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strate its promising features, this nonlocal model is used in a series of numerical analyses of high pressure
shearing processes, in which grain crushing mechanism governs the material behaviour.
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1. Introduction

Careful construction of constitutive models that consider essen-
tial microscopic mechanisms can explain experimentally observed
features of material behaviour through physical arguments. In re-
turn, such models are typically advantageous for the numerical
analysis of engineering problems, since these may extend to situa-
tions that are beyond the experimental phenomenology. The re-
cent theory of breakage mechanics (Einav, 2007a,b) enables to
construct constitutive models that account for the microscopic de-
tails of grain crushing. Consequently, models of this theory have
been applied successfully in the numerical analysis of various geo-
mechanical and geophysical problems where grain crushing plays
an important role, e.g. landslides (Nguyen et al., 2008) and high
pressure cataclastic shear (Einav and Nguyen, 2009).

Material stability is an issue one should always deal with when
developing constitutive models for softening materials. In crush-
able granular materials, the crushing of particles in confined condi-
tions leads to softening behaviour observed at the macro scale. We
assume here that there are no other types of instability caused by
inadequate treatments of boundary conditions or initial conditions.
Therefore, within the framework of continuum mechanics, material
softening from the loss of positive definiteness of the stiffness ten-
sor is the cause of numerical issues that can arise when one tries to
analyse a complete boundary value problem (BVP) using local (con-
ventional) constitutive models without a length scale. Mathemati-
cally, due to this loss of material stability, the governing
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differential equations of continuum mechanics will lose its elliptic-
ity (in statics) or hyperbolocity (in dynamics). As a consequence, the
continuum modelling of solids/structures made of softening mate-
rial leads to ill-posed BVPs (Jirdsek and Bazant, 2002). In numerical
analysis, this ill-posedness leads to the localisation of deformation
into a narrow band, the width of which is governed by the resolu-
tion of the spatial discretisation. Outside this localisation band,
the material is unloaded elastically. The total energy dissipation
(i.e., the sum of material dissipation inside the localisation band)
therefore reduces with refinement of the spatial discretisation. In
the limit, once the element size (e.g. in finite element analysis) ap-
proaches zero, the numerical results converge to a solution with
zero localisation band size and zero total dissipation. This numeri-
cal prediction is physically unrealistic and is due to the inadequacy
of conventional continuum mechanics to deal with ill-posed BVPs.
The resolution of the above-mentioned problems requires a regu-
larisation through the introduction of a length scale to the material
model. In continuum modelling of softening (granular) materials
the regularisation can be as simple as possible utilizing the concept
of smeared crack/deformation (e.g. Crook et al., 2006) or more
sophisticated using micro-polar (Tejchman, 2004a,b; Tejchman
and Gorski, 2008) or nonlocal theories (Marcher and Vermeer,
2001; Maier, 2003, 2004; Tejchman, 2004a,b).

Once a particle is broken into smaller fragments, within a gran-
ular volume element, its collapse not only induces sudden move-
ments of neighbouring particles, but also leads to the
redistribution/transmission of elastically stored and kinetic ener-
gies within a certain volume of the material (Nguyen and Einav,
2009a). This highlights the notion of long range interactions be-
tween particles, which introduce effects that the classical equilib-
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rium equations of conventional continuum mechanics might not
be able to capture. Even without grain crushing effects, numerical
analysis of granular materials based on the discrete element meth-
od (Ord et al., 2007) also indicated the presence of long range inter-
action effects, which cannot be captured using conventional
continuum modelling. The requirement to take into account the
long range interactions in granular materials motivates the devel-
opment of nonlocal approach to the modelling of crushable granu-
lar materials.

In a rational way, an intrinsic length scale of a nonlocal contin-
uum material model should ideally emerge from upscaling micro-
structural details. In granular materials, where particle crushing
plays the role of the governing micro-structural mechanism, the
induced effects should be linked with the length scale that is asso-
ciated with the long range correlations. In the constitutive model-
ling, this link is useful in determining parameters of nonlocal
model, which involves both the spatial parameters in charge of
the interaction between material points and the local parameters
that control the pointwise response of a material point. In this
study, we avoid entering such an interpretation of the upscaling
process; we view the nonlocal regularisation simply as a numerical
mean to eliminate unwanted stability issues that existing local
constitutive models may encounter. In particular, we adapt a non-
local regularisation technique and apply it directly to the nonlocal
averaging of the yield function of an existing (local) breakage mod-
el (Einav, 2007a,b).

The paper is organized as follows. The formulation of the local
breakage model will be briefly presented in the next section, fol-
lowing early developments in Einav (2007a,b,c), and focusing on
the simplest approach based on linear elasticity. This is then suc-
ceeded by the nonlocal regularisation applying to a rearranged
form of the breakage/yield criterion, and then the description of
a stress return algorithm for nonlocal incremental constitutive
equations. We highlight the role of the particular choice of the
loading function in the success of the nonlocal regularisation tech-
nique. In the case of the breakage model adopted in this study, it is
not sufficient to consider as nonlocal only quantities directly con-
trolling the softening process, as suggested in early work on non-
local damage model by Pijaudier-Cabot and Bazant (1987). The
numerical illustrations in the following section demonstrate how
nonlocal regularisation can eliminate the mesh-dependence
encountered in predictions by local models. We note that these re-
sults are only intended to show numerically the effectiveness of
the regularisation. More rigorous localisation analysis (e.g. the dis-
persion analysis by Pijaudier-Cabot and Benallal (1993), Sluys et al.
(1993), Borino et al. (2003) is to be covered in a forthcoming paper.
In the conclusion, we discuss how the nonlocal regularisation of
breakage models can be useful to solving geotechnical/geophysical
problems.

2. A local breakage model

We start with the formulation of a local breakage model based
on early developments in Einav (2007a,b). We then set up a start-
ing point for introducing a nonlocal regularisation technique which
could be applicable to such a model. Standard notations in soil
mechanics are used: mean effective stress p, shear stress g, total
volumetric strain &, and elastic volumetric strain &, total shear
strain & and elastic shear strain . The energy potential ¥ and dis-
sipation potential ¢ are assumed to take the following forms
(Einav, 2007c¢):

‘P:%(l 7193)(1@;2 +3Ge§’2> (1)

b= \/Dp+ O + D (2)

in which B is the scalar breakage variable; ¥ is the index property
measuring how far the initial gsd (grain size distribution) is from
the ultimate gsd (Einav, 2007a) through second order moments of
these distributions; K and G are the bulk and shear modulii, respec-
tively. A more complicated form of the energy potential taking into
account the pressure-dependency of the elastic behaviour can be
found in Nguyen and Einav (2009a).

In the above we highlight that the Helmholtz free energy poten-
tial is specifically formulated in terms of elastic strains and not in
terms of the total strain minus the plastic strain. This is consistent
with the work of Rubin (2001), who motivates the physical reasons
why “constitutive equations must depend on state variables that,
in principle, can be measured without any prior knowledge of
the past history of deformation of the material. Within the context
of this notion of state, elastic strain is a state variable, whereas the
total strain and plastic strains are not state variables since they are
measured with respect to an arbitrary reference configuration”. In
the line of this proposition, the dissipation potential can only be a
function of the rate of plastic deformation rather than its cumula-
tive value. Furthermore, the proposition above does not require the
acceptance of the assumption on the decomposition of total strain
into plastic and elastic strains in additive form. The notion of elas-
tic-plastic decomposition can only be valid in its incremental form
(see Collins and Einav, 2005). Similar to the damage mechanics
theory of solid-like materials the breakage mechanics theory of
brittle granular materials also deals with permanent micro-struc-
tural fabric alterations, and creation of new surface area. However,
these theories are fundamentally different, as they deal with to-
tally distinguishable materials. The mathematical differences initi-
ate from the dissimilar definition of the internal variables, i.e.,
breakage B in breakage mechanics (Einav, 2007a) and damage D
in damage mechanics (e.g. Lemaitre, 1992). The breakage, B,
weighs the relative distance of a current gsd g(x) from an initial
and ultimate gsd’s g,(x) and g,(x), via the relation:

&%) = 8 (x)(1 - B) +8,(x)B 3)

On the other hand, in damage mechanics, the effect of micro-voids
or micro-crack openings on the solid behaviour is accounted for
through a directional damage variable D = A, /A, where A, is the
void area and A the total cross sectional area with normal vector
n of a representative volume element (RVE). Furthermore, while
the general mathematical structure of the Helmholtz energy poten-
tials in both theories may seem related, these are derived from en-
tirely different physical arguments. In particular, in the simplest
form of damage mechanics, where a uniform distribution of voids/
micro-cracks within a RVE is assumed, D becomes a scalar variable,
and the corresponding Helmholtz free energy includes the multipli-
cation of the term (1 — D) by the potential energy of an ‘un-dam-
aged’ continuum. This structure is the outcome of the strain
equivalence principle (Lemaitre, 1971). On the other hand, in break-
age mechanics, the term (1 —9B) appears instead of the (1 — D)
term and multiplies the strain energy in a reference particle size.
The term (1 — ¥B) emerges from a statistical homogenization oper-
ation via the gsd of Eq. (3), and the universal scaling of the stored
energy in the particles with their surface area (Einav, 2007a); the
index property 9 is a signature of this operation.

In Eq. (2), the dissipation potential @ comprises three parts cor-
responding to breakage dissipation @3, plastic volumetric dissipa-
tion @, and plastic shear dissipation &, (Einav, 2007b):

 VEE
s = (1-B)cosw “)
R Ecs (5)

P (1-B)sinw \ Eg
@}, = Mp|oef| (6)
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Coupling between grain crushing and plastic volumetric deforma-
tion is taken through the coupling angle w; parameter M = q,/p,
is the ratio between the ultimate shear stress g, and ultimate volu-
metric stress p, at failure; the energy threshold E,. in Egs. (4) and (5)
is related to the crushing pressure p. in isotropic compression
through the relationship: p. = \/2KE./9 (Einav, 2007c). An elabo-
rate discussion on the roles of each components of the dissipation
potential can be found in Nguyen and Einav (2009a).

The model formulation follows thermo-mechanical procedures
established by Ziegler (1983) for rate-independent elastoplastic
models, considering the notions of breakage and coupled dissipa-
tions. In particular, the generalised stresses (7)-(9) and the dissipa-
tive generalised stresses (10)-(12) are distinguished, which adds
formal advantages as discussed by Houlsby and Puzrin (2000).
From the energy potential, the triaxial stresses (p,q) and breakage
energy Eg - the conjugated thermodynamic forces of the triaxial
strains (&, €°) and breakage variable B, respectively - are:

ow .
P= 7 = (1 - 9B)Ke", 7)
ow
4= e = 3(1 - IB)GE; (8)
_ oV v 2 )
Es=—"p=> (K.gv +3Ge ) 9)

In a similar way, the dissipative stresses (p, q) and dissipative break-
age energy Eg are obtained from the dissipation potential as:

v v v
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For rate-independent processes, the yield function y* in generalised
stress space is obtained as a result of the degenerate Legendre
transformation of the dissipation potential (2), given that the dissi-
pation potential and its components are homogeneous first order in
the rates of internal variables:

— 2 2 2
. Eg p q
_ -1«
y (aqsg/aés) - (acbg/aasg) - (aqs;/a&a?) 1<0 (13

From the above yield function, the following flow rules (5. is a non-
negative multiplier) are obtained:

E E:=(1 — B)? cos?
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Using the orthogonality condition (Ziegler, 1983) in the form
p =P,q = q and Ez = Ez we can rewrite the flow rules as:

(1-B)*cos? w

5B = 257 - (17)
2 -2

sep, — 20 Ep1 = BTSN @ _52, S @ (18)
C

3e? = 267 M;’pz (19)

The breakage/yield function, denoted here as y in mixed stress-en-
ergy space, can be rewritten using the orthogonality condition,
along with Eqgs. (4)-(6):

CEs(1-B? (g
V=T +Mp 1<0 (20)

In true stress space, using (7)-(9) we can rewrite the breakage en-
ergy Ep in terms of stress, as:

v p? q2>
Ey = e tas 21
201 - By (K 3G =
Then the yield function can be rewritten in triaxial stress space as:
9 (p* @\/1-B\’ q\°
=—(=+—=)(— — ) -1«
Y=3E <1< + BG> (1 - ﬁB) + (Mp) 1<0 (22)

3. Nonlocal regularisation

Softening behaviour is well known in the literature as the cause
of instabilities and is observed in many geotechnical problems.
Although these instabilities are often physical, some non-physical
irregularities may emerge when solving the corresponding BVPs
using conventional continuum mechanics, due to the ill-posedness
of these BVPs. A review on instability and bifurcation due to mate-
rial softening has been documented in the literature (e.g. Neilsen
and Schreyer, 1993). Without enhancements (via regularisation
techniques), either to the equilibrium equations or to the constitu-
tive model, the numerical simulations of problems involving mate-
rial softening usually result in discretisation-dependent solutions
(e.g. as later demonstrated in Fig. 4a, using the local model of the
previous section). Various regularisation methods have been pro-
posed and used effectively in the literature, including using viscos-
ity and/or nonlocal enhancement to the constitutive modelling. In
this study, nonlocal regularisation of integral type is adopted for
the local breakage model of the preceding section.

We recall the local breakage/yield criterion in Eq. (20). The way
nonlocality is introduced to the constitutive equations is impor-
tant, as illustrated in a paper by Jirasek (1998), in which different
nonlocal treatments to a simple damage model were explored.
Inappropriate treatment of nonlocal variable/quantity can lead to
bad features of the nonlocal model (e.g. non-uniqueness and/or
instability of the numerical analysis).

Since breakage is the active mechanism governing the dissipa-
tive process (Einav, 2007b) that leads to softening, a rational way
to regularise the constitutive model is to apply nonlocality to the
breakage energy Ep (21), the thermodynamic conjugate to the
breakage variable B. This is similar to the use of nonlocal damage
energy in the pioneering work by Pijaudier-Cabot and Bazant
(1987). In addition, the presence of plastic strain increments in
the constitutive model as a passive dissipation mechanism (Einav,
2007b), the additional nonlocal treatments to the thermodynamic
forces (triaxial stresses p and q in our model) associated with the
elastic volumetric and shear strains can be seen rational. These
nonlocal enhancements however did not act as good localisation
limiters, and convergence to a unique solution upon refining the
discretisation could not be achieved.

From the yield function (20), it can be seen that the second term
involving shear stress q¢ becomes dominant when breakage B ap-
proaches unity. Therefore applying nonlocality only to the break-
age energy Ep (or either, to the first term of the yield function)
was experienced not to help prevent localisation into infinitesimal
zone in problems involving shearing. Furthermore, numerical
experiments showed that applying nonlocal treatment to all quan-
tities (Eg, p and q) controlling the model response, in the form
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 E(1-B)’ a\°
Y*T‘F Mp -1<0

or to the whole yield function (20) also did not help prevent the
localisation. This is because the yield function in its current form
(20) was normalized to compare to one, which gradually neutralises
the effects of nonlocal terms Ez, p and § (or C, where C =
Es(1 — B)?/E. + q¢*/(Mp)*) when breakage B is growing. In other
words, the nonlocal effect is gradually vanishing with increasing
breakage B. Further details on this can be found in our recent paper
(Nguyen and Einav, in press).

In this paper we adopt the following treatment, using a slight
rearrangement of the yield function, leading to a possible useful
mathematical form of the yield function:

Ep
VTR

a \ 1
_ <0 23
(Mp(l - B)) (1-B)? 23)
The nonlocal breakage/yield function, written for a material point at
point X and accounting for the behaviour at several neighbouring
point y (Fig. 1), is then:

y(x) = Cx) m <0 (24)

where

€ - g | &y -xDewavy) (25)
¢ Jy,

and C = £ + (gt

In the above expression V, is the volume where the nonlocal
averaging takes place; it is dependent on the selected type of
weighting function g(|ly —x||) > 0, e.g. Gaussian or bell-shaped
distributions; and G(x) is defined as a weight associated with the

material point X, aiming at normalizing the weighting scheme:
600 = | sllx-yavey) (26)
d

The flow rules of the model retain their local forms (17)-(19). The
stress update algorithm for the numerical implementation of this
nonlocal model will be presented in the next section.

4. Numerical implementation

The numerical implementation of the above nonlocal breakage
model is briefly presented for finite element analyses. The tensorial
form of the triaxial model described in Section 2 is used. Following
standard definitions, the triaxial stresses and strains are written in
terms of the stress and strain invariants:

1 /3 2
p:f§tr(a), q=1/58:S; &y =1tr(g); &= 3€:e (27)

where s = ¢ — 6tr(s)/3; and
e = ¢ — itr(g)/3(é is the Kronecker delta) (28)

From the energy potential (1), we obtain the relationship between
stress, strain and breakage in tensorial form as:

a:%:(lfﬁB)D:(sfsp) (29)

where D is the linear elastic stiffness tensor.
The flow rules (17)-(19) in general stress space are:

oy 5 (Dy* op Oy* 8q)

08P = 64 A

do ap de ' 9q Oc
[, -B’Esinfw s 3s
=) (2 D, 3 +M2p2 (30)
and
Ly . (1-BYcos?w

which give us the ratio Q between the increments of plastic strain
tensor and breakage as:
o Egtan’w & 3s E.

=<5 — + 32
=38 p 3 M*p22(1-B)Pcostw G2

We now turn attention to the spatial discretisation followed by the
temporal linearization of the nonlocal yield function (24). For the
spatial discretisation, with the presence of the nonlocal averaging
involving material points neighbouring to the considered material
point, the same finite element discretisation is used, as that for
the BVP. From Eq. (25), the discretisation using the finite element
method leads to:

Cx = S et Jyev. &(ly —X[NC(y)dV (y)
ZZ:I fyeve g(Hx - yH)dV(y)

where V, denotes the volume of element e and n is the total number
of elements inside the interaction volume V; defined by a sphere
centred at x and with radius R. Using the same integration rule as
that of the finite element discretisation, we can rewrite (33) as:

oS osg (g - xil) detyc(f)
S osg (s - xil ) det);

in which i is the integration point under consideration, j is the jth
Gauss point of element e; m, is the number of Gauss points of this

(33)

Cx) = (34)

Fig. 1. Schematic view of the nonlocal interaction between points X and y in a grain crushing event.
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= = = Y (Trial point)
~
~

y=0: Elastic limit

Fig. 2. Pictorial presentation of the stress return algorithm (after Crisfield, 1997).

element inside the interaction volume; wf and J; are, respectively,
the weight and Jacobian matrix at Gauss point j of element e. The
above expression can be rewritten in compact form as:

nj
Ci=> wiG (35)
j

where n; is the total number of Gauss points inside the nonlocal
interaction volume at point i, and the weight w; for the interaction
between material points i and j is in the form:

wsg (ly; - xil) det);
S osg (v - xil) det);

The nonlocal yield function (24) at integration point i can then be
written in a spatially discretised form as:

n; -l
= w;C; —— <0 37
Vi z,: i a —Bi)2 (37)

Performing a Taylor expansion of the yield function at the trial
stress point (Fig. 2), we have (from now on the notation 9A;/dx
for (0A/0x)];, which means 0A/9x evaluated at integration point i,
is adopted):

wj = (36)

R 26B;
t+At __ 4 trial 1
=y 0+ E w;joCj — ——
yx yl ; yvg (1 — 31)3
oC; oC; . oC;
yal E wu{ =1 5B; +8E} OEg; + pfbpj +—aq’ oq;
3 2(>Bi i (38)
(1-B)

Expanding the linearized yield function using the chain rule results
in:

t+At trial 20B;

Yi =i ﬁ
M (9EBJ OEBj apj s 8E3j 8q]- s
+Z U|: <—B+$%édj+a—q%56]
ac, oG, opy ac; g
+ BB+ 50 e T e % (39)

Note that the corrective stress increment when going from trial
stress point Y to the new stress point Z (Fig. 2) has the following
form:

o
(1-vB)

56" =g — ¢ = | —(1 —YB)D : 68" — 53] (40)

trial

We note also that this corrective stress increment is evaluated at
the trial stress point, so the subscript “trial” can be dropped out

when substituting (40) into the expression (39) of the linearized
yield/breakage function. Therefore we have (for simplicity, assum-
ing ¥ is the same for the whole granular sample, e.g. homogeneous
gsd):

n aC;  IC; OE aC; OE op;
t+At Bj BJ )
Yi ;W {<6B+8EB 83)53 [(aEB op +6p> 30

aC; OEg _ OC;\ 0q;] of 96;5B;
+(dEB o +8q> } (1-9B;)D;: 6 +—(17193)

25B;
(1-8)’

Using the flow rules in the form (32), we can rewrite (41) as

u aC;  9C; OEg OC; OEg ap;
tHAE B0 B Bt B Ment: | ) ptr R} =
Yi *ZW"K&)B%E BB>()B KaEB p +6p> 96

oG OBy Gy g, s 1.
(1 - 9B)D;:Q+ T s,
+(af,; aq +aq> H (1= VB)D;: @ (|08,

+ yjal (41)

. 20B;
+ trial __ ! 42
T Y (42)
Or in simplified form
=y - 2y wyUioh )
1-B) %5
where
oC  90C OEg
U= (@ + 25 aTs)
oC 8E3+8C Dp £%+8C 8q
OEg dp ' p O0Ep 09 ~ 0q
Jo
{(1 —9B)D : Q+( 198)} (44)

Note that Eq. (43) is written for all integration points undergoing
grain crushing. These equations are coupled through the nonlocal
averaging. Together, they form a system of linear algebraic equa-
tions which can be solved for breakage increments at any iteration
of the incremental-iterative solution scheme based on the Newton-
Raphson method. The corrective stress increments (40) at all
crushed material points are then calculated using the breakage
increments and flow rule in the form (32).

Due to nonlocality, it is impossible to perform the stress update
pointwise. In the implementation, at first trial states of all integra-
tion points are reached by assuming the stress increments are elas-
tic, using the secant elastic-breakage stiffness. Then the set of
integration points potentially undergoing crushing is determined
based on the sign of the yield/breakage criterion at their trial
states. The system (43) is formed only for integration points having
ymial 5 0, To enforce the satisfaction of the yield criterion (24)
(within a given tolerance) at the end of the increment, a repetition
of the same process is performed but with point Y replaced with Z,
noting that there are no elastic stress increments in the subsequent
iterations. During this iterative process, the set of integration
points undergoing crushing are kept unchanged. This iterative pro-
cess is also combined with sub-incrementation to improve the per-
formance of the algorithm. In nonlocal numerical analysis, some
yielded (integration) points can be unloaded elastically after a cer-
tain stage of loading. In other words, at the end of the stress update
process certain integration points can encounter negative breakage
increments. This means that the load increment might be too big
and that those integration points might not be undergoing crush-
ing. This situation is taken care of in the analysis by reverting to
the last converged position and reducing the load increments.
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The above stress return algorithm does not require the determi-
nation of the intersections between the stress increment vectors
and the yield surfaces, which is impossible in the case of nonlocal
constitutive equations. In other words, whether or not the material
point has undergone crushing in the past is not important to the
algorithm. On the other hand, the yield condition (24) is enforced
in its total form at any iteration, thus helping to avoid the inaccu-
racies encountered when the consistency condition is applied. Fur-
ther refinements of the algorithm and its performance can be
found in Nguyen and Einav (in press).

5. Numerical examples
5.1. Grain crushing in cataclastic shear

We use the nonlocal model in the preceding section to study the
localisation due to grain crushing in fault gouge (Fig. 3). While sev-
eral studies, both numerical based (e.g. Shi et al., 2008; Nguyen and
Einav, 2009a) and experimental based (e.g. Reches and Dewers,
2005; Chester et al., 2005; Pittarello et al., 2008), have focused
the attention on the material behaviour within the cataclasite zone
to study the issues of earthquake energy partition, it is the behav-
iour of an infinite cataclasite layer that will be simulated here
using the nonlocal breakage model described in the preceding sec-
tions. A new boundary value problem for the cataclasite zone
(Fig. 3) will be formulated, taking advantage of the structure and
dimension of the fault to derive simplified equilibrium equations.
Ignoring body force and inertia effects, the 2D equilibrium equa-
tions can be written as:

00y  OTyxy 0Ty 00y

6x+6y70 and o Wfo (45)
Further assuming that the variation in the stress condition along the
fault line is negligible, and also the thickness of the fault layer is
very small compared to its length (Fig. 3), we have the following
constraints for the boundary conditions in the horizontal direction
(along the fault line):

&=¢6=0 (46a)
00y 0Ty
P 0 and ® 0 (46b)

We note that Eq. (46b) introduces a strong assumption that simpli-
fies the BVP: one could envisage a solution with a periodic variation
of quantities to retain the zero mean. However, while the solution

given by Eq. (46b) can potentially suppress some instability modes,
the currently simulated mode has the advantage that it can be per-
formed using a simple 1-D Eulerian finite element analysis. The 1-D
analysis serves our current purpose of describing the model behav-
iour in a BVP involving high shearing under pressure. The equilib-
rium Eq. (45) are then separated purely for the vertical direction:
0oy

0Ty .
oy =0 and oy =0 (47)

The above equations can be solved numerically using 1D finite ele-
ments. It should be noted in this case that the stress tensor is still
that in 2D plane strain; its time variation is governed by the consti-
tutive behaviour of the model under shearing at constant vertical
stress o,. Only the spatial variations of g, and 7,, in the horizontal
direction are zero. The relation between 7, and g, is not seen di-
rectly via Eq. (47), but arises from the relevant coupling in the con-
stitutive equations. This way of forming the BVP for an infinite layer
is different from that in studies by Tejchman and Gudehus (2001)
and Tejchman and Bauer (2004) in which boundary conditions were
imposed to a 2D granular layer to simulate its infinite condition.

In our numerical simulation, the material in the cataclasite zone
is first subjected to a certain isotropic pressure p, corresponding to
the depth of the fault. The shearing phase is then carried out under
isochoric condition. We use the following material parameters in
the numerical simulation: shear modulus G = 5 GPa; bulk modulus
K = 7.5 GPa; E. = 0.486 MPa (corresponding to crushing pressure
p. = 90 MPa); M = 1.5; and w = 45°. Furthermore, the initial pres-
sure is p, = 70 MPa and the index property is assumed 9 = 0.9. The
localisation is triggered by weakening an element in the middle of
the layer, using only 90% of the crushing pressure. The averaging
scheme is based on the bell-shaped weighting function of the
form:

0 ifr>R
g(ly ~xI) = g(r) = { (1-2) itr<r (48)
RZ X

The spatial parameter in this case is the nonlocal interaction radius
R (R=1.7 mm in our numerical simulations), which controls the
spatial interactions between material points. In this case V; (Eqgs.
(25) and (26)) at a material point X is a sphere of radius R.

The modelled cataclasite zone is of 36 mm thickness, which is
comparable to values reported in Chester et al. (2005), and used
in DEM simulation by Guo and Morgan (2007). Due to symmetry,
only half of the zone is modelled. During the numerical simulation,

distributed cracking:
Damage Mechanics

rupture propagation:
Fracture Mechanics

granular cataclasite:
Breakage Mechanics

y

Ultra-cataclasité
Non-local Breakage models

Fig. 3. Modelling grain crushing in cataclasis.
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Fig. 4. Mobilized shear resistance vs. shear displacement.

while the element behaviour evolves during the shearing process,
the coordinates of all finite elements are unchanged, representing
the flow of the material through a fixed frame. Different finite ele-
ment meshes are used to illustrate the mesh-independence of the
numerical results (Fig. 4b), and highlights the insensitivity of the
nonlocal formulation to mesh size alterations in comparison with
the local model.

The evolution of the mean grain size of the material in catacla-
site zone can be calculated directly using the evolving breakage
variable B. In doing that, we assume power law gsd's for both the
initial and ultimate conditions:

20

&i(D) = (3 — o) =

— (49)
D,

where i stands for “u” (ultimate) or “0” (initial). We use an ultimate
fractal dimension of &, = 2.8 and set oy according to the prescribed
value 9 = 0.9. Using Eq. (3), the mean evolving grain size D is:

Dy
D= / Dg(D)dD
0

Dy Dt
:(1—3)/0 DgO(D)dD—i-B/O Dg, (D)dD

= (1 -B)Dy + BD, (50)

where Dy and D, are the mean grain sizes at the initial and ultimate
conditions, respectively; and the maximum grain size Dy is as-
sumed constant throughout the deformations: Dy = 0.5 mm.
Fig. 5 plots the evolving mean grain size during the shearing
process.

From Fig. 54, it can be seen that the size of core of the cataclasite
layer, i.e., the size of the ultra-cataclasite zone, is unchanged be-

18 .——0.65% shear ———0.76% shear
14 |——0.81% shear = ———1.56% shear
10 |———4.34% shear 15.0% shear
6 | 50.25% shear 100.71% shear
T 2] /
1 ————————
> T\
-6 4
-10 A
-14 4
-18 T T T )
0.1 0.2 0.3 0.4 0.5

Mean grain size (mm)
(a): Profile evolution.

yond a certain shear level. The size of this core in this example is
about 2R. Inside this core, the grains are continuously crushed to-
wards the ultimate grain size (Fig. 4a and b), while the material
outsize the core is only crushed during early stage of the shearing
process; then it is unloaded elastically and does not involve cata-
clastic deformation. The rate of crushing in the core is however
decreasing (Fig. 5b) over the time. In other words the material
gradually becomes harder to break.

The intrinsic link between the breakage variable and the under-
lying evolving gsd is useful for calculating the permeability reduc-
tion of the material within the cataclasite zone (Nguyen and Einav,
2009a). We note that under undrained loading condition, there are
no volumetric changes and hence the change of the permeability is
caused only by the increase of surface areas of particles, due to the
particle crushing process. With the mean grain size decreasing we
can see (Fig. 5) that the core of the cataclasite zone in this case acts
as a barrier for crossing fluid flow as the shearing progresses.

5.2. Biaxial compression

Numerical simulations of grain crushing in undrained biaxial
tests are presented in this section. Similar experimental (Mokni
and Desrues, 1998) and numerical studies (Tejchman and Gudehus,
2001; Marcher and Vermeer, 2001; Maier, 2003, 2004; Tejchman,
2004a,b) of granular samples in undrained biaxial loading can be
found in the literature. However, they were either for non-crush-
able granular material (Mokni and Desrues, 1998; Tejchman and
Gudehus, 2001; Maier, 2003, 2004; Tejchman, 2004a,b) or using
a model without an intrinsic link between the macroscopic (inter-
nal) variable and the crushing process at micro (or meso) level (e.g.

0.5
€04
£ ——y=0.125mm
.% 0.3 A —y=1.125mm
£ —— y=6.875mm
S 0.2 1
)
s
o 0.1
=

0 : : : : :

0 20 40 60 80 100
Shear level (%)

(b): At different locations.

Fig. 5. Evolution of mean grain size.
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Daouadji et al., 2001). Here, the nonlocal breakage model pre-
sented in Section 2 will be used.

We consider a sand sample (40 x 140 mm) initially loaded iso-
tropically to a pressure p, and then subjected to vertical compres-
sion (Fig. 6); this resembles the experimental procedure in Mokni
and Desrues (1998). During the course of loading, the lateral stress
is kept constant. The sample is assumed to be in plane strain con-
dition, as can be seen in experimental and numerical studies in the
literature (e.g. Mokni and Desrues, 1998; Maier, 2003; Tejchman,
2004a,b). To trigger the localisation, a zone (of the size of a quad-
rilateral element) with lower crushing pressure p, is introduced to
the sample (Fig. 6). The numerical simulations in undrained condi-
tion use different meshes of quadrilateral finite elements (Fig. 6).
Each quadrilateral element in turn consists of four constant strain
triangular elements to avoid volumetric locking (Nagtegaal et al.,
1974; Tejchman, 2004a,b). To avoid updating the topological con-

() —— Nonlocal, mesh 1
350 - Nonlocal, mesh 2
Nonlocal, mesh 3
300 - 4 —— Nonlocal, mesh 4
jl — — — —Local, mesh 1
250 A 4 f — — — —Local, mesh 2
{
. /R — — — —Local, mesh 3
Z 200 - oy < — — Local, mesh 4
3 BN
© 150 - AN
a \\:\:: : S~ _
TS TT-——__
100 - To=IZZEZ======2Z:
50 A

0 1 2 3 4 5 6 7
Displacement (mm)

nections of material points for nonlocal averaging, which is very
computationally time consuming and requires an effective algo-
rithm, small strain condition is assumed, e.g. the deformation is
not taken into account when forming the element stiffness matrix.
For the boundary conditions, the bottom of the sample is fixed in
the vertical direction, while vertical displacements are incremen-
tally prescribed to nodes at the top of the sample. Zero horizontal
movement is also prescribed to the node in the middle of the top to
avoid lateral instability. The following model parameters were
used: shear modulus G = 150 MPa; bulk modulus K = 300 MPa;
E. = 0.3 MPa (corresponding to crushing pressure p.~ 14 MPa);
M = 1.2;w = 0. The initial pressure p, is set to 10 MPa, while the
index property of the sample is ¥ = 0.9. The nonlocal weighting
function (48) was also used, with interaction radius R =7 mm.
To illustrate the distribution of grain sizes within the sample after
crushing, we adopt the same initial and ultimate gsd functions

Nonlocal, mesh 4, R=7mm
Nonlocal, mesh 4, R=4mm

0 T T T T T T 1

0 1 2 3 4 5 6 7
Displacement (mm)

Fig. 7. Load-displacement curves (a) and effect of length parameter on sample responses (b).
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Fig. 8. Effect of the length parameter on shear band width (using mesh 4).

8o(d) and g, (d) as described in the preceding example. The maxi-
mum grain size in this example is assumed to be D)y = 1 mm and
is unchanged throughout the shearing phase.

We used GiD (version 9) as the pre- and post-processors for the
data and results in this example. The load-displacement curves ob-
tained from both local and nonlocal analysis are shown in Fig. 7a.
The nonlocal regularisation effects can be clearly seen in this fig-
ure. Provided the finite element discretisation is sufficiently fine
(e.g. meshes 2-4), the responses of the numerically simulated sam-
ple using different meshes are almost identical. This is not the case
for the local analysis, as the deformation tends to localise in a nar-
row band, the width of which depends on the prescribed size of the
finite element. In other words, the localisation bandwidth in local
analysis is getting smaller and smaller once the discretisation is re-
fined, resulting in sharper snap-back on the load-displacement
curves (Fig. 7a).

It can be seen that different spatial parameters used for the non-
local model gives different sample responses (Fig. 7b) and different
widths of the localisation zone (Fig. 8); this was also numerically
observed in Tejchman (2004a). The relationship between local
and spatial parameters, along with details on the energy dissipa-
tion in grain crushing, should be sorted out to obtain a model that
always predicts a unique response with respect to changes of spa-
tial parameter. This is however out of the scope of this study.

The effect of M = q,/p,, the ratio between the ultimate shear
stress g, and ultimate volumetric stress p, at failure, on the sample
responses can be seen in Fig. 9a. For higher values of M, the mate-
rial is allowed to take higher shear stress for a given pressure,

(@)
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_A-~"\15,2025
£ 300 { .
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5] /
S
/
200 ,
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Displacement (mm)
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0.27623

Fig. 10. Deformation and mean gsd (mesh 4; magnification factor of 1.5; at
6.66 mm vertical prescribed displacement).

resulting in higher peak load of the sample. On the other hand, dif-
ferent responses of the sample can also be observed when we
change the initial pressure p, (Fig. 9b).

It is interesting to see in Fig. 10 the distribution of the mean
grain size within the sample, after severe crushing in localisation
band has occurred. The profile of the mean grain size, along with

®) 350

300 -

250 ~

p0=8MPap0=10MPa

0 T T T T T T 1

0 1 2 3 4 5 6 7
Displacement (mm)

Fig. 9. Effects of (a) M = q,/p, and (b) initial pressure p, on the sample responses (using mesh 3).
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Fig. 12. Averaged breakage (over the whole sample) vs. prescribed displacement.

the breakage evolutions at different spatial points, is also plotted
(Fig. 11), highlighting the crushing process within the sample.
We can see that at early stage of the shearing process, grain crush-
ing occurs over the whole sample, corresponding to the hardening
phase in the load-displacement curves. During this phase, the
mean breakage averaged over the whole sample is increasing rap-
idly with increasing prescribed vertical displacement (Fig. 11b).
The localisation will then be activated when the material in weak-
ened elements enter its softening phase. During the localisation
phase the rate of increment of the average sample breakage (the
spatial average of breakage) is gradually slowing down (Fig. 12),
because only the material within the localisation band (e.g. points
B and C in Figs. 10 and 11b) is crushing towards the ultimate gsd,
while other elements outside the localisation band are unloaded

elastically (e.g. point A in Figs. 10 and 11b). It can be expected that
localisation of grain crushing prevents the average sample break-
age to ever reach unity.

6. Discussions and conclusions

The nonlocal regularisation applied to a breakage model (Einav,
2007c) was numerically shown to stabilise the model behaviour
and to bring well-posedness to BVPs involving softening due to
grain crushing. We showed the capability of the regularised model
in capturing the evolving gsd of the materials in shearing processes
at high pressure. The obtained numerical solutions are mesh-inde-
pendent, and the localisation of deformation into non-zero volume
is numerically observed. There are, however, several aspects of the
nonlocal regularisation of constitutive models based on breakage
mechanics that need to be further investigated. The localisation
analysis for the nonlocal breakage model will be carried out in
the next step to obtain rigorous mathematical aspects of the non-
local regularisation. The formulation of a consistent nonlocal ther-
modynamic framework for breakage model is another aspect that
requires further study. In addition, one should pay attention to
the link between the spatial length and the gsd, critical to model-
ling evolving ultra-cataclasite zone in fault gouge. In this paper,
for the sake of simplicity, it was assumed that the spatial length
(nonlocal radius) does not evolve with the change of the gsd. How-
ever, due to crushing the gsd is shifting towards its ultimate distri-
bution, reducing the critical size of the RVE of the granular
ensemble. Since this critical size of the RVE is related to the length
scale of the nonlocal continuum model, an evolving length scale is
therefore required. The formulation of a consistent thermodynam-
ics-based nonlocal breakage model with an evolving length scale is
expected to be a challenging task in the next step of model
development.
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