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a b s t r a c t 

An analytical approximation for the indentation size effect (ISE) due to plane strain flat punch nanoin- 

dentation is derived. The flat punch ISE differs from that observed for self-similar (pointed) and spherical 

indenters in a number of ways: (1) the contact area does not change; (2) the contact pressure depends on 

two length scales not just one (the punch width and the indentation depth); (3) the profile of the punch 

is not differentially continuous, resulting in singular plastic strain gradients at the sharp edges, such that 

(4) the shape and connectivity of the plastic zones change with indentation depth and punch width, re- 

sulting in (5) changes in the proportion of the deformation accommodated by elasticity and plasticity 

are important, meaning that a fully elastoplastic model is required. Complete loading-unloading curves 

are modelled, with the calibration of geometrical parameters from finite element strain gradient plastic- 

ity simulations. As the punch width decreases, it is observed that there are increases in the indentation 

pressure, the relative size of the plastic zone(s) and the elastic component of the deformation. These pre- 

dictions are found to compare favourably with experimental measurements in the literature. The model 

is extended to incorporate the consequence of imposing natural limitations on the maximum dislocation 

density at the edges. It is suggested that observable changes in the plastic zone morphology with the ISE 

make this an experimentally interesting area for the validation of size effects in plasticity. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The indentation size effect (ISE) is an experimentally observed

henomenon in which the measured hardness of a material is

ound to increase as the size of the indent decreases. Nix and

ao (1998) first proposed a model to explain this behaviour based

n forest hardening due to the presence of the geometrically nec-

ssary dislocations (GNDs) that are required to accommodate plas-

ic strain gradients in a crystal. The current analysis is based on

his approach whereby the shear yield stress is assumed to be 

Y = βF Gb 
√ 

ρ (1) 

here G is the shear modulus of the material, b = 0.25 nm is

he magnitude of the Burgers vector, and βF is a dimension-

ess parameter which represents the strengthening contribution of

islocations from forest hardening. The total dislocation density,

= ρs + ρG , is assumed to be the sum of a constant pre-existing

tatistically-stored dislocation (SSD) population of density ρS , and

hat due to a locally evolving population of GNDs, ρG , derived from

he plastic strain gradient. The size-dependent hardness of the
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aterial is then expressed as 

 = 3 

√ 

3 τY = H 0 

√ 

1 + 

ρG 

ρS 

(2) 

here H 0 = 3 
√ 

3 βF Gb 
√ 

ρS is the macroscopic hardness (at which

G → 0). GNDs are required to form the numerous surface steps

f height b that define the shape of the plastic indent. For spher-

cal and self-similar indenters, the number of surface steps (and

ence GNDs) are readily determined from the slope of the inden-

er profile if the contribution from elastic deformation is ignored.

 central assumption of the Nix and Gao (1998) model is that the

olume they occupy (the plastic zone) is a hemispherical region

elow the indenter, and that the radius, c , of this region is the

plastic) contact radius. 

Nix and Gao (1998) derived the hardness size effect for a self-

imilar (pointed) indenter. Assuming a conical shape with angle θ
o the horizontal, the resulting GND density (total length of surface

teps divided by plastic zone volume) is found to be ρG = 

3 tanθ
2 cb 

.

q. (2) then gives the standard expression 

 = H 0 

√ 

1 + 

h 

∗

h 

(3) 

here h is the indentation depth, such that tanθ = 

h 
c , and

 

∗ = 

3 tan 2 θ
2 b ρS 

is a material length scale ( Nix and Gao, 1998 ).
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This analysis was later extended to spherical indenters by

Swadener et al. (2002) . This predicts an entirely different scal-

ing behaviour. For a spherical indenter of radius R , the GND den-

sity ρG = 

1 
bR 

is independent of the indentation depth, such that

Eq. (2) becomes 

H = H 0 

√ 

1 + 

R 

∗

R 

(4)

where in this case R ∗ = 

1 
b ρS 

is the material length scale

( Swadener et al., 2002 ). 

However flat punch indentation differs significantly from both

the spherical and the self-similar cases. Firstly, the indentation

area does not change, so that the standard definition of hardness

(force over indentation area) does not technically apply as the force

changes without the area changing. Hence we refer to the av-

erage indentation pressure, P , in relation to the flat punch tests

rather than hardness, H . The second difference is that the con-

ceptual model of surface steps generated on the substrate surface

due to the plastic deformation breaks down, as such steps would

no longer be distributed smoothly across the contact area, as is

the case with an indenter with a finite profile slope. A flat punch

profile has zero slope under the indenter and an infinite slope at

the edges. Therefore, within the conceptualisation of the Nix–Gao

approach and perfect plasticity, the equivalent flat punch model

would propose a single plastic surface step at the punch edges,

with a height equivalent to the indentation depth δ, from which

a very large number of GNDs ( δ
b 

) would be injected from this sin-

gle point into the substrate. This is not the case, due to signifi-

cant load transfer, and hence a different approach must be taken.

In practice, plasticity will start at the punch edges, and the plas-

tic zone will expand outwards from these sharp features, increas-

ing in size with the indentation depth. This will happen due to

the nature of the stress field under the indenter, even without lo-

cal hardening. Surface steps, and GNDs, will be created under the

flat punch indenter even though the indenter profile is flat. This is

because both the elastic and plastic components of the deforma-

tion under the indenter must be considered. Upon unloading, the

non-uniform plastic surface profile of the substrate underneath the

flat punch can be clearly seen. These surface steps must be accom-

modated by GNDs. The third difference from the Nix–Gao model

is that, as already observed, the size of the plastic zone changes

but the contact radius does not. Consequently, unlike the spher-

ical and self-similar indenter cases, there is no simple geometri-

cal method for estimating the number of GNDs required to accom-

modate the shape of the plastic indentation, or for estimating the

size of the plastic zone. It will prove to be necessary to consider

the elastic deformation as well as the plastic deformation to de-

velop a simple analytical model for the ISE which is equivalent to

Eqs. (3) and (4) derived for the spherical and self-similar indenters.

For spherical indentation (4) shows that the dominant ISE length

scale is the size of the indenter, whereas for self-similar indenters,

Eq. (3) shows that it is the indentation depth. We will show that,

for a flat punch indenter, the indentation pressure depends on both

the indenter size (width) and indentation depth. 

Chen et al. (2010) have investigated the flat punch ISE experi-

mentally in single crystal aluminium. They proposed that, for a flat

punch of width 2 a , the average indentation pressure might vary

through a relationship that is similar in form to (3) and (4) such

that 

P = P 0 

√ 

1 + 

a ∗

a 
(5)

where P 0 is the macroscopic indentation pressure and a ∗ is a fit-

ting constant for the ISE. This assumes that the indentation depth

is a fixed fraction of the punch width. Eq. (5) is shown to fit their
xperimental results reasonably well over the fairly narrow range

f punch widths considered (from 0.55 to 5 μm). However, it will

e shown that this empirical model is not generally valid across a

ide range of length scales. 

Flat punches are also of interest for their use in microform-

ng processes. Microscale devices fabricated from metals have been

hown to perform better than silicon based devices, or are capa-

le of performing functions which those manufactured from silicon

annot ( Jiang et al., 2006 ). The understanding of mechanical in-

eractions which occur during the micro-moulding of these metals

s, therefore, of considerable significance. One important technique

sed for manufacturing of metal based HARMS (High-aspect-ratio

icroscale structures) is the LiGA (Lithographie Glavanoformung

bformung) process, which is reliant on electrodeposition, X-ray

ithography, and moulding. LiGA is a fairly slow and expensive pro-

esses, so improving the moulding stage is of considerable impor-

ance in making it more economical for the production of HARMS

 Cao et al., 2004; Meng et al., 2004 ). During the LiGA process there

an be unexpected or unwanted structural changes in the material

eing moulded as well as changes in the yield strength ( Cho et al.,

003 ); a better understanding of how the flat punch and material

nteract can help to improve the final material strength and hard-

ess. Other applications of flat punches include the roll moulding

f microchannels and fretting fatigue experiments ( Ciavarella et al.,

998; Lu and Meng, 2014 ). Meng et al. (2004) have investigated the

ontact pressures occurring during the micro-moulding process for

ery large indentation depths, which are 2 or 3 times the width

f the indenter. The normalised moulding stress prediction showed

ood correlation when compared to their experimental data for full

lasticity for very deep indentations. 

It is worth noting that the effect of punch misalignment is not

onsidered here. Experimental ( Pelletier et al., 2007 ) and numer-

cal studies based on elastic analysis ( Gourgiotis et al., 2016 ) and

lastoplastic analysis for both conical indenters ( Xu and Li, 2007 )

nd cylindrical flat punches ( Shahjahan and Hu, 2016 ) demonstrate

hat this can have a significant effect during the early stages of

ndentation, although the effect is less noticeable once extensive

lasticity has been induced. Exact alignment for flat punch inden-

ation can be challenging, with tools proposed to achieve good

lignment ( Pelletier et al., 2007 ). An alternative approach would be

o place relatively thick, flat stiff disks or plates on the substrate.

hese would be naturally self-aligning and could be punched into

he substrate using a larger radius spherical indenter. 

Nielsen et al. (2014) have conducted numerical strain gradient

lasticity simulations using the Fleck-Hutchinson plasticity model

o investigate the effect of size on the fabrication of microscale

eatures in metals. They also considered the effect of friction in

etermining the final profile of the resulting indent. This deviates

ignificantly from the macroscale indent due to the enhanced level

f elastic recovery at smaller scales. Guha et al. (2014) have also

imulated flat punch indentation from the perspective of a mould-

ng technique using a modified Fleck-Hutchinson plasticity model.

or both approaches, the origin of a size hardening effect is clearly

emonstrated over a fairly small range of punch sizes, typically

ne order of magnitude or less. In this paper, the flat punch ISE

s investigated across many orders of magnitude and an analytic

xpression for the loading and unloading response is derived. The

nalytical model is validated and calibrated against finite element

imulations and the experimental results of Chen et al. (2010) .

he finite element model is introduced in Section 2 . Firstly, its

redictions for spherical and self-similar indenters compared with

hose from the Nix–Gao type models (3) and (4) . The simulation

s then utilised to determine the contact pressure vs displacement

esponse for flat punch indenters of different widths. The analyti-

al model is derived in Section 3 and its predictions are compared

ith the finite element results and experimental observations.
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Fig. 1. Results of strain gradient finite element simulations for spherical indenters 

of different radii R compared with the predictions of Swadener et al. (4) for (a) 

average GND density against strain ( c / R ), and (b) hardness against strain. Values 

are only shown after significant indentation has occurred for strains above 4%. 
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urther issues are explored in Section 4 , where the sensitivity of

he results to the plasticity model and other assumptions within

he Nix–Gao approach are investigated. 

. Finite element modelling of flat punch indentation 

.1. The strain-gradient plasticity model 

A range of conceptual and numerical strain-gradient plasticity

odels have been proposed and experimentally investigated ( De

uzman et al., 1993; Fleck and Hutchinson, 1997; Gao et al., 1999;

urtin, 20 0 0, 20 02; Huang et al., 2006; Kiener et al., 2009; Ma

nd Clarke, 1994; Nix and Gao, 1998; Oliver and Pharr, 1992; Pharr

t al., 2010; Swadener et al., 2002 ). The reader is directed to-

ards Evans and Hutchinson (2009) for a critical assessment of

hese models. In this paper the spatially and temporally varying

ield stress of the strain-gradient plasticity model (1) proposed by

ix and Gao (1998) is implemented in rate form using the Garofalo

reep model ( Garofalo, 1965 ) 

˙ p = A sin h 

(
τe − τY 

τre f 

)
(6) 

here ˙ γp is the plastic shear strain rate, A and τ ref are constant

reep parameters, τe = 

1 √ 

3 
σe is the effective shear stress, σ e is the

ffective (von Mises) stress and we take τ e − τ Y = 0 if τ e < τ Y .

s the indentation is not intended to be rate-dependent, the fi-

al solution should not be too sensitive to the form of the rate

odel selected, i.e. yielding and subsequent plastic relaxation oc-

ur rapidly if τ e > τ Y . Eq. (6) has a physical basis ( Gao et al., 1999 )

ut the creep parameters are chosen such that the quasi-static so-

ution τ e = τ Y is achieved within a characteristic time that is very

uch less than the time taken to complete the indentation test.

e take a Young’s modulus of E = 70GPa, Poisson ratio ν = 0.3, a

SD density of ρS = 10 12 m 

−2 , A = 1 s −1 and τ ref = 50MPa. The ISE

anifests noticeably once the GND density is of a similar order of

agnitude to ρS . This choice therefore influences the punch size at

hich the ISE is observed in the FE model. The initial normal yield

tress (before forest hardening) is taken as σ y 0 = 100MPa. The local

ND density is calculated using the Nye equation 

G = 

1 

b 

| curl [ F p ] | (7) 

here [ F p ] is the plastic part of the deformation gradient ten-

or. The detailed expressions derived from (7) for the plain strain

nd axisymmetric cases are given in Appendix A. The model was

mplemented in COMSOL Multiphysics v5.3 using an unstructured

riangular mesh of quadratic isoparametric elements. The plastic

train derivatives are not directly available in COMSOL and were

alculated by integrating the plastic strain rates over time using

omain ordinary differential equations and evaluating the spatial

radients of this additional field. Interfacial friction between the

ndenter and the substrate material is neglected. 

.2. Validation of the finite element ISE model for conical and 

pherical indenters 

The predictions of the Nix and Gao (1998) model for conical

nd Swadener et al. (2002) model for spherical indenters are used

o test the proposed finite element model. The models of (3) and

4) are greatly simplified, so exact comparison is not anticipated,

ut the correct scaling of the ISE is expected to be reproduced.

he results of axisymmetric simulations for rigid spherical inden-

ers with a range of different radii are shown in Fig. 1 . The average

ND density is shown in Fig. 1 a along with a fit to the theoretical

rediction. In the simulations, the GND density is found in prac-

ice to be highly inhomogeneous. The total GND length is found by
ntegrating the GND density defined by (7) over the entire volume

f the substrate. The average GND density, as defined by the Nix–

ao models, is then the total length divided by the volume of a

emisphere of radius c . The prediction that the average GND den-

ity is constant and does not change with strain is clearly evident.

he best fit is given by ρG = 

0 . 025 
bR 

, which is 2.5% of the value esti-

ated by the model of Eq. (4) . This is not surprising given the very

imple assumptions made about the geometry. This now suggests

hat R ∗ = 

0 . 025 
b ρS 

= 100 μm . Fig. 1 b demonstrates that for spherical

ndenters the hardness also does not change with the indentation

epth (represented here by the strain c / R ) as predicted. The best

t for (4) is shown, with H 0 = 0.72 GPa and R ∗ = 90 μm, compared

o the estimated values of H 0 = 0.3 GPa and R ∗ = 100 μm from the

imple theory. 

Similarly, results for simulations with conical indenters are

hown in Fig. 2 . A small tip radius was introduced to the cone
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Fig. 2. Results of strain gradient finite element simulations for a conical indenter 

at different indentation depths δ compared with the predictions of Nix–Gao (3) for 

(a) average GND density against reciprocal of indentation depth, and (b) hardness 

squared against the reciprocal of indentation depth 1/ δ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Geometry of the plain strain flat punch indentation model. 
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point for numerical stability during the initial part of the load-

ing stage, although it was too small to have a significant effect on

the results, with its height equivalent to 3% of the maximum dis-

placement. The cone angle (with respect to the horizontal) was 5 o .

Fig. 2 a shows the average GND density against the reciprocal of the

indentation depth 1/ h on a log-log plot compared with the pre-

dictions of the Nix–Gao model, ρG = 

3 tan 2 θ
2 bh 

. Again, the local GND

density is highly inhomogeneous in the simulation, but the aver-

age scales well with simple estimates, although the (dashed) line

of best fit is 20% of the predicted value. The scaling of the hard-

ness squared is also predicted by Eq. (3) to be a linear function of

the reciprocal indentation depth, and the consistency between the

simulation results and the Nix–Gao model is clear in Fig. 2 b. The

best fit is obtained for H 0 = 0.18 GPa compared to the estimated

value of H 0 = 0.3 GPa. The reduced average GND density suggests

that we should take 20% of the predicted value of h ∗ = 46 μm. This
educed value of h ∗ = 9.2 μm agrees favourably with the best fit

alue of h ∗ = 16 μm within the approximations taken. 

Overall the general scaling of (3) and (4) represent the material

esponse well, and the fact that the actual geometric factors are

ifferent from those estimated in the derivation of (3) should not

e too surprising within such a difference between the simplic-

ty of the deformation field proposed within the Nix–Gao analyt-

cal model and the highly inhomogeneous and localised deforma-

ion field seen in the numerical model. The important observation

s that both models produce the same experimentally observable

rends, but that experimentally determined values require a correc-

ion factor to be related back to the Nix–Gao parameters directly.

hese simulations have demonstrated the proposed finite element

odels capacity to reproduce the ISE predicted by the Nix–Gao

odels with reasonable accuracy for both conical and spherical in-

enters. The approach is now extended to consider a flat punch

ndenter in the following section. 

.3. Simulation results for a flat punch indenter 

The geometry for flat punch indentation is simple and is shown

n Fig. 3 . A rigid flat indenter of half-width a is displaced down-

ards a distance δ into the substrate under 2D plain strain condi-

ions. The force is recorded as the indenter is pressed into the sub-

trate and as it is retracted. The mesh is refined around the edges

f the punch where the highest stresses occur. 

Loading and unloading curves for normalised mean indenta-

ion pressure against normalised indentation depth are shown in

ig. 4 . The pressure P is normalised by the macroscopic yield pres-

ure P y 0 and the indentation depth δ is normalised by the width of

he indenter 2 a . All the curves demonstrate an approximately elas-

ic response at the commencement of loading, although in prac-

ice small amounts of plasticity initiate at the sharp edges of the

unch almost immediately. For the largest punch, of total width

 a = 10 mm, the pressure levels off once the macroscopic yield

ressure P y 0 is reached, demonstrating no hardening due to strain

radients. The elastic unloading curve is parallel to the elastic part

f the loading curve as expected. Overall the curves look very simi-

ar to experimental curves ( Riccardi and Montanari, 2004 ). Smaller

unches demonstrate increasingly large elastic contributions to the
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Fig. 4. Simulations results for normalised mean indentation pressure P / P y 0 against 

normalised indentation depth δ/2 a calculated for flat punches of different widths 

2 a . The solid lines are the finite element simulation results, and the dashed lines 

are the predictions of the analytical model for loading (22) and unloading (27) . 
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Fig. 5. Strain gradient finite element half-symmetry simulations of the (red) plastic 

z  
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nitial loading stage, with increasingly localised plastic hardening

round the edges as the indentation width decreases. 

Fig. 5 shows the change in morphology of the plastic zone with

ndenter size. The plastic region starts to form at the edge of the

unch in each case. In the large punch case, Fig. 5 a, the GND den-

ity remains low, resulting in little plastic hardening at the edges

nd growth of the edge plastic zones via load transfer until they

eet in the middle and form a roughly hemispherical plastic zone

nder the indenter. This is similar to the expanding cavity model

f Johnson (1987) adopted for modelling flat punch indentation.

ere the plastic zone is relatively small and the plastic strains are

igh. The small punch case, shown in Fig. 5 b, is quite different.

he plastic zones at the edges experience highly localised strain

radient hardening. This results in a relatively larger plastic zone

ithin which the plastic strains are much lower. A pre-dominantly

lastic region of hydrostatic pressure forms under the indenter in

his case. Therefore, unlike spherical and self-similar indentation,

here is expected to be a clear visual difference between the shape

f the plastic zone at different length scales. If explored exper-

mentally, these cases have the potential to provide insight into

he contrasting nature of plasticity at different scales which is not

o readily available in other nanoindentation test methods. Similar

imulations performed using the Fleck-Hutchinson strain gradient

lasticity model show a similar but not identical trend to the one

hown in Fig. 4 , albeit across a smaller range of indenter widths

 Evans and Hutchinson, 2009 ). 

The ISE determined from the flat punch finite element sim-

lations for a fixed indentation depth-to-width ratio of δ
2 a = 

1 
10 

s presented in Fig. 6 . The pressure squared, P 2 , is plotted as a

unction of the reciprocal of the punch half-width, 1 
a , in the spirit

f the Nix–Gao ISE models, such that the empirical model for the

SE in flat punches proposed by Chen et al. (2010) , Eq. (5) , predicts

hat the data will lie on a straight line. Extrapolating the near-

acroscopic punch data gives the linear fit for (5) shown, whereas

he best fit to the finite element simulation results is given by

he analytical model (22) developed in the next section. Given

he differences between the flat punch case and the spherical and

elf-similar indentation cases, it is not surprising that (5) does not

ompletely capture the ISE for flat punches, although it can be rea-

onably effective over a small range of sizes. To gain further insight

nto the mechanisms behind the ISE in flat punch indentation, a
one, defined to be where the effective plastic strain is greater than 1%, for flat

unch indenters of width (a) 2 a = 10 mm , and (b) 2 a = 0.01 mm , after an indentation

f depth δ= 2 a /10. The jagged boundaries are due to small numerical perturbations.

ull elasto-plastic analytical model is developed in the next

ection and validated against the finite element results reported

ere, as seen in Figs. 4 and 6 . A closed form for this indentation

ressure as a non-linear function of both the punch width and
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Fig. 6. Strain gradient finite element flat punch simulation results for the square 

of the indentation pressure P 2 against the reciprocal of the indenter half-width, 1 
a 

. 

The empirical prediction (5) is shown as a red dashed line, with the results of the 

proposed analytical model (22) in black. 
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the indentation depth is derived. By its nature, it is more complex

than the simple rules provided by (3) and (4) , but it is still readily

evaluated numerically. 

3. An analytical model for the flat punch ISE 

3.1. Derivation of a Nix–Gao type model for flat punch indentation 

The plane strain elasticity solution for the (elastic) pressure un-

der a rigid flat frictionless indenter of half-width a is given by

( Johnson, 1987 ) 

p e ( x ) = 

F e 

π
√ 

a 2 − x 2 
(8)

where x is the lateral distance from the centre of the punch and 

F e = 

∫ a 

−a 

p ( x ) dx = k e δe (9)

is the applied downward force (per unit length). This is expected to

be proportional to the elastic displacement δe through a stiffness

constant k e which will depend on the Young’s modulus and Pois-

son’s ratio of the substrate. A representation of this elastic pressure

distribution (8) can be seen in Fig. 7 a. Importantly it can be seen

that there is an infinite pressure at the edges of the punch. This

will necessarily result in the early onset of plasticity at the edges. 

Slip-line theory ( Calladine, 1985 ) provides an exact solution for

the pressure required to cause generalised yielding of a perfectly

plastic material under a flat punch ignoring the contribution from

elasticity 

p Y 0 = σY 0 

(
1 + 

π

2 

)
(10)

where σ Y 0 is the perfectly plastic yield stress. A possible deforma-

tion mechanism for the slip line field near an edge is shown in the

substrate in Fig. 7 b, whereby slip occurs below the indenter and

propagates along the slip lines towards the free surface as shown.

Here we make a number of assumptions to extend this model to

generate an approximate model for the response of the full elasto-

plastic case, where only partial plastic deformation has occurred

under the indenter, as shown in Fig. 7 b. Plasticity is assumed to
nitially occur under the corners of the indenter, generating a lo-

alised plastic zone. As the displacement of the punch increases,

he plastic zone is expected to increase until the two edge plastic

ones meet in the middle, at which point full plastic deformation

f the substrate is said to have occurred. The complex load trans-

er process is greatly simplified such that the maximum pressure is

apped at the yield pressure, as shown in Fig. 7 b. This yield pres-

ure will monotonically increase due to strain gradient hardening

eading to the ISE. 

To progress with this model we write the total displacement of

he substrate at the interface with the rigid indenter as the sum of

lastic (e) and plastic (p) components 

= δe ( x ) + δp ( x ) (11)

here δ is the uniform prescribed indentation displacement, but

ts elastic and plastic components are spatially varying along the

nterface. The aim of the model is now to determine the elasto-

lastic pressure distribution under the rigid punch, p ( x ), to deter-

ine the applied force require to achieve the displacement. From

8) we define the plastic displacement component as 

p ( x ) = δ − π

k e 

√ 

a 2 − x 2 p ( x ) (12)

This satisfies the requirement that there is no plastic strain

 δ = δe ) when the pressure distribution is fully elastic ( p ( x ) = p e ( x )).

t is expect to be closely related to the shape of the plastic indent

ut not exactly the same. This is because the stress redistribution

ue to yielding is not precisely accounted for. 

As described above, a simple approximation for the elasto-

lastic pressure distribution is assumed, such that it varies from

oth corners as 

p ( r ) = 

{
p e ( r ) i f r p < r < a 
p Y ( r ) i f 0 < r < r p 

(13)

here r = a − x is the distance from an edge, and r p is the radius of

he plastic zone at the punch edges, as shown in Fig. 7 b. The latter

s determined from the condition that the elastic pressure is equal

o the initial yield pressure (before hardening), i.e. p e ( r p ) = p Y 0 . The

esulting plastic zone radius can therefore be expressed as a func-

ion of the indentation depth as 

 p ( δ) = 

⎧ ⎨ 

⎩ 

a 

(
1 −

√ 

1 −
(

δ
δ0 

)2 

)
if 0 < δ < δ0 

a otherwise 

(14)

here δ0 = 

πa p Y 0 
k e 

is a characteristic length scale, which depends

n the test length scale a and a ratio of the elasto-plastic prop-

rties of the substrate. We now introduce strain gradient plastic

ardening through the Nix–Gao formulation previously used, (2) ,

ith Eq. (10) , to write the plastic yield pressure under the inden-

er as 

p Y = p Y 0 

√ 

1 + 

ρG 

ρS 

(15)

The GND density (7) is proportional to the plastic strain gradi-

nt and the reciprocal of the materials Burger’s vector b . The strain

eld under the indenter is not known, but it is reasonable to as-

ume that it will scale with the plastic component of displacement

p and the size of the punch a . The strain is higher nearer the

dges of the punch and hence, to make an analytical solution fea-

ible, the following empirical form for the GND density is proposed

G ( r ) = 

αδp ( r ) 

b a 2 

(
a 

r 

)n 

(16)

here n is an exponent and α is a dimensionless geometric pa-

ameter. It is expected that 0 < n < 2 as n must be greater than
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Fig. 7. (a) Purely elastic solution (8) for the pressure distribution under a flat punch for frictionless conditions, and (b) proposed elasto-plastic pressure distribution for 

perfectly plastic yield pressure of p y 0 , showing possible slip deformation mechanism in the substrate at the punch edges. 
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ero for a peak density at the punch edges, and the strength of the

ingularity becomes too large for values of n ≥ 2, leading to a non-

nite mean indentation pressure, as defined by (21) . These will

e calibrated to best fit the simulation results. Eqs. (12), (15) and

16) can now be combined to generate the following quadratic for

he plastic yield pressure as a function of position in the yielded

egion 

r̄ n p̄ 2 Y + 

√ 

r̄ ( 2 − r̄ ) ̄p Y −
(
β r̄ n + δ̄

)
= 0 (17) 

here the following dimensionless quantities have been intro-

uced 

p̄ Y = 

p Y 
p Y 0 

δ̄ = 

δ

δ0 

r̄ = 

r 

a 
(18) 

n addition to a characteristic dimensionless parameter 

= 

b k e ρs 

απ p Y 0 
a (19) 
hich scales with the punch width a . The quadratic (17) , combined

ith (8) and (13) , yields the total pressure distribution under the

unch 

p̄ ( ̄r ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

δ̄√ 

r̄ ( 2 −r̄ ) 
if r̄ p < r̄ < 1 

√ 

r̄ ( 2 −r̄ ) 

2 β r̄ n 

[√ 

1 + 

4 β r̄ n ( β r̄ n + ̄δ) 
r̄ ( 2 −r̄ ) 

− 1 

]
if 0 < r̄ < r̄ p 

(20) 

The total normalised average indentation pressure is then de-

ermined using (9) 

 ̄= 

∫ 1 

0 

p̄ ( ̄r ) d ̄r = 

∫ 1 

r̄ p 

p̄ e ( ̄r ) d ̄r + 

∫ r̄ p 

0 

p̄ Y ( ̄r ) d ̄r (21)

here P̄ = 

P 
p y 0 

= 

F 
2 a p Y 0 

. 

Solving (21) numerically, it is found that the level of elastic re-

overy increases with n , and that the best correspondence with

he simulation results is very clearly obtained when n = 1. Hence

his value is selected for further inspection. An additional benefit is
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Fig. 8. Indentation pressure vs log of punch width 2 a comparing the model with 

the results of strain gradient finite element simulations, and the empirical model of 

Eq. (5) . 
that the plastic integral (21) can be solved analytically for the case

of n = 1. The final model for the normalised indentation pressure

during loading ( L ) as a function of the normalised displacement δ̄
is given by 

P̄ L = δ̄sin 

−1 
( 1 − r̄ p ) + 

1 

2 β

[√ 

2 + 4 βδ̄ g 

(
r̄ p , 

4 β2 − 1 

2 + 4 βδ̄

)

−
√ 

2 g 

(
r̄ p , −1 

2 

)]
(22)

where r̄ p = 

{
1 −

√ 

1 − δ̄2 if 0 < δ̄ < 1 

1 if δ̄ ≥ 1 
and 

g ( x, y ) = 

√ 

x ( 1 + xy ) + 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 √ 

y 
arcsin h 

√ 

xy if y > 0 

1 √ −y 
arcsin 

√ −xy if y < 0 

(23)

The unloading (UL) phase is modelled by assuming that the

elastic solution, p̄ e ( ̄r ) , given by Eq. (8) , is subtracted from the fi-

nal elasto-plastic pressure distribution, p̄ m 

( ̄r ) , obtained at the end

of the loading phase. If the peak indentation depth is δ̄m 

then the

peak pressure state is 

p̄ m 

( ̄r ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

δ̄m √ 

r̄ ( 2 −r̄ ) 
if r̄ pm 

< r̄ < 1 

√ 

r̄ ( 2 −r̄ ) 

2 β r̄ 

[√ 

1 + 

4 β( β r̄ + ̄δm ) 
( 2 −r̄ ) 

− 1 

]
if 0 < r̄ < r̄ pm 

(24)

where r̄ pm 

= 

{
1 −

√ 

1 − δ̄2 
m 

if 0 < δ̄m 

< 1 

1 if δ̄m 

≥ 1 
. Without adhesion be-

tween the punch and the substrate, the total pressure, p̄ UL = p̄ m 

−
p̄ e , must be positive if the surfaces are in contact, and zero if they

separate. Hence, at an unloading displacement of 0 ≤ δ̄ ≤ δ̄m 

the

pressure distribution is approximated as 

p̄ UL ( ̄r ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

δ̄√ 

r̄ ( 2 −r̄ ) 
if r̄ pm 

≤ r̄ ≤ 1 

√ 

r̄ ( 2 −r̄ ) 

2 β r̄ 

[√ 

1 + 

4 β( β r̄ + ̄δm ) 
( 2 −r̄ ) 

− 1 

]
− ( ̄δm −δ̄) √ 

r̄ ( 2 −r̄ ) 
if 0 ≤ r̄ ≤ r̄ pm 

(25)

The unloading of the plastic zone needs to be considered with

some care, to avoid the pressure defined in the plastic region

0 ≤ r̄ ≤ r̄ pm 

becoming negative. The critical radius within the

plastic zone at which contact is lost is given by r̄ 0 = ( 1 − δ̄
2 β

) ±

( 1 + 

δ̄
2 β

) 

√ 

1 − ( ̄δm −δ̄) 
2 

( 1+ δ̄
2 β

) 
2 , defined by the condition that p̄ UL = 0 .

There are two possible values of r̄ 0 . The value of r̄ 0 that is real

and between 0 and 1 is taken. If neither value satisfies this con-

dition, r̄ 0 is taken to be zero. Inspection shows that there are two

different scenarios that can occur. Case I is where separation of

the surfaces starts at the edges. In this case, contact is lost in the

region 0 ≤ r̄ ≤ r̄ 0 with r̄ 0 increasing from 0 to r̄ pm 

as the unload-

ing progresses. Case II relates to the situation where the punch

first loses contact with the surface from the middle. In this case,

contact is lost in the region r̄ 0 ≤ r̄ ≤ r̄ pm 

, with r̄ 0 decreasing from

r̄ pm 

to 0 as the unloading progresses. The two situations are dif-

ferentiated using the plastic zone pressure, p̄ UL (1) , calculated at

the centre of the punch where r̄ = 1 . Observing that the pressure

changes monotonically with the distance from the edge, case I oc-

curs if p̄ UL (1) > 0 during separation, and case II occurs if this is

not true. We introduce the following variable to choose between

these cases, such that 

γ = 

{
0 if δ̄ < δ̄c 

1 if δ̄ ≥ δ̄c 

(26)
here δ̄c = δ̄m 

+ 

1 
2 β

( 1 −
√ 

1 + 4 β( β + δ̄m 

) ) . 

The force during unloading is now the integral of the net pres-

ure under the indenter such that 

 ̄UL = δ̄ arcsin ( 1 − r̄ pm 

) −
(
δ̄m 

− δ̄
)[ 

( 1 − γ ) 
π

2 

+ ( 2 γ − 1 ) ( arcsin ( 1 − r̄ 0 ) + γ arcsin ( 1 − r̄ pm 

) ) 
] 

+ 

√ 

2 + 4 βδ̄m 

2 β

×
[

γ g 

(
r̄ pm 

, 
4 β2 − 1 

2 + 4 βδ̄m 

)
+ ( 1 − 2 γ ) g 

(
r̄ 0 , 

4 β2 − 1 

2 + 4 βδ̄m 

)]

− 1 √ 

2 β

[ 
γ g 

(
r̄ pm 

, − 1 

2 

)
+ ( 1 − 2 γ ) g 

(
r̄ 0 , − 1 

2 

)] 
(27)

.2. Comparison between numerical and analytical models 

The analytical models for the loading (22) and unloading

27) curves are readily calculated. The size effect is determined

y the parameter β . We have ρS = 10 12 m 

−2 and b = 0.25 × 10 −9 m.

or a Young’s modulus of E = 70 GPa and Poisson ratio ν = 0.3 we

nd k e = 32 GPa. For an initial yield stress of σ y 0 = 100MPa we find

he simulated perfectly plastic yield pressure is p y 0 = 333 MPa, a

ittle higher than the 257 MPa predicted by the simple slip line

heory of (10) . A best fit is obtained when n = 1 and when the

imensionless GND scaling parameter is α = 0.087 meaning that

17) can be expressed as β = 88, 0 0 0 m 

−1 × a . A comparison of the

esults obtained from the finite element simulations is presented

n Figs. 4 and 6 for several different indenter widths. Given the

umerous simplifications adopted to develop the analytical model,

he close correspondence between the two solutions is exception-

lly good. The numerical simulation has difficulty converging for

he very demanding cases of 2 a = 0.001mm and smaller, but the

nalytical solution predicts that plastic hardening at the corners is

o intensive at these very small scales, and that the response tends

owards being almost fully elastic. 

Fig. 8 shows the indentation pressure at an indentation depth

f δ = 2 a /10 predicted by (22) . The horizontal axis is log 10 (2 a ) as

he flat punch ISE is illustrated across punch widths of six orders of

agnitude, from 10 nm up to 10 mm. The FE results are also shown
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Fig. 9. Comparison of different models against experimental data ( Chen et al., 

2010 ): the analytical model (22), best fit of (5) to the experimental data, a fit of 

(5) from the predicted near-macroscopic response. . 
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or punch widths ranging from 0.001 mm to 10 mm. The corre-

pondence is extremely good. It was not possible to perform the

EM simulations for indenter widths of below 2 a = 0.001mm due

o convergence problems with the highly intensive strain-gradient

ardening at the sharp edges. The indentation pressure plateaus

t the elastic limit, P e = 

F e 
2 a = 

k e δe 
2 a = 

k e 
10 = 3 . 2 GN / m , once the flat

unch gets below a certain size, as plasticity is then so localised

t the edges that the substrates response to the indenter is almost

ully elastic, providing a natural upper bound to the indentation

ressure. This response is because the GND density at the edges

ecomes extremely large. Whether this is a physically realistic as-

umption of the model is investigated in Section 4 . 

.3. Comparison with experimental results 

The experimenal results of Chen et al. (2010) for rectangular

trip punch indentation of aluminium single crystals demonstrate

he existence of the ISE for flat punches. They determine a charac-

eristic indentation pressure and plot it against the punch width.

he data is reproduced in Fig. 9 and compared with the predic-

ions of the various models proposed here. The two unknowns in

q. (5) are optimised to best fit the data, and it is shown that

t models the data quite well across the decade of punch sizes

onsidered, from 0.55μm to 5μm. The parameters of the analytical

odel (22) are also chosen to fit the experimental data, and the

t is very similar to (5) over the relatively small size range consid-

red. However, if the near-macroscopic curve from the analytical

odel (22) is used to determine the parameters of (5) , then the fit

s not particularly good. As we have seen in Fig. 8 , Eq. (5) can be

sed to provide a good linear fit the data over a narrow size range

ut it is not valid across a wide range of sizes. 

. Further analysis of the flat punch ISE using the analytical 

odel 

.1. Effect of rounded edges 

In practice, a real flat punch indenter will not have perfectly

harp edges. The importance of the finite curvature of the edges

s likely to become more significant as the size of the punch di-

inishes. To investigate this, finite element simulations were con-

ucted with a fixed edge radius of 0.01μm. It was found that
here was no significant difference between the force-displacement

urves with sharp and rounded edges, except that the round edged

imulations helped improve the numerical convergence of the

odel and as such could be conducted for very small punches with

ery substantial strain gradient hardening. Encouragingly, these

imulations were found to agree very closely with the predictions

f the analytical model seen in Fig. 4 . 

.2. Removing the ρS dependence from the hardness model 

One observation about the forest hardening approach used in

he Nix–Gao approach (15) is that it relies on the existence of

n often very significant initial SSD population in the test sample.

owever, this is often an assumption that cannot be readily justi-

ed. Recent work by Campbell and Gill (2019) has demonstrated

hat (15) can be equally well replaced by 

p Y = p Y 0 + η
√ 

ρG (28) 

ithout a visibly significant change in the quality of the fit to

he data, where η = ( 1 + 

π
2 ) 

√ 

3 βF Gb. This model assumes that the

acroscopic strength of the material is not due to SSD forest hard-

ning, but due to other mechanisms, e.g. intrinsic strength, precip-

tation hardening, solid solution strengthening etc. In general it is

ound that, when fitting the parameters to known data, the under-

ying physical parameters are in the expected range, which was not

ound to be the case for (3) and (4) . Replacing (15) by (28) in the

odel changes (17) to the following 

′ r̄ n p̄ 2 Y + 

[ √ 

r̄ ( 2 − r̄ ) − 2 β ′ 
] 

p̄ Y + 

(
β ′ r̄ n − δ̄

)
= 0 (29) 

here 

′ = 

b k e p Y 0 
απη2 

a (30) 

ow no longer depends on the initial SSD density ρS . To avoid fur-

her lengthy analytical manipulations, the pressure is determined

rom the quadratic (29) for a given displacement δ̄ and position r̄ 

nd integrated according to (21) numerically. It is found that, as

xpected, the results for the revised constitutive model (28) are

ot significantly different to those found previously if we take

= p y 0 / 
√ 

ρs . The real reason for the change in the constitutive law

s preparation for the next section for which physically realistic pa-

ameters are necessary. 

.3. Limiting the maximum value of ρG 

It was noted in Section 3.2 that the very high indentation pres-

ures achieved at very low punch widths were a result of the

ND density reaching extremely high values at the edges. Theo-

etically there is an upper limit to the dislocation density, with

he purely geometrical limit of 1 
b 2 

= 16 x 10 18 m 

−2 being the extreme

pper value. The latter is not physically possible of course but it

ives insight into the expected, acceptable range of this parameter.

 typically observed value ( Pharr et al., 2010 ) is a maximum GND

ensity of ρm 

≈ 10 16 m 

−2 . Following Campbell and Gill (2019) the

nverse sum rule is used to determine the actual GND density such

hat, using (16) 

1 

ρG 

= 

b a 2 r̄ n 

αδp ( r ) 
+ 

1 

ρm 

(31) 

This can then be combined with (12) and (28) to derive the

ressure distribution, and hence the total contact pressure from

21) . The parameter χ = ( 
p y 0 

�p ym 
) 2 is employed to characterise the

ap on the maximum dislocation density, where �p ym 

= η
√ 

ρm 

is

he maximum increase in the yield pressure due to strain gradi-

nt hardening and 0 ≤ χ ≤ ∞ . The case of χ = 0 corresponds to
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Fig. 10. Effect of capping the maximum allowable GND density. (a) Nor- 

malised pressure vs indentation depth loading/unloading curves for punch width 

2 a = 0.001 mm, and (b) peak normalised pressure for a final indentation depth of 
δ

2 a 
= 

1 
10 

. Both are shown as a function of χ . The maximum normalised yield pres- 

sure is 1 + χ−0.5 , so χ = 0 has unbounded yield stress, with the maximum allowable 

value decreasing as χ gets larger. 
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no limit on strain gradient hardening, and hence should repro-

duce the results of Figs. 4 and 6 for a given punch width. The

case of χ = ∞ corresponds to no hardening such that the perfectly

plastic results for macroscopic indentation ( a → ∞ ) are reproduced.

Fig. 10 a shows the effect of capping the maximum dislocation den-

sity on the normalised pressure vs indentation depth curves for a

punch of width 2 a = 1 μm. Fig. 10 b shows how the peak harden-

ing response is affected as a function of the punch width. As ex-

pected, the peak indentation pressure is reduced as χ increases. In

practice, an order of magnitude increase in the yield stress due to

strain gradient plasticity is not unreasonable, suggesting that val-

ues around χ = 0.01 are to be physically expected. Fig. 10 b there-

fore suggests that the observed flat punch ISE with a limit on the

maximum GND density is only expected to be 10–20% lower than

that anticipated without a limit. 
. Conclusion 

An analytical expression for the indentation size effect (ISE) in

lane strain flat punch indentation has been proposed. The model

ses the Nix–Gao strain gradient plasticity model to accurately re-

roduce the force-displacement loading and unloading response of

 flat punch indentations of different widths predicted by finite el-

ment simulation. The flat punch ISE has been demonstrated to

ccur in aluminium ( Chen et al., 2010 ) and the proposed model

an reproduce these observations well. The flat punch ISE is of in-

erest as it differs from the Nix–Gao models for self-similar and

pherical indenters in a number of ways: (1) the contact area does

ot change; (2) the contact pressure depends on two length scales

ot just one (the punch width and the indentation depth); (3) the

rofile of the punch is not differentially continuous, resulting in

ingular plastic strain gradients at the sharp edges, such that (4)

he shape and connectivity of the plastic zones change with inden-

ation depth and punch width, resulting in (5) important changes

n the proportion of the deformation accommodated by elasticity

nd plasticity, meaning that a fully elastoplastic model is required.

he model is extended to incorporate the consequence of impos-

ng natural limitations on the maximum dislocation density at the

dges. It is suggested that observable changes in the plastic zone

orphology with the ISE make this an experimentally interesting

rea for future investigation and validation of size effects in plas-

icity. 
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ppendix 

etermination of curl [ F ] in rectangular and cylindrical coordinates 

Write the deformation tensor as the sum of the various compo-

ents 

 

F ] = 

∑ 

i 

∑ 

j 

F i j e i � e j (A1)

here � is the dyadic operator, the e i are the basis vectors of the

oordinate system and indices are i = 1, 2, 3 in three dimensions.

o find 

url [ F ] = ∇ × [ F ] (A2)

rite the differential operator in the form 

 = 

∑ 

k 

e k 
∂ 

∂ x k 
(A3)

uch that 

url [ F ] = 

∑ 

i 

∑ 

j 

∑ 

k 

e k ×
∂( F i j e i � e j ) 

∂ x k 
(A4)

For rectangular coordinates ( x, y, z ) the result is well known.

he basis vectors are constant 

 x = [ 1 , 0 , 0 ] e y = [ 0 , 1 , 0 ] e z = [ 0 , 0 , 1 ] (A5)

nd the differential operator is 

 = e x 
∂ 

∂x 
+ e y 

∂ 

∂y 
+ e z 

∂ 

∂z 
(A6)
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o (A4) can be written as 

url [ F ] = 

∑ 

i 

∑ 

j 

∑ 

k 

F i j,k e k ×
(
e i � e j 

)
(A7) 

Using the relation 

 i ×
(
e j � e k 

)
= ( e i × e k ) � e j (A8) 

e have 

url [ F ] = 

∑ 

i 

∑ 

j 

∑ 

k 

F i j,k 

(
e k × e j 

)
� e i (A9) 

nd, as the basis is a set of orthogonal unit vectors, 

 i × e j = εi jk e k (A10) 

here εijk is the permutation tensor, we get 

url [ F ] = 

∑ 

i 

∑ 

j 

∑ 

k 

F i j,k εk jp e p � e i (A11) 

The result for rectangular coordinates is therefore 

url [ F ] = 

[ 

F xz,y − F xy,z F yz,y − F yy,z F zy,z − F zz,y 

F xx,z − F xz,x F yx,z − F yz,x F zx,z − F zz,x 

F xy,x − F xx,y F yy,x − F yx,y F zy,x − F zx,y 

] 

(A12) 

The result for cylindrical coordinates ( r , θ , z ) can be found by

ollowing the process, although the basis vectors are now not con-

tant 

 r = [ cos θ, sin θ, 0 ] e θ = [ −sin θ, cos θ, 0 ] e z = [ 0 , 0 , 1 ] (A13) 

uch that 

∂ e r 
∂θ

= e θ
∂ e θ
∂θ

= −e r (A14) 

nd the differential operator is given by 

 = e r 
∂ 

∂r 
+ e θ

1 

r 

∂ 

∂θ
+ e z 

∂ 

∂z 
(A15) 

Eq. (A4) can now be expanded to 

url [ F ] = 

∑ 

i 

∑ 

j 

∑ 

k 

F i j,k e k ×
(
e i � e j 

)
+ e θ

×1 

r 
[ F rr ( e θ � e r + e r � e θ ) + F rθ ( e θ � e θ − e r � e r ) 

+ F θ r ( e θ � e θ − e r � e r ) − F θθ ( e r � e θ + e θ � e r ) 

+ F rz e θ � e z − F θz e r � e z + F zr e z � e θ − F zθ e z � e r ] (A16) 

The first term is the same (A7) . Expanding out the cross-

roducts in the second terms gives 

url [ F ] = 

∑ 

i 

∑ 

j 

∑ 

k 
F i j,k εk jp e p � e i 

+ 

1 

r 
[ ( F θθ − F rr ) e z � e θ + ( F θ r − F rθ ) e z � e r 

+ F rz e r � e θ − F θz e r � e r + F zθ e z � e z ] (A17) 

r 

url [ F ] = 

⎡ 

⎣ 

F rz,θ − F rθ,z − F θz 

r 
F θz,θ − F θθ,z + 

F rz 

r 
F zθ,z − F zz,θ

F rr,z − F rz,r F θ r,z − F θz,r F zr,z − F zz,r 

F rθ,r − F rr,θ + 

F θr −F rθ
r 

F θθ,r − F θ r,θ + 

F θθ −F rr 

r 
F zθ,r − F zr,θ + 

F zθ
r 

⎤
⎦

(A18) 
For the axisymmetric case of interest in this paper this reduces

o 

url [ F ] = 

[ 

0 −F θθ,z + 

F rz 

r 
0 

F rr,z − F rz,r 0 F zr,z − F zz,r 

0 F θθ,r + 

F θθ −F rr 

r 
0 

] 

(A19) 
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