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The mechanical behavior of a random packing of rigid particles, in which interparticle contact forces fol-
low the Coulomb friction law, is analyzed with the aim of establishing a link between the microscopic
frictional behavior of contacts, the equilibrium of particles and the macroscopic plasticity of this material.
A Reference Volume Element (RVE) containing a very large number of particles is examined and, under a
rather general assumption on the shapes of particles, it is shown that in the macro stress space the yield
surface of this material is a cone. Further, linear displacement boundary conditions are prescribed on the
RVE and the plastic macro strain of this material is examined. It is shown that in case of frictional parti-
cles the plastic macro strain cannot be associated, while it is associated in case of frictionless particles.
Further, in the particular case of frictional identical spheres, it is shown that only the deviatoric compo-
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Rigid blocks inequality relating the friction and dilatancy coefficients is given.
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1. Introduction

Granular materials are packings of discrete particles in which
relative movements are due both to deformations of particles
and to sliding or opening of contacts. Despite several decades of
extensive studies, a link between the microscopic properties of
these materials and their general macroscopic mechanical behav-
ior is not definitively established.

At the macroscopic scale granular materials generally exhibit
vanishing elasticity and predominantly irreversible deformations.
It is then customary to represent their macroscopic mechanical
behavior by plasticity models. Well known plasticity models for
soils are the Mohr-Coulomb model and the Drucker-Prager model
(1952). Other plasticity models for granular materials which pro-
vide a better matching with the experimental results were more
recently proposed by Lade (1977), Matsuoka and Nakai (1977),
Krenk (2000). All these models predict convex conic yield surfaces.

The plastic macro deformation of granular materials, with
either negative or positive dilatancy, is frequently described by
non-associated flow rules. In particular, it is usually assumed that
only the deviatoric part of the plastic strain follows the normality
rule, while the volumetric plastic strain is not associated. This
assumption, usually referred as deviatoric associativity, is widely
adopted in soil mechanics: Gudehus (1972), Lade and Duncan
(1973), Baker and Desai (1982).

Several micromechanical models have been adopted to study the
macroscopic mechanical behavior of granular materials. Among
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these, the models developed to study the elasticity exhibited by
granular materials when small arbitrary stresses are superimposed
to a confining pressure, neglect the opening or the sliding of contacts
and assume that elastic deformations are localized in small neigh-
borhoods of particle contacts. Duffy and Mindlin (1957), Emeriault
and Cambou (1996), Chang and Liao (1990), Chang and Misra
(1990), Jenkins (1987), developed elastic models based on the
uniform strain (Voigt) hypothesis. Other models, Misra and Chang
(1993), Trentadue (2001, 2004), Jenkins et al. (2005), considered
the effect of local equilibrium conditions on the macroscopic
elasticity of granular materials.

The more general elasto-plastic behavior of granular materials
is more complex and different micromechanical approaches can
be distinguished. Plasticity models with a fabric tensor were pro-
posed by Oda (1993), Wan and Guo (2001), Nemat-Nasser and
Zhang (2002), Zhu et al. (2006). In these models the material
parameters are defined at the macro level and are functions of
the fabric tensor, in order to consider the effects of packing struc-
ture. Other micromechanical plasticity models represent the mate-
rial as a random packing of particles, where some material
parameters are defined at the particle level, and other parameter
are defined at the macro level. This approach has been followed
by Suiker and Chang (2004), Chang and Hicher (2005), Nicot and
Darve (2006, 2007).

The nature of the distribution of contact forces in granular med-
ia was also investigated in numerical simulations on systems of
particles under quasi-static loading (Radjai et al., 1996, 1997,
1998, 1999; Radjai and Wolf, 1998; Antony and Kuhn, 2004). These
studies shows that the normal components of contact force pro-
vide the major contribution to the deviatoric stress and that load
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is mainly transmitted by relatively rigid, heavily stressed chains of
particles which form a sparse network of contacts. The remaining
groups of particles, which separate the strong force chains, are only
lightly loaded.

Further, simpler plasticity models rely on the consideration that
when low interparticle contact forces are exerted, the macroscopic
plasticity of granular materials can be related only to sliding and
opening of contacts, while deformations or breakings of particles
can be neglected. Micromechanical models based on the above
assumption were proposed by Rowe (1962), Vardoulakis and Sulem
(1992) who considered ordered arrays of identical rigid spherical
particles, by Vardulakis (1981), Vardoulakis and Sulem (1992) who
considered a packing of disks under particular kinematic assump-
tions and by Cambou et al. (2009), who adopted a mean field ap-
proach and considered particular rigid plastic collapse mechanisms.

In this work, granular materials are modeled as statistically
homogeneous random packings of rigid particles with frictional
contacts. The modeling is relatively simple and based on quite
clear theoretical motivations. All material parameters are defined
at the microscopic level and no assumptions regarding the number
and the orientations of contacts are required. Further, it is able to
capture many essential features of the plastic behavior of general
granular materials when low macro-stresses are applied, so that
no contact damages or crushing of particles are produced and no
significant changes in the material microstructure occur until
yielding is reached.

A Reference Volume Element (RVE) containing a very large
number of particles is examined: under a rather general condition
which relates the shapes of particles to the contact friction coeffi-
cients, it is shown that statically admissible equilibrium states can
exist if and only if the mean macro stress pl=tr(T)/
3=(011+022+033)[3 is a pressure (p <0). Further, it is shown
that, given a bounded pressure p <0, every statically admissible
macro stress T must be bounded. Finally, it is shown that the yield
surfaces are cones.

Next, linear displacement conditions are prescribed on the
boundary of RVE and the initial plastic flow is examined in two
particular cases. In the first case a material made of frictionless
convex particles is examined, showing that the initial plastic flow
is associated and that the yield surface is a convex cone. Next, a
more particular material made of identical spherical particles is
considered, showing that also in this case the yield surfaces is a
convex cone, but only the deviatoric part of the plastic flow is asso-
ciated. Finally, it is shown that in a general granular material the
plastic macro strain cannot be associated and a micromechanical
derivation of the well known constitutive inequality relating the
friction and the dilatancy coefficients, first proposed by Taylor
(1948), is given.

It must be highlighted that this modeling is not able to describe
any evolution of the material microstructure either before or after
the macroscopic plastic flow occurs. The rigid-plastic behavior pre-
dicted at the macro scale is therefore influenced by this limitation
and physical phenomena such as hardening or softening or the
evolution of the material dilatancy are not captured.

2. Microstructural continuum model

Let us consider a statistically homogeneous granular material
formed by a random packing of rigid particles. No interparticle
cohesion is considered and contact forces are assumed to follow
the Coulomb friction law. A reference volume element (RVE) of vol-
ume V containing a very large number of particles is examined, as
shown in Fig. 1. The RVE is bounded by a fictitious surface S, envel-
oping the contact points x*¢ between the external particles e and
the internal particles i.

2.1. Kinematically admissible systems of particle displacements

We call kinematically admissible any system of infinitesimal ri-
gid displacements u(x) that does not produce interpenetrations be-
tween particles. So that, for every pair of particles i and j, the
following condition holds:

VX €V},

o 1 X T U(Xg) # Xy + W(X), (1)
VX(k) (S Vk
where Vj‘-) and Vf are the interiors of the space domains occupied by
the two particles. In particular, for every pair of particles a and b in
contact, (1) implies that:

(u® + WPre) — (u? + W) = ¢bnbe 4 phaybe
& =0, (2)
yb.a > 07

where: u® = u(x?) and u® = u(x’) are the displacements of two
internal points * € V© and ** € VJ; W® and WP are the rotation ten-
sors of the rigid particles; r’ = x»® — x® is the radius vector joining
the contact point x¢ with the internal point X*; n is the external
unit normal to the surface S, of the particle a at the contact point
x4, yba is a unit tangent vector to this surface at the same point
(Fig. 1).

A positive value of ¢>® implies a contact opening, while a null
value of 29 together with a positive value of y>¢ implies sliding.
When both parameters are null the two particles remain attached.

2.2. Contact force-displacement laws

Contact forces can be only compressive and must follow the
Coulomb friction law, so that:

Ne — fja e < 0,
Ve — ‘fja e (fja . n)ﬂ)‘ < W'a<_Néa>7

Fig. 1. A random packing of rigid particles.
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where: f denotes the contact force exerted by the particle j to the
particle a at the contact point x/; Njﬂn"ﬂ is the normal component
of the contact force;V = f» — pja(f . o) is the shear component;
1% =tan(¢®) > 0 is the contact friction coefficient, where @ is
the contact friction angle.

A contact opening (&> 0) can occur only when the contact
force £ is null, while a sliding (y® > 0) can occur only when the
Coulomb inequality is strictly satisfied. Then the following contact
force-displacement laws hold:

Ne . éj-ﬂ =0, )
(Via 4 (gaNe) . e = 0,

Finally, contacts are assumed to be isotropic. Therefore, when a con-
tact sliding occurs, the shear contact force V'* must have the same
direction of the sliding displacement pa:

Ve — luj,a(_N)'a YWa,

o — iy, ()

yi'“>0:>{

2.3. Statics

For every particle a of the RVE the following equilibrium condi-
tions must be fulfilled:

Z fja — 0,

XaeS,

S g —rhaf =0,

XS,

(6)

where: (a ® b); = a;b; is the dyadic product of two vector a and b;
the summations are extended to all contact points X of the sur-
faces S, of the particles a. Further, for every pair of contact forces,
the action-reaction principle holds:

flo — _f9. (7)

Since the system of contact forces is equilibrated, according to the
mean stress theorem (Nemat-Nasser and Hori, 1993, Cambou
et al., 2009), the macroscopic stress tensor T can be written as:

VT:ZVH//HT(X)dV:Z S orhafe (8)

agV acV xiacs,

where: V, here denotes both the volume and the space domain
occupied by a generic particle a; the summation is extended to all
particles a of the RVE and to all contacts X' on the particles surfaces
Sq. In view of the rotational equilibrium conditions (6), the macro
stress T is symmetric. Further, according to (6) and (7), the macro
stress T can also be derived only from the contact forces on the
RVE boundary surface S,:

= Y ref =3 Y xe-x)ef

aeV xiaes, aeV xiaes,

S Do T oy
acV \ xjiacs, XaeS,

= Z Z Xj'a ® fja _ Z xi.e ® fei7 (9)
acV xiaes, xieeS,

where, from action-reaction principle, all terms due to internal con-
tact forces vanish and then the last summation is extended only to
the contacts x*¢ on the RVE boundary surface S,.

The macro stress tensor T is then expressed as the sum of its
deviatoric part S and its hydrostatic part pl, so that: T=S+ pl,
where tr(S)=0 and plI = (tr(T)/3)L. By applying the trace operator
to (8), the following relations is established:

3pv=>" % fep (10)

acV xiaes,

In view of (7), (10) can also be written as:

V=Y B, (1)

xaecv

where F* = e — 1% =% — X is the branching vector and the sum-
mation is extended to all contacts X in the RVE.

2.4. Existence and boundedness of statically admissible systems of
contact forces

We call statically admissible any equilibrated system of contact
forces for which the contact laws (3) are satisfied. A macro stress is
called statically admissible if at least a statically admissible system
of contact forces can be determined for it.

As already stated, no assumptions regarding the number and
orientations of the contacts on particles are requested by the pres-
ent model. However, it must be underlined that a random packing
of rigid particles can be conceived as a solid (or fluid) material only
if its microstructure is such that at least a statically admissible
macro stress can be exerted on it. Therefore, in the following we
will assume that material microstructure is such that at least a
macro stress Ts = pol, (po < 0) is statically admissible !. Under this
assumption, it is easy to show that every hydrostatic macrostress
Ts = pI (with p < 0) is also statically admissible.

Next, in the following analysis we will consider only shapes of
particles (Fig. 2) for which the condition:

oo + @ < /2, (12)

is satisfied for every contact point, where: oda is the angle between
the radius vector ¥« and the external unit normal we; ¢4 is the
contact friction angle. It can be noted that if the contact friction an-
gles ¢ are null, the assumption (12) is satisfied for any convex
shape and that, in the particular case of spherical particles, it is sat-
isfied for any value of the contact friction angle.

Now, noting that only compressive contact normal forces
(Nl < 0) can be exerted, under the assumption (12) it can be
shown that in a statically admissible state all terms f - ¥« in (10)
must be negative or null:

f-iﬂ .rju — [I\Jianl'a + Viav];a] ,rjafja
— tla [Nfs'a (We . Pa) 4 Via(véa . fju)]
= pla [Nfs'“ cos(ode) + Ve (vl . i‘fﬂ)]
< e {Ngﬂ cos(ode) + (—ufﬂNJ;“)Max‘%ﬂenh_a (s ‘i'fa)]
= Nlerda [cos(ode) — 149 sin(ode)]
= N2 [cos(ode) — tan(¢p'®) sin(ode))]

cos(ode + %)
cos(gi9)
where P« = ra /Pl is the unit radius vector and the unit tangent vec-

tor v lies on the plane 7% tangent to the particle surface at the
contact points X%, Then, in view of (10) and (13), we find:

3pv=>" Y £ <o, (14)

acV xiaes,

_ Nir <0, (13)

which implies that no statically admissible systems of contact
forces can exist if the mean macro stress p is positive.

1 The subscript s refers to any quantity related to a statically admissible state.
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/

Fig. 2. A statically admissible contact force.

Under the same assumption (12) it can also be established that,
given a bounded non positive macro mean stress p, every statically
admissible macro stress must be bounded. In fact, from (14) and
(13):

3pv=>" % fo.pi fle . pio

> Max,d.aev{
acV xiaes,

J

fa

> Max,d_aev{ N

N

cos(ode + ')
)
}~minﬂ.aev{rfaw} >0 (15)

> Max,d,aev{ N

cos(¢'%)

and, by multiplying the above inequalities by m , where
Hpniax = Maxxl-“ev{.uj'ﬂ}‘ we get:

, Cos(0de + (p“’)}

- MiNyjacy { r cos(¢)

3PV 1+ 6 > (/14 Mty { |V

Max
> |f

- cos(oda + gD’V")}7 (16)

. minxj.aev{r)a cos(gi)

where fi“ . So we find the inequality:

M
f; “’ = MaXyjacy

3IplVy/1 + 12
< |p‘ :uMux (_17)

MiNyacy {coscg(ﬂqﬁ)a) i } |

Max
1:s

which proves that under a bounded pressure every statically admis-
sible system of contact forces is bounded. The above inequality al-
lows us to state that also the Euclidean norm? (T;-Ts)'/? of the
macrostress Ts is bounded:

aeV xiacs, beV xibesy

(T5~T5)%:% [(Z 3 rfa®ff;> : (Z 3 1""’®fi">r

ez senee))

aeV xiacs, beV xibesS,

< zvn fé\/lax

M|, (18)

where n is the number of contact in the RVE and |[rM®| = Maxr’|.
Then, we conclude that, given a bounded pressure p < 0, every stat-
ically admissible macro stress must be bounded.

2.5. Virtual work

Since particles are rigid, according to the virtual work theorem,
for every kinematically admissible system of particle displace-
ments and for every equilibrated system of contact forces, the vir-
tual work of all contact forces exerted on the particles of the RVE is
null. Then it must be:

Z £ -U(Xi'e) _ Z (vja -))i" + 5j~ﬂNjﬂ) =0, (19)
xf»ies,, XjGEVO
where the first summation is extended to all contacts x** on the RVE
boundary surface S, and the second summation is extended to all
inner contacts X' € V, = V\S, (when in a contact no opening or slid-
ing occurs, & and y** have null values).
Further, we assume that linear displacement conditions are im-

posed on the boundary of RVE, so that the displacement u(x"®) of a
material point x*° on the RVE boundary surface S, is given by:

u(x*) = ug + Hx'*, (20)

where H is a given macro displacement gradient tensor and ug is a
translation vector. The macro strain E is then defined as the sym-
metric part of H. In view of (9), the virtual work of the boundary
contact forces (Nemat-Nasser and Hori, 1993) can be expressed as:

Z . u(xi) = Z 9 . (up + HX™)

xi.eesu xi'EESy
= > ffex*| H=VT-H
xiecS,
T
:VT-<H+2H>=VT-E., 1)

where it has been considered that the system of boundary contact
forces is equilibrated and that the macro stress tensor T is symmet-
ric. Finally, from (19) and (21) we find:

VI-E= ) (Ve yle+ JNi. (22)

XaeVy

2A-B= Z?jfla,-jb,-j denotes the inner product of two tensor and the Euclidean
norm of T is equal to (T-T)? = (Z?jzlafj)z.
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Fig. 3. A conic yield surface.

2.6. Yield surface. Flow rule

We denote as rigid-plastic collapse state a state in which under a
constant macro stress T, a macro strain E. occurs.3v More exactly, a
collapse state is a statically admissible state (T.,f?) in which the
material develops a kinematically admissible system of particle dis-
placements ug,Wﬂ,y’gﬂé’f satisfying the contact force-displace-
ment laws (4) and (5) and consistent with a macro strain E..

In order to model a granular material as a rigid plastic material
it must to be assumed that a collapse state is independent on the
loading history and then a yield function f(T) exists, such that the
condition f{T,) = 0 holds for all collapse macro stress T..* We denote
as yield surface the locus of points of the macro stress space such that
fT)=0. . L.

It is easy to verify that if <h—l -S., —f{a,Ec,uz,Wi,y';,cf{‘) is a
plastic collapse state in which the macro pressure is equal to

= —1, then also (p.I + p.Sc,p.Fe, Ec,u®, W v &) where p. <0,
is a plastic collapse state. Therefore the yield sufface must be a
cone, with vertex at the origin of stress space.

Now, the initial plastic flow of this material is examined in two
particular cases in which (12) holds. First, an ideal random packing
of rigid convex particles, with null contact friction, is taken into ac-
count. A generic collapse state (T, Njgn"a,E ,ug,Wﬂ,y’;, g’fc'” and a
generic statically admissible state (Ts, Nen« ) are considered. Since
STC —Ts, (N’C“ fN]S'“)n"ﬂ is an equilibrium state and the particle

isplacements gug W, y’gﬁ &) are consistent with the macro
strain E, from (22) it must be:

VT Eem Y (M- )

x0eVy

(23)
where, from (2) and (4):N¢&“ = 0;N* < 0 and & > 0. Then we get
the inequality:

V(T -T) Ec= Y &(-N¢) >0,

XiaeV,

(24)

which proves that the yield surface is a convex cone and that the
plastic macro strain E. is associated.

In Fig. 3, in the particular case of an isotropic granular material,
a convex conic yield surface and an intersection of this surface with
a deviatoric plane of equation s; + s, + s3 = p, here denoted as oct-
haedric profile, are shown in the principal stress space.

It can be shown that an ideal frictionless granular material can
react to a not null macro stress only if its microstructure is such

3 The subscript c refers to any quantity related to a collapse state.
4 For every statically admissible macrostress T; it must be f{T;) < 0, while for every
inadmissible macrostress T it must be f{T) > 0.

that to produce a collapse dilatant behavior (¢&/ > 0).° In order to
prove this property, let us consider a generic collapse state
(pcl+SC,f’C",a‘t’I/3 +EP ud, W2 9k &9) and a statically admissible
macro stress pCI,N’;“ nis). From 24 we find that the in the collapse
state the work done by the deviatoric part of stress is always non
negative: S - EE > 0. Further, by setting (T; = 0, N’;an’;“ =0), we find
that the total work in the collapse state is always null:
p.el +S.-EP? = 0. Therefore in a collapse state the internal work
done by the hydrostatic part of the stress is always non positive:
p.£Y < 0. Since p. <0, the volumetric collapse strain &/ must be
non negative.

Next, the particular case of a random packing of frictional rigid
spherical particles of equal diameters and with equal friction coef-
ficients is examined. For every rigid-plastic collapse state and for
every statically admissible state, the following identity holds:

V(T -T)) - E.= ) KVJ?” fvf;) e ﬁﬁaNéa]_

XaeVy

(25)

In order to discuss the consequences of Eq. (25) we first note that,
from the local contact force displacement laws (4) and (5), we have:

Vi -yl = Vigle cos(ol) = pipu (N2 )i,
pl = cos (v ﬁ “1<ph<,

where s is the angle between the statically admissible shear con-
tact force V¢ and the sliding contact displacement y%. Further:

VI = Vi = (N

Egs. (26) and (27) show that, if equal values of the normal contact
force (N« = N) are applied, the virtual work done by a statically
admissible contact shear force V¥ is always less or equal than the
work done by the collapse shear force VJ;“ that produces the sliding
displacement .

Now, let wus consider a generic collapse state
(P +Sc, £2,€/1/3 + E2, ud, W2, &%) and a generic statically
admissible macro stress (pJI+Ss, ) with the same hydrostatic
stress p l. From (25)-(27) we get:

V(Sc—So) BD = >0 o (pENE - NE )+ S E0(-NE). (28)

x4eVy X4eVy

(26)

(27)

In  this case the signs of the virtual works
(VJC“ 7vf;) Sy = y(pgaNga — N )k are not known. However, we

5 &Y = tr(Ec)/3 is the volumetric collapse strain and E? = E. — ¢'1 is the deviatoric

component of the collapse strain.
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can consider that there is not a direct relation between the sliding
contact displacements -° and the quantities u pﬁ“NJ;’ — N,

To this regard, it can be noted that there is not a direct relation
between the statically admissible contact shear forces V= and the
sliding collapse displacements yé because these quantities are re-
lated to different states of the material. Further, when a not null
sliding displacement y%s occurs, its magnitude 7:® depends on the
interaction of the examined particle with the neighbouring parti-
cles and on the kinematic conditions imposed on the RVE, but it
is not directly depending on the magnitude p —Nf; of the shear
contact force V’é’. Then the assumption that the amplitudes 7 of
the sliding contact displacements are statistically independent or
poorly correlated to the quantities u p’sts - Nfcﬂ can be accepted
as an approximation of the real behavior of this material. Under
this assumption, as it will be shown, it is possible to assert that also
in this case the virtual work (S, — S;) - E2 is positive.

First, according to (11), we can note that the expected value of
the normal contact forces is proportional to the mean stress p:

3pV=Y P e = S N =1 ) N, (29)
xacy xiacV xacV
from which:
E[N] :1 Z Ne :y
n 4— nl
xiacy

where it has been considered that the number n of contact in the
RVE is very large and then the expected value E[N] of the contact
normal forces is equal to their arithmetic average. Further, we have
chosen a collapse state and a statically admissible state with the
same pressure p, then it must be:

1 Lo ; 3pV _
ElpNs =N =2 >~ (pbNe —NE) == (= 1)
xaeV

>0 —-1<ps<1. (30)
Next, under the assumption that the sliding contact displacements
Pi¢ are statistically independent or poorly correlated to the quanti-
ties ( p*N* — N ), the expected value of their product can be con-
fused with the product of their expected values and we can write:

17 (PN~ NE ) = nopE[y(p,Ns — No)
x9eV,
~ nopE[yJE[(p.Ns — No)) > 0, (31)

where ng is the number of inner contact in the RVE and where it has
been considered that:

1 .
Elp] == >~ 74" >0. (32)
xaev
Finally, (28) can be written as:
V(S; —So) - B = nopEly JEl(pNs ~ No + Y- &d°(-N) (33
x0eVy

and, from (2), (4) and (31) we get the inequality:

(Sc—S,)-E? >0, (34)
that allows us to establish that the conic yield surface is convex and

that the deviatoric plastic macro strain E° is associated. Then the
following relations hold:

{VAS¢ 0: AS- 2 fu,)[AS] >0,

35
El =k &f(Te); Kk >0. G5)

Now, we want to show that in a general frictional granular
material the volumetric plastic macrostrain cannot be associated.
To this end, let us consider (Fig. 4) the intersection of the yield sur-

face with a plane of equation T = pI + S, where S is a fixed unit
deviatoric tensor (S-S = 1). This intersection is here denoted as
meridian profile. Since the yield surface is a cone, the meridian
profile is composed by two rays, whose equations are
Je = (—p.) tan ¢; > 0 and /. =p.tan ? 5 < 0.
Now, let ~us consider a p)lastic
pcl - P tan @S, pfE, ol1/3 + B2, ud, We, o, 89,
According to the Virtual Work Theorem, we find:

collapse  state
where p.<0.

~ v
V(pd - p tan ¢_8) - (%CI + Eﬁ’)

= Vpc<ec" —tan <p§(§-E?>) = > pVe-yic >0 (36)

XaeVy

It is worth noting that if we assume that besides the above micro
state a different micro state, corresponding to the same macro state,
fle we w’:,y’gmg’gv”) exists, according to the Virtual Work Theo-

c e

rem, we find:
> pVEyt = D Vel (37)
XaeVy XaeVy

Further, dividing (36) by |p.| we get:

—& +tan ¢} :% > (<) -yt >0, (38)

XaeVy

where ¢ = S - E? is the component of the deviatoric plastic macro
strain in the given meridian plane. It easy to note that the inequality
(38) is strictly satisfied only when friction is null and, further, Fig. 4
shows us that the component of the plastic macro strain in the gi-
ven meridian plane is normal to the meridian profile only in this last
case. Then, inequality (38) shows us that in a frictional material the
plastic macro strain cannot be associated. _

Now, we consider a collapse state for which & > 0. If we define
the dilatancy coefficient d = &’ /e~ as the ratio of the volumetric
strain over the component &5 of the deviatoric plastic macro strain
in the actual meridian plane, from (38) we get the inequality:

tan@; —d > 0, (39)

that extends to a general triaxial stress state the well known consti-
tutive inequality first proposed by Taylor (1948).

3. Conclusions

A micromechanical modeling of a granular material consisting
of a random package of rigid particles has been developed in order
to establish a conceptual link between the general properties of
macroscopic plasticity of granular materials, the frictional behavior

p tan 9

P - tan gy

Fig. 4. A mendian profile of a conic yield surface.
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of contacts and the local equilibrium of particles. A RVE containing
a very large number of particles with prescribed linear displace-
ment boundary conditions has been examined and the general
properties of the effective rigid plastic constitutive behavior of this
material has been determined. The model has allowed us to deduce
many essential features of the plastic behavior of general granular
materials when no contact damages or particles crushing are pro-
duced and no relevant changes in the material microstructure oc-
cur until the yielding. It has been shown that the yield surface of a
random packing of frictional rigid particles is a cone and that the
plastic macro strain cannot be associated, while it is associated
in case of frictionless particles. The model is relatively simple
and based on clear theoretical motivations.
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