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Cylindrical shells under uniaxial compression and spherical shells under equi-biaxial compression dis-
play the most extreme buckling sensitivity to imperfections. In engineering practice, the reduction of load
carrying capacity due to imperfections is usually addressed by use of a knockdown factor to lower the
critical buckling stress estimated or computed without accounting for imperfections. For thin elastic
cylindrical shells under uniaxial compression and spherical shells under equi-biaxial compression, the
knockdown factor is typically as small as 0.2. This paper explores the alleviation of imperfection-sensi-
tivity for loadings with a reduced circumferential (transverse) membrane stress component. The analysis
of Koiter (1963) on the effect of an axisymmetric imperfection on the elastic buckling of a cylindrical shell
under uniaxial compression is extended to both cylinders and spheres for loadings that produce general
combinations of biaxial membrane stresses. Increases in the knockdown factor due to a reduction of the
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transverse membrane component are remarkably similar for cylindrical and spherical shells.
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1. Introduction

Design of structures comprising thin cylindrical and spherical
shells subject to compressive membrane stresses makes use of a
knockdown factor, a, to account for the fact that imperfections
can reduce the compressive stress at buckling to a small fraction
of the critical stress at which the perfect shell buckles. For all the
cases considered in this paper, the relevant compressive stress at
buckling of the imperfect shell is given by

01 = 00¢ (1)

where o is the critical compressive stress component in the 1-
direction of the perfect shell. Cylindrical shells under uniaxial com-
pression and spherical shells under equi-biaxial compression are
the most imperfection-sensitive of all shell structure/loading com-
binations. As established by Koiter (1945, 2009), their extreme sen-
sitivity is due to the nonlinear post-buckling interaction among the
many simultaneous buckling modes associated with buckling of the
perfect structure. By far, the most information is available for
knockdown factors for cylindrical shells under uniaxial compres-
sion based on experimental data collected by NASA (1965). Data
assembled by Seide et al. (1960) is plotted in Fig. 1 as « versus
the shell radius to thickness ratio, R/t. Very thin elastic cylindrical
shells under uniaxial compression buckle at stresses as low as
o 2 0.2, and possibly even lower for R/t > 1500. The body of exper-
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imental data for spherical shells under external pressure (equi-biax-
ial compression) is much smaller. However, due to similarity with
the cylindrical shell under axial compression noted above and the
data that does exist, it has been common practice to adopt the
knockdown factor for cylindrical shells plotted in Fig. 1 for the
spherical shells under equi-biaxial compression.

The issue addressed in this paper is the extent to which imper-
fection-sensitivity of elastic buckling is alleviated by loadings
which alter the circumferential (transverse) membrane stress com-
ponent. Throughout this paper, ¢; and ¢, denote the membrane
stresses in the axial and circumferential directions (Fig. 2), taken po-
sitive in compression. For a perfect cylinder, ¢, is proportional to the
axial load and o is related to an external pressure, p, by 62 = pR/t.
For perfect spherical shell segments, the membrane stresses de-
pend on the combination of axial load (and possibly transverse
load) and external pressure, p, such that ¢, + ¢, = pR/t for all com-
binations. A spherical shell loaded solely by external pressure has
equi-biaxial compression (i.e., 6; = g, = pR/2t). A spherical equa-
torial segment (a belt-line segment) loaded only by a compressive
axial load, P, has axial compression and circumferential tension
with g1 = —g, = P/(27mRt). For imperfect cylindrical and spherical
shells, there will be short wavelength spatial variations in the mem-
brane stresses, but their average values are the same as for the per-
fect shells. Consequently, throughout this paper, o; and o, can be
regarded as the values associated with loads on the perfect shell
whether the shell is perfect or not.

In all cases considered here, o is the largest compressive com-
ponent such that it drives buckling. Attention is limited to loadings
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Fig. 1. Experimental data on the knockdown factor plotted against the radius to
thickness ratio, R/t, for cylindrical shells under uniaxial compression. Reproduced
from the report of Seide et al. (1960) who assembled the data for shells from various
sources. Included in the figure is the empirical NASA (1965) recommendation for
the knockdown factor for cylinders under uniaxial compression: o=1-—
0.901(1 — e~ ®/0/16),
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Fig. 2. (a) Cylindrical and (b) spherical shell segments. (c) Interaction between the
axisymmetric deformations associated with the initial imperfection and the non-
axisymmetric bifurcation mode.

that produce circumferential tension in the cylindrical shell
(02 < 0) and that reduce circumferential compression in the spher-
ical shell (o, < ¢7). Commonly encountered loadings produce
these reductions, as will be illustrated later. Experiment (Seide
et al., 1960; Limam et al., 1991; Mathon and Limam, 2006) and the-
ory (Hutchinson, 1965; Rotter and Zhang, 1990; Teng and Rotter,
1992) have revealed that the knockdown is less severe for axial
buckling of cylindrical shells under internal pressure. One set of
tests on spherical shell segments by Yao (1963) discussed later also
reveals reduced imperfection-sensitivity when the loading pro-
duces reduced transverse stress. Efforts are underway by both
ASME and NASA to refine the knockdown prescriptions as a func-
tion of the circumferential membrane stress to take advantage of
the reduced imperfection-sensitivity. For the ranges of ¢, consid-
ered here, for both the cylindrical shell and the spherical shell,
0> has no effect on the buckling stress of the perfect shell:

E t
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(2)

with E as Young’s modulus and v as Poisson’s ratio (cf. analysis in
Section 3).

For the ranges of ¢, considered in this paper, the deflection nor-
mal to the shell associated with the buckling mode of the perfect
shell has the form (away from the ends of the cylinder or away
from the boundaries of a spherical segment)

X1 1/4 (R 172
W = ¢t cos <q§> with g = [12(1 - v?)] <?> (3)

with ¢ as the buckling amplitude. For thin shells, the wavelength of
this mode,

¢=2mR/q = (338/(1-v*)"*) VRe, (4)

is short compared to the shell radius. For a full cylindrical shell, the
mode in (3) is axisymmetric, as in the analysis by Koiter (1963) for
uniaxial compression. It also applies to a “large” circumferential
segment of a cylindrical shell away from the boundaries as long
as the boundary edges are well supported. Large in this context
means that the circumferential width and axial height of the seg-
ment are both large compared to 4. Similarly, (3) is an axisymmetric
mode for a full equatorial segment of a spherical shell (Fig. 2b)
whose height, H, is large compared to ¢ but such that the shell is still
shallow in the axial direction, i.e., H/(2R) not larger than about 1/2.
The mode (3) also represents the buckling deflection away from
adequately supported edges for any “large” shallow segment of a
sphere whose dimensions are large compared to ¢, as discussed by
Hutchinson (1967).

2. Buckling strength reduction due to an axisymmetric
imperfection

An imperfection in the form of a normal displacement, W, of the
shell middle surface is considered. Following Koiter (1963) for the
cylinder and Hutchinson (1967) for the sphere, an imperfection in
the shape of the buckling mode (3) is assumed:

W = ¢tcos (q%) (5)
with ¢ as the normalized imperfection amplitude. As just discussed,
(5) can be viewed as an axisymmetric imperfection for full circum-
ferential shell segments or as a local imperfection varying in only
the x;-direction in a sufficiently large shell segment (that is also
shallow in the case of the sphere). For simplicity, the imperfection
(5) will be referred to as being axisymmetric and the associated
pre-buckling deflections of the loaded shell will also be referred
to as axisymmetric in the sequel. The shells, or shell segments,
are assumed to meet the conditions described in the previous sec-
tion with regard to their dimensions. It is also assumed that the
support conditions are sufficiently strong such that buckling is
dominated by the imperfection and not by a weakly supported
edge.

With due regard for readers not interested in the details of the
analysis, the results for the knockdown factor will be presented in
this section followed by presentation of details in Section 3. Never-
theless, a brief outline of the analysis, following the steps laid out
by Koiter (1963), is described because it highlights the validity of
the predictions.

(i) Given the imperfection (5), an exact axisymmetric solution
to the Donnell-Mushtari-Vlassov (DMV) nonlinear shell
equations is obtained.

(ii) Bifurcation from the axisymmetric state is determined in the
form of a non-axisymmetric mode,

_ . 1 X1 . X2
w = At sin (Eqﬁ) sin (W/qi), (6)
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where y is a minimization parameter in the analysis that sets
the wavelength in the circumferential direction.

(iii) While the bifurcation mode (6) is not exact, the analysis car-
ried out ensures that the prediction for the knockdown fac-
tor, «, is both accurate and an upper-bound for the
prescribed imperfection.

Insight into the selection of the bifurcation mode (6) was pro-
vided by Koiter (1963, 2009) and repeated here in Fig. 2c. In the
axisymmetric state, the loaded imperfect shell experiences alter-
nating compressive (+) and tensile (—) enhancements of the cir-
cumferential membrane stress, as noted in Fig. 2c, depending on
whether the deflection is inward or outward. Compressive
enhancement favors circumferential variations in non-axisymmet-
ric bifurcation mode while tensile enhancement discourages such
variations. Thus, the axial wavelength of the bifurcation mode is
exactly twice that of the axisymmetric deformation with the asso-
ciated deflection phased such that the circumferential nodal lines
coincide with the peaks of enhanced tension. The largest circum-
ferential variations align with regions of enhanced compression.
In many cases, but depending on the way the loads are applied
and the imperfection amplitude, the post-bifurcation interaction
of the axisymmetric and non-axisymmetric deflections gives rise
to dynamic snap buckling at bifurcation (Budiansky and Hutchin-
son, 1972).

The knockdown factors for the cylindrical shell under uniaxial
compression and the spherical under equi-biaxial compression
based on the results of Section 3 are plotted as a function of the
normalized imperfection amplitude in Fig. 3. Plotted in this man-
ner, the curves are independent of v. The curve for cylindrical shells
was originally given by Koiter (1963) and the curve for spherical
shells was given by Hutchinson (1967). Based on asymptotic meth-
ods for small imperfections, these authors also established that the
axisymmetric imperfection (5) gives rise to knockdowns that are
the largest for the cylinder, and almost the largest for the sphere,
among all competing imperfections with the same amplitude.
The extreme sensitivity to the geometric imperfection of the mid-
dle surface of these two shells under their respective loadings is
evident. The fact that the sensitivity of the cylindrical and spherical
shells is nearly the same for the imperfection (5) provides some
justification for the common practice of applying knockdown fac-
tors based on experimental data for cylindrical shell under uniaxial
compression to the spherical shell under equi-biaxial compression.
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Fig. 3. Imperfection-sensitivity of cylindrical shells under uniaxial compression and
spherical shells under external pressure (equi-biaxial compression) based on
axisymmetric imperfections (5).

The effect of a circumferential membrane stress component
that departs from uniaxial compression for the cylinder or from
equi-biaxial compression for the sphere is shown in Fig. 4. This fig-
ure plots four sets of curves with one for the cylinder and the other
for the sphere in each set. For each set of paired curves, the normal-
ized imperfection amplitude, /(T — v2)¢, is chosen such that the
knockdown factor, o, for the cylinder under uniaxial compression
(0, = 0) and that for the sphere under equi-biaxial compression
(02 = 1) coincide. The abscissa in Fig. 4 is taken as the normalized
decrease in the circumferential membrane component from the
uniaxial state for the cylinder, measured by 0,/01, and from the
equi-biaxial state for the sphere, measured by 7,/0; — 1.

It is particularly striking in Fig. 4 that the effect on the knock-
down factor of the decrease in the circumferential membrane stress
is almost the same for the two shell structures. This observation pro-
vides further justification and guidance for using experimental
data obtained from cylindrical shell compression tests to assign
knockdown factors to spherical shells, especially since data for
cylindrical shells is more readily acquired that the corresponding
data for spherical shells.

It is also evident from Fig. 4 that a reduction in the compressive
circumferential membrane stress lowers the imperfection-sensi-
tivity, the primary concern of this paper. If one assumes that the
results in Fig. 4 are accurate for the prescribed axisymmetric
imperfection, then it can be argued that they should provide a con-
servative prediction for the increase in knockdown factor above the
values for uniaxial compression for the cylinder and equi-biaxial
compression for the sphere.

The argument for the conservatism follows from the fact that,
while 6, has no effect on pre-buckling behavior for axisymmetric
imperfections, o, diminishes pre-buckling deflections for non-axi-
symmetric imperfections - in effect, smoothing out the circumfer-
ential variations (assuming circumferential tension for the cylinder
and reduced circumferential compression, or tension, for the
sphere). Thus, the knockdown factor based on non-axisymmetric
imperfections increases more rapidly with reduction in ¢, than

-3 -25 -2 -1.5 -1 05 0
c,/o for cylinder (—)
o,/0,—1 forsphere (-—-)

Fig. 4. The effect of a reduction in circumferential (transverse) membrane stress on
the knockdown factor for cylindrical and spherical shells with an axisymmetric
imperfection (5). The membrane stresses, ¢, and g,, are taken positive in
compression. For each of the four pairs of curves, the normalized imperfection
amplitude, /(1 —v2)¢, is chosen separately for the cylinder and the sphere such
that the respective values of o coincide at the ordinate on the right. For the cylinder
curves, from bottom up: /(1 —v2)¢& = 0.924, 0.329, 0.250 and 0.147. The corre-
sponding values for the sphere are: 0.843, 0.475, 0.296 and 0.183. The curves are
independent of v.
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for axisymmetric imperfections. This was established for cylindri-
cal shells by Hutchinson (1965) using asymptotic methods for
small imperfections. More recently, this point was emphasized
by Teng and Rotter (1992) who also studied the effect of pressure
for a variety of axisymmetric imperfection shapes using finite ele-
ment simulations. It is not possible to carry out an analysis such as
that in Section 3 for the g,-dependence of « for non-axisymmetric
imperfections without resorting to nonlinear finite element com-
putations. Such an analysis would almost certainly produce a more
rapid increase of o with decreases in g, than those in Fig. 4. Nev-
ertheless, it remains true that any shell dominated by axisymmet-
ric imperfections would be expected to approximately follow the
trends in Fig. 4 as is also evident in the results of Teng and Rotter
(1992).

An illustration of a loading case that produces reduced circum-
ferential membrane stress is provided by the tests on spherical
shell segments conducted by Yao (1963). Yao subjected clamped
fully circumferential spherical shell segments to an overall axial
tensile load, P, with no normal pressure applied to the shell. These
shell segments experienced a tensile axial membrane stress
P/(2mRt) and an equal and opposite compressive circumferential
stress. Thus, in the present notation with the axial and circumfer-
ential directions interchanged, Yao's tests have 0,/07 = —1. The
range of the experimentally measured knockdown in Yao’s tests
is plotted in Fig. 5. The seven shells tested by Yao had R/t ranging
from 455 to 1600 with the ratio of the experimental to the theoret-
ical buckling loads ranging from 0.38 to 0.67. Stress estimates indi-
cated that the shells all buckled in the elastic range. Two shells
buckled at o = 0.38, including one shell with R/t = 476. The imper-
fection associated with the theoretical curve in Fig. 5 has been set
at /(1 —v2)¢& = 0.843 such that the spherical shell under equi-
biaxial compression buckles at « = 0.2, consistent with the factor
commonly used for the range of R/t for Yao's shells (cf., Fig. 1).

A large body of experimental data for spherical shells under
loadings other than equi-biaxial compression does not exist, and
even that is scarcer than cylindrical shell data. It is significant that
two of Yao’s seven shells buckled just above the theoretical predic-
tion in Fig. 5. This limited data set suggests that the present theo-
retical prediction for o as a function of ¢,/01 may not be overly
conservative. In other words, axisymmetric imperfections can be
expected to dominate buckling in some shells. A similar conclusion
was drawn for cylindrical shells subject to combined axial com-
pression and internal pressure (Hutchinson, 1965).

Experimental data
of Yao (1963)

04 1
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Fig. 5. Range of the buckling loads of seven thin spherical shell segments tested by
Yao (1963) for a loading that generates equal and opposite membrane stresses. The
theoretical curve is that for the sphere from Fig. 4 with the imperfection amplitude
set such that a = 0.2 for equi-biaxial compression ( 1-v?)¢= 0,843).

The present study has relevance to cylindrical shells subject to
combined bending and internal pressure where experimental data
provides clear evidence of reduced imperfection-sensitivity as the
pressure is increased (Seide et al., 1960; Limam et al., 1991; Ma-
thon and Limam, 2006). For thin shells subject to bending, it is
common practice to estimate the buckling stress based on the local
stress in the most highly compressed region. Imperfection-sensi-
tivity is less severe than for shells under uniaxial compression
due to fact that a far smaller region of the imperfect shell is sam-
pled by the highest compression and the mode is more localized.
In principle, however, a local “axisymmetric” imperfection in the
most highly stressed region should be almost as deleterious as
for the uniaxial loading. The trends seen in the experimental data
presented by Limam et al. (1991) indicate a clear reduction in
imperfection-sensitivity with increased internal pressure and, fur-
ther, that the present results are conservative when applied in the
manner just stated.

Finally, it should be emphasized again that the present results
focus on bifurcation from the axisymmetric state. It is well known
from experiments and theory (e.g., Koiter, 2009) that bifurcation of
cylindrical shells under uniaxial compression is unstable giving
rise to dynamic collapse even under prescribed overall end short-
ening, except for highly imperfect shells (Budiansky and Hutchin-
son, 1972). It is also known from experimental observation that
sufficiently high internal pressure can lead to stable post-bifurca-
tion behavior in which the buckled shell supports an imposed axial
load. This paper has not addressed the issue of post-bifurcation sta-
bility. It is expected that over much of the range of ¢,/ plotted in
Figs. 4 and 5, the bifurcation will be unstable, but that has not been
established.

3. Knockdown factor a for buckling of cylindrical and spherical
shell segments with an axisymmetric imperfection

Essential details of the buckling analysis are presented in this
section. The shells are elastic and isotropic with uniform thickness
t. Middle surface coordinates, x; and x,, are aligned with the axial
(meridional) direction and the circumferential direction, respec-
tively. An axisymmetric imperfection, W(x,), specifies the normal
deflection of the middle surface of the unloaded shell. The nonlin-
ear Donnell-Mushtari-Vlassov (DMV) shell equations are

1
DV*W =—p-— R (F11+ pF ) + F11W o,
+F2W11 — 2F 13W s + F 22 W 13
1 1
EV‘lF = _E(W"“ + W) + W,ZIZ
—WiuWaxn -WrWy

with D = E/[12(1 — v?)], W(x;,x;) as the additional normal deflec-
tion of the shell, and F(x, ;) as the stress function giving resultant
membrane stresses

Nll :FA227 N22 :F,llv N12:_F,12

For the cylindrical shell, R is the radius and g = 0; for the spherical
shell, R is the radius of curvature and g = 1. The equations provide
an accurate description of shell behavior for modes of deformation
that are shallow, characteristic of the shortwave length buckling
modes pertinent to the present study. The equations are also lim-
ited to middle surface rotations that do not exceed about 15° which
is well below the rotations relevant to the results obtained below. In
addition, the dimensions of the shells, or shell segments, must
be large compared to ¢ in (4) and, for spheres, the segments must
be shallow, as enunciated earlier. The edge support is assumed to
be sufficiently robust such that the dominant buckling deflections
are away from the boundaries. The analysis given below focuses
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on the behavior in the interior area of the shell and ignores a layer
of width ¢ at the boundaries, as in the approach of Hutchinson
(1967).

The analysis which follows applies to both the cylinder and the
sphere depending on whether g is 0 or 1. The pre-buckling state of
stress of the perfect shell (W = 0) is uniform with

Nyt = —01t, Ny =—03t, N =0, with (fo,+ 0,
=DPR/t) (8)

The classical buckling equations for the perfect shell are obtained by
linearizing (7) about the pre-buckling state:

1~ - N —
DV4W:E<F‘11 +ﬁF,22> — 01tW 11 — 02tW )
(

] 47 1 [ TAr

EV F= R (W.n +ﬁW,22)
with (W, F representing the linearized mode. Eq. (9) admit eigen-
modes of the form

W = cos(41qx; /R) cos(12qx, /R)
F = Focos(21qx, /R) cos(i2qx, /R) (10)

where q is defined in (3). For the cylinder with g, = 0, the critical
(lowest) eigenvalue is given by (2) for any combination of
/1 and J, satisfying 42 — 4, + 72 = 0 (Koiter, 1945, 2009). For the
sphere with g, = gy, the critical eigenvalue is also given by (2)
for any combination satisfying /2 + 42 = 1 (Hutchinson, 1967). Note
that the axisymmetric mode (3) with 4; = 1 is one of the possible
modes for both cases. When the loading is such that ¢, < 0 for
the cylinder, or ¢, < g; for the sphere, the critical eigenvalue (2)
with the axisymmetric mode (3) is still valid, but now the non-axi-
symmetric modes with /,#0 are associated with higher eigen-
values. Thus, when the circumferential membrane stress is
reduced below uniaxial compression for the cylinder, or below
equi-biaxial compression for the sphere, the axisymmetric mode
(3) becomes unique.

An axisymmetric imperfection (5) in the shape of the buckling
mode is assumed. The nonlinear DMV equations for the imperfect
shell admit an exact axisymmetric solution which written in terms
of the normal displacement and the Airy stress function is

_ _ z 6- qX1
Wy = E(az va])-mtlfa cos(R) i
t ERt (71 qx
-5 (01%5 + 02x3) — ét - cos ( R]>

with 01 = O']/Uc.

Following Koiter’s (1963) approach for cylindrical shells under
uniaxial compression, the bifurcation problem for buckling from
the axisymmetric state into a non-axisymmetric mode is analyzed.
An important feature of this approach is that it is carried out in
such a way that the result is not only accurate but also provides
an upper-bound to the bifurcation stress for the specific imperfec-
tion, with a caveat mentioned below.

The solution in the buckled state is written as

W =Wy +w(x1,%) and F = Fs +f(x1,%2) (12)
A non-axisymmetric deflection, w, of the form of (6) is assumed
where y sets the wavelength in the circumferential direction and
is determined in the solution process. The motivation underlying
the choice of this mode was given in connection with Fig. 2c. The
next step is to substitute (12) into the nonlinear DMV compatibility
equation and to note that the resulting equation can be solved ex-
actly for fin terms of w:

f= AEC [b1 G L ) + b, sin G q;]ﬂ sin (yq%) (13)

3(1 —v?) and
1, . 1 2 P
bl*j(i"’?) {—<4+ﬁ7’> +1—6'1 by

1/9 5\ c&?

—‘§(z+/) -3,

Because only terms linear in A will be required, the quadratic terms
in A are not shown.

The final step in the analysis is to evaluate the potential energy
difference of the shell in buckled state from that in the axisymmet-
ric state. The eigenvalue problem for the bifurcation problem only
requires the quadratic terms in w and f in the potential energy
change. Koiter’s notation for this term is P,(w,f), and for DMV
theory:

)=y | {o[0
2 CEC Gy ax; 2
O']l‘W_1+<02t+R]_ cos<T> w5 pdS (14)

The potential energy change can be evaluated in closed form:

R R )
_<%+2ﬁ>al—qy f}j (15)

where S is the area of the spherical segment and r = ¢,/0. The only
approximation in the above calculation occurs in the final step
where contributions in the boundary layer of width ¢ are ignored.
The neglected terms are of order ¢/L relative to those retained
where L is the minimum in-plane dimension of the shell segment.
In Koiter's (1963) analysis of infinitely long cylindrical shells, a sim-
ilar approximation is made in ignoring the requirement that there
must be an integral number of waves around the circumference.

For prescribed ¢ and r with specified, v, the eigenvalue for bifur-
cation from the axisymmetric state, 1, is given by P, = 0. For pre-
scribed ¢ and r, the lowest buckling stress is obtained by
minimizing this eigenvalue with respect to y. Note that the nor-
malized lowest buckling stress, 61 = 01/0¢, is precisely the desired
knockdown factor, o. The fact that the result so obtained is an
upper-bound to the factor follows because the field used to evalu-
ate P, is kinematically admissible due to fact that fis obtained ex-
actly in terms of w. For the infinitely long cylinder constrained to
have an integral number of waves around the circumference, the
upper-bound is rigorous. For the finite cylinder or for spherical
shell segments, the upper-bound is only rigorous as R/t — oo due
to the neglect of terms of order 1/q.

Inspection of P, shows that ¢ appears in combination with no
other dependence on v and, thus, the curves in Figs. 3 and 4 do not
depend on v.

with ¢ =

1
WopW ap + VW, J Et [(1 A opf op — Vfiy]
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