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The mechanical behavior of a random packing of rigid particles, in which interparticle contact forces fol-
low the Coulomb friction law, is analyzed with the aim of establishing a link between the microscopic
frictional behavior of contacts, the equilibrium of particles and the macroscopic plasticity of this material.
A Reference Volume Element (RVE) containing a very large number of particles is examined and, under a
rather general assumption on the shapes of particles, it is shown that in the macro stress space the yield
surface of this material is a cone. Further, linear displacement boundary conditions are prescribed on the
RVE and the plastic macro strain of this material is examined. It is shown that in case of frictional parti-
cles the plastic macro strain cannot be associated, while it is associated in case of frictionless particles.
Further, in the particular case of frictional identical spheres, it is shown that only the deviatoric compo-
nent of plastic macro strain is associated. Finally, a micromechanical derivation of the constitutive
inequality relating the friction and dilatancy coefficients is given.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Granular materials are packings of discrete particles in which
relative movements are due both to deformations of particles
and to sliding or opening of contacts. Despite several decades of
extensive studies, a link between the microscopic properties of
these materials and their general macroscopic mechanical behav-
ior is not definitively established.

At the macroscopic scale granular materials generally exhibit
vanishing elasticity and predominantly irreversible deformations.
It is then customary to represent their macroscopic mechanical
behavior by plasticity models. Well known plasticity models for
soils are the Mohr–Coulomb model and the Drucker-Prager model
(1952). Other plasticity models for granular materials which pro-
vide a better matching with the experimental results were more
recently proposed by Lade (1977), Matsuoka and Nakai (1977),
Krenk (2000). All these models predict convex conic yield surfaces.

The plastic macro deformation of granular materials, with
either negative or positive dilatancy, is frequently described by
non-associated flow rules. In particular, it is usually assumed that
only the deviatoric part of the plastic strain follows the normality
rule, while the volumetric plastic strain is not associated. This
assumption, usually referred as deviatoric associativity, is widely
adopted in soil mechanics: Gudehus (1972), Lade and Duncan
(1973), Baker and Desai (1982).

Several micromechanical models have been adopted to study the
macroscopic mechanical behavior of granular materials. Among
ll rights reserved.
these, the models developed to study the elasticity exhibited by
granular materials when small arbitrary stresses are superimposed
to a confining pressure, neglect the opening or the sliding of contacts
and assume that elastic deformations are localized in small neigh-
borhoods of particle contacts. Duffy and Mindlin (1957), Emeriault
and Cambou (1996), Chang and Liao (1990), Chang and Misra
(1990), Jenkins (1987), developed elastic models based on the
uniform strain (Voigt) hypothesis. Other models, Misra and Chang
(1993), Trentadue (2001, 2004), Jenkins et al. (2005), considered
the effect of local equilibrium conditions on the macroscopic
elasticity of granular materials.

The more general elasto-plastic behavior of granular materials
is more complex and different micromechanical approaches can
be distinguished. Plasticity models with a fabric tensor were pro-
posed by Oda (1993), Wan and Guo (2001), Nemat-Nasser and
Zhang (2002), Zhu et al. (2006). In these models the material
parameters are defined at the macro level and are functions of
the fabric tensor, in order to consider the effects of packing struc-
ture. Other micromechanical plasticity models represent the mate-
rial as a random packing of particles, where some material
parameters are defined at the particle level, and other parameter
are defined at the macro level. This approach has been followed
by Suiker and Chang (2004), Chang and Hicher (2005), Nicot and
Darve (2006, 2007).

The nature of the distribution of contact forces in granular med-
ia was also investigated in numerical simulations on systems of
particles under quasi-static loading (Radjai et al., 1996, 1997,
1998, 1999; Radjai and Wolf, 1998; Antony and Kuhn, 2004). These
studies shows that the normal components of contact force pro-
vide the major contribution to the deviatoric stress and that load
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is mainly transmitted by relatively rigid, heavily stressed chains of
particles which form a sparse network of contacts. The remaining
groups of particles, which separate the strong force chains, are only
lightly loaded.

Further, simpler plasticity models rely on the consideration that
when low interparticle contact forces are exerted, the macroscopic
plasticity of granular materials can be related only to sliding and
opening of contacts, while deformations or breakings of particles
can be neglected. Micromechanical models based on the above
assumption were proposed by Rowe (1962), Vardoulakis and Sulem
(1992) who considered ordered arrays of identical rigid spherical
particles, by Vardulakis (1981), Vardoulakis and Sulem (1992) who
considered a packing of disks under particular kinematic assump-
tions and by Cambou et al. (2009), who adopted a mean field ap-
proach and considered particular rigid plastic collapse mechanisms.

In this work, granular materials are modeled as statistically
homogeneous random packings of rigid particles with frictional
contacts. The modeling is relatively simple and based on quite
clear theoretical motivations. All material parameters are defined
at the microscopic level and no assumptions regarding the number
and the orientations of contacts are required. Further, it is able to
capture many essential features of the plastic behavior of general
granular materials when low macro-stresses are applied, so that
no contact damages or crushing of particles are produced and no
significant changes in the material microstructure occur until
yielding is reached.

A Reference Volume Element (RVE) containing a very large
number of particles is examined: under a rather general condition
which relates the shapes of particles to the contact friction coeffi-
cients, it is shown that statically admissible equilibrium states can
exist if and only if the mean macro stress pI = tr(T)/
3 = (r11 + r22 + r33)/3 is a pressure (p 6 0). Further, it is shown
that, given a bounded pressure p 6 0, every statically admissible
macro stress T must be bounded. Finally, it is shown that the yield
surfaces are cones.

Next, linear displacement conditions are prescribed on the
boundary of RVE and the initial plastic flow is examined in two
particular cases. In the first case a material made of frictionless
convex particles is examined, showing that the initial plastic flow
is associated and that the yield surface is a convex cone. Next, a
more particular material made of identical spherical particles is
considered, showing that also in this case the yield surfaces is a
convex cone, but only the deviatoric part of the plastic flow is asso-
ciated. Finally, it is shown that in a general granular material the
plastic macro strain cannot be associated and a micromechanical
derivation of the well known constitutive inequality relating the
friction and the dilatancy coefficients, first proposed by Taylor
(1948), is given.

It must be highlighted that this modeling is not able to describe
any evolution of the material microstructure either before or after
the macroscopic plastic flow occurs. The rigid-plastic behavior pre-
dicted at the macro scale is therefore influenced by this limitation
and physical phenomena such as hardening or softening or the
evolution of the material dilatancy are not captured.
Fig. 1. A random packing of rigid particles.
2. Microstructural continuum model

Let us consider a statistically homogeneous granular material
formed by a random packing of rigid particles. No interparticle
cohesion is considered and contact forces are assumed to follow
the Coulomb friction law. A reference volume element (RVE) of vol-
ume V containing a very large number of particles is examined, as
shown in Fig. 1. The RVE is bounded by a fictitious surface Sv envel-
oping the contact points xi,e between the external particles e and
the internal particles i.
2.1. Kinematically admissible systems of particle displacements

We call kinematically admissible any system of infinitesimal ri-
gid displacements u(x) that does not produce interpenetrations be-
tween particles. So that, for every pair of particles i and j, the
following condition holds:

8xðjÞ 2 V0
j ;

8xðkÞ 2 V0
k

: xðjÞ þ uðxðjÞÞ– xðkÞ þ uðxðkÞÞ; ð1Þ

where V0
j and V0

j are the interiors of the space domains occupied by
the two particles. In particular, for every pair of particles a and b in
contact, (1) implies that:

ðub þWbrab Þ � ðua þWarba Þ ¼ nb;anba þ cb;amba ;

nb;a P 0;
cb;a P 0;

8><>: ð2Þ

where: ua ¼ uðxaÞ and ub ¼ uðxbÞ are the displacements of two
internal points xa 2 V0

a and xb 2 V0
b; Wa and Wb are the rotation ten-

sors of the rigid particles; rba ¼ xb;a � xa is the radius vector joining
the contact point xb,a with the internal point xa; nba is the external
unit normal to the surface Sa of the particle a at the contact point
xb;a; mba is a unit tangent vector to this surface at the same point
(Fig. 1).

A positive value of nb,a implies a contact opening, while a null
value of nb,a together with a positive value of cb,a implies sliding.
When both parameters are null the two particles remain attached.

2.2. Contact force-displacement laws

Contact forces can be only compressive and must follow the
Coulomb friction law, so that:

Nja ¼ f ja � nja 6 0;

Vja ¼ jf ja � nja ðf ja � nja Þj 6 lj;a �Nja
s

� �
;

8<: ð3Þ
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where: f ja denotes the contact force exerted by the particle j to the
particle a at the contact point xj;a; Nja nja is the normal component
of the contact force;Vja ¼ f ja � nja ðf ja � nja Þ is the shear component;
lj,a = tan(uj,a) P 0 is the contact friction coefficient, where uj,a is
the contact friction angle.

A contact opening (nj,a > 0) can occur only when the contact
force f ja is null, while a sliding (cj,a > 0) can occur only when the
Coulomb inequality is strictly satisfied. Then the following contact
force-displacement laws hold:

Nja � nj;a ¼ 0;
ðVja þ lj;aNja Þ � cj;a ¼ 0:

(
ð4Þ

Finally, contacts are assumed to be isotropic. Therefore, when a con-
tact sliding occurs, the shear contact force Vja must have the same
direction of the sliding displacement cja :

cj;a > 0 ) Vja ¼ lj;að�NjaÞmja ;

cja ¼ cj;amja :

(
ð5Þ
1 The subscript s refers to any quantity related to a statically admissible state.
2.3. Statics

For every particle a of the RVE the following equilibrium condi-
tions must be fulfilled:X

xj;a2Sa

f ja ¼ 0;

X
xj;a2Sa

f ja � rja � rja � f ja ¼ 0;
ð6Þ

where: (a � b)ij = aibj is the dyadic product of two vector a and b;
the summations are extended to all contact points xj,a of the sur-
faces Sa of the particles a. Further, for every pair of contact forces,
the action-reaction principle holds:

f ja ¼ �faj : ð7Þ

Since the system of contact forces is equilibrated, according to the
mean stress theorem (Nemat-Nasser and Hori, 1993, Cambou
et al., 2009), the macroscopic stress tensor T can be written as:

VT ¼
X
a2V

Va

Z
Va

TðxÞdV ¼
X
a2V

X
xj;a2Sa

rja � f ja ; ð8Þ

where: Va here denotes both the volume and the space domain
occupied by a generic particle a; the summation is extended to all
particles a of the RVE and to all contacts xj,a on the particles surfaces
Sa. In view of the rotational equilibrium conditions (6), the macro
stress T is symmetric. Further, according to (6) and (7), the macro
stress T can also be derived only from the contact forces on the
RVE boundary surface Sv:

VT ¼
X
a2V

X
xj;a2Sa

rja � f ja ¼
X
a2V

X
xj;a2Sa

ðxj;a � xaÞ � f ja

¼
X
a2V

X
xj;a2Sa

ðxj;a � xaÞ � f ja þ xa �
X

xj;a2Sa

f ja

0@ 1A
¼
X
a2V

X
xj;a2Sa

xj;a � f ja ¼
X

xi;e2Sv

xi;e � fei ; ð9Þ

where, from action-reaction principle, all terms due to internal con-
tact forces vanish and then the last summation is extended only to
the contacts xi,e on the RVE boundary surface Sv.

The macro stress tensor T is then expressed as the sum of its
deviatoric part S and its hydrostatic part pI, so that: T = S + pI,
where tr(S) = 0 and pI = (tr(T)/3)I. By applying the trace operator
to (8), the following relations is established:
3pV ¼
X
a2V

X
xj;a2Sa

f ja � rja : ð10Þ

In view of (7), (10) can also be written as:

3pV ¼
X

xj;a2V

lja � f ja ; ð11Þ

where lja ¼ rja � raj ¼ xj � xa is the branching vector and the sum-
mation is extended to all contacts xj,a in the RVE.

2.4. Existence and boundedness of statically admissible systems of
contact forces

We call statically admissible any equilibrated system of contact
forces for which the contact laws (3) are satisfied. A macro stress is
called statically admissible if at least a statically admissible system
of contact forces can be determined for it.

As already stated, no assumptions regarding the number and
orientations of the contacts on particles are requested by the pres-
ent model. However, it must be underlined that a random packing
of rigid particles can be conceived as a solid (or fluid) material only
if its microstructure is such that at least a statically admissible
macro stress can be exerted on it. Therefore, in the following we
will assume that material microstructure is such that at least a
macro stress Ts = p0I, (p0 < 0) is statically admissible 1. Under this
assumption, it is easy to show that every hydrostatic macrostress
Ts = pI (with p 6 0) is also statically admissible.

Next, in the following analysis we will consider only shapes of
particles (Fig. 2) for which the condition:

aja þuj;a
6 p=2; ð12Þ

is satisfied for every contact point, where: aja is the angle between
the radius vector rja and the external unit normal nja ; uj;a is the
contact friction angle. It can be noted that if the contact friction an-
gles uj,a are null, the assumption (12) is satisfied for any convex
shape and that, in the particular case of spherical particles, it is sat-
isfied for any value of the contact friction angle.

Now, noting that only compressive contact normal forces
ðNja

s 6 0Þ can be exerted, under the assumption (12) it can be
shown that in a statically admissible state all terms f ja

s � rja in (10)
must be negative or null:

f ja
s � rja ¼ Nja

s nja þ Vja
s mja

s

h i
� rja�rja

¼ rja Nja
s ðnja � �rja Þ þ Vja

s ðmja
s � �rjaÞ

h i
¼ rja Nja

s cosðajaÞ þ Vja
s ðmja

s � �rja Þ
h i

6 rja Nja
s cosðaja Þ þ �lj;aNja

s

� �
Max

mja
s 2ph;a mja

s � �rja
� �h i

¼ Nja
s rja cosðaja Þ � lj;a sinðaja Þ

� �
¼ Nja

s rja cosðaja Þ � tanðuj;aÞ sinðajaÞ
� �

¼ Nja
s rja

cosðaja þuj;aÞ
cosðuj;aÞ 6 0; ð13Þ

where �rja ¼ rja=rja is the unit radius vector and the unit tangent vec-
tor mja lies on the plane pj,a tangent to the particle surface at the
contact points xj,a. Then, in view of (10) and (13), we find:

3pV ¼
X
a2V

X
xj;a2Sa

f ja
s � rja 6 0; ð14Þ

which implies that no statically admissible systems of contact
forces can exist if the mean macro stress p is positive.



Fig. 2. A statically admissible contact force.

2532 F. Trentadue / International Journal of Solids and Structures 48 (2011) 2529–2535
Under the same assumption (12) it can also be established that,
given a bounded non positive macro mean stress p, every statically
admissible macro stress must be bounded. In fact, from (14) and
(13):
3jpjV ¼
X
a2V

X
xj;a2Sa

f ja
s � rja

������
������P Maxxj;a2V f ja

s � rja
��� ���n o

P Maxxj;a2V Nja
s

��� ��� cosðaja þuj;aÞ
cosðuj;aÞ rja

	 

P Maxxj;a2V Nja

s

��� ���n o
�minxj;a2V rja

cosðaja þuj;aÞ
cosð/j;aÞ

( )
P 0 ð15Þ

and, by multiplying the above inequalities by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

Max

q
, where

lMax ¼ Maxxj;a2Vflj;ag, we get:
2 A � B ¼
P3

i;j¼1aijbij denotes the inner product of two tensor and the Euclidean
norm of T is equal to ðT � TÞ

1
2 ¼

P3
i;j¼1r2

ij

� �1
2 .
3jpjV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

Max

q
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

Max

q
Maxxj;a2V Nja

s

��� ���n o� 

�minxj;a2V rja

cosðaja þuj;aÞ
cosðuj;aÞ

	 

P fMax

s

��� ��� �minxj;a2V rja
cosðaja þuj;aÞ

cosðuj;aÞ

	 

; ð16Þ

where fMax
s

��� ��� ¼ Maxxj;a2V f ia
s

��� ���. So we find the inequality:
fMax
s

��� ��� 6 3jpjV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

Max

q
minxj;a2V

cosðajaþuj;aÞ
cosðuj;aÞ rja

n o ; ð17Þ

which proves that under a bounded pressure every statically admis-
sible system of contact forces is bounded. The above inequality al-
lows us to state that also the Euclidean norm2 (Ts � Ts)1/2 of the
macrostress Ts is bounded:

ðTs � TsÞ
1
2 ¼ 1

V

X
a2V

X
xj;a2Sa

rja � f ja
s

0@ 1A � X
b2V

X
xi;b2Sb

rib � f ib
s

0@ 1A24 351
2

¼ 1
V

X
a2V

X
xj;a2Sa

X
b2V

X
xi;b2Sb

ðrja � rib Þ f ib
s � f

ja
s

� �0@ 1A24 351
2

6
2n
V

fMax
s

��� ���jrMaxj; ð18Þ

where n is the number of contact in the RVE and jrMaxj ¼ Maxjria j.
Then, we conclude that, given a bounded pressure p 6 0 , every stat-
ically admissible macro stress must be bounded.
2.5. Virtual work

Since particles are rigid, according to the virtual work theorem,
for every kinematically admissible system of particle displace-
ments and for every equilibrated system of contact forces, the vir-
tual work of all contact forces exerted on the particles of the RVE is
null. Then it must be:X
xe;i2Sv

fei � uðxi;eÞ �
X

xj;a2V0

ðVja � cja þ nj;aNjaÞ ¼ 0; ð19Þ

where the first summation is extended to all contacts xe,i on the RVE
boundary surface Sv and the second summation is extended to all
inner contacts xj,a 2 V0 = VnSv (when in a contact no opening or slid-
ing occurs, nj,a and cj,a have null values).

Further, we assume that linear displacement conditions are im-
posed on the boundary of RVE, so that the displacement u(xi,e) of a
material point xi,e on the RVE boundary surface Sv is given by:

uðxi;eÞ ¼ u0 þHxi;e; ð20Þ

where H is a given macro displacement gradient tensor and u0 is a
translation vector. The macro strain E is then defined as the sym-
metric part of H. In view of (9), the virtual work of the boundary
contact forces (Nemat-Nasser and Hori, 1993) can be expressed as:X
xi;e2Sv

fei � uðxi;eÞ ¼
X

xi;e2Sv

fei � ðu0 þHxi;eÞ

¼
X

xi;e2Sv

fei � xi;e

0@ 1A �H ¼ VTT �H

¼ VT � HþHT

2

 !
¼ VT � E; ð21Þ

where it has been considered that the system of boundary contact
forces is equilibrated and that the macro stress tensor T is symmet-
ric. Finally, from (19) and (21) we find:

VT � E ¼
X

xj;a2V0

ðVja � cja þ nj;aNja Þ: ð22Þ



Fig. 3. A conic yield surface.
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2.6. Yield surface. Flow rule

We denote as rigid-plastic collapse state a state in which under a
constant macro stress Tc a macro strain Ec occurs.3 More exactly, a
collapse state is a statically admissible state ðTc; f

ja
c Þ in which the

material develops a kinematically admissible system of particle dis-
placements ua

c ;W
a
c ; c

ja
c ; n

j;a
c

� �
satisfying the contact force-displace-

ment laws (4) and (5) and consistent with a macro strain Ec.
In order to model a granular material as a rigid plastic material

it must to be assumed that a collapse state is independent on the
loading history and then a yield function f(T) exists, such that the
condition f(Tc) = 0 holds for all collapse macro stress Tc.4 We denote
as yield surface the locus of points of the macro stress space such that
f(Tc) = 0.

It is easy to verify that if �I� Sc;��fja
c ;Ec;ua

c ;W
a
c ; c

ja
c ; n

j;a
c

� �
is a

plastic collapse state in which the macro pressure is equal to
p = �1, then also pcIþ pcSc; pc

�f ja
c ;Ec;ua;Wa

c ; c
ja
c ; n

j;a
c

� �
, where pc 6 0,

is a plastic collapse state. Therefore the yield surface must be a
cone, with vertex at the origin of stress space.

Now, the initial plastic flow of this material is examined in two
particular cases in which (12) holds. First, an ideal random packing
of rigid convex particles, with null contact friction, is taken into ac-
count. A generic collapse state Tc;N

ja
c nja ;Ec;ua

c ;W
a
c ; c

ja
c ; n

j;a
c

� �
and a

generic statically admissible state Ts;N
ja
s nja

� �
are considered. Since

Tc � Ts; Nja
c � Nja

s

� �
nja

� �
is an equilibrium state and the particle

displacements ua
c ;W

a
c ; c

ja
c ; n

j;a
c

� �
are consistent with the macro

strain Ec, from (22) it must be:

VðTc � TsÞ � Ec ¼
X

xj;a2V0

Nja
c � Nja

s

� �
nj;a

c ; ð23Þ

where, from (2) and (4):Nja
c nj;a

c ¼ 0; Nja
s 6 0 and nj;a

c P 0. Then we get
the inequality:

VðTc � TsÞ � Ec ¼
X

xj;a2V0

nj;a
c �Nja

s

� �
P 0; ð24Þ

which proves that the yield surface is a convex cone and that the
plastic macro strain Ec is associated.

In Fig. 3, in the particular case of an isotropic granular material,
a convex conic yield surface and an intersection of this surface with
a deviatoric plane of equation s1 + s2 + s3 = p, here denoted as oct-
haedric profile, are shown in the principal stress space.

It can be shown that an ideal frictionless granular material can
react to a not null macro stress only if its microstructure is such
3 The subscript c refers to any quantity related to a collapse state.
4 For every statically admissible macrostress Ts it must be f(Ts) 6 0, while for every

inadmissible macrostress T it must be f(T) > 0.
that to produce a collapse dilatant behavior ðeV
c P 0Þ.5 In order to

prove this property, let us consider a generic collapse state
pcIþ Sc; f

ja
c ; eV

c I=3þ ED
c ;u

a
c ;W

a
c ; c

ja
c ; n

j;a
c

� �
and a statically admissible

macro stress pcI;Nja
s nja

s

� �
. From 24 we find that the in the collapse

state the work done by the deviatoric part of stress is always non
negative: Sc � ED

c P 0. Further, by setting ðTs ¼ 0; Nja
s nja

s ¼ 0Þ, we find
that the total work in the collapse state is always null:
pceV

c þ Sc � ED
c ¼ 0. Therefore in a collapse state the internal work

done by the hydrostatic part of the stress is always non positive:
pceV

c 6 0. Since pc 6 0, the volumetric collapse strain eV
c must be

non negative.
Next, the particular case of a random packing of frictional rigid

spherical particles of equal diameters and with equal friction coef-
ficients is examined. For every rigid-plastic collapse state and for
every statically admissible state, the following identity holds:

VðTc � TsÞ � Ec ¼
X

xj;a2V0

Vja
c � Vja

s

� �
� cja

c � nj;a
c Nja

s

h i
: ð25Þ

In order to discuss the consequences of Eq. (25) we first note that,
from the local contact force displacement laws (4) and (5), we have:

Vja
s � cja

c ¼ Vja
s cj;a

c cosð#ja
s Þ ¼ qjal �Nja

s

� �
cj;a

c ;

qja ¼ cos #ja
s

� � Vja
s

l �Nja
s

� � ; �1 6 qja 6 1;
ð26Þ

where #ja
s is the angle between the statically admissible shear con-

tact force Vja
s and the sliding contact displacement cja

c . Further:

Vja
c � cja

c ¼ Vja
c cj;a

c ¼ l �Nja
c

� �
cj;a

c : ð27Þ

Eqs. (26) and (27) show that, if equal values of the normal contact
force Nja

c ¼ Nja
s

� �
are applied, the virtual work done by a statically

admissible contact shear force Vja
s is always less or equal than the

work done by the collapse shear force Vja
c that produces the sliding

displacement cja
c .

Now, let us consider a generic collapse state
ðpcIþ Sc; f

ja
c ; eV

c I=3þ ED
c ;u

a
c ;W

a
c ; c

ja
c ; n

j;a
c Þ and a generic statically

admissible macro stress ðpcIþ Ss; f
ja
s Þ with the same hydrostatic

stress pcI. From (25)–(27) we get:

VðSc � SsÞ � ED
c ¼ l

X
xj;a2V0

cj;a
c qja

s Nja
s � Nja

c

� �
þ
X

xj;a2V0

nj;a
c �Nja

s

� �
: ð28Þ

In this case the signs of the virtual works
Vja

c � Vja
s

� �
� cja

c ¼ l qja
s Nja

s � Nja
c

� �
cj;a

c are not known. However, we
5 eV
c ¼ trðEcÞ=3 is the volumetric collapse strain and ED

c ¼ Ec � eV
c I is the deviatoric

component of the collapse strain.
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can consider that there is not a direct relation between the sliding
contact displacements cj;a

c and the quantities l qja
s Nja

s � Nja
c

� �
.

To this regard, it can be noted that there is not a direct relation
between the statically admissible contact shear forces Vja

s and the
sliding collapse displacements cja

c , because these quantities are re-
lated to different states of the material. Further, when a not null
sliding displacement cja

c occurs, its magnitude cj;a
c depends on the

interaction of the examined particle with the neighbouring parti-
cles and on the kinematic conditions imposed on the RVE, but it
is not directly depending on the magnitude l �Nja

c

� �
of the shear

contact force Vja
c . Then the assumption that the amplitudes cj;a

c of
the sliding contact displacements are statistically independent or
poorly correlated to the quantities l qja

s Nja
s � Nja

c

� �
can be accepted

as an approximation of the real behavior of this material. Under
this assumption, as it will be shown, it is possible to assert that also
in this case the virtual work ðSc � SsÞ � ED

c is positive.
First, according to (11), we can note that the expected value of

the normal contact forces is proportional to the mean stress p:

3pV ¼
X

xj;a2V

lja � f ja ¼
X

xj;a2V

lja � Nja nja ¼ 1
X

xj;a2V

Nja ; ð29Þ

from which:

E½N� ¼ 1
n

X
xj;a2V

Nja ¼ 3pV
nl

where it has been considered that the number n of contact in the
RVE is very large and then the expected value E[N] of the contact
normal forces is equal to their arithmetic average. Further, we have
chosen a collapse state and a statically admissible state with the
same pressure p, then it must be:

E½qsNs � Nc� ¼
1
n

X
xj;a2V

qja
s Nja

s � Nja
c

� �
¼ 3pV

nl
ð�qs � 1Þ

P 0 � 1 6 �qs 6 1: ð30Þ

Next, under the assumption that the sliding contact displacements
cj;a

c are statistically independent or poorly correlated to the quanti-
ties qja

s Nja
s � Nja

c

� �
, the expected value of their product can be con-

fused with the product of their expected values and we can write:

l
X

xj;a2V0

cj;a
c qja

s Nja
s � Nja

c

� �
¼ n0lE½ccðqsNs � NcÞ�

’ n0lE½cc�E½ðqsNs � NcÞ�P 0; ð31Þ

where n0 is the number of inner contact in the RVE and where it has
been considered that:

E½cc� ¼
1
n

X
xj;a2V

cj;a
c > 0: ð32Þ

Finally, (28) can be written as:

VðSs � ScÞ � ED
c ’ n0lE½cc�E½ðqsNs � NcÞ� þ

X
xj;a2V0

nj;a
c �Nja

s

� �
ð33Þ

and, from (2), (4) and (31) we get the inequality:

ðSc � SsÞ � ED
c P 0; ð34Þ

that allows us to establish that the conic yield surface is convex and
that the deviatoric plastic macro strain ED

c is associated. Then the
following relations hold:

8DS – 0 : DS � @2

@S@S fðTcÞ½DS� > 0;

ED
c ¼ j @

@S f ðTcÞ; j > 0:

(
ð35Þ

Now, we want to show that in a general frictional granular
material the volumetric plastic macrostrain cannot be associated.
To this end, let us consider (Fig. 4) the intersection of the yield sur-
face with a plane of equation T ¼ pIþ keS, where eS is a fixed unit
deviatoric tensor ðeS � eS ¼ 1Þ. This intersection is here denoted as
meridian profile. Since the yield surface is a cone, the meridian
profile is composed by two rays, whose equations are
kc ¼ ð�pcÞ tan ueS > 0 and kc ¼ pc tan u

ð�eSÞ < 0.
Now, let us consider a plastic collapse state

pcI� pc tan ueSeS; pc
�f ja

c ; eV
c I=3þ ED

c ;u
a
c ;W

a
c ; c

ja
c ; n

j;a
c

� �
, where pc < 0.

According to the Virtual Work Theorem, we find:

VðpcI� pc tan ueSeSÞ � eV
c

3
Iþ ED

c

� 

¼ Vpc eV

c � tan ueS eS � ED
c

� �� �
¼
X

xj;a2V0

pcVja
c � cj;a

c P 0: ð36Þ

It is worth noting that if we assume that besides the above micro
state a different micro state, corresponding to the same macro state,

f 0jac ;u
0a
c ;W

0a
c ; c

0ja
c ; n

0j;a
c

� �
exists, according to the Virtual Work Theo-

rem, we find:X
xj;a2V0

pcVja
c � cj;a

c ¼
X

xj;a2V0

V0jac � c0j;ac : ð37Þ

Further, dividing (36) by jpcj we get:

�eV
c þ tan UeSeeSc ¼ 1

V

X
xj;a2V0

�Vja
c

� �
� cj;a

c P 0; ð38Þ

where eeSc ¼ eS � ED
c is the component of the deviatoric plastic macro

strain in the given meridian plane. It easy to note that the inequality
(38) is strictly satisfied only when friction is null and, further, Fig. 4
shows us that the component of the plastic macro strain in the gi-
ven meridian plane is normal to the meridian profile only in this last
case. Then, inequality (38) shows us that in a frictional material the
plastic macro strain cannot be associated.

Now, we consider a collapse state for which eeSc > 0. If we define
the dilatancy coefficient d ¼ eV

c =eeS as the ratio of the volumetric
strain over the component eeSc of the deviatoric plastic macro strain
in the actual meridian plane, from (38) we get the inequality:

tan UeS � d P 0; ð39Þ

that extends to a general triaxial stress state the well known consti-
tutive inequality first proposed by Taylor (1948).

3. Conclusions

A micromechanical modeling of a granular material consisting
of a random package of rigid particles has been developed in order
to establish a conceptual link between the general properties of
macroscopic plasticity of granular materials, the frictional behavior
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of contacts and the local equilibrium of particles. A RVE containing
a very large number of particles with prescribed linear displace-
ment boundary conditions has been examined and the general
properties of the effective rigid plastic constitutive behavior of this
material has been determined. The model has allowed us to deduce
many essential features of the plastic behavior of general granular
materials when no contact damages or particles crushing are pro-
duced and no relevant changes in the material microstructure oc-
cur until the yielding. It has been shown that the yield surface of a
random packing of frictional rigid particles is a cone and that the
plastic macro strain cannot be associated, while it is associated
in case of frictionless particles. The model is relatively simple
and based on clear theoretical motivations.

References

Antony, S.J., Kuhn, M.R., 2004. Influence of particle shape on the interplay between
contact signatures and particulate strength. Int. J. Solids Struct. 41, 5863–5870.

Cambou, B., Jean, M., Radjai, F., 2009. Micromechanics of Granular Materials. Wiley.
Chang, Misra, 1990. Packing structure and mechanical properties of granulates. J.

Eng. Mech. 116 (5), 1077–1093.
Chang, C.S., Liao, C.L., 1990. Constitutive relation for a particulate medium with the

effect of particle rotation. Int. J. Solids Struct. 26, 437–453.
Chang, C.S., Hicher, P.Y., 2005. An elastic–plastic model for granular materials with

microstructural consideration. Int. J. Solids Struct. 42, 4258–4277.
Drucker, D.C., Prager, W., 1952. Solid mechanics and plastic analysis for limit design.

Quarter. Appl. Math. 10 (2), 157–165.
Duffy, J., Mindlin, R.D., 1957. Stress-strain relation and vibrations of granular

medium. J. Appl. Mech. Trans. ASME 7, 585–593.
Emeriault, F., Cambou, B., 1996. Micromechanical modelling of anisotropic non-

linear elasticity of granular medium. Int. J. Solids Struct. 33, 2591–2607.
Gudehus, G., 1972. Elastic-plastic constitutive equations for dry sand. Arch. Mech.

Stosowanej. 24, 395–402.
Jenkins, J., 1987. Volume change in small strain axisymmetric deformation of a

granular material. In: Satake, M., Jenkins, J.T. (Eds.), Micromechanics of Granular
Materials. Elsevier, Amsterdam, pp. 143–152.

Jenkins, J., Johnson, D., La Ragione, L., Makse, H., 2005. Fluctuations and the effective
moduli of an isotropic, random aggregate of identical, frictionless spheres. J.
Mech. Phys. Solids 53 (1), 197–225.

Krenk, S., 2000. Characteristic state plasticity for granular materials Part I: basic
theory. Int. J. Solids Struct. 37 (43), 6343–6360.
Lade, P.V., 1977. Elastoplastic stress-strain theory for cohesionless soil with curved
yield surfaces. Int. J. Solids Struct. 13, 1019–1035.

Lade, P.V., Duncan, J.M., 1973. Cubical triaxial tests on cohesionless soils. J. Soil
Mech. Fund.Div. ASCE 99, N�SM10, 793–812.

Misra, Chang, 1993. Effective elastic moduli of heterogeneous granular solids. Int. J.
Solids Struct. 30 (18), 2547–2566.

Matsuoka, H., Nakai, T. 1977. Stress-strain relationship of soil based on the ’’SMP’’.
In: Proc. Specialty Session 9, IX ICSMFE, Tokyo, pp. 153–162.

Nemat-Nasser, S., Hori, M. 1993. Micromechanics: Overall properties of
heterogeneous materials. North Holland.

Nemat-Nasser, S., Zhang, J., 2002. Constitutive relations for cohesionless frictional
granular material. Int. J. Plasticity 18, 531–547.

Nicot, F., Darve, F., 2006. Micro-mechanical investigation of material instability in
granular assemblies. Int. J. Solids Struct. 43, 3569–3595.

Nicot, F., Darve, F., 2007. Micro-mechanical bases of some salient constitutive
features of granular materials. Int. J. Solids Struct., 7420–7443.

Oda, M., 1993. Inherent and induced anisotropy in plasticity theory of granular soils.
Mech. Mater. 16 (1–2), 35–45.

Rowe, P.W., 1962. The stress-dilatancy relation for static equilibrium of an assembly
of particles in contact. Proc. Roy. Soc. London 269, 500–527.

Radjai, F., Jean, M., Moreau, J.J., Roux, S., 1996. Force distributions in dense two-
dimensional granular systems. Phys. Rev. Lett. 77 (2), 274–277.

Radjai, F., Wolf, D.E., Roux, S., Jean, M., Moreau, J.J. 1997. Force networks in dense
granular media. In: Behringer, R.P., Jenkins, J.T., (Eds.), Powders and Grains, vol.
97, pp. 211–214.

Radjai, F., Wolf, D., Jean, M., Moreau, J.J., 1998. Bimodal character of stress
transmission in granular packings. Phys. Rev. Lett. 80 (1), 61–64.

Radjai, F., Roux, S., Moreau, J.J., 1999. Contact forces in a granular packing. Chaos 9,
544–550.

Suiker, A.S.J., Chang, C.S., 2004. Modelling failure and deformation of an assembly of
spheres with frictional contacts. J. Eng. Mech. 130 (3), 283–293.

Taylor, D.W., 1948. Fundamental in Soil Mechanics. John Wiley, New York. London.
Trentadue, F., 2001. A micromechanical modeling of a non linear elastic granular

medium based on local equilibrium conditions. Int. J. Solids Struct. 38/40–41,
7319–7342.

Trentadue, F., 2004. An equilibrium-based approach for the micromechanical
modeling of a non-linear elastic granular material. Mech. Mater. 36, 323–334.

Wan, R.G., Guo, J., 2001. Drained cyclic behavior of sand with fabric dependence. J.
Eng. Mech. 127 (11), 1106–1116.

Vardulakis, I., 1981. Rigid granular constitutive model for sand and the influence of
the deviatoric flow rule. Mech. Res. Commun. 8, 275–280.

Vardoulakis, I., Sulem, J., 1992. Bifurcation Analysis in Geomechanics. Blackie
Academic and Professional.


	A rigid-plastic micromechanical modeling of a random packing of frictional particles
	1 Introduction
	2 Microstructural continuum model
	2.1 Kinematically admissible systems of particle displacements
	2.2 Contact force-displacement laws
	2.3 Statics
	2.4 Existence and boundedness of statically admissible systems of contact forces
	2.5 Virtual work
	2.6 Yield surface. Flow rule

	3 Conclusions
	References


