, International Journal of Solids 
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tudy the propagation of micro-waves, with three admissible re-

ults: a dilatational micro-thermal oscillation and two solutions,

oth with no thermal vibrations, with the same frequency and

ith null trace: a shear mode and an extensional mode with con-

tant volume. Comparisons of wave frequencies were also made re-

ealing that, in foam materials, they are higher than seismic micro-

ibrations in the sandstone, more in the polymeric matrix than in

he metallic one. 
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