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a b s t r a c t 

This paper extends the double-Hertz model of Greenwood and Johnson (1998) to the plane strain prob- 

lem of adhesive contact between a wavy surface and a flat surface, named as the double-Westergaard 

model. The adhesive force within the cohesive zone near contact edge is described by the difference 

between two Westergaard pressure distribution functions with different contact widths. Closed-form an- 

alytical solutions are obtained for different equilibrium states during loading and unloading stages. The 

proposed model captures a transition between Westergaard and JKR contact models through a dimen- 

sionless transition parameter. Depending on two dimensionless parameters, transitions between partial 

and full contact during loading/unloading are characterized by one or more jump instabilities. Decreasing 

waviness size by decreasing both the amplitude and period with a fixed curvature is found to enhance ad- 

hesion both by increasing the magnitude of the pull-off force and by inducing more energy loss through 

adhesion hysteresis. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Recent developments in micro-fabrication techniques have led

to a variety of methods to create well-defined surfaces at smaller

and smaller scales with more and more controlled topographical

features ( Etsion, 2005 ). Compared with a smooth surface, surfaces

with controlled topography are often favored in such applications

as mechanical seals ( Etsion and Halperin, 2002 ), microelectrome-

chanical systems (MEMS) ( Komvopoulos, 2003 ) and biomimetic de-

signs ( Hui et al., 2004 ). As the characteristic length scale of devices

is reduced to micro- and nano-scales, interfacial adhesion becomes

more prevalent as a result of molecular forces. These developments

are calling for theoretical models that can be used to guide the de-

sign of topographical surfaces with controlled adhesion. 

The effects of surface roughness on adhesion have been of in-

terest for several decades. Experiments performed by Fuller and

Roberts (1981) and later by Kim and Russell (2001) demonstrated

that, with rising surface roughness, the adhesion increases initially

and then decreases beyond certain threshold. The common sense

of poor adhesion between stiff materials has been explained by

a number of random multi-asperity contact models based on the

classical Greenwood–Williamson theory, including JKR ( Fuller and

Tabor, 1975 ), Maugis–Dugdale ( Morrow et al., 2003 ) and double-

Hertz types ( Zhang et al., 2014 ) of rough surface adhesion mod-
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ls. In these studies, a rough surface was considered as an ensem-

le of non-interacting asperities with height following a Gaussian

istribution and with contact behavior of each individual asper-

ty obeying a chosen model in adhesive contact mechanics. In this

pproach, multi-asperity roughness was found to induce adhesion

ysteresis in different loading/unloading paths, resulting in an ir-

eversible energy loss ( Wei et al., 2010; Zhang et al., 2014 ). Due to

he inherent assumption of negligible interaction between asperi-

ies, these models are only applicable for surfaces with sufficiently

arge roughness. 

For surfaces with relatively small roughness, on the other hand,

he interaction between asperities is expected to play an important

o dominant role in determining the interaction between two con-

acting surfaces, which is known to result in roughness enhanced

dhesion ( Briggs and Briscoe, 1977; Santos et al., 2005 ). A one-

imensional sinusoidal wavy surface is one of the simplest models

f periodic and continuous surface roughness, which lends itself to

xact analytical solutions and has been employed in several pre-

ious studies ( Johnson, 1995; Hui et al., 2001 ). For an axisymmet-

ic wavy surface in contact with a spherical indenter, a JKR-type

odel was established by Guduru (2007) , who found surface wavi-

ess tends to render the detachment process oscillatory with in-

rinsic instabilities, leading to a higher pull-off force and interfacial

oughening through irreversible energy loss. Based on Guduru’s so-

ution, Kesari and Lew (2011) revealed an increase in energy loss

ue to adhesion hysteresis associated with surface waviness. Sim-

lar conclusion was also proposed for power-law graded elastic

http://dx.doi.org/10.1016/j.ijsolstr.2016.10.016
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Fig. 1. Schematics of adhesive contact between an elastic flat surface and an elastic 

wavy surface with period L subjected to a remotely applied traction p̄ (negative 

when tensile). 
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olids with small ( Jin and Guo, 2013 ) and large ( Jin et al., 2016 )

urface roughness. Jin et al. (2011) carried out a systematic exper-

mental study on a rippled surface with varying amplitudes, and

eported different transition behaviors from partial to full contact

epending on the waviness-amplitude. 

For the plane strain problem of wavy surface adhesion, Johnson

1995) developed a JKR-type model for a sinusoidal wavy sur-

ace, combining the non-adhesive contact solution of Westergaard

1939) with that of an array of collinear cracks, and determined

 critical value of the contact pressure for the wavy surface to

ome into full contact with a flat surface. Hui et al. (2001) ex-

ended this model to a Maugis–Dugdale type adhesion, so that the

dhesive forces are no longer confined to a small region near the

dge of the contact zone. They also derived a closed-form analyt-

cal solution but ignored the case of adhesion force acting along

he whole interface. A similar Maugis–Dugdale type analysis of

 wavy surface was also performed using potential functions by

dams (2004) who, based on three possible types of solutions,

howed that the applied pressure versus contact size curves are

haracterized by discontinuities and hysteresis with jump instabil-

ties during loading/unloading. Recently, this problem was recon-

idered by Wu (2012) using a self-consistent numerical simula-

ion based on the Lennard–Jones potential, which can cover the

hole range of adhesive contact behaviors ranging from JKR to

igid contact. A transition between partial and full contact was

emonstrated also for other periodic surfaces, including a sinu-

oidal wavy surface in symmetric ( Zilberman and Persson, 2002 )

nd non-symmetric ( Carbone and Mangialardi, 2004 ) forms, as

ell as a periodic grooved surface ( Chumak, 2016 ). 

The classical adhesive contact theories for single spheres laid

 solid foundation for the study of adhesion on wavy surfaces. In

arallel with the Maugis–Dugdale model, Greenwood and Johnson

1998) proposed an alternative cohesive zone model, known as the

ouble-Hertz model, which is applicable to arbitrary values of Ta-

or’s parameter ( Tabor, 1977 ). In this model, the adhesive force

ithin the cohesive zone is described by the difference between

wo Hertzian pressure distribution functions with different con-

act radii. It was found that results obtained from the double-Hertz

odel are very close to those from the Maugis–Dugdale model,

hile the double-Hertz model is analytically more tractable than

he Maugis–Dugdale model since the corresponding analysis re-

ies solely on the classical Hertzian solutions. For this reason, the

ouble-Hertz model is often adopted to study adhesion of com-

lex contact systems involving rough contact surfaces ( Zhang et

l., 2014 ), cylindrical contact ( Jin et al., 2014 ), viscoelastic mate-

ials ( Haiat et al., 2003 ) and functionally graded elastic solids ( Jin

t al., 2013 ). 

The present study is aimed to extend the double-Hertz model

o the plane strain adhesive contact problem of a wavy surface,

amed as the double-Westergaard model, with emphasis on estab-

ishing a set of analytical solutions which are applicable for a full

ange of Tabor parameters. These solutions are analogous to the

augis–Dugdale model and capable of describing a full range of

ehaviors from Westergaard to JKR, as well as different transitions

etween partial and full contact during loading/unloading. The rest

f the paper is organized as follows. Section 2 establishes the ana-

ytical model for a wavy surface. Section 3 shows that both West-

rgaard and JKR solutions can be recovered as limiting cases asso-

iated with a dimensionless transition parameter. Based on these

esults, various loading/unloading curves and critical forces are ex-

mined in Sections 4 , and 5 concludes the study. 

. The model 

Fig. 1 shows the plane strain problem of adhesive contact be-

ween two dissimilar elastic bodies, one of which is flat and the
ther has a wavy profile with a small waviness amplitude. The

ontact bodies have Young’s moduli E 1 , E 2 and Poisson’s ratios ν1 ,

2 , and are pressed together by a uniform remote traction p̄ (neg-

tive when tensile), resulting in a contact half-width a within each

eriod. Prior to loading, the surface of the upper body has a si-

usoidal profile with amplitude � and wavelength L in the form

f (x ) = �
(

1 − cos 

(
2 πx 

L 

))
= 2�sin 

2 
(
πx 

L 

)
(2.1a) 

he curvature at a wave crest being 

1 

R 

= 

4 π2 �

L 2 
(2.1b) 

Alternatively, the wavy surface can be expressed in terms of R

s 

f (x ) = 

L 2 

2 π2 R 

sin 

2 
(
πx 

L 

)
(2.1c) 

Note that for small x , 

f ( x ) ≈ x 2 

2 R 

(2.1d) 

hich is the usual parabolic approximation for a cylinder of radius

 . 

Within each period ( Fig. 2 ), the distribution of surface traction

onsists of two terms: the Westergaard pressure p W 

acting on a

ontact region of width 2 a and the adhesive tension p A acting on

n interaction zone of width 2 c . The noncontact regions a ≤ | x | ≤
 , z = 0 are known as the cohesive zones. 

The relative normal surface displacement u z ( x ) can be related to

he surface traction p ( x ) through surface Green’s function as ( Hui

t al., 2001; Block and Keer, 2008 ): 

∂ u z ( x ) 

∂x 
= 

d f ( x ) 

d x 
= 

2 

πE ∗

∞ ∑ 

m = −∞ 

mL + a 
∫ 

mL −a 

p ( s ) 

x − s 
d s 

= 

2 

E ∗L 

a 

∫ 
−a 

p ( t ) cot 

(
x − t 

L 
π

)
d t (2.2a) 

here 

 / E ∗ = 

(
1 − ν2 

1 

)
/ E 1 + 

(
1 − ν2 

2 

)
/ E 2 (2.2b)

.1. Westergaard solution 

In the absence of adhesive interactions, the corresponding Hertz

ype contact solution for a sinusoidal wavy surface, known as the
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Fig. 2. Adhesive contact of a periodic wavy surface within one period. The distribu- 

tion of surface traction consists of two terms: the Westergaard pressure p W acting 

on the contact zone of width 2 a and an adhesive traction p A acting on the interac- 

tion zone of width 2 c . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The difference between two Westergaard solutions with contact half-width 

a and c for surface pressure within a period. Here, p 0 =E ∗L /2 πR . 
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Westergaard solution ( Westergaard, 1939; Johnson, 1985 ), gives the

contact pressure distribution as 

p(x ) = 

E ∗L 

2 πR 

cos ψ 

√ 

sin 

2 ψ a − sin 

2 ψ , mL − a ≤ x ≤ mL + a (2.3a)

where 

ψ = πx/L, ψ a = πa/L (2.3b)

Averaging ( 2.3a ) over one period gives the applied pressure as

p̄ = 

E ∗L 

4 πR 

sin 

2 ψ a (2.4)

The contact force per unit depth and per period (with unit N/m)

is 

P = p̄ L = 

E ∗L 2 

4 πR 

sin 

2 ψ a (2.5)

Due to the periodic symmetry, we only need to consider one

period of the surface. Consider the central period ( m = 0), where

the contact is symmetric with respect to the z -axis, and focus on

the half period 0 ≤ x ≤ L /2. The surface normal displacement is

( Johnson, 1985 ): 

u z ( x ) = 

L 2 

4 π2 R 

cos ( 2 ψ ) + C, 0 ≤ x ≤ a (2.6a)

u z ( x ) = 

L 2 

4 π2 R 

[ 

cos ( 2 ψ ) + 2 sin ψ 

√ 

sin 

2 ψ − sin 

2 ψ a 

−2 sin 

2 ψ a ln 

sin ψ + 

√ 

sin 

2 ψ − sin 

2 ψ a 

sin ψ a 

] 

+ C, a ≤ x ≤ L 

2 

(2.6b)

where C is a constant determined by the chosen datum for dis-

placement. Consequently, the derivative of the surface normal dis-

placement with respect to x are 

∂ u z = − L 
sin ( 2 ψ ) , 0 ≤ x ≤ a (2.7a)
∂x 2 πR t  
∂ u z 

∂x 
= − L 

2 πR 

[
sin ( 2 ψ ) − 2 cos ψ 

√ 

sin 

2 ψ − sin 

2 ψ a 

]
, a ≤ x ≤ L 

2 

(2.7b)

.2. Double-Westergaard model 

To account for adhesive interactions, the double-Hertz model

f Greenwood and Johnson (1998) can be adopted for the present

tudy following the basic idea of representing the adhesive tensile

raction as the difference of two Hertz type pressure distributions.

ere, the difference of two Westergaard pressure distribution func-

ions with contact half-widths a and c can be found from Eq. (2.3)

s 

p ( x ) = 

E ∗L 

2 πR 

cos ( ψ ) 

[√ 

sin 

2 ψ c − sin 

2 ψ −
√ 

sin 

2 ψ a − sin 

2 ψ 

]
0 ≤ x ≤ a, (2.8a)

p ( x ) = 

E ∗L 

2 πR 

cos ψ 

√ 

sin 

2 ψ c − sin 

2 ψ , a ≤ x ≤ c < 

L 

2 

(2.8b)

ith the corresponding derivative of the surface normal displace-

ent, 

∂ u z 

∂x 
= 0 , 0 ≤ x ≤ a (2.9a)

∂ u z 

∂x 
= − L 

πR 

cos ψ 

√ 

sin 

2 ψ − sin 

2 ψ a , a ≤ x ≤ c < 

L 

2 

(2.9b)

here ψ c =πc / L . 

Defining p 0 =E ∗L /2 πR as a reference pressure, Fig. 3 plots the

istributions of the normalized pressures p / p 0 resulting from the

ifference between two Westergaard solutions with contact half-

idths a and c , as shown in Eq. (2.8). It can be observed that the

esulting pressure distribution steadily increases from the center

f the contact region to a peak value at x = a and then decreases

o zero at x = c . In the following, the pressure in Eq. (2.8) scaled by

n arbitrary factor λ( > 0) will be employed to model the adhesive

ensile traction, resulting in the final distribution of surface trac-

ion when combined with an original Westergaard pressure. Under

his treatment, the adhesive tensile traction for 0 ≤ x ≤ c can be
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ritten as 

p A ( x ) = −λ
E ∗L 

2 πR 

cos ψ 

[√ 

sin 

2 ψ c − sin 

2 ψ −
√ 

sin 

2 ψ a − sin 

2 ψ 

]
0 ≤ x ≤ a, (2.10a) 

p A ( x ) = −λ
E ∗L 

2 πR 

cos ψ 

√ 

sin 

2 ψ c − sin 

2 ψ , a ≤ x ≤ c < 

L 

2 

(2.10b)

The maximum magnitude is 

0 = λ
E ∗L 

2 πR 

cos ψ a 

√ 

sin 

2 ψ c − sin 

2 ψ a (2.11) 

Alternatively, the adhesive traction can be expressed in terms

f σ 0 as 

p A ( x ) = −σ0 

cos ψ 

[ √ 

sin 

2 ψ c − sin 

2 ψ −
√ 

sin 

2 ψ a − sin 

2 ψ 

] 
cos ψ a 

√ 

sin 

2 ψ c − sin 

2 ψ a 

0 ≤ x ≤ a , (2.12a) 

p A ( x ) = −σ0 
cos ψ 

cos ψ a 

√ 

sin 

2 ψ c − sin 

2 ψ √ 

sin 

2 ψ c − sin 

2 ψ a 

, a ≤ x ≤ c < 

L 

2 

(2.12b)

hich corresponds to a normal force per period: 

 = 

E ∗L 2 

4 πR 

[
sin 

2 ψ a − λ
(
sin 

2 ψ c − sin 

2 ψ a 

)]
(2.13) 

The derivative of the surface normal displacement within the

ohesive zone is 

∂ u z 

∂x 
= 

( 1 + λ) L 

πR 

cos ψ 

√ 

sin 

2 ψ − sin 

2 ψ a − L 

2 πR 

sin ( 2 ψ ) , 

a ≤ x ≤ c < L/ 2 , (2.14) 

nd the resulting separation between the contact bodies is ob-

ained from the geometric relation as 

 = −δ + f ( x ) + u z , a ≤ x ≤ c < L/ 2 (2.15a)

nd accordingly 

d h 

d x 
= 

( 1 + λ) L 

πR 

cos ψ 

√ 

sin 

2 ψ − sin 

2 ψ a , a ≤ x ≤ c < 

L 

2 

(2.15b)

In Eq. (2.15a) , δ denotes the indentation depth at the contact

enter and f ( x ) has been defined in Eq. (2.1c) . Recalling the bound-

ry condition h ( a ) = 0, the separation within the cohesive zone can

e derived from Eq. (2.15b) as 

 ( x ) = 

( 1 + λ) L 2 

2 π2 R 

sin ψ 

[√ 

sin 

2 ψ − sin 

2 ψ a 

− sin ψ a ln 

sin ψ + 

√ 

sin 

2 ψ − sin 

2 ψ a 

sin ψ a 

] 

a ≤ x ≤ c < L/ 2 (2.16) 

The adhesion energy is defined as the work needed to separate

 unit area of two adhered surfaces to infinity. Since the separation

anishes for 0 ≤ x ≤ a and the traction vanishes for c ≤ x ≤ L /2

ithin each period, we have 

γ = −
∞ ∫ 

0 

p A ( h ) d h = −
c ∫ 

a 

p A ( x ) 
d h 

d x 
d x (2.17)

Inserting Eqs. (2.10b) and ( 2.15b ) into Eq. (2.17) leads to 

γ = λ( 1 + λ) 
E ∗L 2 

2 π2 R 

2 
I ( a, c ) (2.18a) 
here 

(a, c) = 

∫ c 

a 

cos 2 ψ 

√ 

sin 

2 ψ c − sin 

2 ψ 

√ 

sin 

2 ψ − sin 

2 ψ a d x (2.18b)

To determine λ, a transition parameter is introduced as ( Baney

nd Hui, 1997; Jin et al., 2014 ) 

= 

4 

π2 / 3 
μT = 4 

(
R �γ 2 

π2 E ∗2 z 3 
0 

)1 / 3 

≈ 4 σ0 

(
R 

π2 E ∗2 �γ

)1 / 3 

(2.19) 

here μT denotes the classical Tabor parameter representing the

atio of the elastic displacement of the surfaces at pull-off to the

ffective range of surface forces characterized by z 0 ( Tabor, 1977 ).

nder this condition, a relationship between λ and μ can be es-

ablished by combining Eqs. (2.11) and ( 2.19 ) as follows 

= 2 λ
L 

π
cos 

(
πa 

L 

)√ 

sin 

2 
(
πc 

L 

)
− sin 

2 
(
πa 

L 

)(
E ∗

π2 R 

2 �γ

)1 / 3 

(2.20) 

.3. Non-dimensional results 

The above results can be summarized in a dimensionless form.

y introducing the following non-dimensional parameters: 

 

∗ = 

a 

L 
, c ∗ = 

c 

L 
, P ∗ = 

4 πRP 

E ∗L 2 
, α = 4 πR 

√ 

2�γ

E ∗L 3 
(2.21)

he dimensionless normal load can be obtained from Eq. (2.13) as

 

∗ = sin 

2 
( πa ∗) − λ

[
sin 

2 
( πc ∗) − sin 

2 
( πa ∗) 

]
(2.22) 

nd the relationship between a and c defined in Eq. (2.18) can be

ormalized as 

 = λ( 1 + λ) 
16 

πα2 
I ∗ (2.23a) 

here 

 

∗ = 

C ∫ 
A 

√ 

1 − X 

2 
√ 

C 2 − X 

2 
√ 

X 

2 − A 

2 d X (2.23b) 

ith 

 = sin ( πa ∗) , C = sin ( πc ∗) (2.23c)

In Eq. (2.23a) , λ is related to the transition parameter through

= 

2 λ

π
cos ( πa ∗) 

√ 

sin 

2 
( πc ∗) − sin 

2 
( πa ∗) 

(
α2 

32 

)−1 / 3 

(2.24) 

To eliminate λ, combining Eqs. (2.22) , ( 2.23a ) and ( 2.24 ) results

n 

 

∗ = A 

2 − �0 

2 

√ 

C 2 − A 

2 

1 − A 

2 
(2.25a) 

 = 

�0 

2 

√ 

1 − A 

2 
√ 

C 2 − A 

2 

(
1 + 

�0 

2 

√ 

1 − A 

2 
√ 

C 2 − A 

2 

)
16 

πα2 
I ∗ (2.25b) 

here 

0 = πμ

(
α2 

32 

)1 / 3 

(2.25c) 

For comparison, the Westergaard ( Johnson, 1985 ) and JKR types

 Johnson, 1995 ) solutions for wavy contact are summarized as 

 

∗
W 

= sin 

2 
( πa ∗) , P ∗JKR = P ∗W 

− α
√ 

tan ( πa ∗) (2.26a)
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Fig. 4. The equilibrium P ∗ −a ∗ curves with a < c < L /2 under different values 

of μ for (a) α=0.3 and (b) α=0.6. The corresponding Westergaard, JKR-type and 

Maugis–Dugdale solutions are also included for comparison. 

Fig. 5. Comparison of the P ∗ −b ∗ curves predicted by the double-Westergaard, 

Maugis–Dugdale and Lennard–Jones models for different values of α and μ. 
The corresponding Maugis–Dugdale solutions ( Hui et al., 2001 )

for a < c < L /2 can be described in terms of the present notation

as ( Appendix A ) 

P ∗MD = sin 

2 
( πa ∗) − �0 

[
1 − 2 

π
arcsin 

(
cos ( πc ∗) 
cos ( πa ∗) 

)]
(2.27a)

with 

χ1 sin ( πc ∗) − P ∗MD χ2 + �0 �c ( c 
∗, a ∗) = 

1 

μ

(
α4 

2 

)1 / 3 

(2.27b)

where 

χ1 = 

√ 

sin 

2 
( πc ∗) − sin 

2 
( πa ∗) , χ2 = ln 

[
sin ( πc ∗) + χ1 

sin ( πa ∗) 

]
(2.27c)

�c ( c 
∗, a ∗) = −

c ∗∫ 
a ∗

ln 

∣∣∣∣χ3 ( c 
∗) + χ3 ( t ) 

χ3 ( c ∗) − χ3 ( t ) 

∣∣∣∣d t, χ3 ( η) = 

√ 

1 − sin 

2 
( πa ∗

sin 

2 
( πη)

(2.27d)

Based on Eq. (2.25a –c), Figs. 4 a and b display the equilibrium

P ∗ −a ∗ curves with a < c < L /2 predicted by the present double-

estergaard (D-W) model under different values of μ for α=0.3

and α=0.6, respectively. The corresponding Westergaard, JKR and

Maugis–Dugdale (M-D) types of solutions are also included for

comparison. From this figure, both the D -W curve and the M-D

curve are expected to approach the JKR curve as μ increases. Be-

sides, it can be seen that both the D -W and M-D curves nearly

agree with each other for smaller a ∗ but differ appreciably from

each other for larger a ∗. It is different from the case involving

only a single cylindrical asperity where both D -W and M-D curves

nearly coincide for the full range of a ∗ ( Jin et al., 2014 ). This can

be attributed to the effect of periodical boundary, which confines

a ∗ and becomes evident as a ∗ approaches to the period boundary. 

In order to compare the theoretical solutions of D -W

and M-D models with the numerical results based on the

Lennard–Jones (L-J) potential ( Wu, 2012 ), the normalized half-

width b ∗( = a ∗ + 0.4( c ∗ −a ∗)) is adopted according to Lantz et al.,

(1997) and Wu (2012) . Fig. 5 shows the comparison of the P ∗ −b ∗

curves of these three models for different values of α and μ. From

this figure, it can be observed that the similar trend shared by

the D -W and M-D curves almost agrees with that of L -J curves for

small α and large μ, but differs appreciably from that of L -J curves

for large α and small μ. This implies that the equilibrium state

for a < c < L /2 is sensitive to the adhesive traction form when

the effect of periodical boundary becomes evident. Compared with

the M-D results, in fact, the present D -W curves seems to be more

easily affected by the effect of periodical boundary, this is because

the interaction zone of the D -W model is larger than that of M-D

model for the same σ 0 and �γ , and hence it saturates at a period

more quickly with increasing load. 

2.4. Special cases 

The analysis thus far has implicitly assumed that the interaction

zone is strictly confined within a single period, i.e., c < L /2, which

need not always be the case. Solutions can also be obtained for

c = L /2, corresponding to the limiting case with the adhesion force

acting along the whole interface. Under this circumstance, the di-

mensionless normal load is given by 

P ∗ = A 

2 − �0 / 2 (2.28a)
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n which case the c ∼ a relationship ( 2.25b ) is replaced by the fol-

owing inequality constraint in terms of a , 

�0 

2 

(
1 − A 

2 
)
[ 

1 + 

�0 

2 

(
1 − A 

2 
)
] 

16 

πα2 
I ∗A − 1 < 0 (2.28b) 

here 

 

∗
A = 

1 ∫ 
A 

(
1 − X 

2 
)√ 

X 

2 − A 

2 d X (2.28c) 

Furthermore, full contact occurs ( a = c = L /2) if the pressure ex-

eeds the maximum value of the right hand side of Eq. (2.28a) , i.e.,

 

∗ ≥ 1 − �0 / 2 (2.29) 

In summary, three different types of solutions are possible. In

he first case, c < L /2 and there exists a gap region ( c < | x | <

 /2) without adhesive interactions. In the second case, a < c = L /2

nd the adhesion force acts along the whole interface. The third

ase corresponds to full contact ( a = c = L /2) between the wavy and

at surfaces. Up to this point, the main equations of the double-

estergaard model for wavy contact have been established. 

. Reduction 

According to the classical cohesive zone models of axisymmet-

ic spheres ( Maugis, 1992; Greenwood and Johnson, 1998 ) and of

wo-dimensional cylinders ( Johnson and Greenwood, 2008; Jin et

l., 2014 ), a large cohesive zone holds for small and rigid solids

ith a small Tabor number, while a small cohesive zone applies

o relatively large and soft bodies corresponding to a large Tabor

arameter. This also holds true for the wavy contact case, where

he transition parameter μ defined in Eq. (2.19) is similar to the

abor parameter. Both Westergaard and JKR types of solutions can

e recovered from the present double-Westergaard model by tak-

ng opposite limiting values of μ. 

.1. Westergaard limit 

Since both the contact region and interaction zone are con-

ned within a single period, a large cohesive zone corresponds to

mall a with c = L /2. For a smaller transition parameter μ ( μ 
 1),

0 → 0 and Eq. (2.28a) becomes 

 

∗ = sin 

2 
( πa ∗) (3.1) 

hich coincides perfectly with the Westergaard solution

 Westergaard, 1939 ). Under this condition, the inequality con-

traint of a ∗ in Eq. (2.28b) is automatically satisfied. 

.2. JKR-type limit 

For a small cohesive zone ( c → a ) with a large transition pa-

ameter μ ( μ � 1), the factor λ becomes large ( λ � 1) as sug-

ested by Eq. (2.20) . Under this circumstance, the applied load in

q. (2.22) and the c ∼ a relation in Eq. (2.23a) reduce to 

 

∗ = sin 

2 
( πa ∗) − 2 λ sin ( πa ∗) [ sin ( πc ∗) − sin ( πa ∗) ] (3.2a) 

 = λ2 16 

πα2 
I ∗0 (3.2b) 

ith 

 

∗
0 = lim 

C→ A 

C ∫ 
A 

√ 

1 − X 

2 
√ 

C 2 − X 

2 
√ 

X 

2 − A 

2 d X 
= 2 A 

√ 

1 − A 

2 

C ∫ 
A 

√ 

C − X 

√ 

X − A d X 

= 

π

4 

sin ( πa ∗) cos ( πa ∗) [ sin ( πc ∗) − sin ( πa ∗) ] 2 (3.2c) 

Inserting Eq. (3.2c) back into Eq. (3.2b) yields 

[ sin ( πc ∗) − sin ( πa ∗) ] = 

α

2 

√ 

sin ( πa ∗) cos ( πa ∗) 
(3.3) 

Substituting Eq. (3.3) into ( 3.2a ) leads to 

 

∗ = sin 

2 
( πa ∗) − α

√ 

tan ( πa ∗) (3.4) 

hich is precisely the JKR solution for wavy contact ( Johnson,

995 ). 

Under this circumstance, the state of full contact ( a = c = L /2) is

chieved when P ∗ → −∞ , as indicated by Eq. (2.29) . This singularity

n the equilibrium curve is attributed to the assumption that a per-

ect joint exhibits the theoretical strength of the interface ( Johnson,

995 ). 

. Results and discussions 

.1. Loading/unloading curves 

Different values of the non-dimensional parameter α defined in

q. (2.21) lead to different adhesive contact behaviors during load-

ng and unloading. As pointed by Johnson (1995) , α2 represents the

atio of the surface energy in one wavelength to the elastic strain

nergy when the wavy surface is flattened. Figs. 6 –8 plot the half-

idths of contact and interaction zones versus the applied load per

eriod for small, moderate and large values of α (0.3, 0.6 and 1),

espectively. 

Fig. 6 a–e correspond to α=0.3 with various values of μ. We

rst discuss the case in Fig. 6 b with μ= 1. At zero load, adhe-

ion causes the surfaces to jump into contact with a finite value

f contact half-width (A → B), which is found by the intersection

f a vertical line at P ∗ =0 with the red solid line. The correspond-

ng values of c ∗ versus load are shown by the black solid line. In

he loading stag, a ∗ increases until full contact (B → D), while c ∗

ncreases to 1/2 and then remains constant. Full contact persists

nder further load increase. During the unloading stage, full con-

act continues until point D, a further decrease in load causes a ∗ to

ecrease following the path D → B. Then a tensile load is needed to

eparate the adhered surfaces with a ∗ shrinking to zero (B → E). At

he point B the loading and unloading stages begin to differ, giv-

ng rise to a hysteresis loop whose area quantifies the energy loss

uring the deformation process. As μ becomes small enough (e.g.

= 0.1), as shown in Fig. 6 a, the equilibrium P ∗ −a ∗ curve prevails

nly for c ∗ =1/2 and approaches the Westergaard solution with re-

uced hysteresis loop. When μ becomes large enough, e.g. μ= 5,

s shown in Fig. 6 e, the equilibrium P ∗ −a ∗ curve nearly prevails

or c ∗ < 1/2 and approaches the JKR solution. Larger hysteresis loop

rises due to additional jump instabilities, including a sudden jump

nto full contact (snapping contact) (C → D) and a sudden jump

ompletely out of contact (snapping detachment) (F → G). Note that

f the contact bodies are unloaded from a point between points

 and C, then pull-off occurs at the lower inflection point of the

ed solid curve. These two opposite limits have been examined in

ection 3 . 

The behaviors exhibited in Figs. 6c and d are similar to Fig. 6 b

xcept for more jump instabilities and larger hysteresis loop. For

=2.5 in Fig. 6 c, jump instabilities are observed during both load-

ng and unloading stages between the red solid line ( a ∗ < c ∗ <

/2) and the red dash-dot line ( a ∗ < c ∗ =1/2), labeled by C → D

nd F → G, respectively. For μ=3 in Fig. 6 d, full contact is achieved
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Fig. 6. The half-widths of contact and interaction zones versus the normal load with α=0.3 for (a) μ= 0.1, (b) μ= 1, (c) μ= 2.5, (d) μ= 3 and (e) μ= 5. 
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upon an immediate jump from the red solid line. As seen from

both Fig. 5 c and d, separation occurs at a critical tensile force cor-

responding to a jump out of contact, i.e., the pull-off force per pe-

riod (H → I). Note that the red solid curves have unstable regions in

most cases, this is due to loading/unloading stages are both under

a load controlled mode. Under this condition, the portions of the
urve with a positive slope allow stable attachment/detachment,

hereas the portions with a negative slop are unstable. 

For a moderate value of α, e.g., α=0.6, Fig. 7 a–e correspond

o Fig. 6 a–e with the same value of μ, respectively. This implies

hat the wavy surface becomes smoother with increasing α with

xed μ. It can be seen that the red dash-dot line ( a ∗ < c ∗ =1/2)
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Fig. 7. The half-widths of contact and interaction zones versus the normal load with α=0.6 for (a) μ= 0.1, (b) μ= 1, (c) μ= 2.5, (d) μ= 3 and (e) μ= 5. 
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Fig. 8. The half-widths of contact and interaction zones versus the normal load 

with α=0.6 for (a) μ=0.1 and (b) μ=1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Critical compressive force within a period to achieve full contact as a func- 

tion of the transition parameter for different values of α. 

Fig. 10. Pull-off force within a period as a function of the transition parameter for 

different values of α. 
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tends to be more pronounced than that in Figs 6a-e. Interestingly,

snapping adhesive contact occurs at a greater value of a ∗ and even

full contact is available in the absence of an applied load for larger

values of μ, as shown in Figs. 7 d-e. 

For a large value of α, e.g., α=1, Fig. 8 a and b show two typi-

cal behaviors with μ= 1 and μ= 3, respectively. As expected, the

red dash-dot line ( a ∗ < c ∗ =1/2) prevails over the whole range

for μ= 1, whereas jump-off instabilities occurs immediately from

the red dash-dot line for μ= 3. Moreover, hysteresis loop becomes

more pronounced with greater resulting energy loss compared

with the cases of lower α with the same μ. This implies decreasing

waviness size by decreasing both the amplitude and period with a

fixed curvature can induce more energy loss due to adhesion hys-

teresis. 

From the above figures, different transition processes between

partial and full contact involving jump instabilities can be observed

during loading/unloading, which was also demonstrated in the the-

oretical study based on the Maugis–Dugdale model ( Adams, 2004 )

and the numerical simulation based on the Lennard–Jones poten-

tial ( Wu, 2012 ). These adhesive behaviors depend on both material

properties and surface topography through two non-dimensional

parameters α and μ. In the contact experiment between a rippled

surface and a rigid spherical indenter, Jin et al. (2011) also found

different transition modes from partial to full contact on samples

with different waviness-amplitudes but the same wavelength. 
.2. Critical forces 

As a measure of the interfacial strength of a wavy surface, it

s helpful to examine the critical compressive force for full contact

nd the critical pull-off force for detachment (pull-off force), which

an be identified from the P ∗ −a ∗ curves shown in Figs. 6 –8. 

Fig. 9 plots the normalized critical compressive force P ∗
fc 

within

 period to achieve full contact versus the transition parameter α.

t can be seen that P ∗
fc 

initially decreases from the Westergaard

alue at μ= 0 and finally attains the JKR value at a finite μ. The

ash-dot lines correspond to the case when the contact size grad-

ally increases to fill out the whole period resulting in full contact,

hilst the solid lines correspond to the case when full contact oc-

urs due to a jump-in instability. It is noted that the JKR value for

< 0.57 depends on the value of α and vanishes for α > 0.57 ( Hui

t al., 2001 ). 

The variation of the normalized pull-off force P ∗
pf 

within a pe-

iod as a function of the transition parameter is shown in Fig. 10 .

t can be observed that the magnitude of P ∗
pf 

initially increases

rom the Westergaard value at μ=0 and finally approaches the JKR

alue with increasing μ. The dash-dot lines correspond to the case

hen the contact size gradually shrinks to zero, whilst the solid
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nd dash lines correspond to the case when detachment occurs

ue to pull-off instability for c ∗ < 1/2 and c ∗ =1/2, respectively. The

ull-off force predicted by the Westergaard model vanishes in the

bsence of adhesion, but becomes infinity in the JKR model due to

n assumption of the interface theoretical strength ( Johnson, 1995 ).

or a prescribed value of μ, in addition, larger α leads to greater

agnitude of the pull-off force. This implies that decreasing wavi-

ess size by decreasing both the amplitude and period with a fixed

urvature can cause interface strengthening. 

A common feature of Figs. 9 and 10 is that a transition from the

estergaard to JKR values is captured with increasing μ. As two

pposite limiting cases, the Westergaard and JKR models for wavy

ontact are unified in the present double-Westergaard model. 

. Conclusions 

The plane strain adhesive contact between a wavy surface and

 flat surface has been investigated by extending the classical

ouble-Westergaard model of Greenwood and Johnson (1998) . This

s achieved by expressing the adhesive force in terms of the dif-

erence between two Westergaard pressure distribution functions

ith different contact widths. When the interaction zone is less

han a period, closed-form analytical solutions are obtained for the

nterfacial traction, deformation and equilibrium relation among

pplied load, contact half-width and cohesive zone size within a

eriod. When the adhesion force acts throughout the whole pe-

iod, two additional solutions have also been constructed. 

Based on the present results, a complete transition between the

estergaard and JKR-type contact models is captured by defining a

imensionless transition parameter, which governs the range of ap-

licability of different models. Wester gaard and JKR-type solutions

re included as two limiting cases of the present model. Loading

nd unloading behaviors are characterized by one or more jumps

mong three different equilibrium states. Depending on two non-

imensional parameters α and μ, different transition processes be-

ween partial and full contact are identified during loading and

nloading. Decreasing waviness size by decreasing both the am-

litude and period with a fixed curvature are found to enhance

dhesion both by increasing the magnitude of pull-off force and

hrough more energy loss due to adhesion hysteresis. 
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ppendix A: Maugis–Dugdale solution for adhesive contact of a 

avy surface 

For a < c < L /2, according to Hui et al. (2001) , the normalized

orce predicted by the Maugis–Dugdale model of a wavy surface is

 

∗
MD = sin 

2 
( πa ∗) − �0 

[
1 − 2 

π
arcsin 

(
cos ( πc ∗) 
cos ( πa ∗) 

)]
(A1) 

here P ∗, a ∗ and c ∗ are defined in Eq. (2.21) . Furthermore, c ∗ is

elated to a ∗ through 

in 

2 
( πc ∗) + �JKR ( P 

∗, c ∗, a ∗) + �0 �c ( c 
∗, a ∗) = �cod (A2) 

here 

JKR ( P 
∗, c ∗, a ∗) = −sin 

2 
( πc ∗) + χ1 sin ( πc ∗) − χ2 P 

∗
MD (A3) 
c ( c 
∗, a ∗) = −

c ∗∫ 
a ∗

ln 

∣∣∣∣χ3 ( c 
∗) + χ3 ( t ) 

χ3 ( c ∗) − χ3 ( t ) 

∣∣∣∣d t, �cod = 

2 π2 R �γ

L 2 σ0 

(A4) 

1 = 

√ 

sin 

2 
( πc ∗) − sin 

2 
( πa ∗) , χ2 = ln 

[
sin ( πc ∗) + χ1 

sin ( πa ∗) 

]
(A5) 

3 ( η) = 

√ 

1 − sin 

2 
( πa ∗) 

sin 

2 
( πη) 

(A6) 

In fact, �cod can be rewritten in terms of the transition pa-

ameter μ in Eq. (2.19) and the non-dimensional parameter α in

q. (2.21) as 

cod = 

1 

μ

(
α4 

2 

)1 / 3 

(A7) 

Inserting Eqs. (A3) and ( A7 ) back into Eq. (A2) yields 

1 sin ( πc ∗) − P ∗MD χ2 + �0 �c ( c 
∗, a ∗) = 

1 

μ

(
α4 

2 

)1 / 3 

(A8) 
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