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A collocation mixed finite element method (MFEM) for direct and converse flexoelectricity in piezoelec-
tric materials is developed for 2D problems. The size-effect phenomenon in micro/nano structures is con-
sidered by the strain- and electric intensity vector-gradient effects. C0 continuous finite element method
is inadequate to treat flexoelectricity problems involving the size-effect. To this end, the MFEM with
Lagrangian multipliers to treat these solids has been reported recently. With existing MFEM, the compu-
tational efficiency is low due to the additional nodal degrees of freedom (DOFs) for the Lagrangian mul-
tipliers. In this study, a new collocation MFEM is proposed, in which the number of the DOFs, when
compared to the traditional Lagrangian approach, can be reduced. At the same time, the kinematic con-
straints between the displacement and strain are guaranteed. These kinematic constraints are satisfied by
the collocation method at some internal points in the finite elements. The present collocation MFEM can
be used to solve flexoelectricity problems with higher efficiency. Its accuracy is verified by comparing the
numerical results with available analytical solutions for the bending of a cantilever beam and the com-
pression of a truncated pyramid, respectively. The results indicate that flexoelctricity is strongly related
to the geometry of the physical problem. It is shown that flexoelectricity increases significantly with the
decrease of the sample size. The same occurs when, for the beam problem, the ratio of the length to depth
dimensions increases; similarly, for the truncated pyramid problem, when the ratio of the width of the
bottom and top surfaces increases.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Recent progress in microelectronics is, in large part, driven by
continuous miniaturization of devices and the use of nanotech-
nologies in which size-dependent effects cannot be ignored. The
direct flexoelectric effect describes the coupling between the strain
gradients and the electric polarization (Kogan, 1964; Meyer, 1969;
Sharma et al., 2006). A non-uniform strain, i.e. the presence of
strain gradients, may potentially break the inversion symmetry
thereby inducing electric polarization even in centrosymmetric
crystals (Tagantsev, 1986; Tagantsev et al., 2009; Maranganti
et al., 2006). Flexoelectricity is found to be a universal electrome-
chanical coupling that exists in all dielectric materials even with
a centrosymmetric crystal structure (Yudin and Tagantsev, 2013;
Deng et al., 2014a, 2014b, 2020). The existence of flexoelectric
effect in solids has been observed experimentally as first reported
by Harris (1965). However, a systematic measurement of flexoelec-
tricity was only performed a few decades later in the 2000s, see,
e.g. Ma and Cross (2001), Ma and Cross (2006). Perspectives on
the future directions for research on flexoelectricity are given in
some review papers (Krichen and Sharma, 2016; Wang et al.,
2019; Zhuang et al., 2020; Deng et al., 2020).

To utilize the flexoelectric effect, the strain gradients have to be
relatively large; they are therefore more easily generated in nano-
scale structures. The dimensions of such solids are of the same
order of the material length scale parameter used in generalized
theories of continua. As has been shown experimentally, the stiff-
ness of such a structure increases with a decrease in its size. The
presence of strain gradients can also be realized by differences in
material properties at the interfaces of these materials even under
a uniform stress (Deng et al., 2014a, 2014b).

In order to perform good design of devices with flexoelectric
properties, it is necessary to analyze general boundary value prob-
lems (BVPs) of these components. It is well-known that classical
continuum mechanics neglect the influence of the material
microstructure and the results are size-independent. To overcome
intrinsic limitations of classical elasticity, atomistic models have
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been developed to describe the micro-scale phenomena in materi-
als. Extremely high requirements on computer memory in these
models have led to the development of multiscale approaches
where atomistic and continuum subdomains are bridged. Due to
intrinsic heterogeneities in the atomistic-continuum coupling,
some physically unrealistic phenomena have been observed espe-
cially for time-dependent problems. Another approach to treat this
problem is based on the phenomenological theory of flexoelectric-
ity within the generalized thermodynamics of a dielectric. This
involves introducing a flexoelectric contribution into the total free
energy (Tagantsev, 1986). The flexoelectricity can be realized as
the direct flexoelectric effect (Sharma et al., 2006; Gharbi et al.,
2009), and converse flexoelectricity. The former refers to the linear
coupling of electric fields and strain gradients, and it is frequently
investigated in the literature. The converse flexoelectricity is the
coupling between the stress and applied electric intensity vector
gradients (Yang et al., 2004). Maugin (1980) showed the duality
between the theory of electric field gradient and the theory of flex-
oelectricity. Hu and Shen (2009) and Shen and Hu (2010) have
extended the general flexoelectric theory by the surface effects
for nano-sized elastic dielectrics. They have developed the varia-
tional principle for these problems. Recently, flexoelectricity in
biological membranes and soft electrets has attracted the attention
of several researchers. The corresponding flexoelectric membrane
theory and nonlinear flexoelectric theory in electret soft materials
have been proposed (Mohammadi et al., 2014; Deng et al., 2014a,
2014b; Rahmati et al., 2019).

For nano-sized flexoelectric structures it is necessary to apply
gradient theory in which the governing equations are partial differ-
ential equations (PDE) of the fourth order. To solve flexoelectric
problems with strain- and electric intensity vector-gradient effects,
several numerical methods have been developed, namely, moving
least square (MLS) (Sladek et al., 2013), meshfree formuation
method (Abdollahi et al., 2014, 2015), isogeometric analysis (IGA)
(Thai et al., 2018; Nguyen et al., 2018, 2019; Liu et al., 2019), hier-
archical B-spline method (Codony et al., 2019), and finite element
method (FEM) (Yvonnet and Liu, 2017; Sladek et al., 2018;
Amanatidou and Aravas, 2002; Mao et al., 2016; Deng et al.,
2017, 2018).

Among the numerical methods mentioned above, the FEM has
been well established as a powerful computational tool for analys-
ing general BVPs with complex geometries. However, the conven-
tional FEM cannot be used to study flexoelectricity due to the
strain- and electric intensity vector-gradient effects, where second
derivatives of the primary fields (displacement and electric poten-
tial) are required. Two modified FEMs to resolve this problem have
been reported in the literature. The first approach involves the use
of C1 continuity elements. For example, Yvonnet and Liu (2017)
have applied C1 Argyris triangular elements for soft flexoelectric
solids at finite strains. Sladek et al. (2018) have developed conform-
ing elements with C1 continuity, where each node has 9 degrees of
freedom (6 mechanical quantities, electric potential, and two
potential gradients) for 2D flexoelectric problems. The C1 continu-
ous element is established by using higher order shape functions.
It is, however, difficult to develop C1 elements for 3D problems.
Another way to resolve the gradient problem is to use mixed finite
elementmethods (MFEMs) which are relativelymore convenient to
develop. Following the works of Amanatidou and Aravas (2002) for
the MFEM in gradient theory of elasticity, Mao et al. (2016) con-
structed a MFEM formulation for flexoelectricity with extra nodal
degrees-of-freedom (DOFs) for polarizations and developed a 2D
element to solve general BVPs. Deng et al. (2017), Deng et al.
(2018) have also developed a MFEM with strain gradient and flex-
oelectricity and extended it to 3D flexoelectricity problems.

In traditional MFEM (Mao et al., 2016; Deng et al., 2017, 2018),
the kinematic relationship between displacement field and its gra-
28
dient is enforced by Lagrangian multipliers. In the formulation, the
displacement gradient and Lagrangian multipliers are set as addi-
tional nodal DOFs to displacements, electric potential and polariza-
tion (Amanatidou and Aravas, 2002; Mao et al., 2016). Therefore,
extra DOFs are introduced thereby leading to lower computational
efficiency. For example, there are 87 DOFs for a 2D quadrilateral
element in formulation by Mao et al. (2016); and the correspond-
ing number is 47 in Deng et al’s formulation. This is a significant
drawback for analysing large scale models. A new finite element
method with greater efficiency would therefore be highly desir-
able; this is the subject of the present paper.

In this study, a collocation MFEM for direct and converse flex-
oelectricity in piezoelectric materials is developed. The size-effect
is considered by including the strain gradients, electric field gra-
dients, and their coupling in the constitutive equations of the
piezoelectric materials. The C0 continuous approximation is
applied independently for displacements and strains. The kine-
matic constraints between strains and displacements are satisfied
by collocation method at judiciously chosen internal points of the
elements (Dong and Atluri, 2011; Bishay et al., 2012). In contrast,
the Lagrange multipliers are used to enforce these kinematic con-
straints in the traditional MFEM (Amanatidou and Aravas, 2002;
Mao et al., 2016). The electric potential and electric intensity vec-
tor are approximated by C0 continuity in the same manner. The
corresponding constraint between the electric intensity vector
and the electric potential are also satisfied by the same colloca-
tion method. No extra DOFs are introduced in this collocation
MFEM. Thus, there are just 12 DOFs for a 2D quadrilateral ele-
ment (eight displacements and four potentials). In the case of iso-
geometric analysis, the non-uniform rational B-spline functions
with higher order continuity can be employed; no extra DOFs
are therefore needed (Thai et al., 2018), like in the present
approach.

A MFEM code based on this formulation is developed in this
study and its veracity is demonstrated with two example prob-
lems, The first is a simple cantilever beam problem for which the
analytical solution is available. The second example is a truncated
pyramid under a compressive load. Before discussing these numer-
ical examples, a review of the governing equations in flexoelectric-
ity is perhaps in order. This will be followed by a presentation of
the formulation of the proposed collocation MFEM.

2. Direct and converse flexoelectricity

The electric enthalphy density for piezoelectric solids can be
written as (Maranganti et al., 2006; Hu and Shen, 2009)

H ¼ 1
2
cijkleijekl � 1

2
aijEiEj � ekjieijEk þ 1

2
gjklmnigjklgmni � f ijklEigjkl

� bklijeijEk;l � 1
2
hijklEi;jEk;l ð1Þ

where symbols a and c are used for the second-order permittiv-
ity and the fourth-order elastic constant tensors, respectively. The
piezoelectric coefficient is denoted by e and f is the direct flexo-
electric coefficient. The tensor g is used for higher order elastic
coefficients representing the strain-gradient elasticity. The sym-
bols b and h are used for the converse flexoelectric coefficients
and higher-order electric parameters, respectively. The strain ten-
sor eij and the electric field vector Ej are defined as (Parton and
Kudryavtev, 1988)

eij ¼ 1
2

ui;j þ uj;i
� �

; Ej ¼ �/;j ð2Þ

where ui and / are displacements and electric potential,
respectively.

The strain-gradient tensor g is given by
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gijk ¼ eij;k ¼ 1
2

ui;jk þ uj;ik

� � ð3Þ

Under the infinitesimal deformations, the constitutive equa-
tions can be obtained from the electric enthalphy density expres-
sion (1) (Hu and Shen, 2009; Shen and Hu, 2010)

rij ¼ @H
@eij

¼ cijklekl � ekijEk � bklijEk;l

sjkl ¼ @H
@gjkl

¼ �f ijklEi þ gjklmnignmi

Di ¼ � @H
@Ei

¼ aijEj þ eijkejk þ f ijklgjkl

Q ij ¼ � @H
@Ei;j

¼ bijklekl þ hijklEk;l ð4Þ

Where rij, Di, sjkl and Qij are the stress tensor, electric displace-
ments, higher order stress and electric quadrupole, respectively.

The size scale of higher-order elastic parameters gjklmni is
expressed by a proportionality of the conventional elastic stiffness
coefficients cklmn and the internal length material parameter l
(Gitman et al., 2010; Yaghoubi et al., 2017)

gjklmni ¼ l2cjkmndli ð5Þ
with dli being the Kronecker delta.
Similarly, the higher-order electric parameters h is expressed in

terms of the dielectric constants akl and another length-scale
parameter q as

hijkl ¼ q2aikdjl ð6Þ
Deng et al. (2017) considered two independent components f 1

and f 2 for the direct flexoelectric coefficient f ijkl,
f ijkl ¼ f 1djkdil þ f 2 dijdkl þ dikdjl

� �
. Then, the electric enthalphy density

has the following form

H ¼ 1
2
cijkleijekl � 1

2
aijEiEj � ekjieijEk þ l2

2
cjkmngjklgmnl � f 1Eigkki

� f 2Ei gikk þ gjij

� �
þ bklijeijEk;l � q2

2
aikEi;jEk;j ð7Þ

The number of independent converse flexoelectric coefficients
bijkl may be reduced as follows. If in the poling direction is along
the x3-axis in the piezoelectric material, the stresses induced by
electric intensity vector can be written as

r11 ¼ e31E3;r33 ¼ e33E3;r13 ¼ e15E1 ð8Þ
with ekij ¼ e31di1dj1 þ e33di3dj3

� �
dk3 þ e15 di1dj3 þ di3dj1

� �
dk1, where

standard Voight notation is applied for piezoelectric coefficients
(Sladek et al., 2018).

Analogously, consider a similar form for induced stresses by the
converse flexoelectricity

rij ¼ dijb1 E1;1 þ E3;3ð Þ;r13 ¼ r31 ¼ b2E1;3 þ b3E3;1 ð9Þ
with the converse flexoelectric coefficients reduced into three

independent coefficients b1, b2 and b3 by
bklij ¼ b1dijdkl þ di1dj3 þ di3dj1

� �
b2dk1dl3 þ b3dk3dl1ð Þ. With this reduc-

tion, the electric enthalphy has the following form

H ¼ 1
2
cijkleijekl � 1

2
aijEiEj � e31e11E3 � e33e33E3 � e15 e13 þ e31ð ÞE1

þ l2

2
cjkmngjklgmnl � f 1Eigkki � f 2Ei gikk þ gjij

� �
þ b1ekkEi;i

þ b2E1;3 þ b3E3;1ð Þ e13 þ e31ð Þ � q2

2
aikEi;jEk;j ð10Þ
29
The constitutive Eq. (4) for orthotropic materials
(aij ¼ a1di1dj1 þ a2di3dj3, cijkl ¼ di1dj1 c11dk1dl1 þ c13dk3dl3ð Þ þ di3dj3
c13dk1dl1 þ c33dk3dl3ð Þ þ c44 di1dj3 þ di3dj1

� �
dk1dl3 þ dk3dl1ð Þ)

can be rewritten into a matrix form as (Lekhnitskii, 1963)

r11

r33

r13

2
64

3
75 ¼

c11 c13 0

c13 c33 0

0 0 c44

2
64

3
75

e11
e33
2e13

2
64

3
75�

0 e31

0 e33

e15 0

2
64

3
75

E1

E3

" #
�

b1 0 0 b1

b1 0 0 b1

0 b3 b2 0

2
64

3
75

E1;1

E3;1

E1;3

E3;3

2
66664

3
77775 ¼

¼ C

e11
e33
2e13

2
64

3
75� K

E1

E3

" #
�U

E1;3

E3;3

" #
ð11Þ

D1

D3

" #
¼

0

e31

0

e33

e15

0

" # e11
e33
2e13

2
64

3
75þ

a1 0

0 a2

" #
E1

E3

" #

þ f 1 þ 2f 2 f 1 0 0 0 f 2
0 0 f 2 f 1 f 1 þ 2f 2 0

" #
g111

g331

2g131

g113

g333

2g133

2
66666666664

3
77777777775

¼¼ KT

e11
e33
2e13

2
64

3
75þP

E1

E3

" #
þ F

g111

g331

2g131

g113

g333

2g133

2
66666666664

3
77777777775
;

ð12Þ

s111
s331
s131
s113
s333
s133

2
66666666664

3
77777777775
¼ �

f 1 þ 2f 2 0

f 1 0

0 f 2
0 f 1
0 f 1 þ 2f 2
f 2 0

2
66666666664

3
77777777775

E1

E3

" #

þ l2

c11 c13 0 0 0 0

c13 c33 0 0 0 0

0 0 c44 0 0 0

0 0 0 c11 c13 0

0 0 0 c13 c33 0

0 0 0 0 0 c44

2
66666666664

3
77777777775

g111

g331

2g131

g113

g333

2g133

2
66666666664

3
77777777775

¼¼ �FT
E1

E3

" #
þ l2G

g111

g331

2g131

g113

g333

2g133

2
66666666664

3
77777777775
:

ð13Þ
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Q11

Q31

Q13

Q33

2
6664

3
7775 ¼

b1 b1 0
0 0 b3

0 0 b2

b1 b1 0

2
6664

3
7775

e11
e33
2e13

2
64

3
75

þ q2

a1 0 0 0
0 a2 0 0
0 0 a1 0
0 0 0 a2

2
6664

3
7775

E1;1

E3;1

E1;3

E3;3

2
6664

3
7775 ¼ UT

e11
e33
2e13

2
64

3
75þ q2H

E1;1

E3;1

E1;3

E3;3

2
6664

3
7775

ð14Þ

Recently, the authors have derived the governing equations for
piezoelectric solid with direct and converse flexoelectric effects
(Sladek et al., 2018)

rij;jðxÞ � sijk;jkðxÞ ¼ 0

Di;iðxÞ � Qij;jiðxÞ ¼ 0 ð15Þ
The essential and natural boundary conditions (b.c.) can be

prescribed:

1) Essential b.c.: uiðxÞ ¼ u
�
iðxÞon Cu, Cu � C

siðxÞ ¼ s
�
i on Cs; Cs � C ð16Þ

/ðxÞ ¼ /
�
ðxÞ on C/; C/ � C

pðxÞ ¼ @/
@n

¼ p
�ðxÞ on Cp; Cp � C

2) Natural b.c.:tiðxÞ ¼ t
�
iðxÞ on Ct Ct [ Cu ¼ C; Ct \ Cu ¼ £

RiðxÞ ¼ R
�
iðxÞ on CR; CR [ Cs ¼ C; CR \ Cs ¼ £ ð17Þ

SðxÞ ¼ S
�
ðxÞ on CS; CS [ C/ ¼ C; CS \ C/ ¼ £

ZðxÞ ¼ Z
�
ðxÞ on CZ ; CZ [ Cp ¼ C; CZ \ Cp ¼ £

Where

si :¼ @ui

@n
; p :¼ @/

@n
; Ri :¼ nknjsijk; Z :¼ ninjQ ij ð18Þ

and the traction vector, and the electric charge are defined as

ti :¼ nj rij � sijk;k
� �� @qi

@p
þ
X
c

k qiðxcÞ kdðx� xcÞ ð19Þ

S :¼ nk Dk � Qkj;j

� �� @a
@p

þ
X
c

k aðxcÞ kdðx� xcÞ ð20Þ

with qi :¼ nkpjsijk;a :¼ nipjQ ij, d(x) being the Dirac delta func-
tion and pi is the Cartesian component of the unit tangent vector
on C.

The jump at a corner (xc) on the oriented boundary contour C is
defined as

k qiðxcÞ k :¼ qiðxc þ 0Þ � qiðxc � 0Þ ð21Þ

k aðxcÞ k :¼ aðxc þ 0Þ � aðxc � 0Þ ð22Þ
3. The mixed finite element using collocation method

To solve the strain- and electric intensity vector-gradient
effects in flexoelectric materials, a collocation MFEM is devel-
oped. In the present scheme, the displacements and strains are
30
set as independent variables with C0 continuity. However, the
strains should also satisfy the geometric relationship with the
displacements. To this end, the strain values from these two con-
siderations are made to be equal at the Gauss points in the ele-
ments (Dong and Atluri, 2011; Bishay et al., 2012). The
kinematic constraints between strains and displacements are
thus satisfied by the collocation method at Gauss points. This
is similarly applied to the electric potential and electric intensity
vector. By using this collocation scheme, each node has only
three DOFs (two displacements and one electric potential) which
is significantly smaller in number as compared to the traditional
MFEM via Lagrangian multipliers (Mao et al., 2016; Deng et al.,
2017).

The variational formulation of the FEM in gradient theory can
be derived from the principle of virtual work as (Hu and Shen
2009)Z
V

rijdeij þ sijkdgijk þ DkdEk þ QijdEi;j

� �
dX

¼
Z
Ct

t
�
iduidCþ

Z
CR

R
�
idsidCþ

Z
CS

S
�
d/dCþ

Z
CZ

Z
�
dpdC ð23Þ

Where t
�
i, R

�
i, S

�
, and Z

�
are prescribed values corresponding to the

external work on the right hand side of (23).
The mechnanical displacements and electric potential in each

element as shown in Fig. 1 are expressed in terms of nodal values
and shape functions

u1ðxÞ
u3ðxÞ

� �����
Ve

¼P4
a¼1

uðeaÞ
1

uðeaÞ
3

 !
Naðn1; n2Þ

¼P4
a¼1 qðeaÞ	 


Naðn1; n2Þ; qðeaÞ	 

:¼ uðeaÞ

1

uðeaÞ
3

 !

/ðxÞjVe ¼P4
a¼1/

ðeaÞNaðn1; n2Þ

ð24Þ

where qðeaÞ	 

and /ðeaÞ are nodal displacements and electric

potential, respectively.
The gradient in global coordinates can be expressed within the

finite element Ve in terms of deivatives in the local (intrinsic) coor-
dinates as

@=@x1
@=@x3

� �����
Ve

¼ Ye½ � @=@n1
@=@n2

� �
; Ye½ � ¼ Je½ ��1

Je½ � ¼ @x1=@n1 @x3=@n1
@x1=@n2 @x3=@n2

� �����
Ve

¼
X
c

xðecÞ1 Nc
;1 xðecÞ3 Nc

;1

xðecÞ1 Nc
;2 xðecÞ3 Nc

;2

 !
ð25Þ

Hence

@f
@xi

���
Ve

¼Paf
ðeaÞbea

i n1; n2ð Þ;
bea
1 nð Þ ¼ Ye

11 nð ÞNa
;1 nð Þ þ Ye

12 nð ÞNa
;2 nð Þ;

bea
3 nð Þ ¼ Ye

21 nð ÞNa
;1 nð Þ þ Ye

22 nð ÞNa
;2 nð Þ

ð26Þ

The expression for the approximation of the electric intensity
vector within Ve, from the Maxwell equation, is given by

�Ef gjVe ¼ � E1

E3

� �����
Ve

¼ /;1

/;3

 !�����
Ve

¼
X
a

Bea
/ ðnÞ

n o
/ðeaÞ Bea

/ ðnÞ
n o

¼ bea
1 nð Þ

bea
3 nð Þ

 ! ð27Þ

The electric intensity vector is treated as independent variable;
thus,



Fig. 1. Global Cartesian coordinates x1 � x2 � x3, curvilinear coordinates n1 � n2, for the 4-node quadrilateral finite element.
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�EIn
i ðxÞ

���
Ve

¼ 1 n1 n2 n1n2ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PðnÞf gT

b1
i

b2
i

b3
i

b4
i

0
BBBB@

1
CCCCA ¼ PðnÞf gT

b1
i

b2
i

b3
i

b4
i

0
BBBB@

1
CCCCA ð28Þ

or

� EInðxÞ
n oT

����
Ve

¼ � EIn
1 ðxÞ EIn

3 ðxÞ
� ���

Ve

¼ 1 n1 n2 n1n2ð Þ

b1
1 b1

3

b2
1 b2

3

b3
1 b3

3

b4
1 b4

3

0
BBBB@

1
CCCCA

ð29Þ

with the coefficients bc
i being determined from equating the

two approximations at collocation points xc , selected as the Gauss
points, in the element Ve with intrinsic coordinates nc1; nc2

� �
, i.e.

EIn
i ðxcÞ ¼ EiðxcÞ. Thus,

�

EIn
i ðx1Þ

EIn
i ðx2Þ

EIn
i ðx3Þ

EIn
i ðx4Þ

0
BBBB@

1
CCCCA

����������
Ve

¼

1 n11 n12 n11n
1
2

1 n21 n22 n21n
2
2

1 n31 n32 n31n
3
2

1 n41 n41 n41n
4
2

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A½ �

b1
i

b2
i

b3
i

b4
i

0
BBBB@

1
CCCCA

¼ �

Eiðx1Þ
Eiðx2Þ
Eiðx3Þ
Eiðx4Þ

0
BBB@

1
CCCA
���������
Ve

¼
X
a

Bea
/iðn1Þ

Bea
/iðn2Þ

Bea
/iðn3Þ

Bea
/iðn4Þ

0
BBBBB@

1
CCCCCA/ðeaÞ; Bea

/iðncÞ ¼ bea
i ðncÞ;

ð30Þ

Hence,

bif g :¼

b1
i

b2
i

b3
i

b4
i

0
BBBB@

1
CCCCA ¼ A½ ��1

X
a

bea
i ðn1Þ

bea
i ðn2Þ

bea
i ðn3Þ

bea
i ðn4Þ

0
BBBB@

1
CCCCA/ðeaÞ

¼ A½ ��1
X
a

xea
i

	 

/ðeaÞ; xea

i

	 

:¼

bea
i ðn1Þ

bea
i ðn2Þ

bea
i ðn3Þ

bea
i ðn4Þ

0
BBBB@

1
CCCCA

ð31Þ
31
Substituting Eqs. (31) into (28), one can obtain

�EIn
i ðxÞ

���
Ve

¼ LðnÞf gT
X
a

xea
i

	 

/ðeaÞ; LðnÞf gT :¼ PðnÞf gT A½ ��1 ð32Þ

or

� EInðxÞ
n o���

Ve
¼ � EIn

1 ðxÞ
EIn
3 ðxÞ

 !�����
Ve

¼
X
a

LðnÞf gT xea
1

	 

LðnÞf gT xea

3

	 

 !

/ðeaÞ

¼
X
a

mea1 ðnÞ
mea3 ðnÞ

� �
/ðeaÞ

meai ðnÞ :¼ LðnÞf gT xea
i

	 
 ¼
X
c

LðnÞf gcbea
i ðncÞ ð33Þ

and

� EInðxÞ
n oT

����
Ve

¼ � EIn
1 ðxÞ EIn

3 ðxÞ
� ���

Ve ¼
X
a

mea1 ðnÞ mea3 ðnÞð Þ/ðeaÞ

ð34Þ

Since @
@x1

���
Ve

¼ Ye
11

@
@n1

þ Ye
12

@
@n2

; @
@x3

���
Ve

¼ Ye
21

@
@n1

þ Ye
22

@
@n2

, the electric

intensity vector gradient can be derived as

� @EIn
i ðxÞ
@x1

�����
Ve

¼ Ye
11

@

@n1
þ Ye

12
@

@n2

� �
PðnÞf gT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P1ðnÞf gT

bif g

¼ S1ðnÞf gT
X
a

xea
i

	 

/ðeaÞ

� @EIn
i ðxÞ
@x3

�����
Ve

¼ Ye
21

@

@n1
þ Ye

22
@

@n2

� �
PðnÞf gT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P3ðnÞf gT

bif g

¼ S3ðnÞf gT
X
a

xea
i

	 

/ðeaÞ

SjðnÞ
	 
T

:¼ PjðnÞ
	 
T A½ ��1 ð35Þ

or

�EIn
i;jðxÞ

���
Ve

¼
X
a

lea
ij ðnÞ/ðeaÞ;lea

ij ðnÞ :¼
X
c

SjðnÞ
	 


cb
ea
i ðncÞ ð36Þ

and its matrix form is
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�
EInðxÞ
n o

;1

EInðxÞ
n o

;3

0
B@

1
CA
�������
Ve

¼ �

EIn
1;1ðxÞ

EIn
3;1ðxÞ

EIn
1;3ðxÞ

EIn
3;3ðxÞ

0
BBBBB@

1
CCCCCA

�����������
Ve

¼
X
a

lea
11ðnÞ

lea
31ðnÞ

lea
13ðnÞ

lea
33ðnÞ

0
BBB@

1
CCCA/ðeaÞ ð37Þ

A similar derivation can be repeated for the approximation of
the strain tensor. The expression for the strain tensor obtained
from the geometric relationship within Ve is given by

ef gjVe ¼
X
a

Bea
e ðnÞ

� 

qðeaÞ
u

	 

; Bea

e ðnÞ
� 
 ¼ bea

1 nð Þ 0
0 bea

3 nð Þ
1
2 b

ea
3 nð Þ 1

2 b
ea
1 nð Þ

0
B@

1
CA;

qðeaÞ
u

	 
 ¼ uðeaÞ
1

uðeaÞ
3

 ! ð38Þ

The strain tensor is also set as independent variable; thus,

êInij ðxÞ
���
Ve

¼ 1 n1 n2 n1n2ð Þ

a1
ij

a2
ij

a3
ij

a4
ij

0
BBBB@

1
CCCCA ¼ PðnÞf gT

a1
ij

a2
ij

a3
ij

a4
ij

0
BBBB@

1
CCCCA;

êInij :¼
eInij ; if i ¼ j

2eInij ; if i–j

( ð39Þ

or

eIn11ðxÞ eIn33ðxÞ 2eIn13ðxÞ
	 
��

Ve

¼ 1 n1 n2 n1n2ð Þ

a1
11 a1

33 a1
13

a2
11 a2

33 a2
13

a3
11 a3

33 a3
13

a4
11 a4

33 a4
13

0
BBBB@

1
CCCCA

ð40Þ

where the coefficents ac
ij(c ¼ 1; 2; 3; 4) are determined from the

collocation of êInij ðxcÞ ¼ êijðxcÞ at the Gauss points xcin the finite ele-

ment Vewith

êij :¼
eij ; if i ¼ j

2eij ; if i–j

�
; êijðxcÞ

��
Ve ¼

X
a

Bea
eijðncÞ

n oT
qðeaÞ
u

	 

ð41Þ

where

Bea
e11ðncÞ

	 
T ¼ bea
1 ðncÞ 0

� �
;

Bea
e33ðncÞ

	 
T ¼ 0 bea
3 ðncÞ

� �
; Bea

e13ðncÞ
	 
T ¼ bea

3 ðncÞ bea
1 ðncÞ

� � ð42Þ

Thus,

êInij ðx1Þ

êInij ðx2Þ

êInij ðx3Þ

êInij ðx4Þ

0
BBBBBBB@

1
CCCCCCCA

�������������
Ve

¼

1 n11 n12 n11n
1
2

1 n21 n22 n21n
2
2

1 n31 n32 n31n
3
2

1 n41 n42 n41n
4
2

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A½ �

a1
ij

a2
ij

a3
ij

a4
ij

0
BBBBBB@

1
CCCCCCA

¼
X
a

Bea
eijðn1Þ

n oT

Bea
eijðn2Þ

n oT

Bea
eijðn3Þ

n oT

Bea
eijðn4Þ

n oT

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

qðeaÞ
u

	 
 ¼

êijðx1Þ
êijðx2Þ
êijðx3Þ
êijðx4Þ

0
BBBBB@

1
CCCCCA

�����������
Ve

ð43Þ

Hence
32
aij
	 


:¼

a1
ij

a2
ij

a3
ij

a4
ij

0
BBBB@

1
CCCCA ¼ A½ ��1

X
a

Bea
eijðn1Þ

n oT

Bea
eijðn2Þ

n oT

Bea
eijðn3Þ

n oT

Bea
eijðn4Þ

n oT

0
BBBBBBBBB@

1
CCCCCCCCCA

qðeaÞ
u

	 
 ¼ A½ ��1
X
a

Bea
eijðn1Þ

n oT
qðeaÞ
u

n o
Bea
eijðn2Þ

n oT
qðeaÞ
u

n o
Bea
eijðn3Þ

n oT
qðeaÞ
u

n o
Bea
eijðn4Þ

n oT
qðeaÞ
u

n o

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ A½ ��1
X
a

ceaij
n o

ð44Þ

in which

ceaij
n o

:¼

Bea
eijðn1Þ

n oT
qðeaÞ
u

n o
Bea
eijðn2Þ

n oT
qðeaÞ
u

n o
Bea
eijðn3Þ

n oT
qðeaÞ
u

n o
Bea
eijðn4Þ

n oT
qðeaÞ
u

n o

0
BBBBBBBBB@

1
CCCCCCCCCA

ð45Þ

Then,

êInij ðxÞ
���
Ve
¼ PðnÞf gT

a1
ij

a2
ij

a3
ij

a4
ij

0
BBBB@

1
CCCCA¼ PðnÞf gT A½ ��1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

LðnÞf gT

X
a

ceaij
n o

¼ LðnÞf gT
X
a

ceaij
n o

ð46Þ
or

êInðxÞ
n o���

Ve
¼

eIn11ðxÞ
eIn33ðxÞ
2eIn13ðxÞ

0
B@

1
CA
�������
Ve

¼
X
a

LðnÞf gT cea11
	 


LðnÞf gT cea33
	 


LðnÞf gT cea13
	 


0
BB@

1
CCA ð47Þ

Since

LðnÞf gT ceaij
n o

¼ LðnÞf gT bea
ij

n o� �
qðeaÞ
u

	 

; bea

ij

n o
:¼

Bea
eijðn1Þ

n oT

Bea
eijðn2Þ

n oT

Bea
eijðn3Þ

n oT

Bea
eijðn4Þ

n oT

0
BBBBBBBBB@

1
CCCCCCCCCA
ð48Þ

The following is finally obtained,

eInðxÞ	 
��
Ve ¼

êIn11ðxÞ
êIn33ðxÞ
2êIn13ðxÞ

0
BB@

1
CCA
��������
Ve

¼
X
a

LðnÞf gT bea
11

	 

LðnÞf gT bea

33

	 

LðnÞf gT bea

13

	 

0
BB@

1
CCA

qðeaÞ
u

	 
 ¼
X
a

Mea
11ðnÞ

	 
T
Mea

33ðnÞ
	 
T
Mea

13ðnÞ
	 
T

0
BB@

1
CCA qðeaÞ

u

	 
 ¼
X
a

Mea� 

qðeaÞ
u

	 

ð49Þ

where

Mea
11ðnÞ

	 
T
:¼ LðnÞf gT bea

11

	 
 ¼ kea1 ðnÞ 0
� �

Mea
33ðnÞ

	 
T
:¼ LðnÞf gT bea

33

	 
 ¼ 0 kea3 ðnÞ� �
Mea

13ðnÞ
	 
T

:¼ LðnÞf gT bea
13

	 
 ¼ kea3 ðnÞ kea1 ðnÞ� � ð50Þ
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and

kea1 ðnÞ :¼
X4
c¼1

LðnÞf gcbea
1 ðncÞ; kea3 ðnÞ :¼

X4
c¼1

LðnÞf gcbea
3 ðncÞ ð51Þ

Thus,

êInðxÞ
n oT

����
Ve

¼ eIn11ðxÞ eIn33ðxÞ 2eIn13ðxÞ
� ���

Ve

¼
X
a

qðeaÞ
u

	 
T
Mea

11ðnÞ
	 


Mea
33ðnÞ

	 

Mea

13ðnÞ
	 
� � ð52Þ

with

qðeaÞ
u

	 
T ¼ uðeaÞ
1 uðeaÞ

3

� �
; Mea

11ðnÞ
	 
 ¼ kea1 ðnÞ

0

� �
;

Mea
33ðnÞ

	 
 ¼ 0
kea3 ðnÞ

� �
; Mea

13ðnÞ
	 
 ¼ kea3 ðnÞ

kea1 ðnÞ

 ! ð53Þ

For derivatives of strains, the approximation of these gradients
can be written as

êInij;kðxÞ
���
Ve

¼ PkðnÞf gT aij
	 
 ¼ PkðnÞf gT A½ ��1

X
a

ceaij
n o

¼ SkðnÞf gT
X
a

ceaij
n o

ð54Þ

Since

SkðnÞf gT ceaij
n o

¼ SkðnÞf gT bea
ij

n o� �
qðeaÞ
u

	 
 ¼ Xea
ijkðnÞ

n oT
qðeaÞ
u

	 
 ð55Þ

with

Xea
111ðnÞ

	 
T
:¼ vea

1 ðnÞ 0ð Þ Xea
331ðnÞ

	 
T
:¼ 0 vea

3 ðnÞð Þ
Xea

131ðnÞ
	 
T

:¼ vea
3 ðnÞ vea

1 ðnÞð Þ

Xea
113ðnÞ

	 
T
:¼ jea

1 ðnÞ 0ð Þ Xea
333ðnÞ

	 
T
:¼ 0 jea

3 ðnÞð Þ
Xea

133ðnÞ
	 
T

:¼ jea
3 ðnÞ jea

1 ðnÞð Þ

vea
j ðnÞ :¼

X
c

S1ðnÞf gcbea
j ðncÞ;jea

j ðnÞ :¼
X
c

S3ðnÞf gcbea
j ðncÞ ð56Þ

this yields

gInðxÞ	 
��
Ve ¼

êInðxÞ
n o

;1

êInðxÞ
n o

;3

0
B@

1
CA
�������
Ve

¼
X
a

vea
1 ðnÞ 0ð Þ

0 vea
3 ðnÞð Þ

vea
3 ðnÞ vea

1 ðnÞð Þ
jea

1 ðnÞ 0ð Þ
0 jea

3 ðnÞð Þ
jea

3 ðnÞ jea
1 ðnÞð Þ

0
BBBBBBBB@

1
CCCCCCCCA

qðeaÞ
u

	 
 ¼
X
a

Wea� 

qðeaÞ
u

	 

ð57Þ

The above approximations further results in the following
expression being obtained,

rijdeij
��
Ve ¼

X
c;a

dqðecÞ
u

	 
T
MecðnÞ½ �

T
C½ � MeaðnÞ� 


qðeaÞ
u

	 
� K½ � meaðnÞf g þ U½ � leaðnÞf gð Þ/ðeaÞ
� �

sijkdgijk

���
Ve

¼
X
c;a

dqðecÞ
u

	 
T
WecðnÞ� 
T � F½ �T meaðnÞf g/ðeaÞ þ l2 G½ � WeaðnÞ� 


qðeaÞ
u

	 
� �

DkdEkjVe ¼
X
c;a

d/ðecÞ mecðnÞf gT P½ �T meaðnÞf g/ðeaÞ þ K½ � MeaðnÞ� 
þ F½ � WeaðnÞ� 
� �
qðeaÞ
u

	 
� �

QijdEi;j

��
Ve ¼

X
c;a

d/ðecÞ lecðnÞf gT U½ �T MeaðnÞ� 

qðeaÞ
u

	 
þ q2 H½ � leaðnÞf g/ðeaÞ
� �

ð58Þ
33
and the variational condition (23) becomes
P
e

P
c;a

R
Ve dqðecÞ

u

n oT
MecðnÞ½ �T C½ � MeaðnÞ� 
þ l2 WecðnÞ� 
T G½ � WeaðnÞ� 
� �

qðeaÞ
u

n on
� MecðnÞ½ �T K½ � meaðnÞf g þ U½ � leaðnÞf gð Þ þ WecðnÞ� 
T F½ �T meaðnÞf g
� �

/ðeaÞ
o
dV

þPe

P
c;a

R
Ve d/ðecÞ mecðnÞf gT K½ � MeaðnÞ� 
þ F½ � WeaðnÞ� 
� ��n

þ lecðnÞf gT U½ �T MeaðnÞ� 
�
qðeaÞ
u

n o
þ mecðnÞf gT P½ �T meaðnÞf g þ q2 lecðnÞf gT H½ � leaðnÞf g
� �

/ðeaÞ
o
dV

¼Pe

P
c dqðecÞ

u

n oT R
Ce
t

TðnÞf gNcðnÞdCþ RCe
R

RðnÞf gnjðnÞbec
j ðnÞdC

� ��

þd/ðecÞ R
Ce
S
S
�
ðnÞNcðnÞdCþ RCe

Z
Z
�
ðnÞnjðnÞbec

j ðnÞdC
� �

;

ð59Þ

where Ce
t ¼ Ve \ Ct , Ce

R ¼ Ve \ CR, Ce
S ¼ Ve \ CS, Ce

Z ¼ Ve \ CZ ,

Ce ¼ @V \ Ve, Tf g ¼ t
�
1

t
�
3

 !
, Rf g ¼ R

�
1

R
�
3

 !
, dV jVe ¼ det Je½ ��� ��dn1dn2.

Let xðesÞ and xðef Þbe the starting and final point, respectively, on
Ve. Then, dCjCe

�
¼ xðef Þ � xðesÞ
�� ��=2 dnv ¼ heðnÞdnv with nv 2 �1; 1½ �

being the intrinsic variable along the side Ce
� of the finite element

Ve.
Now, let egcg

� �
be the global number of the node xg ,

g ¼ 1; 2; :::; nð Þ. Since the variations of the independent field vari-
ables are arbitrary inside the analyzed domain and on its boundary,
the last variational equation yields the system of algebraic
equations
X
eg

X
a

Z 1

�1

Z 1

�1
Megcg ðnÞ½ �T C½ � MegaðnÞ� 
þ l2 Wegcg ðnÞ� 
T G½ � WegaðnÞ� 
� �n

qðegaÞ
u

n o
� Megcg ðnÞ½ �T K½ � megaðnÞf gþ U½ � legaðnÞf gð Þ
�

þ Wegcg ðnÞ� 
T F½ �T megaðnÞf g¼
X
eg

Ceg �Ce
t

Z 1

�1
TðnÞf gNcg ðnÞheg ðnÞdnv

þ
X
eg

Ceg �Ce
R

Z 1

�1
RðnÞf gnjðnÞbegcg

j ðnÞheg ðnÞdnv
�
/ðegaÞ

�
det Jeg½ ��� ��dn1dn2 ð60Þ
P
eg

P
a

R 1
�1

R 1
�1 meg cg ðnÞf gT K½ � MegaðnÞ� 
þ F½ � WegaðnÞ� 
� ��n

þ leg cg ðnÞf gT U½ �T MegaðnÞ� 
�
qðegaÞ
u

n o
þ meg cg ðnÞf gT P½ �T megaðnÞf g þ q2 leg cg ðnÞf gT H½ � legaðnÞf g
� �

/ðegaÞ
o
det Jeg½ ��� ��dn1dn2

¼P eg
Ceg � Ce

S

R 1
�1 S�ðnÞNcg ðnÞheg ðnÞdnv

þP eg
Ceg � Ce

Z

R 1
�1 Z�ðnÞnjðnÞbegcg

j ðnÞheg ðnÞdnv
ð61Þ

The system of algebraic equations (60) - (61) can be applied for
a general BVP described by the gradient theory with direct and
converse flexoelectricity.
4. Numerical examples

A computer code for collocation MFEM based on the formula-
tions presented in the previous sections has been developed in this
study. To demonstrate its veracity, two example problems are pre-
sented here, namely, (a) a simple cantilever beamwith a transverse
end load, and (b) a truncated pyramid under compression.
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4.1. A cantilever beam

Fig. 2 shows a cantilever beam subjected to a tansverse end
load. With direct flexoelectricity, q ¼ 0, b1 ¼ b2 ¼ b3 ¼ 0. For the
analysis, it is treated as a 2D problem. A similar problem has been
analyzed by Liang and Shen (2013) using the deformation asump-
tions of the Bernoulli-Euler beam theory.

The length of the beam is L = 500 nm, the width is B = 0.5H and
the thickness is H = 20 nm. The following boundary conditions are
prescribed:

u3jx1¼0 ¼ 0;u3;1

��
x1¼0 ¼ 0;

Z
A
s111x3dA ¼ MH

����
x1¼0

¼ 0;MH
���
x1¼L

¼ 0

M þ P �MH
;1

� ����
x1¼L

¼ 0;
d
dx1

M þ P �MH
;1

� �����
x1¼L

¼ Q ð62Þ

where M ¼ RA r11x3dA and P ¼ RA s113dA.
In this test problem, only direct flexoelectricity is considered.

Analytical results are available only for this special case, derived
by Liang and Shen (2013). The deflection of the cantilever beam
with flexoelectricity is given by

u3ðx1Þ ¼ C1 þ C2x1 þ C3ðx1Þ2 þ C4ðx1Þ3 þ C5exp
kx1
L

� �

þ C6exp � kx1
L

� �
ð63Þ

k2 ¼
c11I þ c11l

2 þ f 1f 1=a33
� �

A
h i

L2

c11l
2I

with I as the second moment of cross-section area. The expres-
sion for C4 in the work of Liang and Shen (2013) should be replaced

by the correct one C4 ¼ QL2

6k2g11 I
.

The corresponding theoretical solution for the flexoelectric field
has also been given, and it is

E3 ¼ � f 1
a33

g113 ¼ f 1
a33

d2u3

dx21
ð64Þ

The piezoelectric material, PZT-5H is considered in this study..
The analytical solution for the cantilever beam is proposed for iso-
tropic materials. To verify the results of the present collocation
MFEM, the following isotropic material parameters are chosen:
Young’s modulus E = 12.6 � 1010Pa, Poisson’s ratio v = 0.2, permit-
tivity of the dielectric a33 = 13.0 � 10�9 C2/N/m2, internal material
length l = 2 nm.

First, the convergence of the present collocation MFEM is inves-
tigated, using the relative error e (x) for the L2-norm:

e Xð Þ ¼ k Xh � X kL2
k X kL2

;

Fig. 2. Cantilever beam with shear force load.
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where

k X kL2 ¼
Z
X
XTXdX

� �1=2

ð65Þ

where xh is the present collocation MFEM result, and x is the
exact analytic solution. The relative errors for the beam deflection
u3 and the electric field E3 are studied. There is, however, no exact
analytical solution for the present flexoelectric beam problem.
Thus, the approximate analytical solution of flexoelectric
Bernoulli-Euler beam will be used here as x, where the shear stres-
ses are neglected and all of the solutions are just a function of x1. It
should be reminded that the present 2D numerical solutions are
functions of x1 and x3, which is closer to the actual physical
situation.

The convergence of the present collocation MFEM is investi-
gated using three different meshes with increasing refinement;
they containing 320 elements, 900 elements and 1600 elements,
respectively. Fig. 3 shows the relative errors for the deflection u3
and electric field E3 obtained using the three meshes for f1 = 1.0 �
10�7C/m and Q = 1nN, where h is the average element length. The
high convergence rates for both relative errors are clearly evident.
In what follows, the most refined mesh mentioned above, with
1600 elements, is used for further numerical simulations of this
beam problem.

The distribution of beam deflection u3 along the cantilever
beam for the load Q = 1nN is presented in Fig. 4 with parameters
f1 = 1.0 � 10�7C/m and f2 = 0. It is noted that the deflection
increases gradually from the clamped end to the free end. In the
present 2D numerical simulation, the deflection u3 also vary along
x3, while it is just a function of x1 in the analytical solution. A com-
parision of the deflections between the numerical solutions and
the analytical solutions is presented in Fig. 5 for different flexoelec-
tric coefficients (f1 = 0, f1 = 1.0 � 10�7C/m, f1 = 2.0 � 10�7C/m, and
f1 = 3.0 � 10�7C/m). Excellent agreement between the numerical
and analytical results is observed for various flexoelectric coeffi-
cients; the very small differences between them are due to
assumptions in the analytical solution which yields a linear varia-
tion of normal stresses r11 along x3 and vanishing shear stresses. In
Fig. 5, it is also observed that the deflection of the beam decreases
gradually as the flexoelectric coefficients increase in value. The
classical beam theory predicts the largest deflection of the can-
tilever beam.

The distributions of electric responses inside the cantilever
beam are presented in Fig. 6 for f1 = 1.0 � 10�7C/m. The free-end
of the beam is electrically grounded in the numerical simulations.
Fig. 6(a) shows a non-uniform electric potential distribution inside
the cantilever beam induced by direct flexoelectricity. The value of
the electric potential decreases along the upper surface from the
clamped-end to the free-end, while the inverse trend for it is
shown on the lower surface of the beam. The distributions of the
electric field E3 are presented in Fig. 6(b). The electric field reaches
its maximum at the clamped-end, where the strain gradient is the
largest, thus resulting in maximum flexoelectricity. At the free-end
of the cantilever beam, the electric field is zero, satisfying the elec-
tric boundary condition.

A comparision of the electric field E3 between the numerical
solutions and the analytical solutions for different flexoelectric
coefficients are shown in Fig. 7. In the 2D numerical results, as
expected, the electric field E3 is not constant across the beam thick-
ness; however, the average electric field value across the beam
thicknes at each station along the beam is used for comparision
with the analytical solution. It can be seen in Fig. 7 that the numer-
ical solutions are in good agreement with the analytical results for
different flexoelectric coefficients. There is no electro-mechanical
transformation in classical beam theory, and vanishing electric



Fig. 3. Relative errors and convergence rates for the present collocation MFEM. Fig. 5. Deflections of the cantilever beam with different flexoelectric coefficients.

Fig. 6. Distributions of electric responses inside the cantilever beam. (a) the electric
potential /(V), (b) the electric field E3 (V/m).

Fig. 4. Distributions of beam deflection u3 (m) for the cantilever beam.
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field is also seen here. From the present numerical simulation, it is
also observed that the electric fields of the cantilever beam for f1 =
2.0 � 10�7C/m, and f1 = 3.0 � 10�7C/m are more significant when
compared with f1 = 1.0 � 10�7C/m. From equation (64), it is noted
that the electric field E3 is determined by the flexoelectric coeffi-
cient and the strain gradient g113 together. A linear growth of the
electric intensity vector with the flexoelectric coefficient is moder-
ated due to a rapid reduction of the strain gradient in (64).

4.1.1. Dependence of flexoelectricity on the geometry of the cantilever
beam

In this section, the size dependence of flexoelectricity is first
investigated by using the same orthotropic material, PZT-5H
(Sladek et al., 2017, 2018) for the cantilever beam.

c11 ¼ 12:6� 1010Pa;c13 ¼ 5:3� 1010Pa; c33 ¼ 11:7� 1010Pa; c44

¼ 3:53� 1010Pa;

a11 ¼ 15:1� 10�9C2=N=m2
; a33 ¼ 13:0� 10�9C2=N=m2

;

f 1 ¼ 1� 10�7C=m;f 2 ¼ 1� 10�7C=m ð66Þ
Fig. 8 shows the average electric field distributions of the can-

tilever beam with five geometric sizes, where R is the size factor
R = L/500 nm = H/20 nm = Q/1nN. Here, the material length param-
eter is taken to be l = 2 nm and only the direct flexoelectric effect
(q ¼ 0, b1 ¼ b2 ¼ b3 ¼ 0) is analysed. It is noted that the electric
field distributions of the beam have a similar trend for all of the
five geometric sizes, and it is seen that the electric field gradually
decreases from the clamped-end to the free-end. It indicates that
larger strain gradients and stronger electro-mechanical coupling
exist at the clamped-end of the cantilever beam. Additionally, it
can also be observed that the the electric fields induced by flexo-
electricity strongly depends on the geometric size of the cantilever
35
beam. The magnitude of electric field is smaller in value for the lar-
ger sample size, and larger electric field is produced for reduced
sample size. For example, the maximum value of electric field for
R = 1 is about 2.5 times larger of that for R = 5. The apparent size
effect of flexoelectricity is clearly evident in this cantilever beam
example problem, demonstrating the well-known phenomenon
of stronger flexoelectricity as the geometric size of the component
decreases.

Another factor that may significantly affect the magnitude and
distribution of the electric field is the shape of the cantilever beam.
For given beam length L = 500 nm, five beam thichnesses are con-
sidered to study the effect on flexoelectricity. The numerical results
are shown in Fig. 9. The beam thichness H are characterized by
using the normalized thichness H* where H = H* � 20 nm, and
the corresponding load is Q = H* � 1nN. From Fig. 9, it can be
observed that the electric field distributions monotonously
decrease from the clamped-end to the free-end for the cantilever
beam with different thicknesses. It is also noted that smaller H*
results in larger electric field. For example, the maximum value
of electric field for H* = 1 is about 10 times larger of that for
H* = 5. The results indicate that the electric fields increase with
decreasing H*. This is consistent with the fact that thinner beam
leads to larger strain gradients, thus, stronger flexoelectricity.

4.2. A truncated pyramid

A truncated pyramid under a compression is another good flex-
oelectric example that has been extensively studied experimen-



Fig. 8. Electric field distributions of the cantilever beam with five geometric sizes.

Fig. 7. Electric field of the cantilever beam with different flexoelectric coefficients.

Fig. 10. Schematic of a truncated pyramid.

Fig. 9. Electric field distributions of the cantilever beam with five various
thicknesses.
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tally and theoretically (Cross, 2006). Numerical simulations can
also be found in some works (Abdollahi et al., 2014; Codony
et al., 2019; Zhuang et al., 2020). Fig. 10 shows the geometry of a
truncated pyramid with top surface s1, bottom surface s2, and
height h. The electric boundary conditions are prescribed as fol-
lows: the bottom surface is grounded with zero electric potential
and an electrode is attached to the top surface that results in an
equipotential value there. The mechanical boundary conditions
are: a uniform total load F is applied on the top surface with the
bottom surface rigidly supported against vertical displacement,
i.e., u2 = 0. Due to the different lengths of the top surface and bot-
tom surface, a longitudinal strain gradient is produced resulting in
flexoelectric polarization. In Cross’ study (Cross, 2006), the effec-
tive piezoelectric constant deff of the truncated pyramid is simpli-
fied as
deff ¼ f 1
s2 � s1
hs1

� �
ð67Þ

Note that the effective piezoelectric constant deff in Eq. (67) is
size-dependent. Plane strain condition is assumed in the 2D collo-
36
cation MFEM analysis. The material constants of PZT-5H in Eq. (66)
are also used here with q ¼ 0, b1 ¼ b2 ¼ b3 ¼ 0, being interested in
the direct flexoelectric effect. In the numerical simulations, the
electric potential V on the top surface is unknown a priori but is
a constant. With the resulting V, the effective piezoelectric con-
stant deff can be calculated as (Abdollahi et al., 2014)

deff ¼ a33E2

e22
¼ a33Vs2c11

hF
ð68Þ

Fig. 11 shows the effective piezoelectric constant deff of the
truncated pyramid as a function of the normalization parameters
h/h0, keeping s1 = h = s2/2 and h0 = 20 lm. For this model, the mate-
rial length parameter is taken to be l = 2 lm. Good agreement is
obtained between the theoretical estimates using Eq. (67) and
the present collocation MFEM results. As discussed in the can-
tilever beam problem earlier, the small difference between the the-
oretical and the numerical results is due to the 2D effect, which is
simplified to 1D in the analytical solution. From Fig. 11, it can be
seen that the effective piezoelectric constant deff increases with
decreasing values of the the normalization parameter- h/h0. An
apparent size-dependent effective piezoelectric constant deff is
observed for the present truncated pyramid model without piezo-
electricity. The distributions of mechanical fields (longitudinal dis-
placement u2 and longitudinal strain e22) and flexoelectric
responses (electric potential / and longitudinal electric field E2)
are shown in Fig. 12. The results shown are obtained for



Fig. 11. Effective piezoelectric constant deff as a function of the normalization
parameters h/h0, where the aspect ratio of the truncated pyramid is s1 = h = s2/2 and
h0 = 20 lm.

Fig. 13. Effective electric field Eeff as a function of the normalization parameters h/
h0, where the aspect ratio of the truncated pyramid is s1 = h = s2/2 and h0 = 20 lm.
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h = 20 lm and F = 200 N. In can be seen in Fig. 12(b) that the lon-
gitudinal strain distributions are non-uniform, and significant
strain gradients exist inside the truncated pyramid. The corre-
sponding electric potential distributions are shown in Fig. 12(c);
the electric boundary conditions are clearly satisfied, namely, the
electric potential is zero on the bottom surface and the equipoten-
tial value is 0.22 mV on the top surface. The longitudinal electric
field distributions are plotted in Fig. 12(d), and the electric field
E2 is larger near the pyramid corners due to the strong stress con-
centration accompanied with larger strain gradients.
4.2.1. Dependence of flexoelectricity on the geometry of the truncated
pyramid

In this section, the effects of geometric size and shape factor of
the truncated pyramid model on flexoelectricity are studied. To
evaluate the flexoelectric response, the effective electric field Eeff
is defined as follows.
Fig. 12. Distributions of mechanical fields and flexoelectric responses under uniform loa
grounded and an electrode is attached on the top surface. (a) longitudinal displacement u
(V/m).
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Eeff ¼ DV
h

ð69Þ

where DV represents the voltage difference between the the top
surface and the bottom surface of the truncated pyramid, and h is
its height.

For a given aspect ratio of the truncated pyramid model
s1 = h = s2/2, changing h would lead to the change of s1 and s2 at
the same time. Fig. 13 shows the variation of the effective electric
field Eeff with the normalization parameter h/h0, where h0 = 20 lm,
and a total load 10 MPa is uniformly applied on the top surface. It
can be observed that the effective electric field Eeff is larger for a
reduced sample size. This is in agreement with the results reported
in the literature (see, e.g., Deng, 2017; Codony et al., 2019). Similar
to the cantilever beam problem above, size-dependent flexoelec-
tricity is evident in this truncated pyramid model as well.

To further understand the effect of shape factor on flexoelectric-
ity, the aspect ratio s2 : h : s1 = 1 : 0.5 : R, is kept the same. Thus, for
d on the top surface and rigid support on the bottom surface, the bottom surface is
2 (m), (b) longitudinal strain e22, (c) the electric potential /(V), (d) the electric field E2



Fig. 14. Effective electric field Eeff of the truncated pyramid with different aspect
ratios, where s2 : h : s1 = 1 : 0.5 : R.
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a given heigh h, the bottom length s2 is confirmed. Changing R
would lead to the change of the top length s1. As shown in
Fig. 14, three values of h = 20 lm, 40 lm, and 60 lm, respectively
are chosen to study the shape effects on the effective electric field
Eeff of the truncated pyramid with a uniform load 10 MPa on the
top surface. The effective electric field Eeff is found to increase with
decreasing value of R for all these three cases. As a smaller R value
result in a larger difference between s1 and s2; this leads to larger
strain gradients which produce a stronger flexoelectric effect
inside the truncated pyramid.
5. Conclusions

In this paper, the governing equations with direct and con-
verse flexoelectricity have been derived. A collocation MFEM for-
mulation was presented and a 2D element also developed to
solve standard BVPs in flexoelectricity. In this collocation MFEM
formulation, C0 continuous approximation was applied for inde-
pendent displacement, strain, electric potential and electric inten-
sity vector variables. The kinematic constraints between primary
fields (displacements, potential) and secondary fields (strain, elec-
tric intensity) are satisfied by a collocation method at judiciously
chosen internal points in the elements. This scheme significantly
reduces the number of the DOFs when compared to the tradi-
tional Lagrangian approach, and at the same time, the kinematic
constraints between the displacement and strain are guaranteed.
The corresponding 2D collocation MFEM code has also been
developed. Two example problems have also been presented to
demonstrate its veracity for obatining accurate and convergent
solutions. In the first example, namely, a cantilever beam subject
to an end load, both the deflection and the electric response
obtained were in in good agreement with the results from theo-
retical solutions. In the second example of a truncated pyramid,
good agreement of the effective piezoelectric constant with avail-
able solution in the literature was also obtained. The size-
dependence of flexoelectricity was successfully predicted for both
these two example problems using the collocation MFEM devel-
oped in this study. Larger aspect ratios of the physical dimensions
of the solid body lead to larger strain gradients and flexoelectric-
ity. The collocation MFEM formulation developed in this paper
can be applied to, for example, structural health monitoring of
flexoelectric sensors or actuators.
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