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Analytical theory and a crystal plasticity finite element method (CPFEM) were used to simulate the earing
profiles of drawn cups of bake hardening (BH) steel. The two approaches successfully predicted the earing
profiles. To analyze the effects of major texture components on earing, orientation distribution functions
(ODFs) for 2 y-fiber ({11 1}<110>,{111}<112>)and 1 off-y-fiber ({5 5 4}<2 2 5>) texture components
were calculated using Gaussian standard functions. The proposed two approaches capture the individual
contributions of major texture components on the earing profiles of BH steel.
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1. Introduction

Bake hardening (BH) steels must have good formability during
the press-forming operation and additional hardening from the
paint-baking treatment of formed auto-body parts (Baker et al.,
2002; Jeong, 2007; Kim et al., 2009). Anisotropic properties, such
as the r-value (plastic strain ratio) and yield stress affect the form-
ability of BH steels containing extra low carbon (Ray et al., 1994;
Bleck et al., 1998; Nakamachi et al., 2001). A dominant metallurgi-
cal parameter that influences the anisotropic properties of steel
sheet metal is the crystallographic texture (Senuma and Kawasaki,
1994; Choi and Chung, 2002).

The finite element method (FEM) is one of the most powerful
tools in the automotive industry for designing new parts (Dawson
et al,, 2003). However, for the analysis and design of specific mate-
rials, FEM users need appropriate data and constitutive models. For
the FEM of forming operations, the yield surface and the stress-
strain curve provide important material property data. Constitu-
tive equations that are used to describe the plastic yielding of
anisotropic materials are divided into two approaches: phenome-
nological and crystallographic. In the phenomenological approach,
the plastic behavior of metals is assumed to be adequately
described by yield function. A non-quadratic yield function that
describes plastic anisotropy of polycrystalline materials for alumi-
num alloys was proposed by Barlat et al. (2003, 2005). In the crys-
tallographic approach (Dawson, 2000; Choi et al., 2009; Inal et al.,
2000; Raabe and Roters, 2004), the material is assumed to be a
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polycrystal consisting of many individual crystals (grains). Plastic
flow is assumed to occur only by crystallographic slip on given slip
systems with each crystal. This approach can be used to take
crystallographic texture evolution into account during plastic
deformation.

Inal et al. (2000) simulated earing behavior for aluminum alloys
using the CPFEM with a model involving only the flange part. The
texture component CPFEM has been applied to investigate the
influence of major texture components and their combination on
the earing behavior of cup drawn polycrystalline FCC (Raabe and
Roters, 2004; Zhao et al., 2004; Tikhovskiy et al., 2007) and BCC
(Tikhovskiy et al., 2008; Raabe et al., 2005) materials. The studies
found that the ear height and profile can be minimized by an opti-
mized combination of major texture components. In the orienta-
tion mapping, first, the discrete center orientations, including
their scatter width, are extracted by the best fit of the experimental
pole figures to the recalculated pole figures. An extracted discrete
center orientation is assigned to each integration point. The as-
signed discrete center orientations are systematically re-oriented
to the neighboring integration points. The orientation mapping
scheme requires additional modification of the fitted random back-
ground to fit experimental earing profiles (Raabe and Roters, 2004).

In the present work, earing profiles during the cup-drawing of
BH steels were investigated using an analytical theory (Yoon
et al,, 2011) and a crystal plasticity finite element method (CPFEM)
(Choi et al., 2009). A new orientation mapping scheme based on
misorientation was suggested to improve the predictability of ear-
ing profiles. A Gaussian standard function was used to generate
texture components that are typical in annealed BH steel. Here,
the individual effects of major texture components that are typical
for BH steel on earing profiles are discussed systematically.


http://dx.doi.org/10.1016/j.ijsolstr.2012.02.027
mailto:shihoon@sunchon.ac.kr
http://dx.doi.org/10.1016/j.ijsolstr.2012.02.027
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr

3574
2. Experimental and texture generation
2.1. Experiment

Hot rolling, cold rolling, and annealing conditions all contribute
to development of crystallographic texture in BH steels. The major
texture component in the hot-rolled BH steel can be characterized
by {001}<11 0> which is transformed from the cube texture
component in the austenite region. Cold-rolling deformation
simultaneously enhances the intensity of a-fiber (<11 0>//RD)
and vy-fiber (<111>//ND) texture components. Annealing
decreases the intensity of the a-fiber texture components and in-
creases the intensity of orientation distribution function (ODF) in
the y-fiber texture components. The relative intensity of these
components strongly depends on the processing conditions and
on the material composition.

The macro-texture of annealed BH steel was quantitatively
examined using neutron diffraction. The crystallographic textures
were determined by measuring the pole figures with a four-circle
neutron diffractometer (FCD) using a neutron beam with a wave-
length of 1.31 A. The (110), (200), and (21 1) complete pole fig-
ures were used to calculate 3-D ODF using the WIMV method
(Matthies et al., 1988). Fig. 1(a) and (b) show the ODF distribution
in 3-D Euler space and the ¢, =45° section of the annealed BH
steel, as observed by neutron diffraction. Texture components typ-
ically observed in BH steel are shown in the ¢, =45° section of
ODF. This result reveals that the initial texture of annealed HSS
sheets can be characterized as y-fiber texture and off-y-fiber tex-
ture components (~{554}<225>). An ODF determined from a
Gaussian standard function was used to generate a set of 1000-
grain orientations for polycrystal modeling with the help of orien-
tation repartition functions (Francois et al., 1991).

Tension tests were conducted at room temperature (RT) to mea-
sure the r-values and yield stresses using a standardized dimension
(JIS-5). Tensile specimens were cut from the sheet at angles of 0°,
45°, and 90° from the rolling direction (RD). Fig. 2 shows the exper-
imental true stress-true strain curves for the annealed BH steel.
The experimental data measured at 15% elongation are as follows:

=404.8 MPa; 045 =421.5 MPa; o990 = 401.9 MPa;
o = 161, T45 = 1047 Too = 1.81.

(a)

Fig. 1. (a) ODF distribution in 3-D Euler space and (b) ¢, =
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Fig. 2. Experimental true stress-true strain curves for the annealed BH steel.

In the actual cup-drawing process, 80 mm diameter blanks (initial
thickness 0.7 mm) were drawn into a 40 mm-diameter cup using
a drawing ratio of 2.0. The specific dimensions of the tools for the
cup-drawing process were as follows:

- Punch radius (Rp) = 20 mm;

- Punch profile radius (rp) = 6 mm;

- Die profile radius (rq) = 8 mm;

- Blank radius (R,) = 40 mm; and,

- Blank holding force was 1TonF.

2.2. Generation of major texture components

To analyze the effects of major texture components on earing
behaviors, 2 y-fiber ({111}<110>,{111}<112>)and 1 off-y-fiber
({55 4}<2 2 5>) texture components were selected. ODF around a
single ideal component can be mathematically described using
the “Gaussian standard function” (Matthies et al., 1987-1990)

G}

90°

(001)[1 10]

(b)

45° section of the annealed BH steel as observed by neutron diffraction.
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where f (S, @) expresses the relative density of an orientation g ro-
tated through an orientation distance @ = w(gg,g) from the single
ideal orientation gJ. b (=1.665w; w =Bunge’s notation) and I(x)
are the half-width (FWHM-[full-width at half-maximum]) of the
bell-shaped curve and the modified Bessel function, respectively.
A value of b =25° was selected as the half-width of a bell-shaped
Gaussian standard function. The typical texture component of 80%
as a volume fraction was generated with a random background
component of 20%. An ODF determined from a Gaussian standard
function was used to generate a set of 1000-grain orientations for
polycrystal modeling (Francois et al., 1991).

3. Theoretical procedure
3.1. Analytical theory for earing height

The analytical theory to predict earing height used in the pres-
ent work (Yoon et al., 2011) is based on two approximations. First,
directionalities of the r-value and yield stress are the major sources
of earing. Second, only flange deformation is considered to calcu-
late cup height profile. By using the stress equilibrium and kine-
matics at the inner most radius and the rim parts, the total
height of a deep-drawn cup can be obtained as a function of die
geometry and anisotropic properties as follows (Yoon et al., 2011):

HYP(0) = t, +1,

9+90

"0..90 B\ Tor90
n Rb (&) T+rg. 90 _ 1 O ref (2)
mi\®) o Rm)\) |

2n
Oref = (/ a{(,) d6> /27t
0

= (1/12)(00 + 2(015 + O30 + 045 + G0 + 075) + Too).

It is of further interest to derive the specific contributions of r-
value directionality, ro, and yield stress directionality, gy, to the cup
height. For this purpose, an isotropic contribution can be derived

using rps00 =1 and I =1 as
(”)

iso __ Ry Rb 02 1
H —t0+rp+ﬁ R—p —WRP . (3)

The cup height only from r-value directionality is obtained by
excluding the yield stress contribution with the assumption that
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In the same vein, the cup height from yield stress directionality is
obtained by using ry.90 =1, i.e.,

05
Ry ((R\*® 1 Our)
stress — b aul PR R v
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when the stress mode at the inner most flange is applied for the en-
tire flange, = 1.0.

Then, the cup height contributions of r-value and yield stress
directionalities can be derived as follows (Yoon et al., 2011):

AHr-value((_)) _ Hr-value((_)) _ Hiso (63)
and
AHStreSS(g) _ HStl‘ESS(e) _ Hisu (Gb)

3.2. Crystal plasticity FEM

Macroscopic anisotropy and cup-drawing behaviors were simu-
lated using the finite element code, ABAQUS with the material
model programmed by a continuum crystal plasticity theory. A
rate-dependent constitutive relationship was implemented into
the user material subroutine UMAT in ABAQUS (2000). The model
was fundamentally based on a multiplicative decomposition of the
deformation gradient, F, into a plastic part characterized by shear-
ing rates on an active slip system, as well as a part that accounts for
the rotation and elastic distortion of the crystal lattice. This formu-
lation leads to additive decomposition of the velocity gradient into
elastic and plastic parts,

L=L°+1P (7)

with the plastic part determined by slip rates, 7%, on slip planes with
normals, m*, and slip directions, s*

N
P =Y 9" @m” (8)
o=1

The summation represents all of the slip systems, N. The plastic part
of the velocity gradient is decomposed further into symmetric and
antisymmetric parts (L = DP + @P) to yield the formula

N N .
ig Zyapa

" N )
jz (s*om*—m*@s*) =Y PW*
a=1

a=1

*@m* +m* ®s

—

where D? is the plastic part of the rate of deformation tensor and w”
is the plastic spin.
As described in Peirce et al. (1983), the Jaumann rate of Kirch-
hoff stress can be expressed as
N

T=K:D-> "R (10
a=1

where K is a fourth-order tensor based on the anisotropic elastic
modulus, C. D is the rate of deformation tensor (symmetric part of
the velocity gradient), and R* is a tensor that depends on the current
slip plane normal and direction, the applied stress and the elastic
modulus. For materials having cubic crystal symmetry, the present
work uses three independent elastic constants of pure Fe: Cq; =
231.4 GPa, Cq = 134.7 GPa, and C44 = 116.4 GPa.

For rate-dependent materials, shear rates are given explicitly in
terms of the resolved shear stress on the active slip system and the
shear resistance of the active slip system. For these simulations,
this dependence is given in the following formula:

o |1/m

s e
Y=Yl
T

sign(t?). (11)

Self- and latent-hardening are readily accounted for by a suitable
evolution of the reference 7% values in the constitutive law in Eq.
(11). The present work employed a microscopic hardening law
(Choi, 2003) for this purpose, as follows:

. N . 2\ ¢
= I =T NN, =gy (1- 75
B
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Table 1

Microscopic hardening coefficients used in the CPFEM simulation.
7% (MPa) ho (MPa) Tsar (MPa) a
65 2000 225 5

where H* is a hardening matrix that is introduced to account for
interaction between the slip systems. g*# accounts for the harden-
ing rate of the slip system, o, due to slip activity on the system, B.
Here, it is assumed that the self-hardening term (diagonal term of
q**) equals the latent hardening term (off-diagonal term of q*#),
i.e. (q*# =1). The fitting simulation was carried out by varying the
CRSS values and microscopic hardening parameters (h,, Tsa; and a)
until agreement was achieved between the predicted and the mea-
sured uniaxial loading curves. In this study, two slip systems
({110}<111>, {112}<111>) were considered. CRSS values and
microscopic hardening parameters were determined by fitting the
experimental stress-strain curve. The set of parameters listed in Ta-
ble 1 was used in the theoretical simulation. Moreover, a material
Jacobian (0AT/dAg) for the implicit method can be obtained from
Eq. (10). This is equivalent to the modulus given by Peirce et al.
(1983). The stress vector in the UMAT subroutine can be updated
by multiplying the material Jacobian by the strain increment.

In order to understand the planar anisotropy of BH steel, the
CPFEM simulation was performed using 50 elements (5 x 5 x 2)
with 3-D 8-node brick elements, type C3D8R, as shown in
Fig. 3(a). The initial length of the model region is given by
lo=3.5mm, w,=3.5mm, and t,=0.7 mm. The total true strain
for uniaxial tension was ¢ = 0.15. The boundary condition was ap-
plied to the four planes comprising the 3-D mesh, as shown in
Fig. 3(a). For the uniaxial tension simulation, prescribed displace-
ments in the RD were imposed on the 2-3-7-6 face. To impose ini-
tial orientations of the elements, five orientations selected from the
1000-grain orientations were mapped onto each integration point
in the finite element mesh. The present study used two mapping
schemes for CPFEM simulation. The first scheme (RM) was a ran-
dom mapping. Five orientations were randomly selected from
1000-grain orientations that were mapped into each integration
point, as shown in Fig. 3(b). The macroscopic response of each

continuum material point was obtained from a Taylor-type
homogenization assumption. The deformation in each orientation
was assumed to be identical to the macroscopic deformation of
the respective material point. It was assumed that the macroscopic
stress response at each continuum material point would be deter-
mined by a volume-average over the total number of grains com-
prising the respective material point. The second scheme (MM)
was based on misorientation comprising five orientations, as
shown in Fig. 3(b). First, the single center orientation, g. was ran-
domly selected from the 1000-grain orientations. Second, the mis-
orientation (A0, i.e. the minimum misorientation angle) between
the remaining orientations was calculated using the following
formula:

A8 = min {a cos {trace o (‘f’;il &) - 1”, (13)

where S, is the crystal symmetry operator, and v takes values rang-
ing from 1 to 24 for cubic crystal symmetry. The remaining four ori-
entations were selected sequentially from the orientation
exhibiting the lowest misorientation value.

The planar anisotropy calculated using the CPFEM is illustrated
in Fig. 4 for BH steel. Fig. 4(a) shows the r-values for BH steel as cal-
culated with the CPFEM in different directions as well as those
determined experimentally. The predicted r-values using the two
mapping schemes overestimated the experimental data for most
of the tensile directions. However, it should be noted that the
CPFEM calculations correctly predicted r-value directionality under
uniaxial tension. Fig. 4(b) shows the normalized yield stresses cal-
culated with the CPFEM as well as those determined experimen-
tally. The CPFEM calculations exhibited good agreement with the
experimental results, and were within the range of experimental
errors.

Fig. 5 shows the finite element meshes and the geometry of the
tools used in the cup-drawing simulation. Due to the orthorhombic
sample symmetry, only a quarter of the blank was used to simulate
the cup-drawing process. The FE simulation was performed using
918 elements with 3-dimensional 8-node brick elements, called

(110)
RD

(1-4-8-5): U,=0 2
(1-2-6-5) : U,;=0
(2-3-7-6) : U,

(a)

(b)

Fig. 3. (a) Finite element mesh and boundary conditions used in the simulation of uniaxial tension and (b) orientation mapping schemes.
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Fig. 4. The planar anisotropy calculated using the CPFEM: (a) r-value anisotropy, and (b) normalized yield stress anisotropy.
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Fig. 5. Finite element meshes and the geometry of the tools used in the cup-drawing simulation.
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Fig. 6. Cup obtained after cup-drawing process: (a) Experimental, (b) RM, and (c) MM schemes.
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Fig. 8. Cup height contribution to the r-value and yield stress directionalities.

C3D8R. The friction coefficient between the blank and the tools
was prescribed as p =0.05.

4. Results and discussion

Fig. 6(a) shows the cup obtained after the actual cup-drawing
process. Fig. 6(b) and (c) show the deformed cups obtained at the
final stage of cup-drawing simulation considering RM and MM
mapping schemes, respectively. The cup-drawing simulation for
the BH steel predicted four ears at approximately 0° and 90° to
the RD. Comparisons between the experimental and simulated ear-
ing profiles are shown in Fig. 7. The CPFEM results based on an RM
mapping scheme underestimated the measured earing profile.
Fig. 7 also includes the earing profiles predicted by the analytical
theory, as explained in Section 3.1. The calculated directionalities
of r-value and yield stress, as shown in Fig. 4, were used as the in-
put data for the analytical theory of Eq. (2). As shown in Fig. 7(a),
the analytical results based on the directionalities determined by
the RM mapping scheme (Fig. 4(a)) produced a similar earing pro-

file with the CPFEM results based on the RM mapping scheme. The
earing height determined by the analytical theory was slightly
higher than that obtained by the CPFEM. Fig. 7(b) shows a compar-
ison of the CPFEM results based on an MM mapping scheme with
the analytical results based on the directionalities determined by
the MM mapping scheme (Fig. 4(b)). It should be noted that the
analytical results of earing profiles based on the RM mapping
scheme were closer to the measured earing profiles than those
based on the MM mapping scheme. Contrary to the analytical re-
sults, CPFEM results based on the MM mapping scheme produced
an earing profile closer to the measured earing profiles, particularly
in the region between 0° and 45° from RD.

Fig. 8 shows the cup height contribution of the r-value and the
yield stress directionalities. The contribution of the r-value direc-
tionality is larger than that of the stress directionality regardless
of mapping schemes. The contributions of the r-value and yield-
stress directionalities from Eq. (6) correlated directly with those
shown in Fig. 4. The earing profile is a scaled mirror image of the
r-value at 90° from RD in the case of the BH steel.
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Fig. 9. ODF in 3-D Euler space and ¢, = 45° section of texture components typical in BH steels: (a) {111}<110>, (b) {111}<112>,(c){554}<225>.
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Fig. 10. Planar anisotropy calculated using the CPFEM: (a) r-value anisotropy, and (b) normalized yield stress anisotropy.

Fig. 9 shows the ODFs in 3-D Euler space and a ¢, = 45° section of
major texture components typical in BH steel. The ODFs were used to
generate 1000 discrete orientations for polycrystal modeling. The ef-
fects of 2 y-fiber texture components ({11 1}<110>,{111}<112>)
and an off-y-fiber texture component ({55 4}<2 2 5>) on planar
anisotropy and cup-drawing behaviors was considered. The planar
anisotropy for the three typical texture components calculated using
the CPFEM is illustrated in Fig. 10. An RM mapping scheme was used
for the analytical theory and CPFEM calculations. Fig. 10(a) shows the
r-value anisotropy for the three texture components calculated using
the CPFEM. Fig. 10(b) shows the normalized yield stress anisotropy
calculated using the CPFEM. It should be noted that the 2 y-fiber
texture components compensate for the r-value and yield stress

anisotropy over all loading directions. The r-value and yield
stress directionalities of the off-y-fiber texture components
were significantly different from the y-fiber texture component
({11 1}<11 2>), which had a misorientation of ~5° to the off-y-fiber
texture component. It is clear that the off-y-fiber texture component
exhibited a strong anisotropy for the r-value of loading directions be-
tween 60° and 90° from the RD. The off-y-fiber texture component
also exhibited a strong anisotropy of yield stress compared to the 2
v-fiber texture components. Fig. 11 shows a comparison between
the earing profiles simulated using the CPFEM and the earing profiles
predicted using the analytical theory. The analytical results were
qualitatively in good agreement with the CPFEM results. Fig. 12
shows the cup height contribution of the r-value and yield stress
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Fig. 12. Cup height contribution of the r-value and yield stress directionalities.

directionalities as determined using Eq. (6). Regardless of the texture
component, the contribution of the r-value directionality was larger
than that of the stress directionality. The contributions of r-value
and yield stress directionalities were directly correlated with those
shown in Fig. 4. It is obvious that 2 vy -fiber texture components com-
pensated for the anisotropy of the earing profile over all loading
directions. The results showed that the r-value directionality of an
off-y-fiber texture component dominantly contributed to the earing
profiles of BH steel.

5. Conclusions

The present study predicted the earing profiles during the cup-
drawing of BH steel using analytical theory and the crystal plastic-
ity finite element method (CPFEM).

The analytical results based on an RM mapping scheme pro-
duced an earing profile closer to the measured earing profiles of
BH steel than that based on an MM mapping scheme. However,
CPFEM results based on MM mapping produced an earing profile
that was closer to the measured earing profiles, particularly in
the region between 0° and 45° from RD.

The individual effect of major texture components typical in BH
steel on earing profiles was also investigated. Discrete orientations
for polycrystal modeling was determined with the help of a
“Gaussian standard function” and an “orientation repartition
function”. The 2 vy-fiber texture components ({11 1}<110>,
{11 1}<11 2>) compensated for the r-value and yield-stress direc-
tionalities over all loading directions. The off-y-fiber texture com-
ponent exhibited a strong anisotropy for the r-value of loading
directions between 60° and 90° from the RD. The r-value direction-
ality of the off-y-fiber texture component dominantly contributed
to the earing profiles of BH steel.
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