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This paper provides examples of the numerical solution of boundary-value problems in nonlinear mag-
netoelasticity involving finite geometry based on the theoretical framework developed by Dorfmann and
co-workers. Specifically, using a prototype constitutive model for isotropic magnetoelasticity, we con-
sider two two-dimensional problems for a block with rectangular cross-section and of infinite extent
in the third direction. In the first problem the deformation induced in the block by the application of a
uniform magnetic field far from the block and normal to its larger faces without mechanical load is exam-
ined, while in the second problem the same magnetic field is applied in conjunction with a shearing
deformation produced by in-plane shear stresses on its larger faces. For each problem the distribution
of the magnetic field throughout the block and the surrounding space is illustrated graphically, along
with the corresponding deformation of the block. The rapidly (in space) changing magnitude of the mag-
netic field in the neighbourhood of the faces of the block is highlighted.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Considerable interest has developed in recent years in polymer-
based mechanically soft materials possessing high magneto-
mechanical compliance, and they are capable of large elastic defor-
mations under the influence of an external magnetic field, much
larger than in conventional magnetostriction (Bednarek, 1999;
Ginder et al., 2002). Typical of these newly synthesized materials
are highly deformable and magnetizable elastomers, which are
composed of a rubber-like matrix embedded with micron-sized
magneto-active particles (Jolly et al., 1996; Lokander and Stenberg,
2003; Boczkowska and Awietjan, 2009),

The magneto-mechanical response of these materials is highly
nonlinear and the magneto-mechanical coupling offers the possi-
bility of developing new devices for a variety of applications,
including, actuators, sensors, dampers and control systems; see,
for example, Ginder et al. (1999, 2000, 2001), Albanese and Cune-
fare (2003), Farshad and Le Roux (2004), Yalcintas and Dai (2004),
and the review by Li and Zhang (2008). Some relevant experimen-
tal data can be found in Bellan and Bossis (2002), Bossis et al.
(2001), Varga et al. (2005, 2006), for example. Of crucial impor-
tance is the nonlinearity, and the advent of materials that can oper-
ll rights reserved.

ante).
ate in a highly nonlinear magneto-mechanical regime presents
challenges from both practical and theoretical perspectives.

At present the influence of magnetic fields on the behaviour of
magneto-sensitive materials in the highly nonlinear regime is not
well understood and the development of an appropriate theoretical
framework is essential to further that understanding. These new
materials have stimulated the constitutive modelling for the
description of their magneto-mechanical properties, and a theoreti-
cal framework for the analysis of these materials has been devel-
oped; see, in particular, Brigadnov and Dorfmann (2003),
Dorfmann and Ogden (2003, 2004a,b, 2005a,b), Bustamante
(2010), and related developments by Kankanala and Triantafyllidis
(2004) and Steigmann (2004). For the relevant background on mag-
netelasticity and electromagnetic–mechanical interactions in gen-
eral, see Brown (1966), Maugin (1988), Eringen and Maugin
(1990), Kovetz (2000), Hutter et al. (2006), and the collection of lec-
ture notes in the volume edited by Ogden and Steigmann (in press).

In this paper we are concerned with the solution of basic
boundary-value problems in nonlinear magnetoelasticity. There
are very few exact (closed-form) solutions available, and those that
are available relate to idealized geometries of infinite extent, such
as a slab of material of uniform finite thickness extending to infin-
ity in two directions or an infinitely long circular cylindrical tube.
For finite geometries, in contrast to the situation in pure nonlinear
elasticity theory, there is a need to obtain solutions that satisfy the
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magnetic boundary conditions on all interfaces between the mate-
rial and the surrounding space, and this is the source of the diffi-
culty of obtaining solutions analytically. Accordingly, to obtain
solutions it is necessary in general to adopt a numerical approach.

In Section 2 we summarize briefly the relevant kinematics of fi-
nite deformation, the equations of magnetoelastostatics, and then,
based on the formulation of nonlinear magnetoelasticity in Dorf-
mann and Ogden (2004b, 2005a,b), the equations of mechanical
equilibrium, the associated boundary conditions, the constitutive
law of a magnetoelastic material, and its isotropic specialization
based on the theory of invariants. The formulation of a general
boundary-value problem of magnetoelasticity is presented in Sec-
tion 3 and a prototype constitutive law is adopted as the basis for
the numerical solutions in Section 4. In a previous paper (Busta-
mante et al., 2007) we used a finite difference method to obtain
the distribution of the magnetic field within and exterior to a hol-
low circular cylinder of finite length that was subjected to uniform
extension and radial inflation (or deflation) but held in a circular
cylindrical configuration. In the present paper no such assumption
on the deformation is made and the material is free to deform un-
der the influence of an applied magnetic field, subject in one exam-
ple also to applied mechanical loads.

In Section 4 we obtain numerical (finite element) solutions for
two problems involving a rectangular block of finite uniform
cross-section, based on use of the multiphysics package (Comsol
Multiphysics, 2007). In the first problem the deformation induced
in the block by the application of a uniform magnetic field far from
the block and normal to its larger faces without mechanical load is
examined, while in the second problem the same magnetic field is
applied in conjunction with a shearing deformation produced by
in-plane shear stress on its larger faces. For each problem the dis-
tribution of the magnetic field throughout the block and the sur-
rounding space is illustrated graphically, along with the
corresponding deformation of the block. The sharply varying mag-
nitude of the magnetic field in the neighbourhood of the faces of
the block is highlighted.

Some concluding remarks are contained in Section 5.
2. Basic equations

2.1. Kinematics

Consider a deformable magnetoelastic body that is initially in an
unstressed configuration, denoted B0, with boundary oB0, within
three-dimensional Euclidean space. Let the position vector X of a
point in B0 identify the material particle located at that point. Under
the action of applied mechanical loads combined with an applied
magnetic field the body deforms quasi-statically into a new (de-
formed) configuration, denoted B, with boundary oB. Suppose the
material particle X occupies the new position x = v(X) in B, where
the vector field v describes the deformation of the body, is defined
for X 2 B0 [ oB0 and is endowed with suitable regularity properties.

The deformation gradient tensor F relative to B0 is defined by
F = Gradv, where Grad denotes the gradient operator with respect
to X. We also use the notation J = detF, noting that, by convention,
J > 0. The right and left Cauchy–Green tensors associated with F are
defined by

c ¼ FTF; b ¼ FFT; ð1Þ

respectively, where T indicates the transpose (of a second-order ten-
sor). We remark that in the continuum mechanics literature the left
Cauchy–Green tensor is normally denoted B, which conflicts with
the standard notation for the magnetic induction vector. To avoid
this conflict lower case characters c and b are used here for the Cau-
chy–Green tensors.
In order to distinguish differential operators, such as grad, div
and curl, with respect to x from those with respect to X, the nota-
tions Grad, Div and Curl are used in the latter case. We also adopt
the convention that when applied to tensors the divergence oper-
ators act on the left leg of the tensor that follows them. For exam-
ple, for any uniform vector a in B, Div(FT) is defined by
Div(FT) � a � Div(FTa). For background on the relevant nonlinear
elasticity theory, see, for example, Ogden (1997, 2001).

2.2. Magnetostatics

Let B denote the magnetic induction vector and H the magnetic
field vector in configuration B. In free space (or non-magnetizable
material) they are related by

B ¼ l0H; ð2Þ

where the constant l0 is the permeability of free space. In magne-
tizable material (2) does not hold, and an additional vector field, the
magnetization M, is defined by the difference

M ¼ l�1
0 B�H: ð3Þ

This characterizes the response of the material to an external mag-
netic field, but must be accompanied by a constitutive law that de-
scribes the magnetic properties of the considered material. Such a
law gives one of the three magnetic vectors above in terms of one
of the others, and there are several options for specifying such a
relationship.

In the present paper we consider only time-independent defor-
mations and magnetic fields and we assume that there are no free
currents within the material. Then, B and H satisfy the following
specializations of Maxwell’s equations

divB ¼ 0; curlH ¼ 0: ð4Þ

These apply both within and outside the material. For detailed
background on electromagnetic theory, see, for example, the classic
text by Jackson (1999).

In the absence of free surface currents the continuity conditions

n � sBt ¼ 0; n� sHt ¼ 0; ð5Þ

are satisfied on the boundary oB, where s�t signifies a discontinuity
across the boundary oB and n is the outward unit normal to oB. For
example, sBt = Bo�Bi, where o and i signify ‘‘outside’’ and ‘‘inside’’
the material, respectively. Using Eqs. 2 and 3, valid respectively out-
side and inside the material, the boundary conditions (5) can be
written equivalently as

sBt ¼ l0n� ðn�MÞ; sHt ¼ ðn �MÞn: ð6Þ

Equations (4) are Eulerian in form and involve the operators div and
curl. We now introduce the Lagrangian counterparts of B and H, de-
noted Bl and Hl and defined by

Bl ¼ JF�1B; Hl ¼ FTH: ð7Þ

Then the kinematical identities

JdivB ¼ Div JF�1B
� �

; JF�1curlH ¼ Curl FTH
� �

; ð8Þ

enable Eqs. (4) to be recast in the Lagrangian forms

DivBl ¼ 0; CurlHl ¼ 0: ð9Þ

The corresponding Lagrangian forms of the boundary conditions are

N � sBlt ¼ 0; N� sHlt ¼ 0; ð10Þ

where N is the unit outward normal to the reference boundary oB0

associated with n through Nanson’s formula nda = JF�TNdA, where
dA and da are area elements on oB0 and oB, respectively.
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2.3. Magneto-mechanical equilibrium

In what follows we assume that there are no mechanical
body forces. Magnetic body forces can be treated equivalently
as stresses by introducing the so-called total (Cauchy) stress ten-
sor s, which is a symmetric tensor (see, for example, Dorfmann
and Ogden, 2004b). The equilibrium equation can then be writ-
ten simply as

divs ¼ 0; ð11Þ

where s satisfies the boundary condition

sn ¼ ta þ tm on oB: ð12Þ

In (12) ta is the mechanical traction (per unit area) applied on oB

and tm = smn, where sm is the Maxwell stress evaluated on the out-
side of oB. The Maxwell stress is defined by

sm ¼ B�H� 1
2
l0ðH �HÞI; ð13Þ

where I is the identity. Here the Maxwell stress is used only outside
the material, where (2) holds and divsm = 0.

2.4. Constitutive equations

In order to solve boundary-value problems we require constitu-
tive equations that give the total stress s and a magnetic vector in
terms of the deformation gradient F and an independent magnetic
variable. Here, we choose to use H as the independent magnetic
vector and to give B by a constitutive law. Since curlH = 0, this in-
volves working with a scalar potential u = u(x) such that
H = �gradu. The remaining equations, divB = 0 and divs = 0, must
then be solved for x = v(X) and u(x).

There are many different ways in which constitutive equations
for magnetoelastic materials can be constructed, and for a recent
overview of several possible formulations we refer to Bustamante
et al. (2008). In Dorfmann and Ogden (2004b), for example, a the-
ory of magnetoelasticity using F and Bl as the independent vari-
ables was developed in terms of an energy (or potential) function
X = X(F,Bl), defined per unit reference volume. In the same paper
an alternative formulation involving an energy function X⁄(F,Hl)
was also noted, and it is this latter function that we use here. In
terms of this (total) energy function the (total) nominal stress ten-
sor T � JF�1s and the Lagrangian magnetic induction vector Bl are
obtained simply as

T ¼ oX�

oF
; Bl ¼ �

oX�

oHl
: ð14Þ

The corresponding Eulerian quantities are

s ¼ J�1F
oX�

oF
; B ¼ �J�1F

oX�

oHl
: ð15Þ
2.4.1. Isotropic magnetoelastic solids
From this point on we specialize the constitutive equations to

those appropriate for isotropic magnetoelastic materials. For such
materials the constitutive equations can be expressed in terms of
six independent invariants involving the deformation, via the right
Cauchy–Green tensor c, and the (Lagrangian) magnetic field vector
Hl. The magnetoelastic material is said to be isotropic if X⁄ is an
isotropic function of c and Hl � Hl. Note that the latter expression
is unaffected by reversal of the sign of Hl. Then, the form of X⁄ is
reduced to dependence on the principal invariants I1, I2, I3 of c, de-
fined by

I1 ¼ trc; I2 ¼
1
2

trcð Þ2 � tr c2� �h i
; I3 ¼ det c ¼ J2; ð16Þ
together with three invariants that depend on Hl. These are denoted
here by I4, I5, I6 and possible choices for their definitions, which we
use here, are

I4 ¼ jHlj2; I5 ¼ cHlð Þ �Hl; I6 ¼ c2Hl
� �

�Hl: ð17Þ

For a general reference to the theory of invariants of tensors and
vectors we cite Spencer (1971).

A direct calculation based on (15)1 leads to

s ¼ J�1 2X�1bþ 2X�2 I1b� b2
� �

þ 2I3X
�
3Iþ 2X�5bH� bH

h

þ 2X�6 bH� b2Hþ b2H� bH
� �i

; ð18Þ

which is clearly symmetric, and we recall that b = FFT is the left
Cauchy–Green deformation tensor. The corresponding expression
for B is obtained from (15) 2 as

B ¼ �2J�1 X�4bHþX�5b2HþX�6b3H
� �

: ð19Þ

In the above equations X�i is defined as oX⁄/oIi for i = 1, . . . ,6. The
corresponding Lagrangian forms may be obtained from the connec-
tions T = JF�1s and Bl = JF�1B. However, in what follows we work in
terms of the Eulerian form of the governing equations. A generaliza-
tion of the above isotropic model to the transversely isotropic case
has been developed by Bustamante (2010).

3. Boundary-value problem formulation

Here we outline briefly a general approach towards obtaining
solutions of boundary-value problems in nonlinear magnetoelas-
ticity, and we restrict attention to situations in which there is no
mechanical body force. Then, the relevant equations to be solved
are (in Eulerian form)

divB ¼ 0; curlH ¼ 0; divs ¼ 0; ð20Þ

together with the jump conditions (5) at a material interface (which
here is just the boundary oB) and the constitutive Eqs. (18) and (19).

Equation (20)2 enables us to use the magnetic scalar potential
u = u(x), so that

H ¼ �gradu: ð21Þ

Equation (21) is valid inside the material and the surrounding
space. In the surrounding space we have divH = 0 and the magnetic
potential u must satisfy Laplace’s equation

r2u ¼ 0: ð22Þ

Inside the material, on the other hand, we have divB = 0, where B is
the function of F and H given by (19). For convenience and using
(21), we rewrite the constitutive equation in compact form as

B ¼ �C�H ¼ C�gradu; ð23Þ

where C� is defined by

C� ¼ 2J�1 X�4bþX�5b2 þX�6b3
� �

; ð24Þ

and we emphasize that in general X�4;X
�
5 and X�6 depend on F and H

through the invariants (16) and (17), with Hl = FTH. Inside the mate-
rial, instead of (22), the magnetic potential u has to satisfy

divðC�graduÞ ¼ 0: ð25Þ

Therefore, the general boundary-value problem aims to determine
u(v(X)) and v(X) for a given reference geometry B0 and requires
solution of Eq. (22) in the surrounding space and Eqs. (25) and
(20)3 with (18) within B0, the solutions being connected by the con-
tinuity conditions (5).



Table 1
Values of the material parameters in (31) and (32).

g0

(Pa)
g1

(PaA�2 m2)
m0 (T) m1

(Am�1)
c1 l0 (NA�2) j

(Pa)

105 �10�6 0.4998 309339.5 1250 1.2566 � 10�6 105
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3.1. Volumetric–dilatational decomposition for compressible materials

In the numerical solution of boundary-value problems involving
compressible materials, which we consider in Section 4, it will be
convenient to adopt a decomposition of the deformation gradient
into volume preserving and dilatational contributions. Following
Flory (1961) and Ogden (1976, 1978), we consider the
decomposition

F ¼ J1=3I
� �

F; ð26Þ

where the modified deformation gradient F describes the volume-
preserving part of the deformation, while the dilatational part is gi-
ven in terms of J = detF. It follows from (26) that det F ¼ 1. The
associated modified right and left Cauchy–Green tensors are given
respectively by

c ¼ FTF ¼ J�2=3c; b ¼ FFT ¼ J�2=3b; ð27Þ

and we recall the Cauchy–Green tensors defined in (1).
The invariants defined in (16) and (17) are modified accordingly

when the modified Cauchy–Green tensors are used in the formula-
tion of constitutive equations. The modified invariants are given by

I1 ¼ J�2=3I1; I2 ¼ J�4=3I2; I3 � 1; ð28Þ

and

I4 ¼ I4; I5 ¼ J�2=3I5; I6 ¼ J�4=3I6: ð29Þ
3.2. A prototype energy function

As a basis for numerical calculations particular forms of the en-
ergy function X⁄ are needed, and in order to predict realistic
behaviour in representative boundary-value problems such energy
functions should be compatible with data from (magneto-mechan-
ical) experimental tests on the materials in question. Unfortu-
nately, the data available on magneto-sensitive elastomers of the
kind required are limited, although some relevant data can be
found in the papers by Ginder et al. (1999), Bossis et al. (2001), Bel-
lan and Bossis (2002), and Varga et al. (2005, 2006), for example.
Data therein were used by Bustamante (2010) to construct a form
of the energy function X⁄ for transversely isotropic magneto-sen-
sitive elastomers. Here we use an isotropic specialization of the
model having the decoupled representation

X� ¼ X�iso þX�vol þX�0; ð30Þ

where X�iso and X�vol are, respectively, isochoric and volumetric con-
tributions given by

X�iso ¼
1
2
ðg0 þ g1I4Þ I1 � 3

� �
�m0m1 log cosh

ffiffiffiffi
I4
p

m1

� �	 

� c0I4

þ c1l0I5; ð31Þ

and

X�vol ¼
1
2
jðJ � 1Þ2; ð32Þ

X�0 is a constant that is included to ensure that X⁄ vanishes in the
reference configuration B0, and g0, g1, m0, m1, c0 = l0(c1 � 1)/2 and
j, together with the free-space permeability l0, are constants. For
the numerical calculations in Section 4 these parameters have val-
ues given in Table 1.

Based on (30), with X⁄ now treated as a function of I1; I4; I5 and
J, the expressions for the total stress (18) and magnetic induction
(19) in the material become
s ¼ 2J�1 X�1 b� 1
3

I1I
� �

þX�5J2=3 bH� bH� 1
3

H � b2H
� �

I
� �	 


þX�J I;

ð33Þ

and

B ¼ �2J�1=3 X�4bHþX�5b2H
� �

; ð34Þ

where X�i ¼ oX�=oIi; i ¼ 1;4;5, and X�J ¼ oX�=oJ. We recall that b is
the modified left Cauchy–Green tensor defined by (27)2 and that
H is the magnetic field given in terms of the scalar potential by
H = �grad u. Outside the material B = l0H and u satisfies the Eq.
(22), while inside the material it satisfies Eq. (25).

4. Application to a rectangular block

In a previous paper (Dorfmann and Ogden, 2005b) we consid-
ered the deformation of a slab of magnetoelastic material of finite
thickness and parallel plane faces of infinite extent. The slab was
subject to a uniform magnetic field normal to its faces and solu-
tions corresponding to two separate homogeneous deformations
were obtained: pure homogeneous deformation and simple shear.
It is important to note that the infinite lateral extent of the slab en-
abled exact solutions to be obtained because the magnetic bound-
ary conditions could be satisfied exactly. Such exact (closed-form)
solutions are not in general possible when the material body has
finite dimensions since in such situations the continuity conditions
for B and H on the finite boundaries cannot be satisfied for solu-
tions given in terms of simple functions and it is therefore neces-
sary to adopt a numerical approach to the solution of the
boundary-value problems in question.

In the present paper we consider a block of material of rectan-
gular cross-section and infinite extent in the direction normal to
the cross-section as a (two-dimensional, plane strain) vehicle for
developing numerical solutions that enable the distributions of
the magnetic field and the magnetic induction to be determined
both within the material and in the surrounding space.

Consider then a block of magnetoelastic material infinite in ex-
tent in the X3 direction and with rectangular cross-section (inde-
pendent of X3) of finite dimensions in the (X1,X2) plane in the
reference configuration. The deformation to be considered is one
of plane strain in the (X1,X2) plane and the magnetic field is taken
to lie within the plane and to be independent of X3 so as to restrict
attention to a two-dimensional problem. For numerical purposes
the dimensions (length and thickness) of the rectangular cross-sec-
tion of the block in the X1 and X2 directions are set as Lb = 0.2 m and
Tb = 0.04 m, respectively, resulting in an aspect ratio of 5, while it
suffices to take the corresponding dimensions of the surrounding
free space as Lf = 4 m and Tf = 2 m, giving an aspect ratio of 2. The
dimensions of the exterior region have been chosen to ensure that
the magnetic field at its outer extremities is essentially uniform,
and that this is the case is confirmed by the example considered
in Section 4.1 below (as reflected in Figs. 3–5). The considered rect-
angular region and the surrounding space for which the governing
equations and boundary conditions are to be solved are depicted in
Fig. 1, but, for clarity, not shown to scale.

Fig. 2 shows a detailed quarter view of the layout of the finite
element mesh within the magnetoelastic material and in part of
the surrounding space; continuity conditions need to be satisfied



Fig. 1. Geometric layout of the rectangular cross-section of the magnetoelastic
body and the surrounding space. The space surrounding the material is defined by
�2 6 X1 6 2, �1 6 X2 6 1, and the material is located in the region �0.1 6 X1 6 0.1,
�0.02 6 X2 6 0.02, the dimensions being metres (not drawn to scale).
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by B and H across the interface, which is indicated by the solid line.
The finite elements are triangular, of Lagrange quadratic type (each
element has 6 nodes): in the material, 6860 elements are used, and
in the surrounding space, 27176 elements, with 95927 degrees of
freedom.

The first example does not involve any mechanical body forces
or surface tractions, and the deformation produced in the material
is entirely due to the application of a magnetic field. The second
example considers the material subject to shear deformation gen-
erated by the application of a mechanical traction in the presence
of a magnetic field.

Because the problem is two dimensional the scalar potential u
depends only on the coordinates x1, x2 in the deformed configura-
tion. For each of the examples the applied magnetic field is the
same and corresponds to a uniform magnetic field applied ‘at infin-
ity’ in the X2 direction. This is approximated for the finite region of
the (two-dimensional) space surrounding the material by taking
the component H1 of the magnetic field to vanish on the exterior
boundaries (a) and (c) shown in Fig. 1. This effectively means the
far-field magnetic boundary condition is that the scalar potential
u has a constant value on each of (a) and (c), say ua and uc, respec-
tively. On each of the other exterior boundaries (b) and (d) we may
take the boundary condition as H1 = 0 and then there is a uniform
field component H2 = H parallel to the boundary, and on (b) and (d)
we therefore have u = �Hx2 + c, where c is a constant. For compat-
ibility we must have c = (ua + uc)/2 and ua � uc = HTf.
Fig. 2. Detailed view of the (triangular) element size distribution in the upper right cor
spatial gradient of the magnetic vector fields, the elements being smallest in regions whe
Due to the interaction with the body, the magnetic field lines
deviate near the material boundaries so as to satisfy the continuity
conditions (5) and must therefore depend on both coordinates x1

and x2. We may take u to be continuous across the boundary be-
tween the material and the surrounding space. This then guaran-
tees that the tangential component of H is continuous across the
boundary, as required by the boundary condition (5)2. Thus, refer-
ring to Fig. 1, H1 is continuous across the boundaries (e) and (g) and
H2 is continuous across (f) and (h). It remains to consider the
boundary condition (5)1, i.e. n � sBt = 0. This requires that the com-
ponent B2 be continuous across the boundaries (e) and (g), and that
B1 be continuous across (f) and (h). To reduce possible numerical
problems associated with singularities at the corners, in the
numerical calculations the corners have been taken as slightly
rounded with radius 1 mm.

Solutions of Eqs. (22) and (25) are needed to determine the
magnetic field and stress distributions. To obtain these numerically
we select, as the starting point, the linear electroelastic option
implemented in a multiphysics code (Comsol Multiphysics,
2007). This code allows modelling of a piezoelectric body sur-
rounded by free space. We modified the electrostatic equations
implemented in Comsol to account for large deformation kinemat-
ics and nonlinear magnetoelasticity and used these to solve the
governing Eq. (20) inside the material and in the surrounding free
space, satisfying the required jump conditions on the material sur-
faces. For the free space the Comsol tool ‘Moving Mesh (ALE)’ was
used to deform the exterior mesh to accommodate the deforma-
tion of the material (this was originally developed for fluid–struc-
ture interaction problems; see Comsol Multiphysics User Guide,
Structural Mechanics Module, pp. 356–360). For solving the system
of nonlinear algebraic equations the ‘Damped Newton Method’
was used with relative tolerance 10�6 and maximum number of
iterations 120, and for highly nonlinear problems an initial damp-
ing factor of 10�4 and minimum damping factor 10�16 (see Comsol
Multiphysics Reference Guide, Version 3.5a, Chapter 5, pp. 533–
536). Linearization of the equations is automatically taken care of
within Comsol, although it is not clear from the documentation
whether this is done before or after the finite element
implementation.

4.1. Example 1: magnetic field induced deformation

In this example no mechanical loads are applied to the body and
the deformation induced in the material is due entirely to the ap-
plied magnetic field. To restrain the body from any rigid translation
the material point located at the center of the edge (e) is not al-
lowed to displace in the X1 direction, and to eliminate rigid body
ner of the material and in the surrounding space. The element size depends on the
re the largest variations in the magnetic field and magnetic induction vectors occur.
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the material boundaries at X1 = ±0.1 and is continuous across these interfaces.
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rotation the point located at the intersection of edges (e) and (f) is
not allowed to displace in the X2 direction. The magnetic field com-
ponent H2 = H on the boundaries (a) and (c) is given as
H = �106 Am�1. In what follows the units of X1 and X2 are metres.

Fig. 3 illustrates the variation of the component B1 of the mag-
netic induction vector along a horizontal line located at x2 = 0.01
through the surrounding space and inside the material, and, in par-
ticular, its continuity at the interfaces. This shows that the magni-
tude of B1 is essentially skew-symmetric along the X1 direction, the
slight difference being due to the lack of symmetry of the deforma-
tion with respect to the x2 direction. The corresponding plot for
x2 = �0.01 (not shown) is essentially a reflection of that in Fig. 3
in the line x1 = 0. The magnetic boundary condition requires that
B1 = 0 at x1 = ±2. The magnitude of B1 increases (decreases) rapidly
as the material boundary is approached, reaches its maximum va-
lue at the interface, and within the material it returns to zero and
switches sign. Note that B = l0H in the surrounding space and that
the unit of B is Tesla T = NA�1 m�1 = kgA�1 s�2 (l0 = 4p 10�7 NA�2).

Fig. 4 shows the variation of the magnetic field component H2

along a horizontal line located at x2 = 0.01. On both sides of the
material body, far away from the interfaces, the value of
H2 = �106 Am�1, equal to that applied to the far-field boundary,
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Fig. 4. Values of H2 along the horizontal line x2 = 0.01. Component H2 is tangential
to the left and right material interfaces and is continuous across these interfaces.
i.e. the far field does not ‘feel’ the presence of the material body.
As the material is approached the magnitude rapidly changes by
several orders of magnitude. For clarity, the variation of H2 inside
the material is shown in the insert of the same figure.

Fig. 5 shows the changes of the component H1 along a line de-
fined by x1 = 0.01. Recall that the undeformed configuration of
the material is defined by the interval �0.02 6 X2 6 0.02 and that
the component H1 must be tangential to the material boundaries
located at X2 = ±0.02. This graph shows that outside the material,
where the magnetic induction is connected to the magnetic field
by B1 = l0H1, the field H is essentially uniform and directed along
the x2 direction. Inside the material, in addition to B and H, we
have the magnetization M which, if needed, can be obtained using
Eq. (3). As is the case with B1 the distribution of H1 is essentially
skew-symmetric with respect to x2 and also with respect to x1.

Figs. 6 and 7 show the deformed configuration of the material
and contour plots of the spatial distributions of the magnitudes
of the components B1 and B2. The component B1 is continuous
across the left and right boundaries of the material and B2 is con-
tinuous across the upper and lower boundaries. Obviously, due
to the mechanical boundary conditions, the deformation is not
symmetric with respect to x2. These contour plots also depict the
deformed shape of the initially rectangular cross-section. In partic-
ular, the applied magnetic field induces a lateral contraction and
axial elongation. The original straight boundaries do not remain
straight and some outward bulging occurs.

An alternative representation of the magnetic induction B is
shown in Fig. 8. The magnetic field lines inside the material and
in the surrounding space are represented by arrows with length
proportional to the magnitude of B. It shows that, due to symmetry
and continuity requirements, the component B1 essentially van-
ishes in the material and in the surrounding space except close
to the edges (f) and (h). There is also a jump in the component B2

across the same interfaces. Similarly, the jump conditions require
that the component B2 be continuous across the boundaries (e)
and (g). The solid line indicates the boundary of the deformed
body.

Contour plots of the components H1 and H2, not shown sepa-
rately, follow a very similar pattern to those for B1 and B2 inside
the material body. Outside the body a contour plot of the magni-
tude of the magnetic field H in the vicinity of the body is shown
in Fig. 9, superimposed on the reference configuration. While the
applied magnetic field is uniform with non-zero component in
the x2 direction away from the material, it becomes highly



Fig. 6. Deformed configuration of the material body showing a lateral contraction and an axial extension of the material and a contour plot of B1, which is normal to the
material interfaces located at X1 = ±0.1, across which it is continuous.

Fig. 7. Deformed configuration showing a lateral contraction and an axial extension of the material and a contour plot of B2, which is continuous across the material
boundaries located at X2 = ±0.02.

Fig. 8. Magnitude and direction of the field B inside the deformed material and in the surrounding space indicated by the arrows. The solid line shows the approximate
deformed configuration of the magnetoelastic body.
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non-uniform as the bounding surface of the magnetoelastic body is
approached.

4.2. Example 2: shear deformation in a magnetic field

We again consider the geometry shown in Fig. 1 with boundary
(e) now held fixed. Boundary (g) is not allowed to displace in the X2

direction, but translates along the X1 direction by the application of
a uniform shear stress of 15 kPa. No mechanical loads are applied
to the remaining boundaries (f) and (h). The magnetic field, in
the absence of the material body, is uniform and directed along
the X2 direction. It is defined as in Example 1, with
H2 = H = �106 Am�1.

Results in Fig. 10 show that the magnetic field, evaluated along
a line located at x2 = 0.005, remains uniform except in close prox-
imity to the material boundaries at X1 = ±0.1. The component H2

is tangential to these boundaries and satisfies the continuity condi-
tion specified by (5)2. The variation of the field component H2 in-
side the material is shown by the insert to Fig. 10. Note that it is
not symmetric with respect to x1.



Fig. 9. Contour plot (based on the reference configuration) showing the magnitude of the magnetic field vector H in the free space surrounding the material. The applied far-
field magnetic field is uniform and has a magnitude of 106 Am�1.
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Fig. 10. Variation of H2 along the line x2 = 0.005, showing that the magnetic field is
constant and uniform in most of the surrounding space, except in close proximity to
the material boundaries X1 = ±0.1. The insert shows the variation of H2 inside the
material.
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Fig. 11. Variation of B1 inside the material body and in the surrounding space. The
magnetic field is unidirectional in most of the free space except close to the material
boundaries. Continuity conditions are satisfied at material interfaces X1 = ±0.1. All
values shown are determined along the line x2 = 0.005.
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Fig. 12. Variation of B2 with x2 along the lines x1 = 0, 0.02, 0.05, 0.08. The
component B2 is continuous across the material boundaries X2 = ±0.02.
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The plot in Fig. 11 shows the variation of B1 as a function of X1

along a horizontal line located at x2 = 0.005. In the surrounding
space, due to the magnetic boundary conditions, the component
B1 vanishes everywhere except in close proximity to the material
interfaces. At the material boundaries at X1 = ±0.1, the absolute va-
lue reaches a maximum and satisfies the continuity conditions as
specified by (5)1. Note the non-symmetric character of the field
in moving along the horizontal line x2 = 0.005. Along the line
x2 = 0.005, the magnitude of the field is higher in the right half.
Although not shown, along the horizontal line x2 = �0.005, B1 has
a pattern that is close to a reflection of that for x2 = 0.005 in the line
x1 = 0.

Variations of the component B2 with respect to X2, evaluated
along the lines defined by x1 = 0, 0.02, 0.05, 0.08, are shown in
Fig. 12. This component is normal to the material boundaries lo-
cated at X2 = ±0.02 and is continuous across them. The correspond-
ing results along lines defined by x1 = �0.02, �0.05, �0.08 (not
shown) are identical, indicating that the component B2 is symmet-
ric with respect to the coordinate x1.

Fig. 13 shows the variation of the component H1 in the free
space and inside the material with X2 along the line defined by
x1 = 0.01. This component is tangential to the boundaries at
X2 = ±0.02 and is continuous across these interfaces. The variation
of the field component H1 inside the material is shown by the small
insert.
In Fig. 14 the deformed configuration of the material body is
shown with the top boundary displaced parallel to the lower
boundary, which is held fixed. The two lateral boundaries, denoted
(h) and (f) in Fig. 1, are traction free and do not remain straight
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during the shear deformation. The deformation cannot therefore be
described as simple shear. We refer to Dorfmann and Ogden
(2005b) for a detailed discussion of a magnetoelastic body subject
to simple shear deformation. The contour plot shows the magni-
tude of the total stress component s12 inside the material body.
There are high stresses in the lower left and upper right corner
with magnitudes falling outside the selected range and therefore
not captured by the colour coding.
5. Concluding remarks

In previous work (see, for example, Dorfmann and Ogden,
2005b) we have provided a limited number of exact solutions for
boundary-value problems with infinite geometry where the mag-
netic boundary conditions can be satisfied exactly on all interfaces.
However, such closed-form solutions are not in general possible
when the geometry of the material body has finite dimensions.
Thus, in order to find solutions to boundary-value problems it is
necessary to adopt a numerical approach, and this paper has pro-
vided an illustration of this based on the finite element method,
which appears not to have been used to any extent thus far for
nonlinear magnetoelastic problems; see, however, the papers by
Barham et al. (2009, 2010), which develop a finite element analysis
of the deformation of thin magnetoelastic films. It should also be
mentioned that for nonlinear electroelastic problems, a finite ele-
ment formulation has been developed by Vu et al. (2007).
Fig. 14. The deformed configuration of the material and the associated contour plot
Here, we have examined two problems for a block of material
with rectangular cross-section and infinite extent in the third
direction subject to a uniform magnetic field applied far from
the block and normal to the major faces of the block, the prob-
lem then being two-dimensional in character. In one problem no
mechanical loads are applied and the deformation of the block is
due entirely to the applied magnetic field, while in the second
example the magnetic field is accompanied by shear tractions
on its major faces (in the plane of the cross-section). Of particu-
lar concern was the satisfaction of the magnetic boundary condi-
tions on the four faces of the block, which required
determination of the magnetic field in the surrounding space
as well as within the material.

For numerical purposes a simple prototype constitutive model
of magnetoelasticity was adopted, and the results clearly show that
for soft materials with high magneto-mechanical compliance large
elastic deformations can be achieved under the influence of an
external applied magnetic field, much larger than in conventional
magnetostriction. Most importantly, however, the results show
that the direction and magnitude of the magnetic field in the sur-
rounding space, particularly in the vicinity of the material, are af-
fected by the induced deformation, and these changes are
reflected in the magnetic boundary conditions. Thus, it is impor-
tant to consider the field within the surrounding space when the
material body has finite geometry, especially where there are
sharp changes in the geometry such as at a corner. Here, in order
to avoid numerical problems we have taken the ‘corners’ to be
slightly rounded. It would be of interest to investigate in future
work if the rounding of the corners gives results that adequately
approximate results for truly sharp corners.

The form of the energy function adopted will clearly have an
influence on the results, but at present there are not enough rele-
vant experimental data available to enable a truly experimentally
based form of energy function to be constructed. We also note that
the ALE formulation used for adjusting the exterior finite element
mesh to follow the deformed shape of the boundary of the body
does not provide a sufficiently accurate accommodation to the
deforming boundary, and development of a more accurate method
is therefore needed. Finally, we mention that for the values of the
material constants used here the exterior Maxwell stress gave a
negligible contribution to the traction of the boundary. For other
values of the constants, for which the Maxwell stress was not neg-
ligible, it was difficult to obtain convergence of the solution. This,
we believe, is partly because of the very rapid spatial variation in
the magnetic field as the boundary is approached and partly be-
cause the Comsol implementation does not adapt the external
mesh with sufficient accuracy to follow the finitely deforming
boundary. For this reason we are currently developing our own
finite element code to force the external mesh to follow the
of the shear component s12 of the total stress tensor s inside the material body.
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deforming boundary more precisely in order to accommodate this
deficiency.
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