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1. Introduction

Inverse problems can be defined by opposition to direct prob-
lems (Kubo, 1988) and characterized by the lack of knowledge of
one of the following elements of information: the geometry of
the domain, the equilibrium equations, the constitutive equations,
the boundary conditions on the whole boundary of the domain and
the initial conditions. According to this definition, many mechani-
cal problems, for instance, identification of material parameters,
identification of unknown boundaries (such as cracks or cavities),
identification of initial boundary conditions, identification of inac-
cessible boundary conditions can be considered as inverse prob-
lems and more specific examples relating to elasticity problems
can be found in Bonnet and Constantinescu (2005).

In a mathematical sense, direct problems can be considered as
well-posed problems. In linear cases, these problems have a unique
solution which is stable (continuously dependent on the data).
Conversely, inverse problems are generally ill-posed problems in
the Hadamard sense (Hadamard, 1923), since the existence or
uniqueness or the continuous dependence on the data of their
solutions may not be ensured.

This paper examines, in axisymmetric situations, an inverse
boundary value problem in linear elasticity, namely known as a
Cauchy problem. It consists in recovering missing displacement
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and force data on some part of the boundary of a domain from
overspecified displacement and force data on another part. In this
case, the equilibrium equations, the constitutive equations, the do-
main and its boundary are known.

In order to solve Cauchy problems in linear elasticity, many reg-
ularization methods have been introduced which can be classified
as Tikhonov type methods (Bilotta and Turco, 2009; Koya et al.,
1993; Maniatty et al., 1989; Marin and Lesnic, 2002a, 2003,
2004; Marin, 2005; Schnur and Zabaras, 1990; Tikhonov and Arse-
nin, 1977; Yeih et al., 1993; Zabaras et al., 1989) or iterative meth-
ods (Andrieux and Baranger, 2008; Delvare et al., 2010; Ellabib and
Nachaoui, 2008; Marin, 2009; Marin et al., 2001, 2002b; Marin and
Lesnic, 2005; Marin and Johansson, 2010a,b) Tikhonov regulariza-
tion methods present the advantage of leading to well-posed prob-
lems where the equilibrium equations have been modified. Some
iterative methods are based on the use of a sequence of well-posed
problems and others on the minimization of an energy-like func-
tional. Numerical algorithms are implemented using different
numerical methods, such as the finite element method (FEM)
(Andrieux and Baranger, 2008; Bilotta and Turco, 2009; Delvare
et al,, 2010; Maniatty et al., 1989; Schnur and Zabaras, 1990), the
boundary element method (BEM) (Ellabib and Nachaoui, 2008;
Koya et al., 1993; Marin et al., 2001, 2002a,b; Marin and Lesnic,
2002a,b, 2003, 2005, 2010a; Marin, 2009; Yeih et al., 1993; Zabaras
et al., 1989) or meshless methods (Marin and Lesnic, 2004; Marin,
2005; Marin and Johansson, 2010b). Some papers present compar-
isons between different numerical methods (Marin et al., 2002a;
Marin, 2009).
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A somewhat different resolution approach was introduced in
Cimetiére et al. (2000, 2001), Delvare et al. (2002) to solve the Cau-
chy problem for the Laplace equation and was extended to solve
the Cauchy problem in linear elasticity by Delvare et al. (2010).
This approach reduced the resolution of the Cauchy problem to
the resolution of a sequence of optimization problems under
equality constraints. The functional is composed of two terms. At
each step of the resolution, the first term (relaxation term) gives
the gap between the optimal element and the overspecified bound-
ary data, the second one (regularization term) gives the gap be-
tween the optimal element and the previous optimal element.
The equality constraints are the equilibrium equations. So, at each
step an optimal element is obtained which is an exact solution to
the equilibrium equations and is nearer to the overspecified data
than the previous optimal element calculated. In the case of com-
patible data, it was also proved that the sequence converges and its
limit is the solution to the Cauchy problem. The additional regular-
ization term tends to zero as its iterations continue.

In this paper, this inverse technique is extended to solve axi-
symmetric Cauchy problems in linear elasticity. Section 2 is de-
voted to the formulation of the Cauchy problem in linear
elasticity in axisymmetric situations. Section 3 describes the itera-
tive inverse method and Section 4 is devoted to its numerical
implementation using the finite element method. In Section 5, sev-
eral numerical simulations are presented and in Section 6, the
application of the method to the identification of the friction coef-
ficient is presented.

2. The Cauchy problem in linear elasticity

Let us consider an axisymmetric linear elastic material which
occupies the domain Q, with a smooth boundary I'. We assume
that the boundary is divided into three disjoint parts I'y, I', and
Iy, where I'yuI'p,UI'y=1I. We also assume that the loadings
are axisymmetric.

With no body force, the equilibrium equations in cylindrical
coordinates are given by:

60—rr 8Grz O — Opp _

— 0
or 0z r 1)
90, 004 O
or = 0z r

where r is the radial coordinate, 0 is the angular one and z is the lon-
gitudinal one.

The Cauchy stress tensor components o;; are related to the infin-
itesimal strain tensor components ¢&; by the following constitutive
equations:
gjj = 2/,18,']' + /15,']‘8;(]( (2)

where 2 and u are the Lamé constants. These are related to Young’s
modulus E and Poisson’s ratio v as:

B VE

T (1+v)(1-2v)

_E
k=301

The strain tensor components &, related to the displacement com-
ponents and to those gradients, are given by:

ou u
& = 8—1‘r Epp = Tr
Erp = 07 &z = 0 (3)
ou, Ou, ou,
28, = — 1+~ _ 7z
=y T or =T

By substituting Hooke's law (2) into the governing Eq. (1), the Lamé
equations are obtained:

o*u, 10u u 8*u, o*u,
Wz”(arz*rar‘rz) Ut W grar T F oz =0

u, . o*u, 1 0u, o*u, 1 0u,
2 5z H”“)(araer?E e Trar )70
(4)

These equations can be divided by E and lead to the system of equa-
tions L(u) = 0:

=0

u, 1ou u\ 0, o*u,
2(1v)<8r2 Yror ) Taree Tz

ou Pu, 1 0uy ou, 10u
2005+ (amﬁ? 82) +a _Zv)<ar22+?a_rz =0
(5)

At a point x € I', n(x) is the outward unit normal vector as well as
P(x) is the stress vector whose components are defined by:

Pi(x) = Pi(u(x)) = o(u(0)m(x) xeT

We define the adimensional stress vector by:

Pilgx) xel

pi(x) =

It is assumed that both the displacement vector u = (u,, u,) and the
adimensional stress vector p = (p,, p,) are given or known on the
boundary part I'y. It is also assumed that only the adimensional
stress vector p is given or known on the boundary part I', but no

condition is prescribed on the remaining part I',:
ux)=¢* xely )
px)=y* xelyurl,

where ¢ and /9 are prescribed vector functions. The Lamé (or
Navier) system (5) and the boundary conditions (6) lead to the for-
mulation of the Cauchy problem in linear elasticity:

Lu)=0
uix)=¢* xely (7)
p(x)=y? xel,url,

xeQ

This problem is difficult to solve, since it is ill-posed. When it admits
a solution, its solution is unique (Yeih et al., 1993), but it is known
to be very sensitive (Hadamard, 1923) to small perturbations on
boundary conditions (6).

3. The evanescent regularization method
3.1. The iterative algorithm

Let us introduce the space H(€2) of solutions of the equilibrium
Eq. (5):
H(Q) = {v € H'(Q) satisfying L(v) = 0 in Q}

Next, let us denote H(I") the space composed of couples of restric-
tions on I' of elements v in H(Q) and of their associated stress vec-
tor p(v).

H(I')={U=(u,p) e H}(I') x H*(I') /3v € H(Q) such that: v|p=u,p(v)| =p}
An equivalent formulation of problem (7) reads:
Find U = (u,p) € H(I') such as :
u=¢%on I'y (8)
p=vyionl,url,
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The problem (8) is also ill-posed even if it admits a unique solution.
So then an iterative regularizing method is introduced to solve it.
Given c> 0 and U® € H(I") the iterative algorithm reads:

Find U*! € H(I') such as :
JUT) <J(V) WV e H(I') with 9)
JV) = Jlw=¢*lI7, + P = w17 or, + IV —U |7

where the norms are defined by:

2
i, = [ o ds
d

2
IPlor, = [ 9 ds
T4uly

\|V||f_:/ 2 ds+/p2 ds
r r

This iterative process is also used in Delvare et al. (2010) to solve
the Cauchy problem for the linear elasticity and is a generalization
of the inverse technique introduced by Cimetiére et al. (2000, 2001)
to solve the Cauchy problem for the Laplace equation. It can be con-
sidered as an iterative Tikhonov-type method.

In this iterative process, the equilibrium Eq. (5) are taken into
account exactly since at each step the search for the optimal ele-
ment is performed in space H(I'). The functional is composed of
three terms which play different roles. The first one (respectively
the second one) acts only on I'y (respectively only on I'qU I'p).
These terms represent the gap between the optimal element and
the overspecified boundary data. They relax the overspecified data
which can be possibly blurred by measurement noises (relaxation
terms). The third term of the functional acts on the whole bound-
ary I' and not only on the boundary I, where the boundary con-
ditions are to be completed. This term is a regularization term
and controls the distance between the new optimal element and
the previous one. This term tends to zero as the iterations continue.

So, at each step the optimal element obtained is an exact solu-
tion of the equilibrium Eq. (5) and is close to the overspecified data

@ = (97, Y.
3.2. Convergence results

k+l, k+1)

The unique optimal element U*! = (u is characterized,

for all V=(v,p) € H(I"), by:
<uk+1 _ d)da U>Fd + <pk+1 _ ‘//dvp>l"dufp + C<Uk+l _ U",V)F -0 (]O)

p

Theorem (Convergence of the sequence). Let ®%=(¢% %) be
compatible data associated with the compatible pair Ue € H(I"). Then
the sequence produced by the iterative scheme (9) strongly converges
on I'y and weakly converges to Ue onI', where U, is the solution of the
problem (8).

The proof of the theorem is similar to that established for the
algorithm introduced in Cimetiére et al. (2000) to solve the Cauchy
problem associated with the Laplace equation. This proof is valid
for all ¢> 0. The c value only influences the convergence rate of
the algorithm.

3.3. Properties of the iterative process

Some properties of the functional terms in the minimizing se-
quence can be easily established without the assumption that
the data @9 = (¢9, 1/9) are compatible:

o The sum of the relaxation terms Sg(U*) = [[u* — ¢/|7, + P~
1//d||fvdu,vp is monotonically decreasing :

Sr(U'") < Sp(UY) (11)

o The regularization term J(U¥) is monotonically decreasing as
soon as ¢ > 0:

U - UM < Uk -7 (12)

e The sequence defined by the values of the functional J for each
optimal element U¥ is also monotonically decreasing as soon as
c>0:

JURTY < Juk). (13)

4. The implementation using the finite element method
4.1. Discrete solutions space

The first issue in this section is to discretize space H(I"). Our
main concern has been to make use of any ordinary finite element
code. Computations were run using Cast3M' (CASTEM, 1998) and
piecewise linear finite elements, which means a piecewise constant
approximation for the stress vector. Let us now discretize the do-
main 2, h being the discretization parameter standing for the ele-
ment size, leading to n nodes and n elements on the boundary,
and m nodes inside the domain. Let V}, be the space of continuous
piecewise linear functions with respect to the mesh, and let us define
Vi(I') and Wy(I') as the space of continuous piecewise linear func-
tions and the space of piecewise constant functions on the boundary.
Traces of functions belonging to V() span the space Vi,(I"), whereas
the associated stress vectors belong to the space Wj(I") of piecewise
constant functions. Defining U and P as the 2n vectors standing
respectively for the 2n nodal values of u and the 2n discrete values
of p on the boundary, and U* the 2m-vector of internal nodal values
of u, the discrete equilibrium equations read as:

. AL U 0
Ai Ay ( ) _ ( ) (14)
Aei Aee U —BP
Aj; is the stiffness matrix corresponding to the Dirichlet problem
and is thus invertible. Expressing the internal unknowns U* in terms

of the boundary ones U, i.e performing a condensation, Eq. (14) re-
duces to:

(Aee - AeiAi;]A;) U+BP=0 (15)

The matrix form of (15) reads:

A B]Gj) =0 (16)

The finite element method leads to the definition of the following
discrete compatible pairs space which reads:

2n 2n
(U,P) € R™" x R*" such that} (17)

Hn(D) = {Eh(U,P) —AU+BP =0

where Ej, denotes a linear operator mapping R*" x R?" onto R",
4.2. Discretization of the (k + 1)th iteration
Given now c > 0 and (U¥, PX) € Hy(I"), iteration (k + 1) of the dis-

cretized iterative algorithm reads as follows:

' The FE code Cast3M is developed by the Department of Mechanics and
Technology (DMT) of the French Atomic Energy Agency (CEA - DEN/DM2S/SEMT),
http://www-cast3m.cea.fr.
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Find (U*', P*") € R?" x R?" such that :
JUSL P <JV,QV(V,Q) € R x R (18)
under the 2n scalar equality constraints E,(V,Q) =0

Problem (18) is a minimization problem in R*" x R*" under the 2n
equality constraints expressed by (16). Its solution is given by:

Initializing with (U° = 0,P° = 0)

Find (UM, P 24Ty € R2M x R?" x R?" such that :
V](Uk+1,Pk+]) + (;kar] )TVEh(Uk+1 , PlH»l) -0

Eh(UkH Pk+1) -0

(19)

where %! is a 2n-vector of Lagrange multipliers introduced to take
the equality constraints (16) into account. Each iteration in the iter-
ative algorithm needs to solve a system of 6n linear equations with
6n unknowns. The matrices of this linear system is independent of
the iterations and needs to be computed only once. For this reason,
a direct algorithm (the Crout factorization) has been preferred to
iterative methods. The factorization, which is obtained at the first
step, is also used at each following step.

In the case of compatible data, the proof of the convergence of
the discrete algorithm is similar to that established for the corre-
sponding algorithm used to solve the Cauchy problem for the La-
place equation (Cimetiére et al., 2000). This proof is valid for all
¢ >0 and the c value only influences the convergence rate of the
algorithm.

4.3. Numerical procedure

The procedure used during the numerical simulations is as
follows:

(i) The meshing of the boundary is made using SEG2 elements.
The SEG2 element is a finite element with two nodes which
leads to a linear interpolation of the displacements. This
induces a piecewise constant interpolation of the stress vec-
tor components.

(ii) The user specifies the meshing of the boundary specifying
the number and the distribution of the finite elements on
each part of the boundary.

(iii) The mesh of the entire domain is generated automatically by
aroutine included in the Cast3m software. This mesh is con-
stituted by 4-node quadrilaterals.

(iv) The computation and the assembly of the stiffness matrix
corresponding to the domain is performed thanks to the
standard routines of the Cast3m software.

(v) This software generates a superelement based on the bound-
ary and computes the corresponding stiffness matrix. This
leads to the condensed stiffness matrix A.

(vi) The stiffness matrix A is then used by the specific code that
implements the inverse method introduced.

Note that all numerical computations have been performed on a
machine with a 2.20 GHz Intel® Core™ 2 Duo processor T7500.

The following control quantities are used to estimate the accu-
racy of the method:

- the L*(I") relative error made on u:

Uerror =

- the L*(I") relative error made on p:

[r(p — pan)*ds
Jr () ds

where u®" and p™ denote the analytical solution.

Derror =

5. Numerical results using analytical reference solutions

The purpose of this section is to present numerical results ob-
tained with the method introduced. Firstly, different cases are con-
sidered for which an analytical solution is known.

5.1. Examples

A two-dimensional isotropic linear elastic medium in an axi-
symmetric stress state characterized by the material constants
E =200 GPa and v = 0.34 corresponding to a steel is studied.

The domain Q (Fig. 1) is defined by:

Q={(r9/R <r<R, -L<z<l}
with Ry =0.01m, R, =0.014m and h=0.04 m.

The boundary part I'y is defined by:
I'a={(r,2) eI'/r=Ry}

Iy is discretized using 160 finite elements SEG2. All finite elements
have the same length and the nodes are uniformly distributed. The
boundary part I',, is defined by:

I'y={(r,2) eI'/r =Ry}

and discretized using a regular mesh with 160 finite elements SEG2.
The boundary part I', is defined by:

I,= {(nz) el/z= ig}

and each side is discretized using a regular mesh with 20 finite ele-
ments SEG2. It is used to find the displacement and the stress

>

A
!
1
1
1
1
1
I
1
1
1
1
1
|
1
1
1
1
|
1

R
[ — Yk
: u="7"
I |

p

| Ry

Fig. 1. The domain €, the boundary part I'g, the boundary part I',, the boundary
part I',, and the specified boundary conditions for the inverse problems investigated
in Examples 1 and 2.
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vectors on I, from the knowledge of the displacement on I'y and
the stress vectors on I'qU I').

5.1.1. Example 1
The data are built using the following analytical solution for the
displacements:

~KRi(1-v)r  KRR5(1+)

te(12) EA rEA @0
u(r,z) = 20U =2) @1)

where A = @ and with K= 0.01 E. The corresponding components
of the stress tensor are:

2
or(r,2) =K%]< %), (22)
oulr,2) =K'y (1 v ’f—f) , 23)
0(r,2) =0, (24)

Oz (T, Z) =0

which correspond to a constant internal radial stress P(z) = K (or its
dimensionless expression p,(z) =X) on I', and a free-force bound-
ary I'qU I'p.

5.1.2. Example 2
The data are built using the following analytical solution for the
displacements:

2
2K 1) Az <T+R72) — At

uy(r,2) (26)
EA +A3R§rlné+A4R§r
B2 — B,R2InL + B3R?
uz(r,Z):w z( 112 —BR3Ing + B 2) @
—B423
where
AR 1,1 14y
- R] ) 1_27 2_E7 3 4(]7‘))7
2v2 —2v+1 3+v 1 3
A=Towa-m® gy Btr By
S 3(1-2v) 1-v 1 1
B="Hg  —— B3 Bi=g

and with K =220 GPam . The corresponding components of the
stress tensor are:

s(1-8) (R -r)

K
Grr(rvz) = A (28)
A 3y
+ 21(1Ev) Rg In (é)
Kz R
0(1,2) = A (r — r> (29)
K(RR—12 3—-v, 1
GZZ(T,Z) 7Z <T—mR2 lnR—z—Z (30)

which correspond to the following stress vector P(z) on I':

(205 (58]

P:(2) =
M\ +Rn ()

P.(z) =Kz

and to its dimensionless expression p(z) = 2.

5.2. Stopping criterion and influence of parameter ¢

In a first step, a reliable stopping criterion is needed to stop the
iterative process. As in Delvare et al. (2010), the determination of
the iteration to stop the iterative process is made using the quan-
tity J(U¥*') where U**! is the optimal element obtained at the
(k +1)th step. The evolution of J versus the number of iterations
k follows an L-curve (Hansen, 1992). As expected from relation
(13), the control quantity J decreases and then becomes almost
constant. So the iterative process is stopped when | becomes al-
most constant. This stopping criterion is blind because when calcu-
lating the quantity J it does not need to know the analytical
solution. Indeed, it only needs to know two successive optimal ele-
ments, the displacements data on Iy and the pressure data on
I'qu I'p. As expected from relation (12), we may also notice that
Jr (the regularization term) decreases as the iterations continue.
This term becomes negligible compared to the sum Sg of the relax-
ation terms and tends to zero. This proves that the algorithm con-
verges. As expected from relation (11), the sum Sg decreases during
the iterative process. After convergence, this sum remains constant
and corresponds to the approximation error of the finite element
method when the data are not noisy. When the displacements data
¢¢ are noisy, after convergence, the residual value of the sum Sg
corresponds to the distance on the supports of data between the
deblurred reconstructions and the noisy data.

It is also necessary to look at the influence of parameter ¢ which
defines the relative weight of the regularization term compared to
the relaxation terms. Different values of the parameter c are tested.
Table 1 lists the results obtained for each value of parameter c by
specifying the number of iterations necessary to achieve conver-
gence, the Ueor, the peror and the CPU time. The errors on u and
p are quite identical for each value of the parameter c. This con-
firms that the algorithm converges to the same solution whatever
the value of c. However, the choice of the parameter c affects the
number k of iterations needed to obtain convergence. The number
of iterations necessary to achieve convergence evolves linearly
with c. From the evolution of the CPU time with ¢ (or with the
number of iterations k) it can be deduced that the CPU time taken
by each iteration for k > 1 is roughly 1.15 x 1072 s. This CPU time is
less than the CPU time taken to achieve both the preliminary com-
putations and the first iteration (roughly 4.23 s). For a small value
of ¢, the convergence only takes a few iterations, however the perror
increases a little. This may be explained by the fact that the regu-
larization term becomes too weak and induces some instabilities
on the reconstructions. Moreover, it is preferable to have a greater
value of the parameter ¢ which induces little additional CPU time
in order to have more accurate reconstructions. Subsequently,
the value of ¢ and the number of iterations required to achieve con-
vergence will be no longer specified.

It can also be observed that the errors in the numerical stresses
obtained (peror) using the iterative method are larger than those
corresponding to the reconstructed displacements (Ueror). This last
remark is also valid for all the following numerical examples which
will be analyzed.

Table 1
Influence of c on the number of iterations k to achieve convergence - influence of c on
the oy and on the peyror.

c k Uerror (%) Derror (%) CPU time (s)
le—-4 182,404 0.0138653 0.543446 2103.65
le-5 18,242 0.0138653 0.543447 214.10
le-6 1825 0.0138649 0.543439 25.21
le-7 184 0.0138617 0.543480 6.34
le-8 20 0.0138480 0.544349 4.45
le-9 3 0.0140402 0.549715 4.23
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5.3. Reconstruction on I', with noisy displacement data ¢°

It is necessary to see how the reconstructions are influenced
when both components of the displacement data ¢ are noisy.
The noisy displacement data ¢? are generated by:

¢! = Gy + ONPia (31)

where —1 <7 <1 is a random value, ¢ is the noise level in % and
¢, is the maximal value of the data of I'.

Fig. 2 (respectively, Fig. 3) shows the reconstructions on I", of
the u,-component (respectively, u,-component) of the displace-
ment obtained with different noise levels (6 = 1% and ¢ = 5%) for
Example 1. On the same figures, these reconstructions are com-
pared with the reconstruction obtained with no noisy data. Fig. 4
(respectively, Fig. 5) gives the corresponding reconstructions of
the p,-component (respectively, p,-component) of the stress vec-
tor. Figs. 6-9 give the corresponding reconstructions for Example 2.

All the reconstructions of the components of the displacement
obtained can be seen to be very accurate. It can also be observed
that the reconstructions of the components of the stress vector ob-
tained using the iterative method are less accurate than those cor-
responding to the displacement vector.

5.4. Reconstruction on I'y : Deblurring the noisy displacement data ¢°

The functional is composed of terms which play different roles.
As in most inverse methods, there is a regularization term which
tends to zero as the iterations continue. But, in the present case,
there are also relaxation terms that allow data blurred by noise
to be taken into account. We therefore seek a solution which is
close to the data but not a solution that exactly fits the data. The
algorithm then recomputes, at each step, a solution on the whole
boundary.

Fig. 10 (respectively, Fig. 11) gives the reconstruction of the u,-
component of the displacement (respectively, the u,-component)
on I'y and the noisy data ¢¢ used (5 = 5%) for Example 1. Figs. 12
and 13 give the corresponding reconstructions for Example 2. It
can be noted that all these reconstructions correspond to the ana-
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z

Fig. 2. The analytical solution and the numerical reconstructions of the u,~compo-
nent of the displacement obtained on I',, for 6 = 0%, 6 = 1% and ¢ = 5%, for the Cauchy
problem considered in Example 1.

0.00015 T T T T

N

TR Analytic solution ——

N Reconstruction (0%) o
0.0001 Reconstruction (1%) ¥
= Reconstruction (5%)
\‘I
N
56-05 A
™
N
Na
S0 R
L N
L Y
l\
=
 §
-5e-05 L §
U\
=
Y
-0.0001 ‘
TN\
"

-0.00015
-0.02 0015 001 -00056 0 0005 001 0015 002
z

Fig. 3. The analytical solution and the numerical reconstructions of the u,-compo-
nent of the displacement obtained on I',, for 6 = 0%, 5 = 1% and ¢ = 5%, for the Cauchy
problem considered in Example 1.
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Fig. 4. The analytical solution and the numerical reconstructions of the radial stress
pr obtained on I',, for § = 0%, 6 = 1% and 6 = 5%, for the Cauchy problem considered
in Example 1.

lytical solution and that the noise in the data has been deleted by
the algorithm.

Fig. 14 represents, for Example 1, the evolution of the functional
terms Sg, /- and J versus the number of iterations k when the data
¢ is noisy (6 = 5%). After convergence, the regularization term J- is
negligible and the residual term J is equal to the sum of the relax-
ation terms. This residual term corresponds to the distance on I'4
between the deblurred reconstruction and the noisy data. It can
also be noted that the relations (11)-(13) are also verified when
the data ¢ is noisy. This is not surprising because the inequalities
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Fig. 5. The analytical solution and the numerical reconstructions of the axial stress
p. obtained on I',, for 6 = 0%, 5 = 1% and ¢ = 5%, for the Cauchy problem considered
in Example 1.
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Fig. 6. The analytical solution and the numerical reconstructions of the u,-compo-
nent of the displacement obtained on I',, for 6 = 0%, 6 = 1% and ¢ = 5%, for the Cauchy
problem considered in Example 2.

were established without any assumptions on the data (for in-
stance that ®% is compatible).

5.5. Behaviour with respect to the mesh refinement

It is necessary to see how the reconstructions are influenced
when the mesh refinement of the boundary I' increases. In this
section, the boundary part I'; is discretized using 8N finite ele-
ments SEG2 where all finite elements have the same length and
the nodes are uniformly distributed. The boundary part I, is dis-
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Fig. 7. The analytical solution and the numerical reconstructions of the u,-compo-

nent of the displacement obtained on I',, for 6 = 0%, 6 = 1% and 6 = 5%, for the Cauchy
problem considered in Example 2.
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Fig. 8. The analytical solution and the numerical reconstructions of the radial stress
p, obtained on I'y, for 6 =0%, 6 = 1% and 6 = 5%, for the Cauchy problem considered
in Example 2.

cretized using a regular mesh with 8N finite elements SEG2 and
both sides of the boundary part I', are discretized using a regular
mesh with N finite elements SEG2. The level of noise § added into
the boundary displacement data ¢ is fixed to 5%.

Fig. 15 shows the reconstructions on I',, of the u,~-component of
the displacement u obtained with N=5, N=10 and N = 20. Fig. 16
gives the corresponding reconstructions of the p,-component of
the stress vector. These figures confirm that the inverse method
is stable with respect to the mesh refinement. Similar results,
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Fig. 9. The analytical solution and the numerical reconstructions of the axial stress
p. obtained on Iy, for 6 = 0%, é = 1% and ¢ = 5%, for the Cauchy problem considered
in Example 2.
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Fig. 10. The analytical solution, the noisy data used (5 =5%) and the numerical
reconstruction of the u,-component of the displacement obtained on Iy, for the
Cauchy problem considered in Example 1.

which are not presented here, are obtained for the u,-component of
the displacement and for the p,-component of the stress vector.

5.6. Behaviour with respect to the extension of the supports of data

In this section, we look at the influence of the type of prescribed
data on the numerical solution. We investigate the numerically re-
trieved solutions corresponding to the following three cases asso-
ciated with the given data:

Case 1: u=¢?crlyand p=y?eclyurl,.
Case2: u=¢eryul,andp=y?erly
Case3: u=¢leryul,andp=y?eclyurl,.
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Fig. 11. The analytical solution, the noisy data used (6 =5%) and the numerical

reconstruction of the u,-component of the displacement obtained on Iy, for the
Cauchy problem considered in Example 1.
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Fig. 12. The analytical solution, the noisy data used (é=5%) and the numerical
reconstruction of the u,~component of the displacement obtained on I'y, for the
Cauchy problem considered in Example 2.

For the three cases, the same mesh is used and the level of noise &
added into the boundary displacement data ¢ is fixed to 5%. The
boundary part I'y is discretized using 160 finite elements with a
regular mesh. The boundary part I', is discretized using a regular
mesh with 160 finite elements and both sides of the boundary part
I', are discretized using a regular mesh with 20 finite elements.
Fig. 17 shows the reconstructions on I',, of the u,~-component of
the displacement u obtained for the three cases. Fig. 18 gives the
corresponding reconstructions of the p,-component of the stress
vector. These figures confirm that the inverse method is accurate
in each case but the reconstructions are more accurate when the
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Fig. 13. The analytical solution, the noisy data used (é =5%) and the numerical
reconstruction of the u,-component of the displacement obtained on Iy, for the
Cauchy problem considered in Example 2.
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Fig. 14. Evolution of the terms of the functional versus the number of iterations k
for 6 = 5% and for the Cauchy problem considered in Example 1.

extension of the supports of data is greater (case 3). Similar results,
which are not presented here, are obtained for the u,-component of
the displacement and for the p,-component of the stress vector.

6. Application of the method to the identification of a friction
coefficient

6.1. Scope of the study

Some materials, like concretes, rocks or geomaterials, have a
material behavior which depends on the first invariant
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Fig. 15. The analytical solution and the numerical reconstructions of the
u,~component of the displacement obtained on I'y, for 6 =5% and different mesh
refinements N =5, N=10 and N = 20, for the Cauchy problem considered in Example
1.
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Fig. 16. The analytical solution and the numerical reconstructions of the radial
stress p, obtained on I'y, for § = 5% and different mesh refinements N =5, N =10 and
N =20, for the Cauchy problem considered in Example 1.

I :%Traceg of the stress tensor. In order to determine this
dependence, some experimental devices have been developed to
perform triaxial tests in quasi-static or dynamic situations. For
one of them, the confining stress is obtained by placing the speci-
men in a metallic sleeve to achieve passive confinement (Fig. 19a).
The compressive stress is applied directly on the specimen. The
metallic ring is then subjected to internal pressure due to the
lateral expansion of the specimen. This technique allows a higher
level of I; to be obtained and has been used in quasi-static (Forquin
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et al., 2007) or dynamic situations (Bailly et al., 2011; Gary et al.,
1998; Forquin et al., 2008).

Assuming a frictionless contact between the specimen and the
metallic ring and assuming an elastic or a perfect elastoplastic
behavior of the ring, the analytical solution of a hollow cylinder sub-
mitted to inner radial pressure, enables the radial stress on the inner
surface of the ring to be deduced from the deformation recorded by a
unique gauge glued at the outer surface (Bailly et al., 2011).

The objective is to prove that the inverse data completion meth-
od proposed could be very useful when friction at the interface be-
tween the specimen and an elastic ring occurs. The specimen could
then be replaced by the unknown loading it applies to the elastic
ring (Fig. 19b). This unknown loading must be identified by an in-
verse technique, leading to a Cauchy problem (7).

6.2. Determination of the numerical reference solution using FEM

In order to validate the procedure, we will use a numerical ref-
erence solution to a similar problem. The response of the elastic
ring made of steel (Young’s modulus E =220 GPa and v =0.34) is
studied. The loading is defined by the following dimensionless
stress distributions along I',:

dexp(ple+y) bz

p,(z) = { bcosh(z) —hgzgh 32)
aexp (B(z-3)) f<z<}i
fo.(2) -i<zg -}

p.(z)={ csinh(oz) —h<z<t (33)
—(2)  §<z<3

where f=0.13, a=1.031, b=0.963, c= —0.350, & =37.435m™! and
$=13.394 m~'. The values of these parameters are fixed assuming:

- The contact law is governed by a Coulomb-type criterion:

Ip.(2)| < flp:(2)| (34)

where f is the friction parameter.
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Fig. 17. The analytical solution and the numerical reconstructions of the u,-
component of the displacement obtained on I',, for § = 5% and different types of
prescribed data, for the Cauchy problem considered in Example 1.
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Fig. 18. The analytical solution and the numerical reconstructions of the radial

stress p, obtained on I',, for ¢ = 5% and different types of prescribed data, for the
Cauchy problem considered in Example 1.

Fig. 19. (a) Schematic representation of the confining test and (b) the domain €,
the boundary part I'y, the boundary part I, the boundary part I', and the specified
boundary conditions for the inverse problems investigated in Example 3.

- The distribution of the radial stress p, and of the axial stress p,
are continuous along I,
- The zone defined by — 4 < z <1 is an adherence zone.
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- The zones defined by —1
zones.

<z< -0 and <z« are sliding

The boundary part I'yU I'p is also assumed to be a free-force
boundary. Then, a standard direct finite element simulation is per-
formed determining a numerical reference solution. The FEM com-
puting code used is always Cast3m. The boundary and the domain
meshes used are the same as those used in Section 5. Subsequently,
a restriction of this numerical reference solution will be used to
determine the input data for the Cauchy problem (7).

6.3. Example 3

Given that I'gU I'y is a free-force boundary, y/* is zero. For this
example, only the u,-component of the displacement is noisy. This
noisy data u¢ is generated by:

ul = u¥ +no (35)

where —1 <7 <1 is a random value, ¢ is the noise level due to
uncertainties on the radial displacement measurements and u'¥ is
the restriction to I'y of the radial displacement obtained by direct
simulation.

6.4. Reconstructions on I,

Fig. 20 (respectively, Fig. 21) shows the reconstructions on I';, of
the u,-component (respectively, u,-component) of the displace-
ment obtained with different uncertainty levels (6=5 x 107>,
5=1x10"%and 6=5 x 10~%). On the same figures, these recon-
structions are compared on one side to the reconstruction obtained
with no noisy data and on the other side to the reference solution
obtained by the direct simulations. Each reconstruction of the com-
ponents of the displacement can be seen to be very accurate.
Fig. 22 (respectively Fig. 23) gives the corresponding reconstruc-
tions of the component p, (respectively, p,) of the stress vector.
The reconstruction of the components of the load is less accurate
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Fig. 20. The numerical reference solution and the numerical reconstructions of the

u,~component of the displacement obtained on I', for =5 x 107>, 6 =1.10~* and
=5 x 1074, for the Cauchy problem considered in Example 3.
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Fig. 21. The numerical reference solution and the numerical reconstructions of the

u,-component of the displacement obtained on I',, for §=5x 107>, 6=1x 107
and 6=5 x 1074, for the Cauchy problem considered in Example 3.
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Fig. 22. The reference value and the numerical reconstructions of the radial stress
p, obtained on I', for §=5x 107> 6=1x 10"*and 6=5 x 107, for the Cauchy
problem considered in Example 3.

because at the end of the boundary part I', some instabilities ap-
pear in these reconstructions.

6.5. Reconstructions on I'y: Deblurring the noisy data

As the algorithm recomputes a solution on the whole boundary,
Fig. 24 gives the reconstruction of the u,-component on I'; and the
noisy data u? used (6=5x107%). It can be noted that this
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Fig. 23. The reference value and the numerical reconstructions of the axial stress p,

obtained on I',, for §=5x 1075, §=1x10"% and 6=5 x 1074, for the Cauchy
problem considered in Example 3.
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Fig. 24. The numerical reference solution, the noisy data used (6 =5 x 10~*) and
the numerical reconstruction of the u,~-component of the displacement obtained on
I'g, for the Cauchy problem considered in Example 3.

reconstruction corresponds to the reference solution obtained with
the direct simulation and that the noise in the data has been de-
leted by the algorithm.

6.6. Identification of the friction coefficient f

Fig. 25 plots, along the boundary part I',, the ratio R between
the reconstructions of p, and those of p, obtained by the inverse
technique:
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Fig. 25. The reference value and the numerical reconstructions of the ratio R
obtained on I'y, for 6=5x 107>, 6=1x10"% and 6=5 x 1074, for the Cauchy
problem considered in Example 3.

p.(2)
p:(2)

The ratio R obtained is quite accurate and allows the extensions of
the sliding zones where R = f, the extension of the adherence zone
where R < f and the value of the friction parameter f to be identified
a posteriori with relative precision. It may however be noted that
some instabilities appear at the ends of the boundary part I',.

R(z) =

(36)

7. Conclusion

This paper introduces an iterative method for solving the Cau-
chy problem in linear elasticity in axisymmetric situations. This
problem consists in recovering missing displacements and forces
on some part of a boundary domain from the knowledge of over-
specified data on another part of the boundary.

This approach reduces the resolution of the Cauchy problem to
the resolution of a sequence of optimization problems under
equality constraints. The algorithm reads as a least square fitting.
The functional is composed of different terms. Some terms are
relaxation terms which represent the gap between the optimal ele-
ment and the overspecified boundary data. The other term is a reg-
ularization term which represents the gap between the optimal
element and the previous optimal element. At each step, the opti-
mal element obtained is an exact solution of the equilibrium equa-
tions and is close to the overspecified data. The regularization term
vanishes when the iterations continue.

Numerical simulations using the finite element method have
highlighted the accuracy and robustness of the inverse method to
noisy data as well as its ability to deblur noisy data. For all the sit-
uations analyzed, it can be observed that the errors in the force
reconstructions obtained using the method are higher than those
corresponding to the displacements.

On a numerical aspect, further developments will concern the
improvement of the inverse method in order to obtain more accu-
rate reconstructions at the ends of the boundary part I',. For the
Cauchy problem for the Laplace equation, a first order method
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was introduced in Delvare and Cimetiére (2008) to improve the
reconstruction of the normal derivatives when the boundary part
I', had corners. An extension of this inverse technique to our prob-
lem could be very useful.

On the experimental aspect, in further works, the inverse meth-
od will be combined with experimental techniques like digital im-
age correlation in order to deal with experimental displacement
data.
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