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Abstract

The stress-deformation behaviour of granular media is known to be directly

linked to details of the underlying microstructure of contacts, or fabric. The

notion of contact fabric and its role in defining stress and strain motivate the

present study to explore the evolution of fabric in response to small strain

probes applied to initially isotropic granular assemblies of varying void ratios

and coordination numbers. Two-dimensional Discrete Element Method simula-

tions demonstrate that the fabric response strongly depends on the strain probe

direction, despite the stress response being “pseudo-elastic” and incrementally

linear. This direction dependence leads to a so-called incrementally nonlin-

ear property of fabric changes in the small deformation regime, a constitutive

characteristic that can serve as a precursor signalling the more intricate, elasto-

plastic behaviour of anisotropic granular materials. The present study provides

a systematic analysis based on a representation theorem for two-dimensional

isotropic functions to characterize fabric changes during strain probing. Con-

tact reorientation is found to be negligible vis-à-vis contact gains and losses

which are prevalent in compressive and extension strain probes, respectively. In

the end, it is the subtle evolution of gained and lost contacts in various strain

probes that helps us elucidate the nature of important fabric changes in the

pseudo-elastic regime of granular media.
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1. Introduction

The micromechanical study of granular material behaviour identifies and

exploits connections between their various characteristics at the macroscopic-

continuum and microscopic-particle scales with interparticle contacts as the

main focus. For instance, micromechanical descriptions of stress [33, 54, 16,5

45, 5] and strain [24, 7], and dilatancy in particular [9, 53, 26, 28], show the

importance of the internal microstructural arrangement of contacts to macro-

scopic behaviour. Such studies suggest that a detailed understanding of the

evolution of the contact microstructure during mechanical loading is an impor-

tant aspect of micromechanics-based constitutive modelling of granular materi-10

als [50, 31, 55, 32, 18].

The structure of the interparticle contact network is often characterized by a

so-called contact fabric tensor [35, 48] which describes the density of contacts, as

well as their directional distribution, in terms of a symmetric, second (or some-

times higher) order tensor. Such a tensorial description is often equivalent to a15

harmonic representation of the distribution of all contact orientations [21, 22].

Apart from its principal directions, such a symmetric second-order fabric tensor

is characterized by the coordination number, defined as the average number of

contacts per particle, and the fabric anisotropy which quantifies the deviation

of the fabric tensor from isotropy.20

The statistical analysis of the micromechanical expression for the average

stress tensor [16, 33, 54], in terms of interparticle contact forces and the branch

vectors that connect centroids of particles that are in contact, by Rothenburg

and coworkers [45, 47], as well as the more recent studies on particle kinemat-

ics [23, 52, 40, 26], have connected stress and strain to coordination number25

and fabric anisotropy, thus leading to stress-strain-fabric relations for different

stages of loading [43, 42]. In the limit, at the critical state, the fabric tensor is

known to possess specific features [32, 20, 27, 39], which further emphasizes the
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importance of contact fabric as a state variable in the constitutive modelling of

granular materials.30

Considering the broad role of contact fabric, it is crucial to have a good

understanding of its evolution during loading history in any micromechanical

analysis. In fact, this question has been addressed in previous studies, see for

instance a thorough review given in [23]. In general, these previous studies can

be categorized into two groups, based on whether fabric evolution is related to35

stress [36] or to strain [10, 44, 46, 49, 23] increment.

More recent studies have distinguished the different mechanisms by which

the fabric tensor can evolve during deformation [23, 41]. These mechanisms are:

contact gain, contact loss and contact reorientation. Accordingly, Pouragha

and Wan [41] have developed an analytical method in which the contact loss40

mechanism is assumed to be controlled by changes in the average interparticle

force and stress, while the contact gain mechanism is seen to be controlled by

deformations at the contact level arising from the strain increment.

Nonetheless, such previous studies mentioned above mostly consider fabric

evolution under common monotonic loading conditions, such as in biaxial, tri-45

axial, or isochoric tests. Certainly, this restricts the generality of such studies

since the elasto-plastic response of granular materials is incremental in nature

and generally depends upon the direction of loading [13, 14, 34, 51]. This di-

rection dependence, or incremental nonlinearity, of the incremental response

has been studied in detail by considering proportional stress (or strain) probing50

[19, 8, 11], where vertical and horizontal stress (or strain) increments in varying

ratios are applied to the granular assembly, while the magnitude of the applied

loading increment is kept constant.

As it stands, the directional dependence of the fabric response to strain

probing has not been considered in the recent archival literature. In a first step55

to address this interesting topic, the direction dependence of the fabric response

is investigated herein for isotropic, two-dimensional granular assemblies with

different initial coordination numbers. The scope of the study has been limited

to isotropic systems, also because the previous results in [23] and [41] showed
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a very rapid evolution of coordination number with shear strain for initially60

very dense samples, which is an intriguing, unexpected behaviour in the small

deformation regime.

Discrete Element Method (DEM for short) simulations have been performed

on isotropic, two-dimensional granular assemblies, and the various contribu-

tions to the evolution of the fabric tensor due to the contact loss, gain, and65

reorientation mechanisms have been investigated. The incremental stress-strain

relationship has been found to be “pseudo-elastic” which denotes an incremen-

tally linear relation without significant plastic dissipation. As defined here, the

“pseudo-elasticity” concept differs from conventional elasticity in that it does

not require reversibility in every aspect. One of the main findings of this study70

is that even though the stress response in isotropic conditions is pseudo-elastic

(and linear in the applied strain increment), the fabric response shows a clear

incrementally nonlinear response reflected in the dependence on the direction

of the applied strain increment. Hence, even for isotropic assemblies, the fabric

response shows precursors of an elasto-plastic stress-strain response, reflected75

as the dependency of the stress response on the direction of loading.

The paper is organized in the following manner. After a brief description

in Section 2 of the basics of the micromechanics of granular materials and the

employed strain probing method, the DEM simulations are described in Sec-

tion 3 and simulation results are subsequently presented in Section 4. The80

paper concludes with the main findings and suggestions for future extensions in

Section 5.

2. Micromechanics

The interparticle contact arrangement, i.e. the microstructure, of a granular

assembly is often characterized by a second-order fabric tensor F that describes

the density and the directional distribution of contact normals as [35, 48, 22]:

Fij =
2

Np

∑

c∈C
nci n

c
j (1)
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where Np is the number of particles (excluding rattlers, i.e. particles with fewer

than two contacts), C is the set of all contacts in the region under consideration,85

and nc is the contact normal vector at contact c. Alternatively to the contact

fabric considered here, the internal fabric of granular materials has also been

characterized based on a void network, see [48, 6, 29, 30].

Coordination number, Z, denoting the average number of contacts per par-

ticle, and an anisotropy measure, A, are defined, for the two dimensional case

considered here, in terms of the principal values F1 and F2 of the fabric tensor

F by

Z =
2Nc
Np

= tr(F ) = F1 + F2, A = F1 − F2 (2)

with Nc being the total number of contacts. The fabric parameters A and Z

are related to the common fabric anisotropy parameter, ac, defined in [45], by90

2A = ac Z.

As the contact structure evolves during loading, the fabric tensor can change

due to three different mechanisms [23]: contact loss, contact gain, and contact

reorientation. In tracing the evolution of the contact structure, the sets of lost

and gained contacts are denoted by ∆Cl and ∆Cg respectively, while Cr is the

set of persisting contacts. These sets are formally defined, in terms of the sets

of all contacts in an initial and a final stage, Cinit and Cfinal, by [23]:

∆Cl =Cinit − Cfinal

∆Cg =Cfinal − Cinit

Cr =Cinit ∩ Cfinal

(3)

where A∩B and A−B denote the intersection and the set difference (or relative

complement), respectively, of arbitrary sets A and B.

Based on the definition of the fabric tensor F given in Eq. 1 and the contact

sets ∆Cl, ∆Cg, and Cr in Eq. 3, the contribution of each mechanism (contact

loss, gain, and reorientation) to the fabric change ∆F can then be expressed
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by:

∆Fij =
2

Np

( ∑

c∈Cfinal

nci n
c
j −

∑

c∈Cinit

nci n
c
j

)

=
2

Np

∑

c∈∆Cg

nci n
c
j −

2

Np

∑

c∈∆Cl

nci n
c
j +

2

Np

∑

c∈Cr

∆(nci n
c
j)

= ∆F gij − ∆F lij + ∆F rij

(4)

where it has been assumed that Np, the number of particles excluding rattlers,

is constant. The value of Np may actually evolve as the number of rattlers may95

change due to contact gain/loss. However, the effect is infinitesimal for the size

of the incremental probing considered here.

The change in fabric tensors associated with contact loss and gain, defined in

Eq. 4, can also be visualized in terms of the change in orientational distributions

of the number of contacts due to each mechanism. The orientation of a contact

c is the orientation of its contact normal vector, nc, and polar histograms can

be used to illustrate the change in the number of contacts for each orientation

due to contact loss and gain. Following the analysis in [22], the orientational

distribution of contact number changes due to contact loss and contact gain can

be readily expressed in terms of their associated fabric changes in Eq. 4 as:

∆Nm(n) =
∆Nm,tot

4π

(
4

tr(∆Fm)
∆Fmij − δij

)
ninj , m = l, g (5)

where ∆Nm(n), and ∆Nm,tot are the change in the number of contacts along

direction n and the change in the total number of contacts due to mechanism m,

respectively; index m (a mnemonic for mechanism) here refers to the contact loss100

(l), gain (g) mechanisms. While not considered in this study, similar relations,

with minor modifications, can also be obtained for the fabric change due to

contact reorientation.

Although previous studies such as [23, 41] have provided insights as to how

the fabric tensor changes due to these mechanisms, nevertheless, the scope of105

these studies has been limited to a single loading monotonic (stress or strain)

path. In order to broaden the scope towards a more general framework, the

current study investigates the evolution of the fabric tensor in response to dif-
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ferent proportional loading paths by applying strain probes. As a first step

towards the study of the more complex anisotropic systems, the current work is110

restricted to isotropic initial samples.

As illustrated schematically in Fig. 1, the strain probing analysis method

involves applying small vertical and horizontal strain increments, ∆εyy and

∆εxx, to a granular assembly bounded by four walls, and varying the ratio

∆εyy/∆εxx such that the magnitude of the total strain increment ||∆ε|| ≡115 √
∆ε2

yy + ∆ε2
xx is the same for all strain probes. The stresses on the horizontal

and vertical walls and the internal fabric changes are then evaluated as the

response. The sign convention adopted here for strain and stress is that tensile

strains and stresses are considered to be positive, while compression is considered

negative.120

The definition of the strain-probe direction α is also given in Fig. 1. It should

be noticed that the parameter α is a measure of strain increment ratios, and

hence does not refer to geometrical angles in space. Also, in Fig. 1, and through-

out this study, the following characteristic directions α of the strain probes are

indicated for easy referencing: isotropic extension (α = 45◦), isotropic compres-125

sion (α = 225◦), pure shear (α = 135◦ and α = 315◦), uniaxial extension in

y-direction (α = 90◦), uniaxial compression in x-direction (α = 180◦).

Assuming that the applied strain increments are infinitesimally small, the

responses can be assumed to be linear with respect to the magnitude of the strain

increment ||∆ε||, sufficient for the changes to reflect a constant representative130

rate. For the isotropic initial samples and strain probes considered in the current

study, the incremental changes in stress and fabric are coaxial with incremental

strains for which ∆εyy and ∆εxx are herein principal values.

Such a strain probing procedure involves applying only normal principal

strains, which, for isotropic systems, does not limit the generality of the ob-135

servations. For initially anisotropic cases, such an incremental strain probing

can be extended to strain increments with shear terms such that the principal

directions of the applied probes and the responses are no longer coaxial with

the current stress. In these cases, the applied probes and the response envelopes

7
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Figure 1: Schematics of strain probe, stress response and fabric response.

should be visualized in 3D to include the three variables characterizing the stress140

and strain increments.

In general, the fabric response tensor ∆F shown schematically in Fig. 1

(right) can be assumed to be a function of the strain increment tensor, ∆ε,

imposed by the probes:

∆F = h(∆ε) (6)

In this particular study, note that no additional dependence of the fabric change

on plastic strain needs to be considered, as the stress response will be shown

to be pseudo-elastic in Section 4, where it will also be demonstrated that the

response due to a strain probe is linear with respect to its magnitude ||∆ε||.
Therefore, Eq. 6 is positively homogeneous of degree one in ∆ε, and hence it

can also be expressed in terms of the fabric rate of change scaled to strain probe

size as:

∆F ∗ij =
∆Fij
||∆ε|| = hij(∆ε∗), ∆ε∗ij =

∆εij
||∆ε|| =


cosα 0

0 sinα


 (7)

where ∆ε∗ij is the normalized strain increment that is determined by the di-

rection of the strain probe defined by the angle α in the incremental strain

space.

Based on a representation theorem for the functional dependence of a second-

order tensor on another second-order tensor for isotropic two-dimensional ma-
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terials [15], the relationship in Eq. 7 can be expressed as:

∆F ∗ij = hij(∆ε∗) = ψ1δij + ψ2∆ε∗ij (8)

with ψ1 and ψ2 being coefficients that depend on the material state (e.g. the

initial coordination number, Z0) and are also functions of the invariants of

the normalized strain increment tensor ∆ε∗. In the two-dimensional case, the

invariants involved are the trace, tr(∆ε∗), and determinant, det(∆ε∗), which

can be expressed as:

tr(∆ε∗) = cosα+ sinα

det(∆ε∗) = cosα sinα
(9)

Recalling that ∆ε∗ is a function of solely the strain probe direction, the ex-145

pression in Eq. 8 can be conveniently used to fit the variation of the observed

fabric change ∆F ∗ with probe direction α, as will be shown in Section 4. Al-

though not discussed in this study, the form of the functions given in Eqs. 6 to

9 can also be used to describe the stress response to the strain probes.

It should be noted that, in its general form, the fabric evolution expression in150

Eq. 8 is obviously incrementally nonlinear (not to be confused with the linearity

of the response in the magnitude of the strain increment ||∆ε|| for a single strain

probe). More precisely, this means that the instantaneous modulus describing

fabric change in terms of a strain increment can also depend on the direction

α of the strain probe. Therefore, a condition of incremental linearity would155

invariably pose restrictions on the functions ψ1 and ψ2, as will be discussed

later in Section 4.3.

3. DEM Simulations

Two-dimensional DEM simulations have been performed, using the PFC2D

simulation code [12], on square assemblies of 50, 000 circular particles with160

uniformly distributed radii and a ratio of maximum to minimum particle radii

of rmax/rmin = 2. The elastic part of the contact model is considered to be

linear with stiffness constants, kn and kt, that are the same for both normal

9
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and tangential directions, i.e. kn = kt. The normal stiffness kn is selected such

that kn/p0 = 2 × 102, where p0 is the initial confining pressure. The contact165

forces satisfy the Coulomb friction criterion |f ct | ≤ µf cn, where f cn and f ct are the

normal and tangential components of the force at contact c, respectively, with

a friction coefficient of µ = 0.5.

To prepare the various numerical samples, a relatively sparse cloud of par-

ticles was first generated. Then, the frictionless confining walls were moved170

toward each other until the required stress was attained. In this initial com-

paction stage, the friction coefficient was (artificially) reduced from its assumed

value µ = 0.5 in order to obtain granular systems with different initial coordi-

nation numbers Z0 and void ratios e0. Both average stress and strain tensors

were determined at the boundaries of the numerical samples.175

In order to remain consistent with the stress and strain measurements on

the external boundaries, the fabric parameters were determined by considering

all the contacts, including particle-wall contacts. Upon direct comparison, the

contribution of particle-wall contacts to the fabric evolution trends has been

found to be negligible for the square-shape samples and the number of particles180

used in this study.

Since the sample’s response to the probing is very sensitive to the stability of

static equilibrium, we ensured that the average out-of-balance force δf always

remains much smaller than the average contact force. Here, the time step and

the loading rate in the simulations have been selected such that the ratio between185

average out-of-balance force to the average contact force f satisfies δf/f ≤ 10−5.

Furthermore, preliminary simulations showed that, for looser samples, lo-

cal instabilities can be triggered upon application of the strain probes. When

interpreting the results, the fundamental assumption of linear response is not

satisfied. The study of incremental behaviour of granular assemblies in the190

presence of such local instabilities requires different treatments that involve

averaging over a number of micro-avalanches. To avoid such instabilities, be-

fore applying the probes, the samples were subjected here to a small devia-

toric loading/unloading cycle that would trigger any potentially unstable micro-

10
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Table 1: Coordination number Z0, void ratio e0, and percentage of rattlers after compaction,

of the initial isotropic samples.

Z0 4.53 4.21 4.10 3.87 3.76 3.68

e0 0.157 0.173 0.179 0.196 0.204 0.211

Rattlers % 1.20 2.14 2.66 4.00 4.56 5.03

avalanches.195

Six initial samples, with coordination numbers Z0 and void ratios e0 as listed

in Table 1, were prepared in order to also investigate the influence of the initial

coordination number. The contact structure has been ensured to be isotropic

prior to applying strain probes, with an initial fabric anisotropy |ac0| ≤ 10−4.

After preparing a stable sample, strain probes with a magnitude of ||∆ε|| =200 √
∆ε2

yy + ∆ε2
xx = 2×10−4 were then applied. This strain probe magnitude has

been selected, based on multiple attempts, such that: (1) it is sufficiently small

for the stress and fabric response to remain linear, and (2) it is also sufficiently

large that the numbers of lost and gained contacts are large enough to obtain

good statistical data to determine the contributions defined in Eq. 4 to the205

change in the fabric tensor ∆F . The issue of the proper selection of the stress

(or strain) probe magnitude is also discussed in [17], in the context of analyzing

the strain response to stress probing in triaxial tests.

Throughout this study, the strain increment direction, α in Fig. 1, was var-

ied within 15◦ increments, thus sweeping the entire 360◦ with 24 probes. The210

contact sets Cfinal at the end of each strain probe have been compared to the

initial contact set Cinit in order to determine the sets of lost, gained and per-

sistent contacts (see Eq. 3), and their respective contributions to contact fabric

change (see Eq. 4).
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4. DEM Results215

Results from DEM simulations investigating into the nature of stress and

fabric responses obtained for various strain probings on both dense and loose

samples are presented next. Contact mechanism contributions to fabric changes

are systematically studied through an analytical procedure based on harmonic

functions and a representation theorem that was introduced earlier in the paper.220

The fitted harmonic functions are, herein, compared with conditions pertaining

to incremental linearity, with the final results indicating a significant dependency

on the probe direction, and hence incremental nonlinearity.

4.1. General observations

Figure 2 shows stress and fabric responses to the imposed strain probes for225

the dense sample with initial coordination number of Z0 = 4.53. The stress

increments have been made dimensionless with respect to the normal contact

stiffness kn. Both stress and fabric responses for the individual probes show

(sufficiently) linear trends in relation to the magnitude of the strain increment

||∆ε|| = 2 × 10−4, which justifies the appropriateness of this strain range used230

for strain probing. The observed symmetry of the responses with respect to

the direction α = 45◦ is expected due to the isotropy of the sample. Positive

values of fabric change (upper-right of Fig. 2-(c)) correspond to the prevalence

of contact gains, which is associated with compression (lower-left part of the

stress and strain responses in Fig. 2-(a) and (b)). It is clear that the fabric235

response is incrementally nonlinear with respect to the strain increment, ∆ε, as

it strongly depends on the strain probe direction α.

Figure 3 shows the dimensionless stress response of samples with different

initial coordination numbers Z0 (with the same strain probe size). For clarity

of presentation, only the final states of strain and stress increments are plotted240

here. It was shown previously [11, 17] that the presence of even very small plas-

tic strains is reflected in the deviation of the stress response envelope from an

ellipse that describes an incrementally linear stress response to the strain probes.

12
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2× 10−4 for samples with different (selected) initial coordination numbers Z0. Only the final

points of the stress response have been plotted. The dashed lines represent elliptical fits that

correspond to an incrementally linear stress response.
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However, for the ranges of strains considered here in this study, the stress re-

sponse is accurately described by an ellipse as plotted in dashed lines in Fig. 3.245

This indicates that the material response can be considered to be pseudo-elastic.

A further numerical investigation to confirm this assertion involved simulating

probes with an artificially large interparticle friction to suppress any sliding

mechanism [42], which eventually showed insignificant plastic deformations. As

a side note, the variation of the pseudo-elastic bulk and shear moduli with ini-250

tial coordination number Z0 (data not shown) is also consistent with previous

numerical and analytical studies, see [25, 2, 42] for instance.

It is also of interest to examine the change in orientational distribution of

the contributions of contact loss and gain mechanisms for characteristic probe

directions, as shown in Fig. 4 for the fairly loose initial sample with Z0 =255

3.68, together with the second-order harmonic fit according to Eq. 5. While

these results are not essential for the remainder of this study, Fig. 4 shows

that the second-order harmonic functions describe the distributions sufficiently

accurately when the numbers of lost or gained contacts are large enough for

constructing a meaningful statistical distribution. For the cases considered in260

this study, the contributions of contact reorientation to the change of fabric

are negligible, and hence have only been retained in the analyses to maintain

generality.

It is also worth noticing that, despite the initially isotropic contact structure,

the distributions of contact gain and loss exhibit slight directional dependency265

under isotropic compression and extension. However, these deviations are con-

sidered to be relatively insignificant as they have been shown to have negligible

effect on the overall trends of fabric evolution with the probe direction.

While not presented here, the contact loss and gain distributions have been

compared for pairs of supplementary probe angles which further confirmed the270

initial isotropy of the granular sample.

Overall, the results in Figure 4 show that, as expected, contact loss is

more important than contact gain in probes that involve extension (α = 45◦,

α = 90◦), while contact gain is more important than contact loss in probes that

14
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involve compression (α = 180◦, α = 225◦). However, surprisingly, a fair num-275

ber of contacts is still gained in isotropic extension (α = 45◦). In pure shear

(α = 135◦), the numbers of lost and gained contacts are of the same order of

magnitude. In isotropic compression and extension the orientational distribu-

tions can be considered to be isotropic (considering the limited statistical data).

In unilateral extension (α = 90◦) contacts are mainly lost in the direction of280

extension, while a smaller number of contacts is gained in the direction perpen-

dicular to the direction of extension. Similar, but opposite trends are observed

for unilateral compression (α = 180◦).

The evolution of fabric is next investigated in terms of contact loss, gain,

and reorientation tensors, ∆F l, ∆F g, and ∆F r, as defined in Eq. 3. The

principal directions of these tensors are aligned with the horizontal and vertical

directions, as follows from Fig. 4. Therefore, the properties of these tensors

are described here in terms of the sum of, and difference between their vertical

and horizontal components (which are principal values). For generality, these

values are normalized to the strain probe magnitude ||∆ε|| to indicate the rate

of change with respect to strain increment:

∆Z∗m =
∆Fmyy + ∆Fmxx
||∆ε|| = ∆F ∗myy + ∆F ∗mxx

∆A∗m =
∆Fmyy −∆Fmxx
||∆ε|| = ∆F ∗myy −∆F ∗mxx

m = l, g, r for contact loss, gain, and reorientation

(10)

Recalling the definition in Eq. 2, the parameter ∆Z∗m in Eq. 10 denotes the

rate of change in coordination number due to each mechanism, while ∆A∗m is285

related to the associated rate of change of fabric anisotropy. However, unlike the

anisotropy measure in Eq. 2, the variable ∆A∗m in Eq. 10 is defined such that,

depending on the direction of the maximum fabric change, it can assume both

positive and negative values. The variation of ∆Z∗m and ∆A∗m with probe

direction α is shown in Fig. 5 for the probes presented in Fig. 3.290

The symmetry around α = 45◦, as expected for initially isotropic samples,

is observed for all initial coordination numbers Z0. The maximum change in
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Figure 5: Rate of change in contact fabric tensor due to (a) contact loss, (b) contact gain,

and (c) contact reorientation, as defined in Eq. 3 for strain probes shown in Fig. 3. The

square symbols show the sum of the vertical and horizontal (principal) components of the

tensors, and the circles show the difference between these two values, as defined in Eq. 10.

The contribution of contact reorientation to coordination number, ∆Z∗r is not presented as

it is always zero by definition, see Eqs. 3 and 4.

coordination number due to contact loss and contact gain is obtained for α =

45◦ (isotropic extension) and α = 225◦ (isotropic compression), respectively.

However, the rate of contact loss in isotropic extension is not the same as the295

rate of contact gain in isotropic compression, which leads to the asymmetry

of fabric change around α = 135◦, as observed earlier in Fig.2-(c). The value

of ∆Z∗r (not presented in Fig. 5) is always zero because, by definition, the

number of contacts does not change due to contact reorientation, see Eqs. 3 and

4. The rate of change in fabric due to contact reorientation is much smaller300

than that due to contact loss and gain. As expected, the rates of change in

the fabric tensor (∆Z∗m and ∆A∗m) increase with initial coordination number

Z0, both for loss and gain (m = l, g). However, no clear dependency on initial

coordination number is observed for the contribution from contact reorientation

in Fig. 5-(c).305

The results shown in Figs. 5-(a) and (b) show that the maximum change

in fabric anisotropy parameter, ∆A∗m, does not occur for the directions of

pure shear, α = 135◦ and 315◦. The directions of these extrema are shifted

slightly towards the extension half region of the probes, i.e. −45◦ < α < 135◦.
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This indicates that the largest change in fabric anisotropy occurs for a strain310

probe direction that involves a combination of deviatoric and extension strain.

Note that such deviations from pure shear directions are consistent with the

expression in Eq. 8, as is demonstrated later.

It is also worth noticing in Figs. 5-(a) and (b) that, regardless of initial coor-

dination number, zones exist around directions of isotropic extension at α = 45◦315

(or isotropic compression at α = 225◦) where contact gains (or contact losses)

remain negligible. The existence of such zones has been previously predicted

by [41] where the orientational distribution of contact gains and losses has been

determined, based on the orientational change in average contact force. The

complementary analysis provided in Appendix A shows that these zones cor-320

respond to 18.5◦ < α < 63.5◦ for zero contact gain, and 198.5◦ < α < 251.5◦

for zero contact loss, which are confirmed with good accuracy by the results in

Fig. 5.

4.2. Analysis of DEM results with Representation Theorem

Recalling the representation theorem for the functional dependence of a

second-order tensor on another second-order tensor in two-dimensional isotropic

systems, as introduced in Eq. 8, it follows that the change in fabric due to each

mechanism can be conveniently expressed as:

∆F ∗mij = ψm1 δij + ψm2 ∆ε∗ij , m = l, g, r (11)

with ψm1 and ψm2 being functions of the invariants of ∆ε∗ given in Eq. 9 and of

the initial coordination number, Z0, while

ψ1 = ψg1 − ψl1 + ψr1, ψ2 = ψg2 − ψl2 + ψr2 (12)

intrinsically account for the contribution of each individual mechanism as per325

Eq. 4.

The variables ∆Z∗m and ∆A∗m, defined in Eq. 10, can now also be expressed
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in terms of ψm1 and ψm2 , i.e.

∆Z∗m = ∆F ∗myy + ∆F ∗mxx = 2ψm1 + ψm2 (cosα+ sinα)

∆A∗m = ∆F ∗myy −∆F ∗mxx = ψm2 (cosα− sinα)

m = l, g, r

(13)

Furthermore, an assessment of the results in Fig. 5 has shown that the

variation of fabric changes with strain probe direction α can be well represented

by truncated, second-order harmonic series. By combining this observation

with the expressions in Eq. 13 and noting that ψ1 and ψ2 are functions of the

invariants defined in Eq. 9, we obtain that ψm1 and ψm2 should depend linearly

on the invariants as follows:

ψm1 = Bm + Cm(cosα+ sinα) +Dm cosα sinα

ψm2 = Em +Gm(cosα+ sinα)

m = g, l, r

(14)

with Bm, Cm, Dm, Em, and Gm being the five coefficients describing the varia-

tion of fabric change with respect to strain probe direction α for each mechanism.

These coefficients are independent of α and only depend on the initial coordi-

nation number Z0 of the granular sample. Substitution of Eq. 14 into Eq. 13

gives:

∆Z∗m =(2Bm +Gm) + (2Cm + Em)(cosα+ sinα)

+2(Dm +Gm) cosα sinα

∆A∗m =Em(cosα− sinα) +Gm(cos2 α− sin2 α)

m = g, l, r

(15)

Only a single coefficient, Er, is required to represent the variation of fabric

tensor due contact reorientation ∆F rij , since no coordination number change is

associated with contact reorientation, and the variation of ∆A∗r is accurately

fitted with the first-order harmonic term, as demonstrated in Fig.6-(c).330

Figure 6 shows the accuracy of the expressions in Eq. 15 towards matching

the variation of ∆Z∗m and ∆A∗m from DEM simulations, with strain probe
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Figure 6: Accuracy of the expressions in Eq. 15 in representing fabric change due to contact

loss (left), contact gain (middle), and contact reorientation (right), for the sample with initial

coordination number Z0 = 4.10.

direction α for the sample with initial coordination number of Z0 = 4.10, where

a good to an acceptable consistency between the DEM results and the fitted

curves is obtained.335

For a more physically meaningful representation, the coefficients describing

the variation of ∆Z∗m are replaced with the values of ∆Z∗m at the character-

istic probe orientations α = 45◦ (isotropic extension), α = 135◦ (pure shear),

and α = 225◦ (isotropic compression). The relation between ∆Z∗m in these

characteristic probe directions, and the coefficients in Eq. 15 is given by:

∆Z∗m|α=45◦ =2Bm + 2Gm +
√

2(2Cm + Em) +Dm

∆Z∗m|α=225◦ =2Bm + 2Gm −
√

2(2Cm + Em) +Dm

∆Z∗m|α=135◦ =2Bm −Dm

(16)

The variation of ∆A∗m is (still) expressed in terms of the coefficients Em and

Gm.

The effect of initial coordination number Z0 on the fabric evolution can

now be represented by the variation of the coefficients in Eq. 16 with Z0 for

contact loss and gain mechanisms, as shown in Fig. 7. More samples (total340

of six; see Table 1) with different initial conditions have been studied here for

better visualization of the trends. The single characteristic value associated

with contact reorientation remains relatively constant at Er ∼ 2.7 for the range
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of initial coordination numbers, Z0, studied here.

A general trend can be observed in Figs. 7-(a) and (b) for contact gain and345

loss, where the magnitude of all characteristic values increases with initial co-

ordination number Z0. Such a monotonic increase of the coefficients suggests

a scaling of fabric changes with initial number of contacts, as expected. More-

over, the values for contact loss and gain along isotropic compression and exten-

sion respectively, i.e. ∆Z∗l|α=225◦ and ∆Z∗g|α=45◦ , are expectedly negligible.350

On the other hand, the difference between contact loss in isotropic extension,

∆Z∗l|α=45◦ , and contact gain in isotropic compression, ∆Z∗g|α=225◦ , already

points to the origin of the incremental nonlinearity of the fabric evolution with

strain. For pure shear directions, both contact loss and gain rates are weakly

dependent on the initial coordination number Z0 of the sample.355

4.3. Conditions for incremental linearity of fabric response

The origin of the incremental nonlinearity of the fabric response is further

investigated by formulating conditions under which a linear response is obtained.

Analogous to the stress-strain relationship for isotropic, linear elasticity [8], the

general expression for incrementally linear behaviour of isotropic materials is:

∆F ∗mij =λm1 tr(∆ε∗)δij + λm2 ∆ε∗ij (17)

where λm1 and λm2 are coefficients that are independent of the loading direction.

A comparison of Eqs. 11 and 17 gives ψm1 = λm1 tr(∆ε∗) and ψm2 = λm2 . By

combining these expressions with Eqs. 9, 12 and 14, conditions are obtained for

the total fabric change to be incrementally linear:

Bg −Bl = 0

Dg −Dl = 0

Gg −Gl +Gr = 0

(18)

Note that Br = 0 and Dr = 0, as no change in coordination number occurs due

to contact reorientation, ∆Z∗r = 0.
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The first two relations in Eq. 18 imply, using Eq. 15, that ∆Z∗|α=45◦ =360

−∆Z∗|α=225◦ . Moreover, Figs. 7(a) and (c) show that the rate of contact loss

in isotropic compression, ∆Z∗l|α=225◦ , and that of contact gain in isotropic

extension, ∆Z∗g|α=45◦ , are very small. Hence it follows that ∆Z∗l|α=45◦ =

∆Z∗g|α=225◦ . Thus, the first condition for incremental linearity is that the rate

of change in coordination number due to contact loss in isotropic extension must365

be equal to the rate of change in coordination number due to contact gain in

isotropic compression.

From Eqs. 14 and 18 it follows that ∆Z∗|α=135◦ = 0, and hence ∆Z∗l|α=135◦ =

∆Z∗g|α=135◦ . Thus, the second condition for incremental linearity is that in

pure shear the rates of change in coordination number due to contact loss and370

contact gain must be equal.

Finally, from Eqs. 15 and 18, it follows that max(∆A∗) = ∆A∗|α=135◦ , and

as such, the third condition for incremental linearity is that the maximum rate

of change of anisotropy is obtained in pure shear.

In summary, an incrementally linear fabric response is obtained whenever375

all the following conditions are met:

1. The rate of change in coordination number due to contact loss in isotropic

extension is equal to the rate of change in coordination number due to

contact gain in isotropic compression.

2. The rates of change in coordination number due to contact loss and contact380

gain are equal in pure shear.

3. The maximum rate of change of contact anisotropy is obtained in pure

shear.

4.4. Incrementally nonlinear character of fabric changes

Interpreting the numerical results within the framework developed in the385

previous subsection, we see that none of the above three conditions is satisfied,

as demonstrated by the results depicted in Fig. 5, where the deviation from the

first condition is the largest.
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A more quantitative assessment of the incremental nonlinearity of fabric evo-

lution can be obtained by investigating the variables ∆Z∗ and ∆A∗ associated

with the total fabric change, which, following Eq. 4, can now be expressed as:

∆Z∗ =−∆Z∗l + ∆Z∗g = a1 + a2(cosα+ sinα) + a3 cosα sinα

∆A∗ =−∆A∗l + ∆A∗g + ∆A∗r = a4(cosα− sinα) + a5(cos2 α− sin2 α)

a1 =− (2Bl +Gl) + (2Bg +Gg)

a2 =− (2Cl + El) + (2Cg + Eg)

a3 =− 2(Dl +Gl) + 2(Dg +Gg)

a4 =− El + Eg + Er

a5 =−Gl +Gg

(19)

Conditions in Eq. 18 require the coefficients a1, a2, and a3 to be equal to zero

for the variations in Eq. 19 to be incrementally linear.390

The variation of coefficients in Eq. 19 with initial coordination number is

given in Fig. 8, where non-zero values of variables a1, a3, and a5 point towards

an incrementally nonlinear evolution of fabric with strain increments. Based on

the expressions in Eq. 19, the fact that a5 < a3 indicates that the deviation

from incremental linearity is more significant in the deviatoric part of fabric395

tensor (characterized by ∆A∗) compared to its spherical part (characterized by

∆Z∗). As also mentioned in relation to Fig. 7, the changes in fabric appear to

scale with initial coordination number as suggested by the almost linear trends

in Fig. 8.

The studies in [1, 3] conclusively demonstrate that, depending on the sam-400

ple preparation method, the initial coordination number and void ratio of the

granular sample can vary almost independently, and as such, a comprehensive

parametric study should ideally consider the effect of these variables separately.

While such an extensive investigation is beyond the scope of the current study,

one can expect, based on arguments in [41] that the contact loss mechanism de-405

pends mainly on coordination number, and the contact gain mechanism on the
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Figure 8: Variation of coefficients describing the total fabric change in Eq. 19 with initial

coordination number Z0.

void ratio. The latter dependency originates from the fact that for new contacts

to form, the neighbouring particles need to close their interparticle gap, which

is a function of void ratio.

To recapitulate findings, the results for normalized total fabric change, as

well as the contributions of contact gain and loss to the fabric change, for the

strain probes shown in Fig. 5 can be compiled together with the strain probes

and stress responses in Fig. 3, to illustrate the correlations between the changes

in contact fabric, and isotropic and deviatoric components of stress and strain

increments, as shown in Fig. 9. The isotropic (or spherical) and deviatoric

components stress and strain are defined as:

∆p =
1

2
(∆σyy + ∆σxx), ∆q =

1

2
(∆σyy −∆σxx)

∆εv = ∆εyy + ∆εxx, ∆εs = ∆εyy −∆εxx

(20)

As expected, the spherical part of fabric changes due to contact loss and410

gain, ∆Z∗l, ∆Z∗g show relatively monotonic trends with spherical stress and

strains. Such a linearity is even more clear for the spherical component of

the total fabric change, ∆Z∗, which suggests that the relation between ∆Z∗
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Figure 9: Correlation between the fabric changes due to contact loss and gain, and total fabric

change, and the volumetric and deviatoric components of stress and strain increments. Stress

increments are presented in dimensionless form.
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and the hydrostatic stress and volumetric pressure is independent of the probe

direction. Moreover, the linearity in the case of the spherical component of415

the fabric change is more evident in terms of stress increments. On the other

hand, the deviatoric fabric terms, ∆A∗l, ∆A∗g, and ∆A∗, show more scattered

variations and less robust correlations with the stress and strain terms, which

indicates that the relation between contact fabric and strain (or stress) changes

depends on probe direction, and hence, is incrementally nonlinear in nature.420

Such a dependency on the direction of loading further advocates the directional

dependency of plastic flow rule [51] and constitutive models embedding such

incremental nonlinearity [13, 14, 34].

It is also of interest to study a wider range of contact stiffness to verify the

generality of the conclusions. For this case, our preliminary results show that425

the general trends of fabric evolution with strain probe direction remain the

same when contact stiffness is varied.

5. Conclusions

The stress and fabric responses of granular media to strain probing have

been studied, based on two-dimensional DEM simulations of initially isotropic430

systems with various coordination numbers and void ratios. Within sufficiently

high numerical accuracy, the strain probe size was selected small enough to

obtain a linear stress response, but large enough to cause sizeable fabric changes

that are reliable for determining their dependency on the strain probe direction.

Intriguingly, the DEM simulation results show that while the stress response435

is incrementally linear and pseudo-elastic, the associated fabric changes are in-

stead dependent on the strain probe direction, and hence incrementally nonlin-

ear. This incremental nonlinearity of the fabric response appears already in the

small deformation regime and can only develop further to serve as a precursor

to the elasto-plasticity of anisotropic granular assemblies. It also raises the is-440

sue of how fabric, as an internal state variable, is related to deformations and

stresses in a granular medium. The stress-strain response of the samples re-
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mained incrementally linear despite of the strong directional dependency of the

fabric evolution. As such, this indicates that the initial pseudo-elastic response

is unaffected by the change in contact fabric, at least for the isotropic assem-445

blies and the stiffness range considered in this study. However, this conclusion

does not extend straightforwardly to stiffer and/or anisotropic assemblies where

subtle effects of fabric change on pseudo-elastic response can be envisaged [41].

To further explore the nature of fabric changes, the contributions of each

of the following three mechanisms, i.e. contact loss, contact gain and contact450

reorientation, have been separately quantified for each strain probe direction.

The contribution due to contact reorientation is found to be small in comparison

to contributions due to contact loss and contact gain. By contrast, contact loss

is dominant over contact gain in probes that involve extensional strains, while

the opposite is observed in compressive strain probes.455

A detailed analysis of the evolution of fabric changes has been conducted

using second-order tensors to describe distributions for changes in contact ori-

entations, including the three mechanisms for all probing directions. As such,

combining a representation theorem for isotropic tensorial functions with the

results of the DEM simulations yields expressions that relate changes in coordi-460

nation number and anisotropy for each strain probe direction with a relatively

small number of parameters that only depend on the initial coordination num-

ber of the sample. These parameters have been expressed in terms of the rate

of change of coordination number for certain characteristic directions: isotropic

compression, isotropic extension and pure shear.465

Additionally, as main findings of this work, the following special cases related

to the nature of fabric changes have been distinguished:

1. In isotropic compression the rate of change in coordination number due

to contact loss is very small, while for the isotropic extension the rate of

contact gain is very small.470

2. The rate of change in anisotropy is not largest in pure shear, but in a

probe direction that involves shear and extension.
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3. The rate of contact loss in isotropic extension is larger than the rate of

contact gain in isotropic compression. It is this difference that ultimately

forms the primary origin of the incremental nonlinearity of fabric response475

to strain probing.

4. The parameters expressing the rate of change in the above-mentioned char-

acteristic directions scale almost linearly with initial coordination number

of the samples.

The issue of ‘microstructure-motivated’ elasticity remains an open question480

that requires further studies, with wider ranges of conditions to clearly under-

stand and explain the evolution of contact fabric and its role in driving the

mechanical response of granular materials, especially in three-dimensional con-

ditions. In particular, it will be interesting to study the fabric evolution in

initially anisotropic configurations, for which, as our preliminary results show,485

interrelations have been observed between lost and and gained contacts distribu-

tions. These interrelations should also be studied from a static equilibrium point

of view for loose samples where the coordination number must also satisfy the

minimum jamming transition threshold. By including simulations with wider

ranges of contact stiffness values, and particularly stiffer contacts, samples can490

be prepared with initial coordination numbers closer to the isostaticity limit,

where, according to previous studies, distinct behaviours in terms of dilatancy

and fabric evolution are expected [37, 38, 4].
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Appendix A. Zones with Zero Contact Gain and Loss

Following the analysis in [41], probing zones can be identified that are asso-

ciated with zero contact gain and loss. Equation 18 in [41] gives the change in

average contact force along direction θ as:

df̄n
∗
(θ) = 〈fn〉

dp

p

[
1 + cos 2θ

(
an + 2

dq

dp
− 2

q

p

)]
(A.1)

where an is the anisotropy of the normal contact forces, 〈fn〉 is the average

normal contact force, and θ is the direction in space. Moreover, as a simplifying
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assumption, and based on the results in Fig. 2, the direction of stress response

is assumed to be the same as the strain probe direction α. In this case the

incremental stress ratio, dq/dp can be written as:

dq

dp
=

sinα− cosα

sinα+ cosα
(A.2)

By substituting Eq. A.2 into A.1, and assuming that an = 0 and q = 0 for

initially isotropic cases considered in the current study, the directional change

in average contact force can be related to probe direction:

df̄n
∗
(θ) = 〈fn〉

dp

p

[
1 + cos 2θ

(
2

sinα− cosα

sinα+ cosα

)]
(A.3)

Based on the arguments offered in [41], contacts are lost along directions θ where

df̄n
∗
(θ) is negative and gained where it is positive. However, it can be shown

that for specific ranges of probe direction, α, the change in average contact

force remains positive (or negative) for all values of θ. These ranges can be

determined by first finding the minimum and maximum of df̄n
∗
(θ) in Eq. A.3

with respect to θ, and then finding values of α that would turn these minima

and maxima to zero. This results in the following ranges of α with no contact

loss or gain, i.e.

198.5◦ <α < 251.5◦ (no contact loss)

18.5◦ <α < 63.5◦ (no contact gain)
(A.4)
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