
International Journal of Solids and Structures 45 (2008) 5521–5539
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
An approach based on distributed dislocations and disclinations
for crack problems in couple-stress elasticity

P.A. Gourgiotis, H.G. Georgiadis *

Mechanics Division, National Technical University of Athens, Zographou Campus, Zographou GR-15773, Greece
a r t i c l e i n f o

Article history:
Received 27 January 2008
Received in revised form 2 May 2008
Available online 29 May 2008

Keywords:
Cracks
Dislocations
Disclinations
Couple-stress elasticity
Singular integral equations
0020-7683/$ - see front matter � 2008 Elsevier Ltd
doi:10.1016/j.ijsolstr.2008.05.012

* Corresponding author. Tel.: +30 210 7721365; f
E-mail address: georgiad@central.ntua.gr (H.G. G
a b s t r a c t

The technique of distributed dislocations proved to be in the past an effective approach in
studying crack problems within classical elasticity. The present work is intended to extend
this technique in studying crack problems within couple-stress elasticity, i.e. within a the-
ory accounting for effects of microstructure. This extension is not an obvious one since
rotations and couple-stresses are involved in the theory employed to analyze the crack
problems. Here, the technique is introduced to study the case of a mode I crack. Due to
the nature of the boundary conditions that arise in couple-stress elasticity, the crack is
modeled by a continuous distribution of climb dislocations and constrained wedge discli-
nations (the concept of ‘constrained wedge disclination’ is first introduced in the present
work). These distributions create both standard stresses and couple stresses in the body.
In particular, it is shown that the mode-I case is governed by a system of coupled singular
integral equations with both Cauchy-type and logarithmic kernels. The numerical solution
of this system shows that a cracked solid governed by couple-stress elasticity behaves in a
more rigid way (having increased stiffness) as compared to a solid governed by classical
elasticity. Also, the stress level at the crack-tip region is appreciably higher than the one
predicted by classical elasticity.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The present work introduces an approach based on distributed dislocations and disclinations (and associated singular
integral equations) to deal with the mode I crack problem of couple-stress elasticity. This theory assumes that, within an
elastic body, the surfaces of each material element are subjected not only to normal and tangential forces but also to mo-
ments per unit area. The latter are called couple-stresses. Such an assumption is appropriate for materials with granular
or crystalline structure, where the interaction between adjacent elements may introduce internal moments. In this way,
characteristic material lengths appear representing microstructure. As is well-known, the fundamental concepts of the cou-
ple-stress theory were first introduced by Voigt (1887) and the Cosserat brothers (1909), but the subject was generalized and
reached maturity only in the 1960s through the works of Toupin (1962), Mindlin and Tiersten (1962), and Koiter (1964).

The theory of couple-stress elasticity assumes that: (i) each material particle has three degrees of freedom, (ii) an aug-
mented form of the Euler–Cauchy principle with a non-vanishing couple traction prevails, and (iii) the strain-energy density
depends upon both strain and the gradient of rotation. The theory is different from the Cosserat (or micropolar) theory that
takes material particles with six independent degrees of freedom (three displacement components and three rotation com-
ponents, the latter involving rotation of a micro-medium w.r.t. its surrounding medium). Sometimes, the name ‘restricted
Cosserat theory’ appears in the literature for the couple-stress theory.
. All rights reserved.
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It is noted that couple-stress elasticity had already in the 1960s some successful application on stress-concentration prob-
lems concerning holes and inclusions (see e.g. Mindlin, 1963; Weitsman, 1965; Bogy and Sternberg, 1967a,b; Hsu et al.,
1972; Takeuti and Noda, 1973). In recent years, there is a renewed interest in couple-stress theory (and related generalized
continuum theories) dealing with problems of microstructured materials. For instance, problems of dislocations, plasticity,
fracture and wave propagation have been analyzed within the framework of couple-stress theory. This is due to the inability
of the classical theory to predict the experimentally observed size effect and also due to the increasing demands for manu-
facturing devices at very small scales. Recent applications include work by, among others, Fleck et al. (1994), Vardoulakis and
Sulem (1995), Huang et al. (1997, 1999), Fleck and Hutchinson (1998), Zhang et al. (1998), Anthoine (2000), Lubarda and
Markenskoff (2000), Bardet and Vardoulakis (2001), Georgiadis and Velgaki (2003), Lubarda (2003), Ravi Shankar et al.
(2004), Grentzelou and Georgiadis (2005), and Radi (2007).

Generally, the couple-stress theory is intended to model situations where the material is deformed in very small volumes,
such as in the immediate vicinity of crack tips, notches, small holes and inclusions, and micrometer indentations. Examples
of successful modelling of microstructure and size effects by this theory are provided by Kakunai et al. (1985) and Lakes
(1995), among others. Also, a recent work by Bigoni and Drugan (2007) provides additional references and an interesting
account of the determination of moduli via homogenization of heterogeneous materials.

Regarding now crack problems, there is a limited number of studies concerning such problems in couple-stress theory.
Sternberg and Muki (1967) were the first to study the mode I finite-length crack elasticity problem by employing the method
of dual integral equations. In their work, only asymptotic results were obtained showing that both the stress and couple-
stress fields exhibit a square-root singularity, while the rotation field is bounded at the crack-tip. Adopting the same method,
Ejike (1969) studied the problem of a circular (penny-shaped) crack in couple-stress elasticity. Later, Atkinson and Lepping-
ton (1977) studied the problem of a semi-infinite crack by using the Wiener–Hopf technique. More recently, Huang et al.
(1997) using the method of eigenfunction expansions, provided near-tip asymptotic fields for mode I and mode II crack prob-
lems in couple-stress elasticity. Also, Huang et al. (1999) using the Wiener–Hopf technique obtained full-field solutions for
semi-infinite cracks under in-plane loading in elastic–plastic materials with strain-gradient effects of the couple-stress type.

The aim of the present investigation is to extend the distributed dislocation technique (and the related singular integral
equation technique) in dealing with crack problems of couple-stress elasticity and to obtain, for the first time, a full-field
solution to the mode I problem of a finite-length crack. The couple-stress case is our first attempt to introduce singular inte-
gral equations in crack problems of generalized continua. Efforts dealing with gradient elasticity are also under way. Here,
we introduce an approach based on distributed dislocations and disclinations. In particular, the concept of a special type of
disclination (we call it ‘constrained wedge disclination’) is employed in order to deal with the features of the couple-stress
theory. No such concept was needed in dealing with crack problems within the classical elasticity theory. For the latter prob-
lems, the standard distributed dislocation technique (DDT) was introduced by Bilby et al. (1963, 1968). This is an analytical/
numerical technique. The strength of the DDT lies in the fact that it gives detailed full-field solutions for crack problems at
the expense of relatively little analytical and computational demands as compared to the elaborate analytical method of dual
integral equations or the standard numerical methods of Finite and Boundary Elements. A thorough exposition of the tech-
nique and the treatment of various crack problems can be found in the treatise by Hills et al. (1996).

Despite the numerous applications of the DDT in classical elasticity, it appears that there is a limited work in solving crack
problems with this technique in materials with microstructure. Recently, the present authors (Gourgiotis and Georgiadis,
2007) applied the standard DDT to solve finite-length crack problems, under mode II and mode III conditions, within the
framework of couple-stress elasticity. Within this framework, and having solved now the mode I (opening mode) case, a
comparison between the two plane-strain crack modes (mode I and mode II) shows that mode I is mathematically more in-
volved than mode II. Certainly, this is in contrast with situations of classical elasticity where solving problems of mode I and
mode II involves the same mathematical effort. The additional effort in dealing with the mode I case here is due to the nature
of the boundary conditions that arise in couple-stress elasticity (involving rotations and couple-stresses). However, such a
situation does not appear in the mode II case of couple-stress elasticity (Gourgiotis and Georgiadis, 2007).

As in analogous situations of classical elasticity, a superposition scheme will be followed. Thus, the solution to the basic
problem (body with a traction-free crack under a remote constant tension) will be obtained by the superposition of the stress
and couple-stress fields arising in an un-cracked body (of the same geometry) to the ‘corrective’ stresses and couple-stresses
induced by a distribution of defects chosen so that the crack-faces become traction-free. Due to the nature of the boundary
conditions, it will be shown that in order to obtain the corrective solution, we need to distribute not only climb dislocations
but also constant discontinuities of the rotation along the crack faces. We name the latter discontinuities constrained wedge
disclinations. The term ‘constrained’ refers to the requirement of zero normal displacement along the disclination plane. No-
tice that according to the standard notion of a wedge disclination (see e.g. Anthony, 1970; de Wit, 1973), the normal dis-
placement is also discontinuous along the disclination plane and increases linearly with distance from the core becoming
unbounded at infinity. Clearly, a standard wedge disclination would not serve our purpose here. The concept of a constrained
wedge disclination is first introduced in the present work (see Sections 4 and 5 below for the details).

The Green’s functions of our problem (i.e. the stress fields due to a discrete climb dislocation and a discrete constrained
wedge disclination) are obtained by the use of Fourier transforms. Finally, it is shown that the continuous distribution of the
discontinuities along the crack faces results in a system of coupled singular integral equations with both Cauchy-type and
logarithmic kernels. The numerical solution of this system shows that a cracked solid governed by couple-stress elasticity
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behaves in a more rigid way (having increased stiffness) as compared to a solid governed by classical elasticity. Also, the
stress level at the crack-tip region is appreciably higher than the one predicted by classical elasticity.

2. Fundamentals of couple-stress elasticity

In this Section, the basic equations of couple-stress elasticity are briefly presented. As mentioned before, couple-stress
elasticity assumes that: (i) each material particle has three degrees of freedom, (ii) an augmented form of the Euler–Cauchy
principle with a non-vanishing couple traction prevails, and (iii) the strain-energy density depends upon both strain and the
gradient of rotation.

In addition to the fundamental papers by Mindlin and Tiersten (1962) and Koiter (1964), interesting presentations of the
theory can be found in the works by Aero and Kuvshinskii (1960), Palmov (1964), and Muki and Sternberg (1965). The basic
equations of dynamical couple-stress theory (including the effects of micro-inertia) were given by Georgiadis and Velgaki
(2003).

In the absence of inertia effects, for a control volume CV with bounding surface S, the balance laws for the linear and angu-
lar momentum read
Z

S
TðnÞi dSþ

Z
CV

FidðCVÞ ¼ 0; ð1ÞZ
S
ðxjT

ðnÞ
k eijk þMðnÞ

i ÞdSþ
Z

CV
ðxjFkeijk þ CiÞdðCVÞ ¼ 0; ð2Þ
where a Cartesian rectangular coordinate system Ox1x2x3 is used along with indicial notation and summation convention, eijk

is the Levi-Civita alternating symbol, n is the outward unit vector normal to the surface with direction cosines nj, TðnÞi is the
surface force per unit area (force traction), Fi is the body force per unit volume, MðnÞ

i is the surface moment per unit area (cou-
ple traction), and Ci is the body moment per unit volume.

Next, pertinent force-stress and couple-stress tensors are introduced by considering the equilibrium of the elementary
material tetrahedron and enforcing (1) and (2), respectively. The force stress or total stress tensor rij (which is asymmetric)
is defined by
TðnÞi ¼ rjinj; ð3Þ
and the couple-stress tensor lij (which is also asymmetric) by
MðnÞ
i ¼ ljinj: ð4Þ
In addition, just like the third Newton’s law T(n) = �T(�n) is proved to hold by considering the equilibrium of a material
‘slice’, it can also be proved that M(n) = �M(�n) (see e.g. Jaunzemis, 1967). The couple-stresses lij are expressed in dimensions
of [force][length]�1. Further, rij can be decomposed into a symmetric and anti-symmetric part
rij ¼ sij þ aij; ð5Þ
with sij = sji and aij = �aji, whereas it is advantageous to decompose lij into its deviatoric lðDÞij and spherical lðSÞij part in the
following manner
lij ¼ mij þ
1
3

dijlkk; ð6Þ
where mij ¼ lðDÞij , lðSÞij ¼ ð1=3Þdijlkk, and dij is the Kronecker delta. Now, with the above definitions and the help of the Green–
Gauss theorem, one may obtain the stress equations of motion. Eq. (2) leads to the following moment equation
oilij þ rkieijk þ Cj ¼ 0; ð7Þ
which can also be written as
1
2

oililejkl þ ajk þ
1
2

Clejkl ¼ 0; ð8Þ
since by its definition the anti-symmetric part of stress is written as a � �(1/2)I � (r � I), where I is the idemfactor. Also, Eq.
(1) leads to the following force equation
ojrjk þ Fk ¼ 0; ð9Þ
or, by virtue of (5), to the equation
ojsjk þ ojajk þ Fk ¼ 0: ð10Þ
Further, combining (8) and (10) yields the single equation
ojsjk �
1
2

ojoililejkl þ Fk �
1
2

ojClejkl ¼ 0: ð11Þ
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Finally, in view of (6) and by taking into account that curl(div((1/3)dijlkk)) = 0, we write (11) as
ojsjk �
1
2

ojoimilejkl þ Fk �
1
2

ojClejkl ¼ 0; ð12Þ
which is the final equation of equilibrium.
Now, as for the kinematical description of the continuum, the following quantities are defined in the framework of the

geometrically linear theory
eij ¼
1
2
ðojui þ oiujÞ; ð13Þ

xij ¼
1
2
ðoiuj � ojuiÞ; ð14Þ

xi ¼
1
2

eijkojuk; ð15Þ

jij ¼ oixj; ð16Þ

where eij is the strain tensor, xij is the rotation tensor, xi is the rotation vector, and jij is the curvature tensor (i.e. the gra-
dient of rotation or the curl of the strain) expressed in dimensions of [length]�1. Notice also that Eq. (16) can alternatively be
written as
jij ¼
1
2

ejkloiokul ¼ ejklokeil: ð17Þ
Eq. (17) expresses compatibility for curvature and strain fields. In addition, there is an identity okjij = oi okxj = oijkj, which
defines the compatibility equations for the curvature components. The compatibility equations for the strain components are
the usual Saint Venant’s compatibility equations (see e.g. Jaunzemis, 1967). We notice also that jii = 0 because jii = oixi = (1/
2)eijk uk, ji = 0 and, therefore, jij has only eight independent components. The tensor jij is obviously an asymmetric tensor.

Regarding traction boundary conditions, at any point on a smooth boundary or section, the following three reduced force-
tractions and two tangential couple-tractions should be specified (Mindlin and Tiersten, 1962; Koiter, 1964)
PðnÞi ¼ rjinj �
1
2

eijknjokmðnnÞ; ð18Þ

RðnÞi ¼ mjinj �mðnnÞni; ð19Þ

where m(nn) = ninjmij is the normal component of the deviatoric couple-stress tensor mij. The modifications for the case in
which corners appear along the boundary can be found in the article by Koiter (1964).

It is worth noticing that at first sight, it might seem plausible that the surface tractions (i.e. the force-traction and the
couple-traction) can be prescribed arbitrarily on the external surface of the body through relations (3) and (4), which stem
from the equilibrium of the material tetrahedron. However, as Koiter (1964) pointed out, the resulting number of six traction
boundary conditions (three force-tractions and three couple-tractions) would be in contrast with the five geometric bound-
ary conditions that can be imposed. Indeed, since the rotation vector xi in couple-stress elasticity is not independent of the
displacement vector ui (as (15) suggests), the normal component of the rotation is fully specified by the distribution of tan-
gential displacements over the boundary. Therefore, only the three displacement and the two tangential rotation compo-
nents can be prescribed independently. As a consequence, only five surface-tractions (i.e. the work conjugates of the
above five independent kinematical quantities) can be specified at a point of the bounding surface of the body, i.e. Eqs.
(18) and (19). On the contrary, in the Cosserat (micropolar) theory, the traction boundary conditions are six since the rota-
tion is fully independent of the displacement vector. In the latter case, the tractions can directly be derived from the equi-
librium of the material tetrahedron, so (3) and (4) are the pertinent traction boundary conditions.

Introducing the constitutive equations of the theory is now in order. We assume a linear and isotropic material response,
in which case the strain-energy density takes the form
W �Wðeij;jijÞ ¼
1
2

keiiejj þ leijeij þ 2gjijjij þ 2g0jijjji; ð20Þ
where (k, l, g, g0) are material constants. Then, Eq. (20) leads, through the standard variational manner, to the following con-
stitutive equations
sij � rðijÞ ¼
oW
oeij
¼ kdijekk þ 2leij; ð21Þ

mij ¼
oW
ojij
¼ 4gjij þ 4g0jji: ð22Þ
In view of (21) and (22), the moduli (k, l) have the same meaning as the Lamé constants of classical elasticity theory and
are expressed in dimensions of [force][length]�2, whereas the moduli (g, g0) account for couple-stress effects and are ex-
pressed in dimensions of [force].

Next, incorporating the constitutive relations (21) and (22) into the equation of equilibrium (12) and using the geometric
relations (13)–(16), one may obtain the equations of equilibrium in terms of displacement components (Muki and Sternberg,
1965), i.e.
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r2ui � ‘2r4ui þ oi
1

1� 2m
ðr � uÞ þ ‘2r2ðr � uÞ

� �
¼ 0; ð23Þ
where v is Poisson’s ratio, ‘ � (g/l)1/2 is a characteristic material length, and the absence of body forces and couples is as-
sumed. In the limit ‘? 0, the Navier–Cauchy equations of classical linear isotropic elasticity are recovered from (23). Indeed,
the fact that Eq. (23) have an increased order w.r.t. their limit case (recall that the Navier–Cauchy equations are PDEs of the
second order) and the coefficient ‘ multiplies the higher-order term reveals the singular-perturbation character of the couple-
stress theory and the emergence of associated boundary-layer effects.

Finally, the following points are of notice: (i) Since jii = 0, mii = 0 is also valid and therefore the tensor mij has only eight
independent components. (ii) The scalar (1/3)lkk of the couple-stress tensor does not appear in the final equation of equi-
librium, nor in the reduced boundary conditions and the constitutive equations. Consequently, (1/3)lkk is left indeterminate
within the couple-stress theory. (iii) The following restrictions for the material constants should prevail on the basis of a po-
sitive definite strain-energy density (Mindlin and Tiersten, 1962)
3kþ 2l > 0; l > 0; g > 0; �1 <
g0

g
< 1: ð24a-dÞ
3. Basic equations in plane-strain

For a body that occupies a domain in the (x, y)-plane under conditions of plane strain, the displacement field takes the
general form
ux � uxðx; yÞ 6¼ 0; uy � uyðx; yÞ 6¼ 0; uz � 0: ð25a-cÞ
First, the components of the force-stress and couple-stress tensors will be obtained. The independence upon the
coordinate z of all components of the force-stress and couple-stress tensors, under the assumption (25c), was proved
by Muki and Sternberg (1965). Indeed, it is noteworthy that, contrary to the respective plane-strain case in the conven-
tional theory, this independence is not obvious within the couple-stress theory. Notice further that except for xz �x
and (jxz, jyz) all other components of the rotation vector and the curvature tensor vanish identically in the particular
case of plane-strain considered here. The non-vanishing components (sxx, sxy, syy) and (mxz, myz) follow from (21) and
(22), respectively. Then, (axx, axy, ayx, ayy) are found from (8) and, finally, (rxx, rxy, ryx, ryy) are provided by (5). Van-
ishing body forces and body couples are assumed in what follows. In view of the above, the following expressions are
written
mxz ¼ 2l‘2 o2uy

ox2 �
o2ux

oxoy

 !
; ð26Þ

myz ¼ 2l‘2 o2uy

oxoy
� o2ux

oy2

 !
; ð27Þ

axx ¼ ayy ¼ 0; ð28Þ

ayx ¼
1
2

omxz

ox
þ omyz

oy

� �
; ð29Þ

axy ¼ �ayx; ð30Þ

rxx ¼ ðkþ 2lÞ oux

ox
þ k

ouy

oy
; ð31Þ

ryy ¼ ðkþ 2lÞ ouy

oy
þ k

oux

ox
; ð32Þ

ryx ¼ l oux

oy
þ ouy

ox

� �
þ l‘2 o3uy

ox3 �
o3ux

ox2oy
þ o3uy

oxoy2 �
o3ux

oy3

 !
; ð33Þ

rxy ¼ l oux

oy
þ ouy

ox

� �
� l‘2 o3uy

ox3 �
o3ux

ox2oy
þ o3uy

oxoy2 �
o3ux

oy3

 !
: ð34Þ
Incorporating (25a-c) into the equations of equilibrium in (23), we obtain the following system of coupled PDEs of the
fourth order for the displacement components (ux, uy)
1
1� 2m

o

ox
2ð1� mÞ oux

ox
þ ouy

oy

� �
þ o2ux

oy2 þ ‘
2 o4uy

ox3oy
� o4ux

ox2oy2 þ
o4uy

oxoy3 �
o4ux

oy4

 !
¼ 0; ð35Þ

1
1� 2m

o

oy
2ð1� mÞ ouy

oy
þ oux

ox

� �
þ o2uy

ox2 þ ‘
2 o4ux

ox3oy
� o4uy

ox2oy2 þ
o4ux

oxoy3 �
o4uy

ox4

 !
¼ 0: ð36Þ
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4. Formulation of the crack problem

Consider a straight crack of finite length 2a embedded in a body of infinite extent in the xy-plane (Fig. 1). The body is
governed by the equations of couple-stress elasticity and it is in a field of uniform uni-axial tension, under plane-strain con-
ditions. The crack faces are traction free and are defined by n = (0, ± 1). Then, according to (18) and (19), the boundary con-
ditions along the crack faces are written as
ryxðx;0Þ ¼ 0; ryyðx;0Þ ¼ 0; myzðx;0Þ ¼ 0 for jxj < a: ð37a-cÞ
The regularity conditions at infinity are
r1yx;r
1
xy;r

1
xx ! 0; r1yy ! r0; m1xz ;m

1
yz ! 0; as r !1; ð38a-cÞ
where r = (x2 + y2)1/2 is the distance from the origin, and the constant r0 denotes the remotely applied normal loading.
Now, the crack problem is decomposed into the following two auxiliary problems.

4.1. The un-cracked body

The displacement and the rotation fields for the un-cracked body problem are given as (Sternberg and Muki, 1967)
ux ¼ �
mr0

2l
x; uy ¼

ð1� mÞr0

2l
y; x ¼ 0: ð39Þ
The stress field can readily be obtained from (26)–(34) as
ryyðx; yÞ ¼ r0; rxx ¼ ryx ¼ rxy ¼ 0; mxz ¼ myz ¼ 0: ð40a-cÞ
Notice that there are no couple-stresses induced in the un-cracked body, the body being in a state of pure tension.

4.2. The corrective solution

Consider next a body geometrically identical to the initial cracked body (Fig. 1) but with no remote loading now. The only
loading applied is along the crack faces. This consists of equal and opposite tractions to those generated in the un-cracked
body. The boundary conditions along the faces of the crack are written as
ryyðx;0Þ ¼ �r0; myzðx; 0Þ ¼ 0; ryxðx;0Þ ¼ 0 for jxj < a: ð41a-cÞ
Notice that in classical elasticity it would suffice a continuous distribution of climb dislocations with Burger’s vector
b = (0, b, 0) to produce the desired normal stresses (41a). However, this is not the case in couple-stress elasticity because
a discrete climb dislocation produces both normal stresses ryy and couple-stresses myz along the dislocation line y = 0. There-
fore, it is not possible to satisfy both (41a) and (41b) only by a continuous distribution of climb dislocations. On the other
hand, within the framework of couple-stress elasticity, we know that the work conjugates of the reduced force traction Py = r
yyny and the tangential couple traction Rz = myzny are the normal displacement uy and the rotation x, respectively. In light of
the above, we are led to the conclusion that in order to satisfy all the boundary conditions in (41) we should distribute dis-
continuities of both displacement uy (i.e. climb dislocations) and rotation x (the so-called constrained wedge disclinations)
along the crack faces.
yσ

σ

x

0

0

a− a

Fig. 1. Cracked body under remote tension field in plane strain.
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It is noteworthy that in the mode II crack problem of couple-stress elasticity studied by the present authors (Gourgiotis
and Georgiadis, 2007), only a distribution of glide dislocations was indeed sufficient to generate the requisite shear stress ryx

along the crack-faces. This is because a discrete glide dislocation produces neither normal stresses ryy nor couple-stresses
myz along the crack-line y = 0. In that problem, employing the standard DDT was sufficient and led to a single singular integral
equation. On the contrary, in the present mode I crack problem, the distribution of both climb dislocations and constrained
wedge disclinations leads to a system of coupled singular integral equations for the dislocation and the disclination densities.

Our next aim is to determine the stress and couple-stress fields induced by a discrete climb dislocation and a discrete
constrained wedge disclination. Both defects are located at the origin of the (x, y)-plane. These stress fields will serve as
the Green’s functions for our crack problem.

5. Green’s functions (climb dislocation and constrained wedge disclination)

Due to the symmetry of both problems w.r.t. the plane y = 0, only the upper half-plane domain (�1 < x <1, y P 0) will be
considered. In this domain, the Fourier transform is utilized to suppress the x-dependence in the field equations and the
boundary conditions. The direct Fourier transform and its inverse are defined as follows
f �ðn; yÞ ¼ 1

ð2pÞ1=2

Z 1

�1
f ðx; yÞeixndx; ð42aÞ

f ðx; yÞ ¼ 1

ð2pÞ1=2

Z 1

�1
f �ðn; yÞe�ixndn; ð42bÞ
where i � (�1)1/2. Transforming now (35) and (36) with (42a) gives a system of ordinary differential equations for ðu�x;u�yÞ
written in the following compact form
½K�
u�x
u�y

" #
¼

0
0

� �
; ð43Þ
where the differential operator [K] is given as
½K� ¼ �‘2d4 þ ð1þ ‘2n2Þd2 � ð1þ kÞn2 in‘2dðn2 � d2Þ � inkd

in‘2dðn2 � d2Þ � inkd ð1þ n2‘2 þ kÞd2 � n2ð1þ n2‘2Þ

" #
; ð44Þ
with k = 1/(1 � 2m), d() � d()/dy, d2() � d2()/dy2, etc.
The system of homogeneous differential equations in (43) has a solution different than the trivial one if and only if the

determinant of [K] is zero. Hence,
ðd2 � n2Þ2½‘2ðd2 � n2Þ � 1� ¼ 0: ð45Þ
The latter equation has two double roots d = ± jnj and two single roots d = ± (1 + ‘2n2)1/2/‘. The first pair is the same as in
classical elasticity, whereas the second pair reflects the presence of couple-stress effects. The general solution of (43) is ob-
tained after some rather extensive algebra and it has the following form that is bounded as y ? +1
u�xðn; yÞ ¼ A1ðnÞe�jnjy þ A2ðnÞye�jnjy þ A3ðnÞe�
ya
‘ ; ð46Þ

u�yðn; yÞ ¼ �in�1½jnjA1ðnÞ þ ð3� 4mÞA2ðnÞ�e�jnjy � iy
jnj
n

A2ðnÞe�jnjy � i
n
a

A3ðnÞe�
ya
‘ ; ð47Þ
where a � a(n) = (1 + ‘2n2)1/2, and the functions (A1(n),A2(n),A3(n)) are yet unknown functions that will be determined
through the enforcement of boundary conditions in each specific problem.

Having in hand the transformed general solution (46) and (47), the transformed rotation, stresses and couple-stresses
may follow by the use of the following expressions
x�ðn; yÞ ¼ �1
2

inu�y þ
du�x
dy

� �
; ð48Þ

r�yyðn; yÞ ¼
2l

1� 2m
ð1� mÞ

du�y
dy
� imnu�x

� �
; ð49Þ

r�xxðn; yÞ ¼
2l

1� 2m
�ð1� mÞinu�x þ m

du�y
dy

� �
; ð50Þ

r�yxðn; yÞ ¼ l �inu�y þ
du�x
dy

� �
þ l‘2 in3u�y þ n2 du�x

dy
� in

d2u�y
dy2 �

d3u�x
dy3

 !
; ð51Þ

r�xyðn; yÞ ¼ l �inu�y þ
du�x
dy

� �
� l‘2 in3u�y þ n2 du�x

dy
� in

d2u�y
dy2 �

d3u�x
dy3

 !
; ð52Þ
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m�yzðn; yÞ ¼ �2l‘2 in
du�y
dy
þ d2u�x

dy2

 !
; ð53Þ

m�xzðn; yÞ ¼ 2l‘2 �n2u�y þ in
du�x
dy

� �
: ð54Þ
Now, we impose at the origin of the (x, y)-plane a discrete climb dislocation with Burger’s vector b = (0, b, 0) and a discrete
constrained wedge disclination with Frank’s vector X = (0, 0, X). In the framework of couple-stress theory and considering
the upper half-plane (�1 < x <1, y P 0), a climb dislocation and a constrained wedge disclination give rise, respectively, to
the following boundary value problems
uyðx;0þÞ ¼ �
b
2

HðxÞ; xðx; 0þÞ ¼ 0; ryxðx; 0þÞ ¼ 0; ð55a-cÞ

uyðx;0þÞ ¼ 0; xðx;0þÞ ¼ X
2

HðxÞ; ryxðx;0þÞ ¼ 0: ð56a-cÞ
where H(x) is the Heaviside step-function. We emphasize once again that the term ‘constrained wedge disclination’ is
justified from the fact that the discontinuity in rotation (cf. (56b)) does not affect the normal displacement in (56a)
(see also Appendix A). Clearly, this concept departs from the one of the standard wedge disclination appearing in the
settings of both classical elasticity (de Wit, 1973) and couple-stress elasticity (Anthony, 1970). This standard wedge dis-
clination generates a field where the jump in rotation implies a discontinuity in the normal displacement too. Finally, we
notice that the use of a half-plane domain (resulting from simple symmetry considerations), instead of the full-plane
domain, permits the formulation of boundary value problems. Such a formulation provides indeed an advantage for
the use of Fourier transforms.

Applying the Fourier transform to the boundary conditions (55a-c) and (56a-c), we obtain
u�yðn;0
þÞ ¼ �bðp=2Þ1=2dþðnÞ; x�ðn;0þÞ ¼ 0; r�yxðn;0

þÞ ¼ 0: ð57a-cÞ

u�yðn;0
þÞ ¼ 0; x�ðn; 0þÞ ¼ Xðp=2Þ1=2dþðnÞ; r�yxðn;0

þÞ ¼ 0; ð58a-cÞ
where d+(n) = [d(n)/2] + [i/(2pn)] is the Heisenberg delta function (see e.g. Roos, 1969) and d(n) is the Dirac delta distribution.
However, the contribution of the Dirac delta distribution in the physical domain is only a rigid-body displacement for the
problem (55) and a rigid-body rotation for the problem (56).

Next, combining (57) and (58) with (46)–(54) provides a system of algebraic equations for the functions (A1(n), A2(n),
A3(n)). After some algebra involving manipulations and also use of the symbolic program MATHEMATICA (version 6.0),
the transformed displacements due to the climb dislocation and the constrained wedge disclination are found to be
u�xðn; yÞ ¼
b

ð2pÞ1=2 � ð1� 2mÞ
4ð1� mÞjnj þ

y
4ð1� mÞ � ‘

2jnj
� �

e�yjnj þ ‘ae�
ya
‘

� �

þ iX

ð2pÞ1=2

‘a
n

e�
ya
‘ � ‘2sgnðnÞe�yjnj

� �
; ð59aÞ

u�yðn; yÞ ¼
ib

ð2pÞ1=2 � 1
2n
� sgnðnÞy

4ð1� mÞ þ ‘
2n

� �
e�yjnj � ‘2ne�

ya
‘

� �

þ X

ð2pÞ1=2 ‘2e�
ya
‘ � ‘2e�yjnj

h i
; ð59bÞ
where sgn() is the signum function.
With the aid of the inversion formula (42b) and enforcing (48)–(54), we finally obtain the expressions for the normal

stress ryy and the couple-stress myz along the crack line y = 0 (details are given in Appendix A) which will serve as the Green’s
functions of the mode I crack problem, i.e.
ryyðx; y ¼ 0Þ ¼ lb
2pð1� mÞxþ

2lb
px

2‘2

x2 � K2
jxj
‘

� � !
� lX

p
2‘2

x2 � K2
jxj
‘

� � !
� lX

p
K0
jxj
‘

� �
; ð60Þ

myzðx; y ¼ 0Þ ¼ �lb
p

2‘2

x2 � K2
jxj
‘

� � !
� lb

p
K0
jxj
‘

� �
þ l‘X

2p
sgnðxÞ � G2;1

1;3
x2

4‘2

����1�1=2;1=2;0

� �
; ð61Þ
where Ki(x/‘) is the ith order modified Bessel function of the second kind and Ga;b
c;dðÞ is the MeijerG function, which is a tab-

ulated function.
Concerning now the nature of the above stress field, the following points are of notice:
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(i) As x ? 0, the following asymptotic relations are deduced
2‘2

x2 � K2
jxj
‘

� �
¼ Oð1Þ; 1

x
2‘2

x2 � K2
jxj
‘

� � !
¼ Oðð2xÞ�1Þ;

K0
jxj
‘

� �
¼ Oð� ln jxjÞ; sgnðxÞ � G2;1

1;3
x2

4‘2

����1�1=2;1=2;0

� �
¼ Oð�4‘x�1Þ:

ð62Þ
In light of the above, we conclude that as x ? 0, the normal stress ryy exhibits a Cauchy-type singularity due to the climb
dislocation and a logarithmic singularity due to the constrained wedge disclination. Also, as x ? 0, myz exhibits a Cauchy sin-
gularity due to the constrained wedge disclination and a logarithmic singularity due to the climb dislocation.

(ii) As x ? ±1, it can readily be shown that ryy ? 0 and myz ? � l‘X. Thus, we observe that a constrained wedge discli-
nation does not induce normal stresses at infinity. On the contrary, the standard wedge disclination induces normal
stresses that are logarithmically unbounded at infinity, in the framework of both classical elasticity (de Wit, 1973) and
couple-stress elasticity (Anthony, 1970).

(iii) As ‘? 0, it can be shown that the couple-stress myz(x, y = 0) vanishes, while the normal stress ryy(x, y = 0) degenerates
into the field lb/2p(1 � m)x (first term in the RHS of Eq. (60)) given by a classical elasticity analysis for a discrete climb
dislocation. Thus, we see that a constrained wedge disclination induces stresses and couple-stresses only when the
material length is ‘ 6¼ 0, i.e. when couple-stress effects are taken into account. This is a convenient feature of the
Green’s functions in (60) and (61) since, in the limit ‘? 0, the respective Green’s function of classical elasticity (i.e.
the field induced by a discrete climb dislocation) is recovered.
6. Reduction of the crack problem to a system of singular integral equations: results

The corrective stresses (41a-c) are generated by a continuous distribution of climb dislocations and constrained wedge
disclinations along the faces of the crack. The normal stress ryy and the couple-stress myz induced by a continuous distribu-
tion of dislocations and disclinations can be derived by integrating the field (along the crack-faces) of a discrete climb dis-
location (Eq. (60)) and a discrete constrained wedge disclination (Eq. (61)). We note that (41c) is automatically satisfied since
neither the discrete dislocation nor the discrete disclination produce shear stresses ryx along the crack-line y = 0. Then, sat-
isfaction of the boundary conditions (41a) and (41b) results in a system of coupled integral equations, which govern the
problem. Separating the singular from the regular parts of the kernels, we finally obtain the following system of singular
integral equations
� r0 ¼
lð3� 2mÞ
2pð1� mÞ

Z a

�a

BðnÞ
x� n

dnþ l
pa

Z a

�a
WðnÞ � ln jx� nj

‘
dnþ 2l

pa

Z a

�a
BðnÞ � k1ðx; nÞdn

� l
pa

Z a

�a
WðnÞ � k2ðx; nÞdn; jxj < a; ð63aÞ

0 ¼ �2l‘2

pa

Z a

�a

WðnÞ
x� n

dnþ l
p

Z a

�a
BðnÞ � ln jx� nj

‘
dn� l

p

Z a

�a
BðnÞ � k2ðx; nÞdn

þ l‘
2pa

Z a

�a
WðnÞ � k3ðx; nÞdn; jxj < a; ð63bÞ
where B(n) and W(n) are, respectively, the dislocation and disclination densities defined as
BðnÞ ¼ dbðnÞ
dn

¼ �dDuyðnÞ
dn

; DuyðxÞ ¼ �
Z x

�a
BðnÞdn; ð64aÞ

WðnÞ ¼ a
dXðnÞ

dn
¼ a

dDxðnÞ
dn

; DxðxÞ ¼ 1
a

Z x

�a
WðnÞdn; ð64bÞ
and the kernels kb(x, n), with b = 1, 2, 3, are defined as
k1ðx; nÞ ¼
a

x� n
2‘2

ðx� nÞ2
� K2ðjx� nj=‘Þ � 1

2

" #
; ð65aÞ

k2ðx; nÞ ¼
2‘2

ðx� nÞ2
� K2ðjx� nj=‘Þ

" #
þ ½K0ðjx� nj=‘Þ þ lnðjx� nj=‘Þ�; ð65bÞ

k3ðx; nÞ ¼ sgnðx� nÞ � G2;1
1;3
ðx� nÞ2

4‘2

�����1�1=2;1=2;0

 !
þ 4‘

x� n
: ð65cÞ
In the above relations, Duy(x) represents the relative opening displacement and Dx(x) the relative rotation between the
upper and lower crack faces. Furthermore, it is noted that both densities are dimensionless according to (64).
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Also, using the asymptotic expansions of the modified Bessel functions (see e.g. Erdelyi, 1953), it can readily be shown
that the first two kernels (Eqs. 65a,65b) are regular as x ? n and ‘ > 0. To understand now the nature of the third kernel
(Eq. (65c)), we expand the MeijerG function, with the aid of the symbolic program MATHEMATICA (version 6.0), in series
as x ? n, and have
sgnðx� nÞ � G2;1
1;3
ðx� nÞ2

4‘2

�����1�1=2;1=2;0

 !
¼ � 4‘

x� n
þ ða1 þ a2 ln jx� njÞ � ðx� nÞ þ Oððx� nÞ3 ln jx� njÞ; ð66Þ
where (a1, a2) are constants depending on the characteristic material length ‘. Since limx?n (x � n)n � lnjx � nj = 0 for n > 0, it is
apparent that the kernel k3(x, n) is a regular kernel (‘ > 0) in the closed interval �a 6 (x, n) 6 a.

As is standard in the DDT (see e.g. Hills et al., 1996), the unknown densities B(n) and W(n) can be written as a product of a
regular bounded function and a singular function characterizing the asymptotic behavior near the crack tips. Within the
framework of couple-stress elasticity, asymptotic analysis near a mode I crack tip (Huang et al., 1997) showed that both
the crack-face displacement uy and the rotation x behave as r1/2 in the crack tip region, where r is the polar distance from
the crack tip. Such a behavior was also corroborated by the uniqueness theorem for crack problems of couple-stress elasticity
which imposes the requirement of boundedness for both crack-tip displacement and rotation (Grentzelou and Georgiadis,
2005). Accordingly, the dislocation and the disclination densities are expressed in the following form
BðnÞ ¼ f ðnÞ=ða2 � n2Þ1=2
; WðnÞ ¼ gðnÞ=ða2 � n2Þ1=2

; ð67Þ
where f(n) and g(n) are regular bounded functions in the interval jnj 6 a. Further, in order to ensure uniqueness of the values
of the normal displacement and the rotation for a closed loop around the crack, the following closure conditions must be
satisfied (the first of them is standard in the DDT applied to classical elasticity)
Z a

�a
BðxÞdx ¼ 0;

Z a

�a
WðxÞdx ¼ 0: ð68a;bÞ
Before proceeding to the numerical solution of the system (63), it is interesting to consider two limit cases concerning the
behavior of this system w.r.t. limit values of the characteristic length ‘.

First, by letting ‘? 0, it can readily be shown that the integral equation in (63b) vanishes identically, whereas the one in
(63a) degenerates into the counterpart equation governing the mode I crack problem of classical elasticity. The latter equa-
tion is as follows
�r0 ¼
l

2pð1� mÞ

Z a

�a

BðnÞ
x� n

dn; jxj < a: ð69Þ
Secondly, we let ‘?1. Then, by multiplying (63b) with (1/‘2) and noting that
lim
‘!1

1
‘2 ln

jx� nj
‘
¼ 0; lim

‘!1

1
‘2 k2ðx; nÞ ¼ 0; lim

‘!1

1
‘

k3ðx; nÞ ¼ 0; ð70Þ
we find that the integral equation in (63b) takes the following form
Z a

�a

WðnÞ
x� n

dn ¼ 0; jxj < a; ð71Þ
which along with (67b) and the closure condition (68b) has the unique solution W(n) � 0. Now, in light of the above and
noting also that lim‘?1k1(x, n) = 0, the system (63) degenerates as ‘?1 to the following single singular integral equation
�r0 ¼
lð3� 2mÞ
2pð1� mÞ

Z a

�a

BðnÞ
x� n

dn; jxj < a; ð72Þ
Further, it can be readily be shown, that the ratio of the crack-face displacements obtained by the solutions of, respectively,
(72) (‘?1 case) and (69) (‘? 0 case) is 1/(3 � 2m). The same ratio was also obtained by Sternberg and Muki (1967) for the
mode I problem and by Gourgiotis and Georgiadis (2007) for the mode II problem in couple-stress elasticity. Of course, from
the physical point of view, the case ‘? 1 is of no interest since the characteristic length is a small quantity. Nonetheless,
the latter result for the ratio of displacements shows mathematically that there is a lower bound for the crack-face displace-
ment when ‘?1.

For the numerical solution of the system of singular integral equations in (63), the Gauss–Chebyshev quadrature pro-
posed by Erdogan and Gupta (1972) is employed, with a modification that takes into account the logarithmic kernel (details
are given in Appendix B). In particular, after the appropriate normalization over the interval [�1, 1], this system takes the
following discretized form
� r0 ¼
lð3� 2mÞ
2ð1� mÞn

Xn

i¼1

f ðsiÞ
tk � si

þ l
n

Xn

i¼1

gðsiÞ � lnðpjtk � sijÞ þ
2l
n

Xn

i¼1

f ðsiÞ � k1ðatk; asiÞ

� l
n

Xn

i¼1

gðsiÞ � k2ðatk; asiÞ þ
l
p

GnðtkÞ � TnðtkÞ
Xn

i¼1

gðsiÞ
ðtk � siÞT 0nðsiÞ

; ð73aÞ
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0 ¼ � 2l
p2n

Xn

i¼1

gðsiÞ
tk � si

þ l
n

Xn

i¼1

f ðsiÞ � lnðpjtk � sijÞ �
l
n

Xn

i¼1

f ðsiÞ � k2ðatk; asiÞ

þ l
2pn

Xn

i¼1

gðsiÞ � k3ðatk; asiÞ þ
l
p

GnðtkÞ � TnðtkÞ
Xn

i¼1

f ðsiÞ
ðtk � siÞT 0nðsiÞ

; ð73bÞ
where p = a/‘, t = x/a, s = n/a. The integration and collocation points are given, respectively, as
TnðsiÞ ¼ 0; si ¼ cos½ð2i� 1Þp=2n�; i ¼ 1; . . . ; n; ð74aÞ
Un�1ðtkÞ ¼ 0; tk ¼ cos½kp=n�; k ¼ 1; . . . ; n� 1; ð74bÞ
where Tn(x) and Un(x) are the Chebyshev polynomials of the first and second kind, respectively. The function Gn(x) in the last
term of (73a) and (73b) is the quadrature error due to the existence of the logarithmic kernel and is defined in Appendix B. In
fact, introducing this function greatly improves the speed of convergence of the solution of the above system. Now, (73a) and
(73b) together with the auxiliary conditions (68) provide an algebraic system of 2n equations in the 2n unknown functions
f(si) and g(si). A computer program was written that solved this system.

Now, some numerical results will be presented. Fig. 2 depicts the influence of the ratio a/‘ on the normal crack-face dis-
placement. It is noteworthy that as the crack length becomes comparable to the characteristic length ‘, the material exhibits
a more stiff behavior, i.e. the crack-face displacement becomes smaller in magnitude. We note further that the displacements
obtained from the classical elasticity solution are an upper bound for those obtained from the present couple-stress elasticity
solution.

Fig. 3 depicts the influence of the ratio a/‘ on the crack-face rotation. We note that as ‘? 0 the rotation in the crack-tip
vicinity tends to the unbounded limit of classical elasticity. This indicates a typical boundary layer behavior in the couple-
stress solution.

Next, the behavior of the normal stress as given by (63a) will be determined. We have
ryyðjxj > a; y ¼ 0Þ

¼ r0 þ
lð3� 2mÞ
2pð1� mÞ

Z a

�a

BðnÞ
x� n

dnþ l
pa

Z a

�a
WðnÞ � ln jx� nj

‘
dnþ 2l

pa

Z a

�a
BðnÞ � k1ðx; nÞdn� l

pa

Z a

�a
WðnÞ � k2ðx; nÞdn:

ð75Þ
Due to the symmetry of the problem (in geometry and loading) with respect to y-axis, we confine attention only to the
right crack tip. As x ? a+, the following asymptotic relations hold
Z a

�a
WðnÞ � ln jx� njdn ¼ Oð1Þ;

Z a

�a
BðnÞ � k1ðx; nÞdn ¼ Oð1Þ;

Z a

�a
WðnÞ � k2ðx; nÞdn ¼ Oð1Þ;Z a

�a

BðnÞ
x� n

dn ¼ Oððx� aÞ�1=2Þ; ðx > aÞ; ð76Þ
where the dislocation and the disclination densities are defined in (67). In view of the above, we conclude that ryy exhibits a
square root singularity at the crack tips just as in classical elasticity. Fig. 4 now depicts the distribution of the normal stress
ahead of the RHS crack tip. Normalized quantities are used and Kclas:

I denotes the stress intensity factor provided by the
Fig. 2. Normalized upper-half normal crack displacement profile. The Poisson’s ratio is m = 0.3.



Fig. 3. Normalized upper-half crack rotation. The Poisson’s ratio is m = 0.3.

Fig. 4. Distribution of the normal stress ahead of the crack tip for a/‘ = 10 and m = 0.3.
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classical elasticity solution. For convenience, a new variable �x ¼ x� a is introduced measuring distance from the RHS crack
tip. We observe that the couple-stress effects are dominant within a zone of length 2‘, whereas outside this zone ryy grad-
ually approaches the distribution given by the classical solution. It is also noted that the normal stress ryy in (75) depends
not only upon the ratio a/‘ but also upon the Poisson’s ratio m. This was also observed by Sternberg and Muki (1967).

Fig. 5 depicts the variation of the ratio KI=Kclas:
I with ‘/a for three different values of the Poisson’s ratio. The stress intensity

factor in couple-stress elasticity is defined as KI ¼ limx!aþ ½2pðx� aÞ�1=2ryyðx;0Þ with ryy(x, 0) being given by (75). It is ob-
served that for a material with a/‘ = 20 and Poisson’s ratio m = 0.5, there is a 18% increase in the stress intensity factor when
couple-stress effects are taken into account, while for m = 0.25 and m = 0 the increase becomes 24.3% and 29.5%, respectively.
It should be noted that when ‘/a = 0 (no couple-stress effects) the above ratio should evidently become KI=Kclas:

I ¼ 1. There-
fore, the stress-ratio plotted in Fig. 5 exhibits a finite jump discontinuity at the limit ‘/a = 0; the ratio at the tip of the crack
rises abruptly as ‘/a departs from zero. The same discontinuity was observed by Sternberg and Muki (1967), who attributed
this behavior to the severe boundary layer effects of couple-stress elasticity in singular stress-concentration problems. Final-
ly, it is noted that the ratio decreases monotonically with increasing values of ‘/a and tends to unity as ‘/a ?1.

The behavior of the couple-stress myz will be examined next. From the previous analysis, we have
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myzðjxj > a; y ¼ 0Þ

¼ �2l‘2

pa

Z a

�a

WðnÞ
x� n

dnþ l
p

Z a

�a
BðnÞ � ln jx� nj

‘
dn� l

p

Z a

�a
BðnÞ � k2ðx; nÞdnþ l‘

2pa

Z a

�a
WðnÞ � k3ðx; nÞdn: ð77Þ
Focusing attention again to the RHS crack tip, the following asymptotic relations for x ? a+ were found to hold (x > a)
Z a

�a
BðnÞ � ln jx� njdn ¼ Oð1Þ;

Z a

�a
BðnÞ � k2ðx; nÞdn ¼ Oð1Þ;

Z a

�a
WðnÞ � k3ðx; nÞdn ¼ Oð1Þ;

Z a

�a

WðnÞ
x� n

dn ¼ Oððx� aÞ�1=2Þ;

ð78a-dÞ
which leads us to the conclusion that the couple-stress myz behaves like 	 �x�1=2 in the vicinity of the crack-tip (the variable
�x ¼ x� a measures distance from the RHS crack tip). This is in agreement with the asymptotic results of Huang et al. (1997).

Fig. 6 depicts (with the use of normalized quantities) the distribution of the couple-stress ahead of the RHS crack tip. It
should further be noted that the stresses and couple-stresses at any point of the cracked body can be evaluated through inte-
gration along the crack-faces of Eqs. (A7)–(A12) (see Appendix A), once the dislocation and disclination densities are known.
The latter equations are the full-field Green’s functions for the mode I crack problem in couple-stress elasticity.

7. Evaluation of the J-integral

In this Section, we evaluate the J-integral (energy release rate) of Fracture Mechanics and examine its dependence upon
the ratio of lengths ‘/a and the Poisson’s ratio m. The path-independent J-integral within couple-stress elasticity was first
established by Atkinson and Leppington (1974) (see also Atkinson and Leppington, 1977; Lubarda and Markenskoff, 2000)
and is written as
J ¼
Z

C
Wnx � Tq

ouq

ox
�Mq

oxq

ox

� �
dC ¼

Z
C

Wnx � Pq
ouq

ox
� Rq

oxq

ox

� �
dC ¼

Z
C

Wdy� Pq
ouq

ox
þ Rq

oxq

ox

� �
dC

� �
; ð79Þ
where C is a piece-wise smooth simple two-dimensional contour surrounding the crack-tip, W is the strain-energy density,
uq is the displacement vector, xq is the rotation vector, (Tq, Mq) are the tractions defined in (3) and (4), and (Pq, Rq) are the
reduced force-traction and the tangential couple-traction defined in (18) and (19).

For the evaluation of the J-integral, we consider the rectangular-shaped contour C (surrounding the RHS crack-tip) with
vanishing ‘height’ along the y-direction and with e ? + 0 (see Fig. 7). Such a contour was first introduced by Freund (1972) in
examining the energy flux into the tip of a rapidly extending crack and it was proved particularly convenient in computing
energy quantities in the vicinity of crack tips (see e.g. Burridge, 1976; Georgiadis, 2003). In fact, this type of contour permits
using solely the asymptotic near-tip stress and displacement fields. It is noted that upon this choice of contour, the integralR

C Wdy in (79) becomes zero if we allow the ‘height’ of the rectangle to vanish. In this way, the expression for the J-integral
becomes
J ¼ �2 lim
e!þ0

Z aþe

a�e
Pq

ouq

ox
þ Rq

oxq

ox

� �
dx

� �
: ð80Þ
Further, we take into account that in the mode I case the shear stress ryx is zero along the crack line (y = 0) and the crack-
faces are defined by n = (0, ± 1). Then, the J-integral gets the following form
Fig. 5. Variation of the ratio of stress intensity factors in couple-stress elasticity and classical elasticity with ‘/a.



Fig. 6. Distribution of couple-stress ahead of the crack tip for a/‘ = 10 and m = 0.3.

Fig. 7. Rectangular-shaped contour surrounding the RHS crack-tip.
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J ¼ �2 lim
e!þ0

Z aþe

a�e
ryyðx; y ¼ 0þÞ � ouyðx; y ¼ 0þÞ

ox
þmyzðx; y ¼ 0þÞ � oxðx; y ¼ 0þÞ

ox

� �
dx

� �
: ð81Þ
Now, the dominant singular behavior (in the vicinity of the crack-tip) of the normal stress ryy and the couple-stress myz is
due to the Cauchy integrals in (75) and (77), respectively. These stresses are written as
ryyðx! aþ; y ¼ 0þÞ ¼ lim
x!aþ

lð3� 2mÞ
2pð1� mÞ

Z a

�a

BðnÞ
x� n

dn ¼ lim
t!1þ

lð3� 2mÞ
2pð1� mÞ

Z 1

�1

f ðsÞ
ð1� s2Þ1=2ðt � sÞ

ds

¼lð3� 2mÞ
2ð1� mÞ

f ð1Þ
21=2 � ðt � 1Þ�1=2

; ðt > 1Þ; ð82Þ

myzðx! aþ; y ¼ 0þÞ ¼ � lim
x!aþ

2l‘2

pa

Z a

�a

WðnÞ
x� n

dn ¼ � lim
t!1þ

2l‘2

pa

Z 1

�1

gðsÞ
ð1� s2Þ1=2ðt � sÞ

ds

¼� 2l‘2

a
gð1Þ
21=2 � ðt � 1Þ�1=2

; ðt > 1Þ: ð83Þ
The regular functions f(s) and g(s) were defined in (67) and their values at the crack-tips (t = ± 1) can be evaluated by the
use of Krenk’s interpolation technique (Krenk, 1975). Also, the limits of the integrals in (82) and (83) are obtained by the use
of the following asymptotic relation (see e.g. Muskhelishvili, 1958)
lim
t!1þ

Z 1

�1

hðsÞ
ð1� s2Þ1=2ðt � sÞ

ds ¼ p
21=2 hð1Þðt � 1Þ�1=2

; ðt > 1Þ; ð84Þ
where h(s) is a regular bounded function in the interval jsj 6 1.
Also, in view of the definitions in (64), the following asymptotic relations are established



Fig. 8. Variation of the ratio of the J-integral in couple-stress elasticity and in classical elasticity with ‘/a.
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ouyðx! a�; y ¼ 0þÞ
ox

¼ �1
2

lim
x!a�

BðxÞ ¼ �1
2

f ð1Þ
21=2 ð1� tÞ�1=2

; ðt < 1Þ; ð85Þ

oxðx! a�; y ¼ 0þÞ
ox

¼ 1
2a

lim
x!a�

WðxÞ ¼ 1
2a

gð1Þ
21=2 ð1� tÞ�1=2

; ðt < 1Þ; ð86Þ
Then, the above results allow us to write the J-integral as
J ¼� 2a lim
e!0

�lð3� 2mÞ
8

f 2ð1Þ �
Z e=a

�e=a
ðtþÞ�1=2 � ðt�Þ�1=2d�t � l

2
‘

a

� �2

g2ð1Þ �
Z e=a

�e=a
ðtþÞ�1=2 � ðt�Þ�1=2d�t

( )

¼lp
2

a
ð3� 2mÞ

4
f 2ð1Þ þ ‘

a

� �2

g2ð1Þ
( )

; ð87Þ
where �t ¼ t � 1 and, for any real k with the exception of k = �1, � 2, � 3, . . ., the following definitions of the distributions (of
the bisection type) tk

þ and tk
� are employed (see e.g. Gelfand and Shilov, 1964)
tk
þ ¼

j�tjk; for �t > 0
0; for �t < 0

(
and tk

� ¼
0; for �t > 0
j�tjk; for �t < 0

�
: ð88a;bÞ
It is further noted that the product of distributions inside the integrals in (87) is obtained here by the use of Fisher’s the-
orem (Fisher, 1971), i.e. the operational relation ðtþÞ�1�kðt�Þk ¼ �pdð�tÞ½2 sinðpkÞ��1 with k 6¼ �1,�2,�3,. . . and d(t) being the
Dirac delta distribution. Use is also made of the fundamental property of the Dirac delta distribution that

R e
�e dðtÞdt ¼ 1.

From the above analysis, we were able to evaluate the J-integral. Our results are shown graphically in Fig. 8. The graph
depicts the dependence of the ratio J/Jclas. upon the ratio of lengths ‘/a for three different values of the Poisson’s ratio of the
material. Jclas: � pð1� m2Þr2

0a=E is the respective integral in classical elasticity (see e.g. Rice, 1968). The calculations show
that as ‘/a ? 0, the J-integral in couple-stress elasticity tends continuously to its counterpart in classical elasticity. This
behavior was previously observed by Atkinson and Leppington (1977), who followed a different analysis than the present
one. Also, J < Jclas. for ‘ 6¼ 0. The latter result seems to be a consequence of the fact that the crack-face displacements and rota-
tions (see Figs. 2 and 3) are significantly smaller than the respective ones in classical theory. This not only compensates the
increase of the normal stress ahead of the crack-tip (this stress aggravation in couple-stress elasticity is shown in Fig. 4), but
it results evidently in an overall decrease of the energy release rate when couple-stress effects are taken into account. We
also found that J/Jclas. decreases monotonically with increasing values of ‘/a and tends to the limit 1/(3 � 2m) as ‘/a ?1.

8. Concluding remarks

In this paper, the technique of distributed dislocations was extended in couple-stress elasticity for the solution of the
mode I crack problem. Contrary to classical elasticity where a distribution of climb dislocations suffices to model the mode
I crack problem, here (due to the nature of the boundary conditions that arise in couple-stress elasticity) introducing an addi-
tional discontinuity (the so-called constrained wedge disclination) was necessary to solve the problem. Considering a con-
tinuous distribution of climb dislocations and constrained wedge disclinations along the crack faces results in a coupled
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system of singular integral equations with both Cauchy-type and logarithmic kernels. This system of equations was solved
numerically and a full-field solution was obtained.

The proposed technique provides for crack problems an efficient alternative to the elaborate analytical method of dual
integral equations and the numerical methods of Finite and Boundary Elements. Especially with the latter two methods,
one may encounter difficulties when dealing with crack problems in generalized continua. Also, the proposed technique
is appropriate for problems with finite-length cracks where the standard Wiener–Hopf technique meets with serious diffi-
culties (the Wiener–Hopf technique suits better problems with semi-infinite cracks). The present approach has the advan-
tage that it provides results not only restricted to the near-tip region – it may give full-field results.

The present results indicate that the material microstructure of the couple-stress type has generally rigidity (smaller
crack-face displacements and rotations) and strengthening (stress aggravation ahead of the crack-tip) effects. In particular,
the crack-face displacement becomes significantly smaller than that in classical elasticity, when the crack length 2a is com-
parable to the characteristic length ‘ of the material (it decreases about 30% for a/‘ = 5). Also, it is observed that the stress
intensity factor KI is higher than the one predicted by classical elasticity. In particular, for a material with a/‘ = 20 and Pois-
son’s ratio m = 0.25 there is a 24.3% increase when couple-stress effects are taken into account, whereas for m = 0 and m = 0.5
the increase is 29.5% and 18%, respectively. Finally, the J-integral in couple-stress elasticity tends continuously to its coun-
terpart in classical elasticity as ‘/a ? 0. For ‘ 6¼ 0, a decrease of its value is noticed in comparison with the classical theory
and this indicates that the rigidity effect dominates over the strengthening effect in the energy release rate. The J-integral
decreases monotonically with increasing values of ‘/a and tends to a certain limit as ‘/a ?1.

Acknowledgement

The authors are grateful to Prof. G. Tsamasphyros (NTU Athens) for discussions on integral equation methods. Also, P.A.
Gourgiotis acknowledges with thanks support from the State Scholarship Foundation of Greece (IKY).

Appendix A. Displacements and stresses for a climb dislocation and a constrained wedge disclination

In this Appendix, we derive the displacement, rotation, stress and couple-stress fields due to a discrete climb dislocation
and a discrete constrained wedge disclination situated at the origin of a full space in a material governed by plane-strain
couple-stress elasticity. The fields apply for any point (not only along the line y = 0) of the full space.

Using the Fourier inversion formula in (42b), we obtain from (59) the following integral representation of the displace-
ment field for a climb dislocation and a constrained wedge disclination
uxðx; yÞ ¼
b

4pð1� mÞ

Z 1

0
�ð1� 2mÞ

n
þ y

� �
e�yn cosðnxÞdn� b‘2

p

Z 1

0
ne�yn cosðnxÞdn

þ b‘
p

Z 1

0
ð1þ ‘2n2Þ1=2e�

yð1þ‘2n2Þ1=2

‘ cosðnxÞdn�X‘2

p

Z 1

0
e�yn sinðnxÞdn

þX‘
p

Z 1

0

ð1þ ‘2n2Þ1=2

n
e�

yð1þ‘2n2Þ1=2

‘ sinðnxÞdn; ðA1Þ

uyðx; yÞ ¼ �
b
p

Z 1

0

1
2n
þ y

4ð1� mÞ

� �
e�yn sinðnxÞdnþ b‘2

p

Z 1

0
ne�yn sinðnxÞdn

� b‘2

p

Z 1

0
ne�

yð1þ‘2n2 Þ1=2

‘ sinðnxÞdn�X‘2

p

Z 1

0
e�yn cosðnxÞdn

þX‘2

p

Z 1

0
e�

yð1þ‘2n2 Þ1=2

‘ cosðnxÞdn: ðA2Þ
The above integrals are computed by invoking results from the theory of distributions (see e.g. Zemanian, 1965; Roos,
1969). In particular, we have
I1 �
Z 1

0

e�yn

n
sinðnxÞdn ¼ tan�1ðx=yÞ; I2 �

Z 1

0
e�yn cosðnxÞdn ¼ y

r2 ;

I3 �
Z 1

0
e�yn sinðnxÞdn ¼ x

r2 ; I4 �
Z 1

0
ne�yn cosðnxÞdn ¼ y2 � x2

r4 ;

I5 �
Z 1

0
ne�yn sinðnxÞdn ¼ 2xy

r4 ; I6 �
Z 1

0
e�

yð1þ‘2n2Þ1=2

‘ cosðnxÞdn ¼ yK1ðr=‘Þ
r‘

;

I7 �
Z 1

0
ne�

yð1þ‘2n2 Þ1=2

‘ sinðnxÞdn ¼ � o

ox
ðI6Þ ¼

xy
r2‘2 K2ðr=‘Þ;

I8 �
Z 1

0
ð1þ ‘2n2Þ1=2e�

yð1þ‘2n2 Þ1=2

‘ cosðnxÞdn ¼ �‘ o

oy
ðI6Þ ¼

y2K2ðr=‘Þ
r2‘

� K1ðr=‘Þ
r

;

I9 �
Z 1

0

e�yn

n
cosðnxÞdn ¼ �1

2
lnðx2 þ y2Þ � c; I10 �

Z 1

0

1
n

e�
yð1þ‘2n2 Þ1=2

‘ sinðnxÞdn;

I11 �
Z 1

0

ð1þ ‘2n2Þ1=2

n
e�

yð1þ‘2n2Þ1=2

‘ sinðnxÞdn ¼ �‘ o
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ðI10Þ;
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where c is Euler’s constant, r = (x2 + y2)1/2, and Ki(x/‘) is the i-th order modified Bessel function of the second kind. Integrals Im

(m = 1, 2, . . .,9) were obtained in closed form but integrals I10 and I11 have to be evaluated numerically. In view of the above,
the displacement field reads finally
uxðx; yÞ ¼
bð1� 2mÞ
4pð1� mÞ lnðrÞ þ bðy2 � x2Þ

8pð1� mÞr2 þ
bðy2 � x2Þ

2pr2 K2ðr=‘Þ �
2‘2

r2

" #
þ b

2p
K0ðr=‘Þ

�X‘2x
r2 þ

X‘
p

I11 þ
Xy
4
; ðA3Þ

uyðx; yÞ ¼
b

2p
h� bxy

4pð1� mÞr2 �
bxy
pr2 K2ðr=‘Þ �

2‘2

r2

" #
þXy

2p
K2ðr=‘Þ �

2‘2

r2

" #

�Xy
2p

K0ðr=‘Þ �
Xx
4
: ðA4Þ
Further, the rotation is given as
xðx; yÞ ¼ by

4p‘2 K2ðr=‘Þ �
2‘2

r2

" #
� by

4p‘2 K0ðr=‘Þ þ
X
2p

I10 �
X
4
: ðA5Þ
It is noted that the rotation in (A5) is discontinuous at y = 0 due to the integral I10. To show this, we expand the integrand
of I10 in series as n ?1, i.e.
ð1=nÞe�
yð1þ‘2n2 Þ1=2

‘ ¼ e�yn½ð1=nÞ � y=ð2n2‘2Þ þ y2=ð8‘4n3Þ þ . . .�: ðA6Þ
Then, the inverse Fourier sine transform of the first term in the above series is given by I1 and it is clearly discontinuous at
y = 0 while all the other terms do not contribute at y = 0. On the other hand, it can readily be seen that the part of the normal
displacement in Eq. (A4) due to the constrained wedge disclination is everywhere continuous. Thus, it is apparent that the
discontinuity in the rotation does not affect the normal displacement in the case of a constrained wedge disclination. Finally,
we note that a rigid body translation b/4 and a rigid body rotation �X/4 have been added in (A4) and (A5), respectively, in
order to have zero normal displacement and rotation at y = 0+, x > 0.

The stress and couple-stress field can now be obtained using (A3)–(A5). In particular, we have
myzðx; yÞ ¼
lb
p
ðx2 � y2Þ

r2 K2ðr=‘Þ �
2‘2

r2

" #
� lb

p
K0ðr=‘Þ �

2l‘X
p

I11; ðA7Þ

mxzðx; yÞ ¼ �
2lb
p

xy
r2 K2ðr=‘Þ �

2‘2

r2

" #
þ lX

p
y½K2ðr=‘Þ � K0ðr=‘Þ�; ðA8Þ
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r4 þ 2lbx
p
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" #
� lX

p
K0ðr=‘Þ; ðA9Þ
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lbx
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p
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xy2
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pr2 K2ðr=‘Þ �
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" #
þ lX

p
K0ðr=‘Þ; ðA10Þ

ryxðx; yÞ ¼
lb

2pð1� mÞ
yðx2 � y2Þ

r4 þ 2lb
p

yð3x2 � y2Þ
r4 K2ðr=‘Þ �

2‘2

r2

" #
þ lb

2p‘2 y½K2ðr=‘Þ � K0ðr=‘Þ�

� 2lX
p

yx
r2 K2ðr=‘Þ �

2‘2

r2

" #
; ðA11Þ

rxyðx; yÞ ¼ ryxðx; yÞ � 4l‘2r2x: ðA12Þ
The above expressions are the full-field Green’s functions for the mode I problem. Further, it is worth noting that when
y = 0 (imagined crack-line), the integral I11 can be evaluated analytically in the finite-part sense (see e.g. Zemanian, 1965;
Roos, 1969) as
Z 1

0

ð1þ ‘2n2Þ1=2

n
sinðnxÞdn ¼ �1

4
sgnðxÞ � G2;1

1;3
x2

4‘2

����1�1=2;1=2;0

� �
; ðA13Þ
where Ga;b
c;dðÞ is the MeijerG function. Thus, the Green’s functions for the mode I crack problem can be obtained in closed form

(Eqs. (60) and (61) of the main body of the paper).
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Appendix B. Derivation of the quadrature for the integral with the logarithmic kernel

Consider the weakly singular integral
IðtÞ ¼
Z 1

�1
f ðsÞ � ð1� s2Þ�1=2 lnðpjt � sjÞds; ðB1Þ
where f(s) is a continuous bounded function in jsj 6 1 and p is a positive constant. Now, (B1) can be written as follows (The-
ocaris et al., 1980)
IðtÞ ¼
Z 1

�1
Rðs; tÞ � ð1� s2Þ�1=2dsþ f ðtÞ

Z 1

�1
ð1� s2Þ�1=2 lnðpjt � sjÞds; ðB2Þ
where R(s, t) = [f(s) � f(t)] � ln(pjt � sj) is a bounded function in the interval �1 6 (s, t) 6 1. The Gauss–Chebyshev quadrature
rule is employed for the evaluation of the first integral in (B2), whereas the second integral can be evaluated in closed form.
In light of the above, we obtain
IðtÞ ffi p
n

Xn

i¼1

Rðsi; tÞ þ p lnðp=2Þf ðtÞ ¼ p
n

Xn

i¼1

f ðsiÞ � lnðpjt � sijÞ þ f ðtÞ � GnðtÞ; ðB3Þ
where GnðtÞ ¼ � p
n

Pn
i¼1 lnðpjt � sijÞ þ p lnðp=2Þ and the integration points are given as the zeros of the Chebyshev polynomial

Tn(s), i.e. si = cos [(2i � 1)p/2n], i = 1, 2, . . .,n.
One further step is needed which would lead to the evaluation of the RHS of (B3) only at n points si:Tn(si) = 0. This can be

done with the aid of the Lagrange interpolation formula, which is exact within the class of polynomials chosen to represent
f(t), i.e.
f ðtÞ ¼
Xn

i¼1

TnðtÞ
T 0nðsiÞ � ðt � siÞ

f ðsiÞ: ðB4Þ
Integral I(t) takes now the discretized form
IðtÞ ffi p
n

Xn

i¼1

f ðsiÞ � lnðpjt � sijÞ þ GnðtÞ � TnðtÞ
Xn

i¼1

f ðsiÞ
T 0nðsiÞ � ðt � siÞ

; si ¼ cos½ð2i� 1Þp=2n�: ðB5Þ
Finally, we note that, in the system of singular integral Eqs. (73), prescribed collocation points in (B5) have been chosen,
i.e. the zeros of the Chebyshev polynomial Un�1(t): tk = cos (kp/n), k = 1, 2, . . .,n � 1, in order for us to be consistent with the
numerical quadrature that was employed for the Cauchy-type singular integrals. We note that another type of quadrature
using arbitrary collocation points for the solution of integral equations with logarithmic singularities was proposed by Chrys-
akis and Tsamasphyros (1992).
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