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a b s t r a c t 

This paper discusses an important issue about the virtual fields method when it is used to identify non- 

homogeneous shear moduli of nearly incompressible solids. From simulated examples, we observed that 

conventional virtual fields, which assign null displacements on the entire boundary, do not perform well 

on nonhomogeneous and nearly incompressible solids. Thus, these conventional virtual fields should not 

be used for such materials. We propose two novel types of virtual fields derived from either finite ele- 

ment analyses performed on the same domain with homogeneous properties or computing the curl of a 

potential vector field. From a variety of simulated and experimental examples, we observe that the pro- 

posed virtual fields significantly improve the accuracy of the estimated shear moduli of nonhomogeneous 

and nearly incompressible solids. Furthermore, the sensitivity to noise of the proposed approach is mod- 

erate and the approach can handle cases with unknown boundary conditions. Therefore, based on this 

careful and thorough analysis, it is concluded that the proposed approaches are a significant improve- 

ment of the VFM to identify nonhomogeneous shear moduli in nearly incompressible solids. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Full-field measurement techniques have permitted significant

progress in the identification of mechanical properties of solids

( Avril et al., 2008a ). To achieve this, numerous inverse algorithms

have been proposed to identify mechanical properties from mea-

sured displacement fields across the domain of interest. Generally,

the inverse algorithms can be categorized into two types: iterative

and direct inversion methods. In iterative inversion methods,

the inverse problem is posed to be a constrained optimization

problem where the full-field displacement ( Le Magorou et al.,

2002 ; Genovese et al., 2005 ; Dord et al., 2019 ; Oberai et al., 2003 ;

Richards et al., 2009 ) or the resulting stress fields ( Guchhait and

Banerjee, 2016 ; Banerjee et al., 2013 ; Geymonat and Pagano, 2003 ;

Bayat et al., 2016 ) are minimized. For reconstructing the non-

homogeneous mechanical property distribution of solids, a

regularization term is usually introduced to avoid the over-fitting

issue in reconstructing nonhomogeneous mechanical property

distribution ( Richards et al., 2009 ; Mei et al., 2017 ). This method
∗ Corresponding author. 

E-mail address: avril@emse.fr (S. Avril). 

n  

t  

a  

https://doi.org/10.1016/j.ijsolstr.2019.06.025 

0020-7683/© 2019 Elsevier Ltd. All rights reserved. 
s highly robust, insensitive to the noise level and can be eas-

ly generalized to nonlinear mechanical property identification

 Goenezen et al., 2012 ). However, this method is computationally

ostly and requires loading conditions which in some cases are

nknown. The direct inversion method has been widely used

n identifying homogenous and nonhomogeneous linear elastic

roperties ( Zhu et al., 2003 ; Pan et al., 2014 ; Albocher et al., 2009 ).

he main idea behind is that the linear elastic properties can be

xpressed explicitly in terms of the strain and stress components,

hus become the direct solution of the inverse problem. The direct

nversion methods are very fast approaches to obtain the identified

arameters or spatial variation of the linear elastic property distri-

utions of solids. However, the direct inversion methods requires

ery high-resolution displacement fields restricting its application. 

In 1989, Grédiac proposed a novel inverse algorithm based

n the principle of virtual work referred to as the virtual fields

ethod (VFM) ( Pierron and Grédiac, 2012 ). Compared to opti-

ization based approaches ( Goenezen et al., 2012 ; Mei et al.,

018 ; Goenezen et al., 2011a ; Mei et al., 2016 ), the VFM does

ot require solving the parameter identification problem itera-

ively when reasonable virtual fields are selected, thus remark-

bly reducing the computational cost. Due to this advantage, the

https://doi.org/10.1016/j.ijsolstr.2019.06.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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Fig. 1. A nonhomogeneous problem domain. Regions A, B and C are inclusions with 

different shear moduli from the background. 
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FM has been widely applied in material identification including

ut not limited to linear elastic ( Avril et al., 2008b ), hyperelastic

 Palmieri et al., 2011 ; Avril et al., 2010 ) and nonelastic ( Avril et al.,

008c ; Grédiac and Pierron, 2006 ) constitutive properties of solids.

Many rubber-like materials and most of biological soft tis-

ues are nearly incompressible and their hydrostatic pressure

erm is not related to deformation through constitutive laws

 Holzapfel, 2002 ). Since the hydrostatic pressure is usually not

easurable either, this leads to a difficulty in identifying the

echanical properties. For the optimization based approaches, the

ost function can be established without the hydrostatic pressure

 Goenezen et al., 2011b ). Consequently, estimated mechanical

roperties of solids are not influenced by the incompressibility.

owever, for the VFM, both displacements and the hydrostatic

ressure are required for parameter identification. To address

his issue, a type of “special” virtual fields were developed with

irtual displacements zeroed on the entire boundary. However

his approach, referred to as “conventional” onwards, is successful

f and only if the gradients of the hydrostatic pressure are null

cross the domain (see Eq. (5) ) ( Avril et al., 2008b ). This approach

as been commonly used to identify mechanical parameters of

ncompressible materials when the VFM was adopted ( Avril et al.,

008b ; Bersi et al., 2019 ; Bersi et al., 2016 ; Nguyen et al., 2017 ). 

However, the assumption on null gradients of the hydrostatic

ressure is only held for homogeneous materials in certain situa-

ions such as uniaxial tensile tests. For nonhomogeneous materials,

he assumption is absolutely not satisfied and this may affect the

ccuracy of estimated mechanical properties. To the best of our

nowledge, no studies have been done to test how this assumption

ffects the results of identification of nonhomogeneous materials. 

In this paper, we will test the feasibility of the conventional

ype of special virtual fields to identify the regional mechanical

roperties of nonhomogeneous solids and examine how this

ssumption affects the identified parameters in a variety of exam-

les. More importantly, we will propose two novel types of virtual

elds to resolve the difficulty of VFM in identifying mechanical

roperties of incompressible and nonhomogeneous solids. The

rst type of virtual fields can be obtained from finite element

imulations, and the second is from calculating the curl of a

otential vector field. 

In this work, we consider nonhomogeneous, incompressible lin-

ar elastic solids in which every nonhomogeneous region is known

s a priori . The outline of this paper is as follows: In the Meth-

ds Section, we briefly review the mathematical foundation of

he VFM, discuss the conventional virtual fields and propose the

ovel types of virtual fields for incompressible and nonhomoge-

eous solids. In the Results Section, a number of simulated and ex-

erimental displacement datasets of nonhomogeneous and incom-

ressible solids are utilized to comprehensively compare different

irtual fields and their performance on the accuracy of the iden-

ified shear moduli. Then we discuss the results in the Discussion

ection and conclude this paper in the Conclusion Section. 

. Methods 

(1) Virtual fields method with its application to incompressible ma-

terials 

The virtual fields method (VFM) is based on the principle of vir-

ual work, which may be written, for quasi-static conditions, such

s, ∫ 
�

σ : ε 

∗d� + 

∫ 
∂ �t 

t · u 

∗d ∂ �t = 0 (1) 

Where σ is the actual Cauchy stress tensor across the do-

ain of interest �. It is related to the strains through constitu-

ive equations, strains deriving from gradients of the measured
isplacement field u. t are the tractions applied on a part of

he boundary ∂�t . u 

∗ is a kinematically admissible virtual dis-

lacement field, and ε ∗ is the associated virtual strain field. For

onhomogeneous solids such as the problem presented in Fig. 1 ,

q. (1) can be rewritten as: 

n ∑ 

i =1 

∫ 
�i 

σ : ε 

∗d� + 

∫ 
∂ �t 

t · u 

∗d ∂ �t = 0 (2) 

here �i is the i th nonhomogeneous region (Background, Region

, B and C in Fig. 1 ). We assume homogeneous mechanical proper-

ies across each region �i . We also have the following relationship:
n ∪ 

 =1 
�i = � and �i ∩ �j = ∅ when i � = j . For an incompressible and

inear elastic solid, Eq. (2) can be rewritten as: 

n ∑ 

i =1 

∫ 
�i 

( 2 μi ε + pI ) : ε 

∗d �i + 

∫ 
∂ �t 

t · u 

∗d ∂ �t = 0 (3) 

here μi is the shear modulus value of �i and p is the hydrostatic

ressure. To determine the shear moduli of �i , a total number of

 virtual fields or measured displacement fields should be applied

o Eq. (3) , leading to n linearly independent equations. However, in

ractice, the hydrostatic pressure p is highly difficult to measure.

hereby, it is necessary to make assumptions about the hydrostatic

ressure values but if these assumptions are not satisfied, this will

nduce significant errors on the estimated mechanical properties

f solids. To address this issue, a conventional choice of virtual

elds which were previously considered ( Nguyen et al., 2017 ;

rediac et al., 2006 ) was based on null displacements on the

oundary 

 

∗ = 0 on ∂ � (4) 

here ∂� is the boundary of the problem domain. In this case, 

 

�
pI : ε 

∗d�= 

∫ 
∂�

p u 

∗d∂� −
∫ 
�

∇p · u 

∗d� = −
∫ 
�

∇p · u 

∗d�

(5) 

Assuming the hydrostatic pressure is homogeneous, Eq. (5) ze-

oes. However, this assumption only holds for homogeneous solids

n very specific loading conditions. For nonhomogeneous solids,

he conventional virtual fields will lead to an erroneous identifi-

ation of shear moduli. 

(2) Novel types of virtual fields 

The solution to this problem is to define virtual fields satisfying:

i v ( u 

∗) = 0 on � (6) 
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Fig. 2. The flow chart of numerical testing for the inverse approaches. 

Fig. 3. Problem domain of (a) the square model; (b) the ring model. 
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Type 1. : Virtual fields obtained from finite element simulations 

In the first type, we propose to reconstruct automatically vir-

tual fields satisfying Eq. (6) . For that, we are looking for two fields

( u 

∗, p ∗) satisfying Eq. (6) and the following equation: 

∇ p ∗ + div 
(∇ u 

∗ + ( ∇ u 

∗) T 
)
= 0 on � (7)

Eqs. (6) and (7) define the solution for an incompressible elas-

tic problem in a homogeneous solid with a shear modulus equal

to 1. The obtained displacement fields u 

∗ automatically satisfy the

incompressibility constraint. If we utilize them as virtual fields, the

pressure term in Eq. (3) can be eliminated, that is, ∫ 
�

pI : ε 

∗d�= 0 (8)

The problem consisting in Eqs. (6) and (7) is solved with the

finite-element method for a set of appropriate boundary condi-

tions. Examples of these boundary conditions will be given further.

When there are several inclusions with different material pa-

rameters as shown in Fig. 1 for instance, it is necessary to de-

fine as many virtual fields as there are inclusions (the number of

unknowns is the number of inclusions, as the unknowns are the

ratios between the modulus of each inclusion and the modulus

of the background. Therefore it is necessary to solve Eqs. (6) and

(7) for as many different sets of boundary conditions as there are

unknowns. 

Finding all these virtual fields may sometimes be difficult. In

that case we suggest to define a virtual field u i 
∗ for the identifi-

cation of the modulus of each inclusion. We define then a volume

of interest ω i which is made of the background and of �i only

(then ω i is � minus all the inclusions but �i ). Then we find u i 
∗

by solving Eqs. (6) and (7) on ω i and by assigning u i 
∗= 0 on the

boundaries of all inclusions but �i . In the next section, we will

compare the performance of conventional virtual fields with the

virtual fields satisfying Eqs. (6) and (7) . 

Type 2. : Virtual fields obtained from calculating the curl of a vector

field 

We can also construct the virtual fields satisfying Eq. (6) by cal-

culating the curl of a potential vector field since the divergence of

a curl of a vector field is zero, that is, 

div ( ∇ × F ) = 0 (9)

Where F is a nonzero vector field. Accordingly, we can define

the virtual field as follows: 

u 

∗ = ∇ × F (10)

However, since u 

∗ should be kinematically admissible, it is not

trivial to find the potential vector field F such that the displace-

ment boundary conditions are satisfied. For some simple geome-

tries such as square or ring models, as shown in Fig. 3 , finding

the potential vector field is rather simple. The general approach

for derivation of all type 2 virtual fields utilized in this paper is

presented in Appendix A . Additionally, we should note that con-

ventional virtual fields do not satisfy Eq. (9) . This point will be

discussed in the Discussion Section. 

A number of numerical and experimental examples about the

estimation of shear moduli in nonhomogeneous and incompress-

ible solids with different problem domains will be considered. For

the numerical examples, we follow the testing procedure shown in

Fig. 2 . 

3. Results 
1) Comparison of different virtual fields m  
In this subsection, a comparative study of different virtual fields

o estimate the mechanical properties of solids is performed in the

tate of 2D plane strain. The domains of two examples are shown

n Fig 3 . In Fig 3 (a), there is a stiff inclusion embedded in the

oft background mimicking a tumor surrounded by the soft tissue

 Goenezen et al., 2012 ; Barbone et al., 2014 ). To acquire the simu-

ated displacement fields, we solve the forward elasticity problem

tilizing the finite element approach. We prescribe 1% compres-

ion on the top, restrict the vertical motion of the bottom edge,

nd fix the center node of the bottom edge. The problem domain

s uniformly discretized by 101 nodes in each direction. The target

hear modulus contrast between the stiff inclusion and soft back-

round varies from 2.5 to 20. In solving the inverse problem, we

erely estimate the shear modulus value in the inclusion assum-

ng the shear modulus value of the background is known. The sec-

nd example is an axisymmetric bi-layered ring structure repre-

enting the cross section of a carotid artery ( Holzapfel et al., 20 0 0 )

s shown in Fig. 3 (b). The inner layer is stiffer than the outer layer.

he shear modulus contrast of these two layers also varies from

.5 to 20. The simulated data is obtained by solving a finite ele-

ent problem where the pressure is applied on the inner wall. In

he inverse problem, we assume the shear modulus value of the

uter layer is known as a priori and identify the shear modulus

alue of the inner layer. 

Four different virtual fields are used for comparison: (1) the

onventional virtual fields that ensure null displacements on the

ntire boundary; (2) the actual displacement fields obtained from

he resolution of the forward elasticity problem for the target shear

odulus distribution; (3) Type 1 virtual fields: the displacement
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Fig. 4. The relative error with varying target shear modulus contras. (a) Square 

model (the curves for virtual fields (3) and (4) are almost coincident); (b) ring 

model (the curves for virtual fields 2 , 3) and ( (4) are almost coincident). 
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Fig. 5. The relative error for two different target shear modulus ratios μ̄ = 2 . 5 and 

5 with respect to varying noise level (a) Square model; (b) ring model. Solid line: 

the virtual fields (3) ; dash line: the virtual fields (4) . 
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elds obtained by solving the forward elasticity problem with a

omogeneous modulus using Eqs. (6) and (7) ; (4) Type 2 virtual

elds that calculates curl of a vector field . For the domains shown

n Fig. 3 , the conventional virtual fields may be written such as: { 

u x = 0 

u y = ( x − 0 ) ( x − L ) ( y − 0 ) ( y − L ) 
u z = 0 

Square model 

{ 

u θ = 0 

u r = ( r − r 0 ) ( r − r 1 ) 
u z = 0 

Ring model (11) 

here L is the side length of the square model and the origin of

he coordinate system is set at the left bottom corner, r 0 and r 1 are

he radii of the inner and outer walls, respectively. 

Type 2 virtual fields is chosen as: { 

u x = x ( L − 2 y ) 
u y = ( y − 0 ) ( y − L ) 
u z = 0 

Square model 

{ 

u θ = −
(
3 r 2 − 2 ( r 0 + r 1 ) r + r 0 r 1 

)
θ

u r = ( r − r 0 ) ( r − r 1 ) 
u z = 0 

Ring model (12) 

It is very interesting to see that for the ring model, though the

adial displacement components are the same in Eqs. (11) and (12) ,

he circumferential displacement component u θ is nonzero for the

ype 2 virtual field which is not axisymmetric any more. 

Fig. 4 (a) and (b) show the relative error between the estimated

nd exact shear modulus values of the inclusion for the square

odel and the inner layer for the ring model. The relative error

s defined as 

rror = 

∣∣∣∣μ − μ̄

μ̄

∣∣∣∣ × 100% (13) 

We observe that the virtual fields (1) induce over 20% relative

rror in estimated shear moduli and the relative error increases

ith the increase of the target shear modulus ratio. This is due to

he fact that a higher target shear modulus ratio increases the het-

rogeneity of the pressure across the domain. As a result, ∇p in

q. (5) becomes larger leading to the increase of the relative error.

urthermore, the proposed virtual fields (3) and (4) perform re-

arkably well in estimating shear moduli, with relative error close

o zero. Interestingly, for the square model, the relative error for

he virtual fields (2) is significantly higher than that for the virtual

elds (3) and (4) . 

(2) Noise sensitivity for the proposed method 

For the proposed virtual fields, we add noise into the simulated

isplacements and study the noise sensitivity of the proposed ap-
roach. The noise level is defined as: 

oiselevel = 

∑ N node 

i =1 ( ̄u i − u i ) 
2 ∑ N node 

i =1 
ū 

2 
i 

× 100% (14) 

Where N node is the total number of nodes in the domain. u 
i 

and

¯ i are the noisy and exact nodal displacements, respectively. 

The results of parameter estimation ( Fig. 5 ) demonstrate that

ven 20% random noise in the displacements induces roughly 13%

elative error in the estimated shear moduli for both novel virtual

elds. We also observe that the relative error for the solids with

igher target shear modulus ratio is generally higher than that

ith lower target shear modulus ratio. This is probably induced by

he fact that the resulting displacements across the inclusion for

he solids with higher target shear modulus ratio is smaller, hence

ore sensitive to noise. Overall, the examples presented in this

ubsection reveal that the proposed approaches have a low sen-

itivity to noise. 

(3) Multiple inclusion cases 

We also tested the feasibility of the proposed method to es-

imate shear moduli for more than two regions. In this case, we

o not assume the shear moduli of the background for the square

odels in Fig. 6 (a) and (b) and the inner layer for the ring model

n Fig. 6 (c). Thereby, three shear moduli for each case have to be

etermined. As discussed in the Methods Section, a total number

f 3 virtual fields and measured displacement fields should be uti-

ized to determine all the unknown mechanical properties. Thus,

e compare the relative error when we use 3 virtual fields for both

ew types of virtual fields or 3 measured displacement fields for

he type 1 virtual fields. The three virtual fields for type 1 virtual

elds are obtained from solving elasticity problems for the homo-

eneous problem domain posed by Eqs. (6) and (7) with different

oundary conditions (see Fig. 7 ). Similarly, the three “simulated”

easured displacement fields are also acquired from solving elas-

icity problems for the problem domain with the target shear mod-

lus distribution (see Fig. 8 ). Here, we do not introduce any noise

nto the simulated displacement fields. Tables 1 and 2 indicate that

ype 1 virtual fields perform well in estimating the shear modulus

or the incompressible and nonhomogeneous solids utilizing either

 virtual fields or the measured displacement. For type 2 virtual

elds, we chose the following three virtual fields for the square

odel: 

1 

{ 

u x = x ( L − 2 y ) 
u y = ( y − 0 ) ( y − L ) 
u z = 0 

2 

{ 

u x = x 
u y = −y 
u z = 0 
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Fig. 6. Problem domains for three different cases (a) The bigger inclusion is softer than the smaller inclusion; (b) The bigger inclusion is stiffer than the smaller inclusion;(c) 

A stiff inclusion is embedded in the inner layer of a bilayered cylinder mimicking an artery. 

Fig. 7. The first row (a, b and c) shows three different types of boundary conditions to establish three different virtual fields for the square model; The second row (d, e and 

f) shows three different types of boundary conditions to establish three different virtual fields for the ring model. 

Table 1 

Relative error between the estimated and target shear moduli for the square model using 

type 1 virtual fields. 

Background inclusion Big inclusion Small inclusion 

Case (a) 3 virtual fields 0.01 0.08 0.00 

3 experiments 0.01 0.05 0.00 

Case (b) 3 virtual fields 0.02 0.09 0.01 

3 experiments 0.00 0.00 0.00 

Table 2 

Relative error between the estimated and target shear moduli for the ring model using 

type 1 virtual fields. 

Inner layer Outer layer Inclusion 

Case (c) 3 virtual fields 0.03 0.05 0.01 

3 experiments 0.07 0.03 0.02 
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Fig. 8. The first row (a, b, and c) shows three different loadings to simulate three different displacement field measurements for the square model; The second row presents 

three different loadings to simulate three different displacement field measurements for the ring model. 

Table 3 

Relative error between the estimated and target shear moduli for the square model using 

type 2 virtual fields. 

Background inclusion Big inclusion Small inclusion 

Case (a) 3 virtual fields 0.01 0.05 0.00 

Case (b) 3 virtual fields 0.01 0.06 0.00 
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3 

{ 

u x = x ( x − L ) 
u y = −y ( 2 x − L ) 
u z = 0 

(15) 

Table 3 reveals that type 2 virtual fields also perform well in

dentifying the shear moduli for the incompressible and nonhomo-

eneous solids with high accuracy. Besides, comparing Tables 1 and

 , we observe that type 2 virtual yields even more accurate iden-

ified parameters. 

(4) Unknown applied loadings 

In many engineering situations, the distribution of loads is un-

nown and very difficult to measure compared to the displace-

ents. Such situations introduce another difficulty to solve the in-

erse problem related to the identification of material properties

cross the solids of interest. To this end, we also need to study the

easibility of the proposed virtual fields in cases where the load-

ngs (non-zero tractions or forces) are unknown. We still take the

niaxial compression case presented in Fig. 3 (a) as an example and

ssume the traction applied on the top edge is unknown. In this

ase, we have to zero the vertical motion of the top edge in order

o neglect the virtual work done by the unknown traction. To es-

ablish such type 1 virtual field, we assign a transverse virtual mo-

ion on the top edge and solve the incompressible elasticity prob-

em posed by Eqs. (6) and (7) . We can also choose Eq. (12) as the

ype 2 virtual field to solve the parameter identification problem.
ig. 9 demonstrates that the proposed approaches are capable of

uccessfully identifying the target shear modulus contrast between

he inclusion and background. On the contrary, the conventional

irtual fields (1) induce more than 15% error even when no noise is

ntroduced into the measured displacements. Additionally, we also

bserve that type 2 virtual fields induce slightly less error com-

ared to type 1 virtual fields. 

(5) Experimental results 

In this subsection, we test the proposed methods onto ex-

erimental data obtained on a cuboidal incompressible tissue-

imicking phantom where a stiff ellipsoid is embedded, as shown

n Steele et al., 20 0 0 ). The shear modulus ratio between the ellip-

oid and the surrounded soft background is 4.0. The measured dis-

lacement fields of the sample subjected to uniaxial compression

ere acquired by Magnetic Resonance Imaging (MRI). More details

n the experimental setup and data acquisition are presented in

 Bersi et al., 2019 ). We assume the region of the stiff ellipsoid is

etermined and identify the shear modulus ratio between the el-

ipsoid and the background using the VFM. For virtual fields ( (1) ,

he following functions are selected: 

 

u x = 0 

u y = ( x − L x / 2 ) ( x + L x / 2 ) 
(
y − L y / 2 

)(
y + L y / 2 

)
( z − L z / 2 ) ( z + L z / 2 ) 

u z = 0 

(16) 
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Fig. 9. (a) Problem domain and the loadings for type 1 virtual fields; (b) Relative error between the estimated and target shear moduli utilizing virtual fields ( 1, 3 ) and (4) . 
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where L x ,L y and L z are the length, depth and height of the ellip-

soid, respectively. For this conventional virtual fields, the recovered

shear modulus ratio between the inclusion and background is 4.2.

For the proposed type 1 and 2 virtual fields, the recovered shear

modulus ratio is 4.05 and 4.04, respectively, very close to the tar-

get. 

4. Discussion 

This paper discusses a crucial issue on applying the VFM to

identify nonhomogeneous mechanical properties in nearly incom-

pressible solids and presents two novel types of virtual fields to

address this issue. The proposed virtual fields are either acquired

by solving the elastic incompressible problem with the finite el-

ement method for the corresponding homogeneous problem do-

main or calculating the curl from a potential vector field. 

To simplify our analysis, we assumed that the solid studied

herein is linear elastic, thus merely shear moduli should be iden-

tified in this paper. We performed a comparative study of the pro-

posed and conventional virtual fields on identifying the regional

shear moduli for incompressible elastic solids. We observed from

both simulations and experiments that the proposed virtual fields

performed much better in identifying the shear moduli of incom-

pressible solids than the conventional virtual fields. This reveals

that the conventional approach, though prevalent in solving pa-

rameter identification problems ( Avril et al., 2008b ; Bersi et al.,

2019 , 2016 ; Nguyen et al., 2017 ), leads to errors in the identi-

fied shear modulus values. Conversely, the proposed virtual fields

are capable of identifying shear moduli with very high precision

for incompressible and nonhomogeneous solids. We also observed

that the proposed approach is very moderately sensitive to noise,

and this feature might be helpful when the displacement measure-

ments are of low resolution. In some practical cases, the applied

forces or tractions are unknown, and we also presented several ex-

amples to demonstrate that the proposed approach is capable of

addressing this issue. To summarize, all the examples presented in

the Results Section indicate that the proposed method is capable

of identifying the mechanical properties with high accuracy, while

the conventional approach induces significant error in the identi-

fied parameters. 

Comparing both proposed virtual fields methods, type 1 virtual

fields are more straightforward to acquire and can be easily gen-

eralized to any complex domains since finite element resolution of

Eqs. (6) and (7) are easily performed. On the contrary, due to the
ifficulty of finding the potential vector fields that satisfies the dis-

lacement boundary conditions, type 2 virtual fields are less easy

o generalize. The merit of type 2 virtual fields is though that they

re derived theoretically, thus no additional numerical error is in-

roduced. That is the reason why the identified parameters by type

 virtual fields are slightly more accurate than that of type 1 vir-

ual fields (see Tables 1 and 3 , and Fig. 9 ), despite the negligible

evel of the improvement. In future work, we should propose an

pproach to generalize type 2 virtual fields for complex domains. 

For the conventional virtual fields, it does not satisfy Eq. (6) as

hown in Appendix B where we take the square model ( Fig. 3 (a))

s an example. However, if the out of plane virtual strain com-

onent wrote ε ∗zz = − ∂u ∗y 
∂y 

for the square model, it would satisfy

q. (6) . However, for the incompressible plane strain cases, the ac-

ual out of plane stress component would write σ zz = p which is

sually not measurable. Thereby, even this modification of the con-

entional virtual fields would not work either. 

To solve the identification problem with many different non-

omogeneous regions (see Subsection (3) in Results Section), we

an either perform more experiments to acquire more measured

atasets or employ different sets of boundary conditions to estab-

ish different virtual fields. Obviously, the latter is more practical

ince performing experiments demands more financial and time

osts. Additionally, some experiments are highly difficult to per-

orm such as the shear test for the ring model (see Fig. 8 (f)). Con-

ersely, performing simulations to acquire virtual fields is more

onvenient. 

We should also note that we restricted our analysis to linear

lasticity. Nevertheless, the proposed approach can be easily ap-

lied to nonlinear and incompressible elastic solids ( Avril et al.,

010 ; Bersi et al., 2019 ; Bersi et al., 2016 ). For nonlinear and in-

ompressible elasticity, the same issue induced by the hydrostatic

ressure will occur for the conventional virtual fields. As the pro-

osed virtual fields in nonlinear elasticity still satisfy the incom-

ressible condition, the hydrostatic pressure term in the principle

f virtual work can be canceled out and the issues can be smoothly

andled. 

. Conclusion 

In this paper, we proposed novel approaches to establish vir-

ual fields either from finite element analyses for the homoge-

eous problem domain or calculating curl of a vector field. The
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esulting virtual fields remarkably improve the accuracy of iden-

ified regional shear moduli for linear elastic and nonhomoge-

eous solids when the VFM is utilized. To test the feasibility of

he proposed methods and compare it with the conventional vir-

ual fields, a variety of simulated and experimental examples were

resented. The results of these identification problems showed that

he conventional approach induced significant errors in the identi-

ed shear moduli and the error increased with the increasing tar-

et shear modulus ratio. The proposed method was able to esti-

ate the shear moduli with high accuracy even in the presence

f high level of noise. This study clearly demonstrated that the

onventional virtual fields which assign null displacements on the

ntire boundary should not be selected to estimate elastic moduli

n nonhomogeneous and incompressible solids, while our proposed

pproaches should be systematically considered for such situations.
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ppendix A. Derivation of type 2 virtual fields used in this 

aper 

For the square model, all the type 2 virtual fields utilized in

his paper has been presented in Eq. (15) . To derive the first virtual

eld in Eq. (15) , we assume the virtual displacement components

ith the following form: 

 

∗
x = 

∂ F z 
∂y 

− ∂ F y 
∂z 

= x f ( y ) 

 

∗
y = 

∂ F x 
∂z 

− ∂ F z 
∂x 

= y ( y − L ) g ( x ) 

 

∗
z = 

∂ F y 
∂x 

− ∂ F x 
∂y 

= 0 (17) 

Where the vector field is written such as F = [ F x F y F z ] T .

his displacement field satisfies the displacement boundary condi-

ions. To simplify the problem, we set F z = 0, thus leading to 

F x = y ( y − L ) g ( x ) z + h 2 ( x, y ) 

 y = −x f ( y ) z + h 1 ( x, y ) (18) 

Substituting Eq. (18) into the third equation in Eq. (17) yields:

f ( y ) z + 

∂ 

∂x 
h 1 ( x, y ) = ( 2 y − L ) g ( x ) z + 

∂ 

∂y 
h 2 ( x, y ) (19)

If we set h 1 ( x,y ) = h 2 ( x,y ) = 0, then we obtain

 ( y ) = ( L − 2 y )and g ( x ) = 1. We skip the derivation of other vir-

ual fields since the procedure is similar. 

ppendix B. Proof that the conventional virtual fields does not 

atisfy Eq. (6) 

Consider the square model as shown in Fig. 3 (a), the conven-

ional virtual fields are given as: 
 

 

 

u 

∗
x = 

∂ F z 
∂y 

− ∂ F y 
∂z 

= 0 

u 

∗
y = 

∂ F x 
∂z 

− ∂ F z 
∂x 

= ( x − 0 ) ( x − L ) ( y − 0 ) ( y − L ) 

u 

∗
z = 

∂ F y 
∂x 

− ∂ F x 
∂y 

= 0 

(20) 

Thereby, 

∂ F z 
∂y 

= 

∂ F y 
∂z 

(21) 
This leads to the following relationship by taking partial deriva-

ives of Eq. (21) with respect to x 

∂ 2 F z 
∂ x∂ y 

= 

∂ 2 F y 
∂ x∂ z 

(22) 

Taking advantage of Eq. (22) , the out of plane normal strain

omponent can be written as: 

 

∗
zz = 

∂ u z 

∂z 
= 

∂ 2 F y 
∂ x∂ z 

− ∂ 2 F x 
∂ z∂ y 

= 

∂ 2 F z 
∂ x∂ y 

− ∂ 2 F x 
∂ z∂ y 

= −∂u 

∗
y 

∂y 
(23)

Thus, to be a curl of a vector field, the out of plane strain com-

onent should be non-zero. To this end, the conventional virtual

eld Eq. (20) cannot be the curl of any vector field. 
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