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This paper proposes a procedure to deal with n-layered inclusion based composites with imperfect inter-
faces (which conditions consist of displacement or stress vector jumps) respecting spherical symmetry.
For that purpose, ‘‘discontinuity matrices’’ have been introduced. These matrices have been derived for
several classical interface-models and an asymptotic method has been used to determine some of them.
A self-consistent condition based on a strain-energy equivalence in the case of inclusion-matrix type
composite materials is restated for n-layered inclusions with imperfect interfaces and applied to get
estimates of such composites materials. The remarkable feature of the presently self consistent approach
is that it does not need any tedious algebra providing the attached interface models respect the spherical
symmetry. The present Generalized Self Consistent Model (GSCM) is then used to study size effects and
mismatch in composites reinforced by coated inclusions.
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1. Introduction

The present is motivated by the need for a better understanding
of the role of interfaces on the elastic behavior of multi-layered
inclusions-matrix type composites with imperfect interfaces. At a
perfect interface the displacement vector and the stress vector is
classically considered as continuous. When these vectors are no
longer continuous across the interface, these interfaces are called
imperfect. In literature, the ‘‘behavior’’ of these imperfect interfaces
have been described by either interface models which directly give
the discontinuity of the displacement vectors or of the stress vector
present at the interface or, by asymptotic methods which trans-
form thin interphases in an interface-model. It is the purpose of
Benveniste and Miloh (2001) who have studied the influence of a
constant-thicknessed layer between two elastic isotropic media
and have used an asymptotic expansion for the elastic field in this
interphase to exhibit seven distinct regimes of interface conditions.
All theses seven different regimes have not been yet introduced in
a Generalized Self Consistent framework. However the Spring-type
interface has been studied by Hashin (1991) who established the
link between the parameters of a spring-type interface model
and the properties of an isotropic soft and thin interphase between
two media. In addition, Hashin (2002) has considered thin inter-
phases but with no more restriction on the magnitude of the prop-
erties of this interphase regarding the properties of the two
abutting phases and only plane and cylindrical interfaces have
been analyzed as special cases (no spherical interfaces have been
studied). Wang et al. (2005) and Benveniste (2006) have shown
that a thin and stiff interphase is equivalent to an interface which
displacement/stress discontinuities are described by the so-called
generalized Young–Laplace equations (Povstenko, 1993; Le
Quang and He, 2008). Gurtin and Murdoch’s model (Gurtin and
Murdoch, 1975; Kushch et al., 2011), compared to this generalized
Young–Laplace model, considers an extra term in the interface
stress which depends on the surface gradient of displacement. This
model has not been considered in this paper. In Le Quang and He
(2008), Le Quang and He provide first-order upper and lower
bounds for the effective elastic moduli of such composite materials
and, Brisard et al. (2010a) and Brisard et al. (2010b) Hashin–
Shtrikman bounds.

Wang et al. (2005) and Duan et al. (2005a) have determined the
effective elastic behavior of solids containing inclusions with
discontinuity in the tractions across the interface between their
inclusions and the matrix around but no extension have been
carried out for n-layered inclusion-based composites. For that pur-
pose they have used three micromechanicals models (Duan et al.,
onding
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2005c), Hashin’s Composite Spheres Assemblage (CSA), the
Mori–Tanaka method (MTM) and the Generalized Self-Consistent
Method (GSCM) and have predicted size-dependent effective
behavior of nano-composites.

Marcadon et al. (2007) and Zaoui et al. (2006) have in the mean-
time improved micromechanicals models derived from the so-called
’’Morphological Representative Pattern (MRP) approach (Bornert
et al., 1996) to predict size effects in nanoparticle-reinforced. For
that purpose, they have considered that either the distance
between the nearest inclusion decreases leading to the stiffening
of a part of the matrix (confined matrix) or, for a fixed volume
fraction of the inclusion the particle diameter can change while
the thickness of a disturbed matrix around the inclusion is almost
unchanged.

The aim of this paper is to present a method that can predict the
effective elastic constants of composites containing multi-layer
coated particles with imperfect bonding conditions. For this pur-
pose, the (n + 1)-phase model of Hervé and Zaoui (1993) is
extended to the case of imperfect interfaces where the imperfect
bonding conditions are expressed thanks to ‘‘discontinuity matri-
ces’’ and where transfert matrices are still used.

This paper is organized as follows. The main result is the deriva-
tion of the elastic stress and strain fields in an infinite medium con-
stituted of an n-layered isotropic spherical inclusion embedded in
a matrix subjected to uniform stress or strain conditions at infinity
and where the behavior of the imperfect interfaces are described
by two ‘‘discontinuity matrices’’. This derivation is presented in
Section 2. These ‘‘discontinuity matrices’’ characterizing the bond-
ing conditions fulfilled at a given interface are expressed in the
case of the linear spring model, the dislocation-like model and in
the case of the presence of a thin interphase replaced by an
interface. It is shown that in the case of a very thin interphase
the explicit forms of these ‘‘discontinuity matrices’’ can emerge
equivalently from two asymptotic methods: one using transfert
matrices and another one using Hashin’s procedure. In Section 3
a link is made between the problem of predicting the effective
behavior of composites containing n-layered spherical inclusions
with imperfect interfaces and a n-layered spherical problem as
the one presented in Section 2. This is an extension of the work
of Marcadon et al. (2007) to n-layered spherical inclusion-rein-
forced composites with imperfect interfaces. The two ‘‘discontinu-
ity matrices’’ attached to very thin soft interphases or rigid ones
are given and compared for the latter case to the ones attached
to generalized Young Laplace Conditions. Section 4 shows that
the classical self-consistent energy condition given first by
Christensen (1979) is still valid in this particular context of imper-
fect interfaces. Finally, in Section 5 some illustrative examples are
given.
2. n-layered spherical inclusion with imperfect interfaces,
embedded in an infinite matrix

This section is concerned with the derivation of the elastic
strain and stress fields in an infinite medium constituted of a
n-layered spherical inclusion, embedded in a matrix subjected to
uniform stress conditions (~T0 ¼ r0~n) or strain conditions
(~u0 ¼ e0~x) at infinity, where r0 and e0 denote constant tensors, ~x
is the position vector and ~n denotes the unit normal of the consid-
ered surface oriented from the inside of the inhomogeneous inclu-
sion towards its outside.

Each phase is assumed to be homogeneous and linearly elastic.
The interfaces between the different phases can be perfect or not.
In this last case, abutting phases are imperfectly bonded and the
interface energy is no more negligible compared to the bulk
Please cite this article in press as: Hervé-Luanco, E. Elastic behavior of composit
conditions and application to size effects and mismatch in these composites. I
energy. Different cases of imperfect interfaces are dealt with in this
paper: the traction vector across the interfaces can be assumed to
be continuous while the displacement vector at the same place can
suffer a jump, or the displacement vector across the interfaces can
be assumed to be continuous while the traction vector is discontin-
uous. In order to solve all these problems, a general procedure is
proposed. This procedure uses ‘‘discontinuity matrices’’ to repre-
sent the interface models attached to imperfect interfaces.

Throughout the following a second-order tensor will be denoted
by bold letters and a fourth-order one by calligraphic letters. More-
over, Einstein’s convention of summation over repeated indices
will not be adopted. Let r and e be respectively the Cauchy stress
tensor and infinitesimal strain tensors. The letter (i) will be use
to denote a generic phase of the n-layered spherical inclusion.

Let phase (1) constitute the central core and phase (i) lie
within the shell limited by the spheres with the radii Ri�1 and
Ri (i 2 ½1;nþ 1�; Rnþ1 !1) (Fig. 1(a)). The phase, referred to as
phase (n + 1) denotes here the matrix and will represent in the
next section the unknown equivalent homogeneous medium
(EHM).

The linear elastic behavior of each phase (i) is characterized by
Hooke’s law:

rðiÞ ¼ LðiÞ : �ðiÞ or �ðiÞ ¼ MðiÞ : rðiÞ; ð1Þ

where rðiÞ; eðiÞ are respectively the Cauchy stress tensor and infini-
tesimal strain tensors of phase (i), LðiÞ andMðiÞ stand for the elastic
stiffness and compliance tensors of phase (i) and the summation
over two indices is denoted by two points (:).

Note that all the considered phases are assumed to be isotropic
and thus all these elastic stiffness and compliance can be written in
the following form:

LðiÞ ¼ 3kiJ þ 2liK and MðiÞ ¼ 1
3ki
J þ 1

2li
K ð2Þ

where ðli; kiÞ are respectively the shear modulus and bulk modulus
of phase (i).

Let mi be the Poisson’s ratio of phase (i), i 2 ½1;nþ 1�; Rnþ1 !1
(Fig. 1(a)). J ¼ 1

3 I � I; K ¼ I � J with I and I being respectively
the second-order and fourth-order identity tensor.

It is worth noting that the imposed conditions at infinity
(~T0 ¼ r0~n) or (~u0 ¼ e0~x) can be written as:

~T0 ¼ J þKð Þ : r0~n ¼ 1
3 Trr0 þ s0
� �

~n

or
~u0 ¼ J þKð Þ : e0~x ¼ 1

3 Tre0 þ e0
� �

~x

9>=
>; ð3Þ

where s0 and e0 denote respectively the deviatoric parts of r0 and
e0. Consequently, the general solution of such an n-layered spheri-
cal inclusion embedded in an infinite matrix and subjected to uni-
form conditions may be obtained from the solution of two
elementary problems: hydrostatic pressure and simple shear
applied at infinity (Hervé and Zaoui, 1993).

The interface bonding conditions between phase (i) and phase
(i + 1) (interface denoted as CðiÞ for r ¼ Ri) corresponding to a cho-
sen interface model are assumed to be described by a ‘‘discontinu-
ity matrix’’ defined from the solutions of the equilibrium
equations.

We shall use a spherical (r; h;/) coordinate system with the ori-
gin at the center of the above-mentioned n-layered sphere. Let ½��
denote the interfacial jump in the quantity under consideration.

The interface energy EintðRiÞ at the Ci interface is defined as:

1
2

R R
Ci
~u ½r�~n dS; ðjump of the traction vectorÞ

1
2

R R
Ci
½~u� r~n dS; ðjump of the displacement vectorÞ

)
ð4Þ
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Fig. 1. (a) The n-layered spherical inclusion and its interfaces. (b) Thin interphase between phase (i) and phase (i + 1).
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2.1. Hydrostatic pressure

One of the two following uniform conditions is applied at
infinity:

~T0 ¼ r0
3
~er

or
~u0 ¼ r h0

3
~er

9>=
>; ð5Þ

where r0 and h0 are constant and~er is the first vector of the spher-
ical coordinate system.

The solution for the non-zero displacement component ur , of
the single equilibrium equation is given in phase (i) Love (1944) by,

uðiÞr ¼ Fir þ
Gi

r2 ð6Þ

where Fi and Gi are constants.
The corresponding stresses in phase (i) are found to be (Hervé

and Zaoui, 1993):

rðiÞrr ðrÞ ¼ 3kiFi � 4li
r3 Gi

rðiÞhhðrÞ ¼ rðiÞ//ðrÞ ¼ 3kiFi þ 2li
r3 Gi

rðiÞrh ¼ rðiÞr/ ¼ rðiÞh/ ¼ 0

9>>=
>>; ð7Þ

Let us introduce the ð2� 1Þ following matrices:

~tðrÞ ¼ urðrÞ; rrrðrÞ½ �T

~tðiÞ ¼ uðiÞr ðrÞ; rðiÞrr ðrÞ
h iT

9=
; ð8Þ

expressed in a canonical base ð~e1;~e2Þ.~tðiÞðrÞ is then given in phase (i)
by:

~tðiÞðrÞ ¼ Fir þ
Gi

r2

� �
; 3kiFi �

4li

r3 Gi

� �� �T

¼ JðiÞðrÞ ~Vi ð9Þ

where ~Vi ¼ Fi; Gið �T and where JiðrÞ is the following matrix:

JðiÞðrÞ ¼
r 1

r2

3ki �4 li
r3

" #
ð10Þ

We now consider all the interface bonding conditions which can be
written in the following manner:

½~t�Ri
¼~tðiþ1ÞðRiÞ �~tðiÞðRiÞ ¼ DJðRiÞ ~Vi ¼ dJðRiÞ JðiÞðRiÞ

� 	
~Vi ð11Þ

where ½~t� denotes the interfacial jump of~t at r ¼ Ri (surface Ci).
Please cite this article in press as: Hervé-Luanco, E. Elastic behavior of composit
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dJðRiÞ is called the ‘‘pressure discontinuity matrix’’ on Ci.
The interface conditions, taking into account the interface

bonding conditions (9) and then (11) can be written as:

~Viþ1 ¼ Jðiþ1Þ
� 	�1

ðRiÞ JðiÞðrÞ ~Vi þ ~t

 �

Ri

h i
~Viþ1 ¼ Jðiþ1Þ

� 	�1
ðRiÞ JðiÞðRiÞ þ DJðiÞðRiÞ

h i
~Vi

~Viþ1 ¼ NðiÞ þ DN Rið Þ
� 	

~Vi

~Viþ1 ¼ NSðiÞ~Vi ¼
Y1

j¼i

NSðjÞ

 !
~V1 ¼ Q SðiÞ~V1

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð12Þ

with:

NðiÞ ¼ Jðiþ1Þ
� 	�1

ðRiÞ JðiÞðRiÞ

DN Rið Þ ¼ Jðiþ1Þ
� 	�1

ðRiÞ dJðiÞðRiÞ JðiÞðRiÞ

NSðiÞ ¼ NðiÞ þ DN Rið Þ
� 	

Q SðiÞ ¼
Y1

j¼i

NSðjÞ

 !

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð13Þ

dJðiÞðRiÞ and consequently DJðiÞðRiÞ depend on the chosen interface
model (see different expressions of dJðiÞðRiÞ for several interface
models in Section 2.3).

All the coefficients ðFi; GiÞ can be determined by using (12) and
by taking into account, on the one hand that the coefficient G1

must vanish in order to avoid a singularity at the origin and, on
the other hand, that the constant Fnþ1 is determined by the applied
state of hydrostatic pressure at infinity (as in Hervé and Zaoui
(1993)) and expressed as:

Fnþ1 ¼ r0
9knþ1

in the stress approach

Fnþ1 ¼ h0
3 in the displacement approach

)
ð14Þ

The coefficients Fi; Gið Þ are then given by:

Fi ¼
QSði�1Þ

11

QSðnÞ
11

Fnþ1

i 2 ½1;n�

Gi ¼
QSði�1Þ

21

QSðnÞ
11

Fnþ1

9>>>>=
>>>>;

ð15Þ

The interface energy Eint Rið Þ at the Ci interface can be expressed as:
es containing multi-layer coated particles with imperfect interface bonding
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Eint Rið Þ ¼ 2pR2
i
~Vi DE ~Vi ð16Þ

with

DE ¼ DJ2
�!ðRiÞ � JðiÞ1

�!
ðRiÞ þ DJ1

�!ðRiÞ � JðiÞ2

�!
ðRiÞ

� �
ð17Þ

and where DJp
�!ðRiÞ and JðiÞp

�!
ðRiÞ denote respectively the 2� 1ð Þmatri-

ces made of the pth row of DJðRiÞ and of JðiÞðRiÞ. It is worth noting

that either DJ1
�!ðRiÞ ¼ 0 (½~u� ¼~o) or DJ2

�!ðRiÞ ¼ 0 (½r�~n ¼~o).

2.2. Simple shear

Following Hervé and Zaoui (1993), the boundary conditions
imposed at infinity and written in the spherical coordinate system
r; h;/ð Þ are in the displacement approach expressed as:

u0
r ¼ cr sin2 h cos 2/

u0
h ¼ cr sin h cos h cos 2/

u0
/ ¼ �cr sin h sin 2/

9>=
>; ð18Þ

and in the stress approach as:

T0
r ¼ s sin2 h cos 2/

T0
h ¼ s sin h cos h cos 2/

T0
/ ¼ s sin h sin 2/

9>>=
>>; ð19Þ

In phase (i), the components of displacement field~u in the spherical
coordinate system has the following form Love (1944) after the res-
olution of the equilibrium equations:

uðiÞr ðr; h;/Þ ¼ Air � �6mi
1�2mi

Bir3 þ 3Ci
r4 þ 5�4mi

1�2mi

Di
r2

� 	
sin2 h cos 2U

uðiÞh ðr; h;/Þ ¼ Air � 7�4mi
1�2mi

Bir3 � 2 Ci
r4 þ 2 Di

r2

� 	
sin h cos h cos 2U

uðiÞU ðr; h;/Þ ¼ � Air � 7�4mi
1�2mi

Bir3 � 2 Ci
r4 þ 2 Di

r2

� 	
sin h sin 2U

9>>>>=
>>>>;
ð20Þ

The corresponding stresses in phase (i) are found to be:

rðiÞrr ðr; h;/Þ ¼ li Ai þ 3mi
1�2mi

Bir2 � 12Ci
r5 þ 2 mi�5ð Þ

1�2mi

Di
r3

� 	
2 sin2 h cos 2U

rðiÞrh ðr; h;/Þ ¼ li Ai � 7þ2mi
1�2mi

Bir2 þ 8Ci
r5 þ 2 1þmið Þ

1�2mi

Di
r3

� 	
2 sin h cos h cos 2U

rðiÞr/ðr; h;/Þ ¼ �li Ai � 7þ2mi
1�2mi

Bir2 þ 8Ci
r5 þ 2 1þmið Þ

1�2mi

Di
r3

� 	
2 sin h sin 2U

9>>>>=
>>>>;

ð21Þ

where Ai; Bi; Ci; Cið Þ are constants.
The key tool to solve easily the problem of simple shear is to

introduce these quantities into the two following ð4� 1Þmatrices:

~lðr; h;/Þ ¼ urðr; h;/Þ; uhðr; h;/Þ; rrrðr; h;/Þ; rrhðr; h;/Þ½ �T

~lðiÞðr; h;/Þ ¼ uðiÞr ðr; h;/Þ; uðiÞh ðr; h;/Þ; rðiÞrr ðr; h;/Þ; rðiÞrh ðr; h;/Þ
h iT

9=
;
ð22Þ

expressed in a canonical base ~e1;~e2;~e3;~e4ð Þ. Let~lðiÞ denote the value
of~lðrÞ in phase ðiÞ. In order to deal separately with the dependence
over h and /, let us denote by ~g h;/ð Þ the following vector:

~g h;/ð Þ ¼ sin h cos 2/ sin h~e1 þ cos h~e2 þ 2 sin h~e3 þ 2 cos h~e4½ � ð23Þ

For the sake of simplicity of the expression of the bonding condi-
tions over the interface Ci, and using Eqs. (20) and (21),~lðiÞðr; h;/Þ
is written in the following manner:

~lðiÞðr; h;/Þ ¼ LðiÞðrÞ ~Wi �~g h;/ð Þ ð24Þ

where ~Wi ¼ Ai; Bi; Ci; Di½ �T and ~H �~g denotes for any 4� 1ð Þmatrix
~H ¼ H1; H2; H3; H3½ �T :
Please cite this article in press as: Hervé-Luanco, E. Elastic behavior of composit
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~H �~g ¼ sin h cos 2/ H1 sin h; H2 cos h; 2H3 sin h; 2H4 cos h½ �T ð25Þ

where the matrix LðiÞðrÞ (already defined in Hervé and Zaoui (1993))
is given by:

LðiÞðrÞ ¼

r �6mi
1�2mi

r3 3
r4

5�4mi
1�2mi

1
r2

r � 7�4mi
1�2mi

r3 � 2
r4

2
r2

li
3mi

1�2mi
lir

2 � 12
r5 li

2 mi�5ð Þ
1�2mi

li
r3

li �
7þ2mi
1�2mi

lir
2 8

r5 li
2 1þmið Þ
1�2mi

li
r3

2
6666664

3
7777775 ð26Þ

It is worth noting that:

uðiÞU ðr; h;/Þ ¼ �~L
ðiÞ
2 ðrÞ: ~Wi sin h sin 2U

rðiÞrUðr; h;/Þ ¼ �2~LðiÞ4 ðrÞ: ~Wi sin h sin 2U

)
ð27Þ

where ~LðiÞp ðrÞ denotes the 4� 1ð Þ matrix made of the pth row of
LðiÞðrÞ.

We consider now all the interface bonding conditions (over the
interface Ci) which can be written in the following manner:

~l
h i

Ri

ðRi; h;/Þ ¼~lðiþ1ÞðRi; h;/Þ �~lðiÞðRi; h;/Þ ¼ DLðRiÞ ~Wi�~g h;/ð Þ

~l
h i

Ri

ðRi; h;/Þ ¼ dLðRiÞLðiÞðRiÞ ~Wi �~g h;/ð Þ

9>=
>;
ð28Þ

where ~l
h i

Ri

ðRi; h;/Þ denotes the interfacial jump of ~l at r ¼ Ri

(surface Ci).
The different displacement and stress discontinuities at the

interface Ci are taken into account thanks to the ‘‘shear discontinu-
ity matrix’’ dLðRiÞ which depends on the chosen interface models.
To respect the spherical symmetry, we also assume that:

½uðiÞU �Ri
¼ �DL

�!
2ðRiÞ: ~Wi sin h sin 2U

rðiÞrU

h i
Ri

¼ �2DL
�!

4ðRiÞ: ~Wi sin h sin 2U

9>=
>; ð29Þ

where DL
�!

pðRiÞ denotes the 4� 1ð Þ matrix made of the pth row of
DLðRiÞ.

The interface conditions, taking into account the interface
bonding conditions (28) and using the definition (24) yield:

~lðiþ1ÞðRi; h;/Þ ¼~lðiÞðRi; h;/Þ þ ~l
h i

Ri

ðRi; h;/Þ

~lðiþ1ÞðRi; h;/Þ ¼ LðiÞðRiÞÞ þ DLðRiÞ
� 	

~Wi �~g h;/ð Þ

Lðiþ1ÞðRiÞ ~Wiþ1 �~g h;/ð Þ ¼ LðiÞðRiÞÞ þ DLðRiÞ
� 	

~Wi �~g h;/ð Þ

9>>>>>=
>>>>>;

ð30Þ

It follows that:

~Wiþ1 ¼ Lðiþ1Þ
� 	�1

ðRiÞ LðiÞðRiÞ þ DLðRiÞ
h i

~Wi

~Wiþ1 ¼ MðiÞ þ DM Rið Þ
� 	

~Wi

~Wiþ1 ¼MSðiÞ ~Wi ¼
Y1

j¼i

MSðjÞ

 !
~W1 ¼ PSðiÞ ~W1

9>>>>>>>=
>>>>>>>;

ð31Þ

with

MðiÞ ¼ Lðiþ1Þ
� 	�1

ðRiÞ LðiÞðRiÞ

DM Rið Þ ¼ Lðiþ1Þ
� 	�1

ðRiÞ dLðiÞðRiÞ LðiÞðRiÞ

MSðiÞ ¼ MðiÞ þ DM Rið Þ
� 	

PSðiÞ ¼
Y1

j¼i

MSðjÞ

 !

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð32Þ
es containing multi-layer coated particles with imperfect interface bonding
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dLðiÞðRiÞ and consequently DLðiÞðRiÞ depend on the chosen interface
model (see different expressions of dLðiÞðRiÞ for several interface
models in Section 2.3).

In order to avoid singularity, C1;D1 and Bnþ1 vanish leading by
using (31) (See Hervé and Zaoui, 1993) to:

~Wi ¼
Anþ1

PSðnÞ
22 PSðnÞ

11 � PSðnÞ
12 PSðnÞ

21

PSði�1Þ~V ðnÞP ð33Þ

with ~V ðnÞP ¼ PSðnÞ
22
~e1 � PSðnÞ

21
~e2 and:

Anþ1 ¼ s
2lnþ1

in the stress approach

Anþ1 ¼ c in the displacement approach

(
ð34Þ

Using Eqs. (4), (22), (24), and (28), it can been shown that the inter-
face energy Eint Rið Þ at the Ci interface, due to this simple shear sol-
licitation, can be expressed as:

Eint Rið Þ ¼
8p
15

R2
i
~Wi De ~Wi ð35Þ

with De given by:

2 L
!

3ðRiÞ� DL
�!

1ðRiÞþ3 L
!

4ðRiÞ� DL
�!

2ðRiÞ interface displacement jumps

2DL
�!

3ðRiÞ� L
!

1ðRiÞþ3DL
�!

4ðRiÞ� L
!

2ðRiÞ interface traction jumps

)

ð36Þ

The replacement of ~Wi by Eq. (33) in Eint provides:

Eint Rið Þ ¼
8p
15

R2
i A2

nþ1

PSðnÞ
22 PSðnÞ

11 � PSðnÞ
12 PSðnÞ

21

� 	2
~V ðnÞP

tPSði�1ÞDePSði�1Þ~V ðnÞP ð37Þ

It is worth noting that applications will be carried out only to
interface models which consider that either
DL
�!

1ðRiÞ ¼ DL
�!

2ðRiÞ ¼ 0 (jump of the normal and tangential compo-
nents of traction across Ci with a continuous displacement vector)
or DL
�!

3ðRiÞ ¼ DL
�!

4ðRiÞ ¼ 0 (jump of the normal and tangential com-
ponents of displacement across Ci with a continuous traction
vector).

2.3. Expression of the discontinuity matrices for several interface
models

The aim of this section is to give for several classical interface
models the two discontinuity matrices dJðiÞðRiÞ and dLðiÞðRiÞ (defined
in Sections 2.1 and 2.2) which will characterize the displacement/
stress discontinuities over the interfaces Ci (i 2 ½1;n� 1�). These
results will be used in Section 4 to get the effective behavior of
multi-layered inclusion reinforced composites having such imper-
fect interfaces.

2.3.1. Linear spring models
The interface conditions over Ci can then be written as:

r½ �Ci
~n ¼~0

P r~n ¼ fi
s P ~u½ �Ci

~n r~n ¼ ii
s ~u½ �Ci

~n

9>>=
>>; ð38Þ

where fi
s and ii

s denote the interface parameters of the interface Ci

in the tangential and normal directions and where P ¼ I �~n�~n.
For an applied hydrostatic pressure, the ‘‘pressure discontinuity

matrix’’ dJðLSÞðRiÞ attached to this ‘‘linear spring’’ over Ci may be
found by substituting Eqs. (8) and (9) in Eq. (38) and taking into
account Eqs. (10) and (11):

~t

 �

Ri
¼

ur½ �Ri

rrr½ �Ri

" #
¼ rrr Rið Þ

ii
s

0
h i

¼ 1
ii

s

3ki � 4li

R3
i

0 0

" #
Fi

Gi

� �
ð39Þ
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which takes the form:

~t

 �

Ri
¼ 1

ii
s

0 1
0 0

� �
JðiÞðRiÞ~Vi ¼ dJðLSÞðRiÞJðiÞðRiÞ~Vi ð40Þ

For a simple shear sollicitation, the shear discontinuity matrix
dLðLSÞðRiÞ) attached to this ’’linear spring’’ may be found by substitut-
ing Eqs. (22) and (24) in Eq. (38) and taking into account Eqs. (26)
and (28).

For that purpose, let us write the expression of ~l
h i

Ri

which is

given by ~l
h i

Ri

¼ 1
ii

s
rrr Rið Þ; 1

fi
s
rrh Rið Þ; 0; 0

h iT
or:

2li
ii

s

6mi
ii

s 1�2mið ÞliR
2
i � 24

ii
sR5

i
li

2 mi�5ð Þ
ii

s 1�2mið Þ
li

R3
i

2li

fi
s
� 7þ2mi

fi
s 1�2mið Þ2liR

2
i

16
fi

sR5
i
li

4 1þmið Þ
fi

s 1�2mið Þ
li

R3
i

0 0 0 0
0 0 0 0

2
666664

3
777775

Ai

Bi

Ci

Di

2
6664

3
7775 �~g h;/ð Þ ð41Þ

We can also write ~l
h i

Ri

as:

~l
h i

Ri

¼
0 0 2

ii
s

0

0 0 0 2
fi

s

0 0 0 0

0
BB@

1
CCALðiÞðRiÞ~Wi �~g h;/ð Þ ¼ dLðLSÞðRiÞLðiÞðRiÞ~Wi �~g h;/ð Þ

ð42Þ

The two discontinuity matrices (dJðLSÞðRiÞ and dLðLSÞðRiÞ) attached to
this ‘‘linear spring’’ interface model can then be written as follows:

dJðLSÞðRiÞ ¼ 1
ii

s
~e1 �~e2

dLðLSÞðRiÞ ¼ 2 1
ii

s
~e1 �~e3 þ 1

fi
s

~e2 �~e4

� 	
9=
; ð43Þ
2.3.2. Dislocation-like model
In the Dislocation-like interface model (Yu, 1998; Duan et al.,

2005a) the following conditions prevail across the interface
Ciwhich separates the two phases ðiÞ and ðiþ 1Þ:

~uðiþ1Þ Rið Þ ¼ gi
T Pþ gi

N~n�~n
� �

~uðiÞ Rið Þ



ð44Þ

leading to:

~u½ �Ri
¼~uðiþ1Þ Rið Þ �~uðiÞ Rið Þ ¼ gi

T � 1
� �

Pþ gi
N � 1

� �
~n�~n

� �
~uðiÞ Rið Þ

o
ð45Þ

The two discontinuity matrices attached to this interface ‘‘dislo-
cation-like model’’ can easily be written using the tools presented
in the present paper and can be immediately derived as follows:

dJðDLÞðRiÞ ¼ gi
N � 1

� �
~e1 �~e1

dLðDLÞðRiÞ ¼ gi
N � 1

� �
~e1 �~e1 þ gi

T � 1
� �

~e2 �~e2

)
ð46Þ
2.3.3. Asymptotic method to deal with thin elastic interphase
An asymptotic approach can be used to exhibit the (imperfect

or not) interfacial bonding as the effect of a thin elastic interphase.
Hashin (2002) has already derived such an interface model by a
Taylor expansion method in terms of interface displacement and
traction jumps.

The purpose of this section is to use the previous developed
approach using transfert matrices to deal with n-layered isotropic
spherical inclusions with thin elastic interphases and to exhibit the
two discontinuity matrices attached to a thin elastic interphase.

Let us consider that in the n-layered isotropic spherical inclu-
sion presented in Fig. 1(a), flexible bond layer of a thickness ai

IRi

is introduced between phase (i) and phase (i + 1) (Fig. 1(b)). The
two interfaces (C�i and Cþi ) delimiting these three phases are

assumed perfect (~T ¼ r~n and ~u are continuous on C�i and Cþi ). Let
es containing multi-layer coated particles with imperfect interface bonding
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li
I; ki

I; mi
I

� 	
be respectively the shear modulus, bulk modulus and

Poisson’s ration of this interphase.

2.3.3.1. Method using the above-described procedure. When an
hydrostatic pressure is applied at infinity (boundary conditions
(5)), the solution~tðintÞðrÞ inside this thin interphase is given by:

~tðintÞðrÞ ¼ JðintÞðrÞ~Vi
I ð47Þ

with ~Vi
I ¼ Fi

I; Gi
I

h iT
and where JintðrÞ has the same definition as (10)

except that li; ki
� �

are respectively replaced by li
I; ki

I

� 	
. Conse-

quently, the interface bonding conditions can be written in the fol-
lowing manner:

~t

 �

Ri
¼ JðintÞ Ri 1þ ai

I

� �� �
� JðintÞ Rið Þ

h i
~Vi

I ð48Þ

Since C�i is a perfect interface it follows that:

JðiÞðRiÞ~Vi ¼ JðintÞðRiÞ~Vi
I or ~Vi

I ¼ JðintÞ�1

ðRiÞJðiÞðRiÞ~Vi ð49Þ
~t

 �

Ri
becomes then:

~t

 �

Ri
¼ JðintÞ RiÞ 1þ ai

I

� �� �
JðintÞ�1

ðRiÞ � I
h i

JðiÞðRiÞ~Vi ð50Þ

It is worth noting that using a taylor expansion in terms of ai
I :

JðintÞ Ri 1þ ai
I

� �� �
¼ JðintÞ RiÞð Þ þ ai

IRi
@JðintÞ

@r

�����
Ri

ð51Þ

Finally

~t

 �

Ri
¼ ai

IRi
@JðintÞ

@r

�����
Ri

JðintÞ�1

ðRiÞJðiÞðRiÞ~Vi ð52Þ

and

dJAsðRiÞ ¼ ai
IRi
@JðintÞ

@r

�����
Ri

JðintÞ�1

ðRiÞ ð53Þ

Using the expressions of JðintÞ�1

ðRiÞ (Eq. (A.1)) and of @JðintÞ

@r

���
Ri

(Eq. (A.2)),
it follows that:

dJAsðRiÞ ¼
ai

I

3ki
I þ 4li

I

4li
I � 6ki

I 3Ri

36ki
Ili

I
Ri

�12li
I

0
@

1
A ð54Þ

or

dJAsðRiÞ ¼
ai

I

2li
I 1� mi

I

� � �4li
Imi

I Ri 1� 2mi
I

� �
8 li

Ið Þ
2

1þmi
Ið Þ

Ri
�4li

I 1� 2mi
I

� �
0
@

1
A ð55Þ

In the asymptotic limit (ai
I ! 0) several interface models can be

derived depending on the functions li
Iðai

IÞ and ki
Iðai

IÞ.
The same procedure can be used when a simple shear is applied

at infinity (boundary conditions (19) or (18)), the solution~lðintÞðrÞ
inside this thin interphase is given by:

~lðintÞðrÞ ¼ LðintÞðrÞ~Wi
I �

~g ð56Þ

with ~Wi
I ¼ Ai

I; Bi
I; Ci

I; Di
I

h iT
and where LintðrÞ has the same definition

as (26) except that li; mi
� �

are respectively replaced by li
I; mi

I

� �
.

½~l�Ri
¼ ½LðintÞðRið1þ ai

IÞÞ � LðintÞðRiÞ�~Wi
I �

~g ð57Þ

Since C�i is a perfect interface it follows that:

LðiÞðRiÞ~Wi ¼ LðintÞðRiÞ~Wi
I or ~Wi

I ¼ LðintÞ�1

ðRiÞLðiÞðRiÞ~Wi ð58Þ

Consequently, by using Eq. (58) in Eq. (57), the interface bonding
conditions can be written in the following manner:
Please cite this article in press as: Hervé-Luanco, E. Elastic behavior of composit
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~l
h i

Ri

¼ LðintÞ RiÞ 1þ ai
I

� �� �
LðintÞ�1

ðRiÞ � I
h i

LðiÞðRiÞ ~Wi �~g ð59Þ

It is worth noting that using a taylor expansion in terms of ai
I :

LðintÞ Ri 1þ ai
I

� �� �
¼ LðintÞ RiÞð Þ þ ai

IRi
@LðintÞ

@r

�����
Ri

ð60Þ

Finally

~l
h i

Ri

¼ ai
IRi
@LðintÞ

@r

�����
Ri

LðintÞ�1

ðRiÞLðiÞðRiÞ ~Wi �~g ð61Þ

and

dLAsðRiÞ ¼ ai
IRi
@LðintÞ

@r

�����
Ri

LðintÞ�1

ðRiÞ ð62Þ

Using the expressions of LðintÞ�1

ðRiÞ (Eq. (A.3)) and of @LðintÞ

@r

���
Ri

(Eq.
(A.4)), dLAsðRiÞ is then given by the following matrix:

ai
I

mi
I � 1

� �
2mi

I �3mi
I

Ri 2mi
I�1ð Þ

li
I

0

�2 mi
I � 1

� �
mi

I � 1
� �

0
2Ri mi

I�1ð Þ
li

I

� 2li
I mi

Iþ1ð Þ
Ri

3li
I mi

Iþ1ð Þ
Ri

�2 2mi
I � 1

� �
3 mi

I � 1
� �

2li
I mi

Iþ1ð Þ
Ri

� li
I mi

Iþ5ð Þ
Ri

2mi
I �3 mi

I � 1
� �

0
BBBBBBBBB@

1
CCCCCCCCCA
ð63Þ
2.3.3.2. Method using Hashin’s procedure. Hashin’s method Hashin
(2002) can also be used and we check here that it leads to the same
discontinuity matrices.

It should be pointed out here that Hashin’s model is equivalent
to take into account the solution of the field equations in the thin
interphase which lays between phase (i) and phase (i + 1) and to
consider the asymptotic limit when the thickness of the interphase
(here ai

IRi) ! 0.
Following Hashin, it is necessary to express all the jumps of the

displacement and the traction vectors by C.I quantities (continuous
across the interfaces C�i and Cþi ). Because of the form of the dis-
placement and tractions vector in each phase (Eqs. (8), (9), (18),
(22), (25) and (24)), and considering that ur ;uh;u/;rrr;rrh and rr/

are C.I, it follows that their tangential derivatives with respect to
h and / are also C.I and also err ; erh and er/. Using Hooke’s law (1)
and (2), it is easy to show that r// and rhh are also C.I.

Moreover, following Hashin’s procedure, it is a long way to get
the two discontinuity matrices attached to this method.

We can express the jump of the displacement vector as:

ur½ �Ri
¼ ai

IRiur;r Rið Þ ¼ ai
IRierr Rið Þ

uh½ �Ri
¼ ai

IRiuh;r Rið Þ ¼ ai
IRi

rrh Rið Þ
l þ uh Rið Þ�ur;h Rið Þ

Ri

h i
u/


 �
Ri
¼ ai

IRiu/;r Rið Þ ¼ ai
IRi

rr/ Rið Þ
l þ sin h u/ Rið Þ�ur;/ Rið Þ

sin hRi

h i
9>>>=
>>>; ð64Þ

where commas denote partial differentiation.
The jump of the traction vector is expressed by using the equi-

librium equations:

rrr½ �Ri
¼ ai

I �rrh;h � rr/;/
sin h � cotan h rrh � 2rrr þ rhh þ r//

� �
 �
rrh½ �Ri

¼ ai
I �rhh;h � rh/;/

sin h � 3rrh � cotan h rhh � r//

� �
 �
rr/

 �

Ri
¼ ai

I �rh/;h � r//;/

sin h � 3rr/ � 2cotan h rh/


 �
9>>=
>>;
ð65Þ

After tedious calculations and using the definitions presented in
Section 2, we obtain the following results:
es containing multi-layer coated particles with imperfect interface bonding
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� Hydrostatic pressure:
Please
condit
ur½ �Ri
¼ ai

I

3ki
Iþ4li

I

2 2li
I � 3ki

I

� 	
tðiÞ1 Rið Þ � 3Rit

ðiÞ
2 Rið Þ

h i
rrr½ �Ri

¼ ai
I

3ki
Iþ4li

I

36ki
Ili

It
ðiÞ
1 Rið Þ � 12li

It
ðiÞ
2 Rið Þ

h i
9>=
>; ð66Þ
� Simple shear:
ur½ �Ri
¼ sin2 h cos 2/ ai

I

mi
I � 1

2mi
I
~LðiÞ1 Rið Þ � 3mi

I
~LðiÞ2 Rið Þ þ � � �

2mi
I � 1

� �
Ri

li
I

~LðiÞ3 Rið Þ
� �

: ~Wi

uh½ �Ri
¼ cos h sin h cos 2/ ai

I �2~LðiÞ1 Rið Þ þ~LðiÞ2 Rið Þ þ
2Ri

~LðiÞ4 Rið Þ
li

I

" #
: ~Wi

rrr½ �Ri
¼ 2 sin2 h cos 2/ ai

I

mi
I � 1

�2li
Ið1þ mi

IÞ
Ri

~LðiÞ1 ðRiÞ þ
3li

Ið1þ mi
IÞ

Ri

~LðiÞ2 ðRiÞ
�

þ � � � � 2ð2mi
I � 1Þ~LðiÞ3 ðRiÞ þ 3ðmi

I � 1Þ~LðiÞ4 ðRiÞ
i
: ~Wi

rrh½ �Ri
¼ 2 sinhcoshcos 2/ ai

I

mi
I � 1

2li
Ið1þ mi

IÞ
Ri

~LðiÞ1 ðRiÞ
�

�li
Iðmi

I þ 5Þ
Ri

~LðiÞ2 ðRiÞ þ � � � �2mi
I
~LðiÞ3 ðRiÞ � 3ðmi

I � 1Þ~LðiÞ4 ðRiÞ
�
: ~Wi ð67Þ
This comparison shows obviously that Hashin’s procedure leads
(with tedious calculations) to the same discontinuity matrices
dJAsðRiÞ and dLAsðRiÞ (Eqs. (55) and (63)) already easily obtained
thanks to the method presented in Section 2.1 and in Section 2.2.

3. n-layered spherical inclusion-reinforced composites

In order to predict the behavior of n-layered spherical inclu-
sion-reinforced composites with imperfect interfaces a link must
be made between this composite and a n-layered spherical prob-
lem as the one presented in Section 2 (cf Fig. 1(a)). It is worth notic-
ing that this n-layered spherical problem is an auxilliary problem
that will be used to determine in Section 4 the effective properties
of the studied composites by the generalized self-consistent
scheme (GSCS). For this purpose, we consider that the volume frac-
tion of each phase is the same in the composite as in the attached
auxilliary n-layered spherical problem. This is a generalization of
Eq. (20), Marcadon et al. (2007) to n-layered spherical inclusion-
reinforced composites and this equivalence is also justified by
Benveniste (2008). This equivalence of volume fractions is applied
in the interphase between phase i and phase i + 1 and leads to:

R3
iþ1 � R3

i

R3
i

¼
R0i þ ti

I

� �3 � R3
0i

R3
0i

ð68Þ

and, in the case of thin interphase with Riþ1 ¼ Ri 1þ ai
I

� �
(ai

I ! 0) to:

ai
I ¼

ti
I

R0i
ð69Þ

where R0i denotes the external radius of the inhomogeneous inclu-
sions, part of the n-phase inclusions where such an interface model
is used, and ti

I the thickness of the interphase laying between phase
i and phase i + 1.

Eq. (69) can be used to clarify the discontinuity matrices
attached to soft or rigid interphases:

1. In the case of rigid thin interphase the shear modulus of the thin
interphase between phase i and phase i + 1, li

s is defined by

li
s ¼ li

It
i
I leading, thanks to Eq. (69), to li

I ¼
li

s
ti
I
¼ li

s
ai

IR0i
. dJAsðRiÞ

(Eq. (55)) becomes then dJAsRigidðRiÞ:
dJAsRigidðRiÞ ¼
4li

I 1þ mi
I

� �
ti

I

R0iRi 1� mi
I

� � 0 0
1 0

� �
ð70Þ
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and dLAsðRiÞ (Eq. (63)) becomes dLAsRigidðRiÞ:
es conta
nt. J. So
dLAsRigidðRiÞ ¼
li

It
i
I

R0iRi mi
I � 1

� �
0 0 0 0
0 0 0 0

�2 1þ mi
I

� �
3 1þ mi

I

� �
0 0

2 1þ mi
I

� �
� 5þ mi

I

� �
0 0

2
6664

3
7775
ð71Þ
2. In the case of soft thin interphase (li
I ¼ li

st
i
I , with li

s denoting
the shear modulus of the interface in this case), it is well known
that this thin interphase is equivalent to a linear spring inter-
face model and, dJAsðRiÞ and dLAsðRiÞ write like the discontinuity
matrices attached to the linear spring interface model (see Eq.
(43)) with:
fi
s ¼

li
I

ai
I
Ri

ii
s ¼

2li
I 1�mi

Ið Þ
ai

IRi 1�2mi
Ið Þ

9>=
>; ð72Þ
It is worth mentioning here that interface effects have been
intensively used to study size effects in composites reinforced by
nano-sized particles. In this case, a stress discontinuity is assumed
on an interface Ci (i 2 ½1;n� 1�) and the displacement vector is
continuous across Ci. The interface conditions across each Ci, as
given by Povstenko (1993), taking into account the jump of the
traction vector on Ci and resulting from the analysis of the
mechanical equilibrium of the interface between two different
media are also called generalized Young–Laplace equations
(Duan et al., 2005c). These interface conditions have been used
by several authors like for instance (Brisard et al., 2010a; Brisard
et al., 2010b; Kushch et al., 2011; Le Quang and He, 2008; Wang
et al., 2005; Duan et al., 2005b; Duan et al., 2005a; Duan et al.,
2007; Duan et al., 2008) and are written as:

~u½ � ¼ ~0
~n: r½ �:~n ¼ �rs : j;

P: r½ �:~n ¼ �5S:r
s

9>=
>; ð73Þ

where j is the curvature tensor, 5S:s denotes the surface diver-
gence of the so-called surface stress tensor rs. This surface stress
tensor is linked to the surface strain tensor es by the shuttleworth
equation and will be written here as in Brisard et al. (2010b):

rs ¼ CS : es ð74Þ

where CS denotes the stiffness surface tensor of the interface which
only operates on the tangential components of the bulk strain ten-
sor e.

In the case of the generalized Young–Laplace conditions, we
will used as in Wang et al. (2005), Brisard et al. (2010a) and
Brisard et al. (2010b) the following constitutive equations at the
interfaces Ci:

rs
hh ¼ bi

s � li
s

� 	
ehhðRiÞ þ e//ðRiÞ
� �

þ 2li
sehhðRiÞ;

rs
// ¼ bi

s � li
s

� 	
ehhðRiÞ þ e//ðRiÞ
� �

þ 2li
se//ðRiÞ;

rs
h/ ¼ 2li

seh/ðRiÞ

9>>>=
>>>; ð75Þ

where the components of the tangential strain in the abutting bulk
materials are taking into account.

bi
s and li

s denote the elastic coefficients of the interface Ci. They
have been determined for a three-dimensional problem by Wang
et al. (2005) thanks to a connection between a thin stiff interphase
and Young–Laplace interface model and are here given by:

bi
s ¼

li
I 1þmi

Ið Þti
I

1�mi
Ið Þ

li
s ¼ li

I ti
I

9=
; ð76Þ
ining multi-layer coated particles with imperfect interface bonding
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The same convention has been chosen as Brisard et al. (2010a) and
Brisard et al. (2010b) (bi

s ¼ ks and li
s ¼ ls) and Le Quang and He

(2008) (bi
s ¼ ksi and li

s ¼ lsi) but a different convention as Duan

et al. (2005c) (bi
s ¼ ks=2 and li

s ¼ ls). It is worth noting that

1 6 bi
s

li
s
6 3 when mi

I 2 0;0:5½ �.
The bonding conditions over Ci are expressed as:

rrr½ �Ci
¼ 1

R0i
rs

hh þ rs
//

� 	
rrh½ �Ci

¼ � 1
R0i

@rs
hh

@h þ 1
sin h

@rs
h/

@/ þ rs
hh � rs

//

� 	
cot h

� 	
rrh½ �Ci

¼ � 1
R0i

@rs
h/

@h þ 1
sin h

@rs
//

@/ þ 2rs
h/ cot h

� 	

9>>>>=
>>>>;

ð77Þ

In the case of an hydrostatic pressure applied to the boundary of
the configuration presented in Fig. 1(a) the bonding conditions
over Ci may be found by performing the calculation of e from Eq.
(6), substituting e in Eq. (75) and then r (Eq. (7)) and rs in (Eq.
(77)).

In this simple case: ehhðRiÞ ¼ eUUðRiÞ ¼ urðRiÞ
Ri
¼ JðiÞ1

�!
ðRiÞ

Ri
:~Vi

uðiÞr

h i
Ci

¼ 0

rrr½ �Ci
¼ 4bi

s
R0iRi

~Ji
1ðRiÞ:~Vi

9>=
>; ð78Þ

leading to the same discontinuity matrix as Eq. (70)

dJðYLÞðRiÞ ¼ dJðAsRigidÞðRiÞ ð79Þ

In the case of a simple shear applied to the boundary of the con-
figuration presented in Fig. 1(a), the bonding conditions over Ci

may be found in that case by performing the calculation of e from
Eq. (20), substituting e in Eq. (75) and then r (Eq. (21)) and rs in
(Eq. (77)).

It is worth noting that, with the above-introduced notation we
have:

ehhðRiÞ ¼ cos 2/
Ri

LðiÞ1

�!
ðRiÞ sin2 hþ LðiÞ2

�!
ðRiÞ cos 2h

� �
: ~Wi

e//ðRiÞ ¼ cos 2/
Ri

LðiÞ1

�!
ðRiÞ sin2 hþ LðiÞ2

�!
ðRiÞ cos2 h� 2

� �� �
: ~Wi

eh/ðRiÞ ¼ � sin 2/ cos h
Ri

LðiÞ2

�!
ðRiÞ: ~Wi

8>>>>>><
>>>>>>:

ð80Þ

leading to:

~l
h i

Ci

¼ 1
R0iRi

bi
s 2~LðiÞ1 ðRiÞ � 3~LðiÞ2 ðRiÞ
� 	

: ~Wi ~e3 �~e4ð Þ þ � � �2li
s
~LðiÞ2 ðRiÞ: ~Wi~e4

n o
�~g

ð81Þ

Consequently, using the definition of dLðRiÞ given in Eq. (28), we
can get the value of dLðYLÞðRiÞ from Eq. (81) and show that the dis-
continuity matrix dLðYLÞðRiÞ ¼ dLðAsRigidÞðRiÞ.

The displacement and stress fields in configuration Fig. 1(a)
with imperfect interfaces can be found easily thanks to the present
method based on discontinuity matrices when this configuration is
submitted at infinity to an hydrostatic pressure or to a simple
shear sollicitation. More precisely, this problem needs no more to
use a replacement procedure as the one presented in Duan et al.
(2007) in the case of generalized Young Laplace condition.

It is also worth noting that, each time it will be possible to char-
acterize the imperfect interface models by discontinuity matrices
such as dJ and dL, it will be easy to solve such auxilliary problems.

These solutions will be used in the following section to
determine the effective elastic behavior of composites containing
n-layered spherical inclusions with imperfect interfaces.
Please cite this article in press as: Hervé-Luanco, E. Elastic behavior of composit
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4. (n + 1)-phase model with imperfect interfaces

The expression of the energy balance has to be revised in the
context of imperfect interfaces. The well-known work of
Christensen (1979) derives the calculation of strain energy in sys-
tems containing inhomogeneities with perfect interfaces.

Let us consider now the previous defined n-layered spherical
inclusion (delimited by the Cn interface) embedded in an homoge-
neous elastic matrix whose elastic stiffness tensor is
Lðnþ1Þ ¼ 3knþ1J þ 2lnþ1K. where lnþ1; knþ1

� �
are respectively the

shear modulus and bulk modulus of phase (n + 1) (Cf Fig. 1(a)).
All the Ci interface (i 2 ½1;n� 1�) can be imperfect or not except

the Cn one which is supposed to be perfect.
Let us denote by Cext the external surface. This homogeneous

matrix is subjected to uniform stress (~T0 ¼ r0~n) or strain condi-
tions (~u0 ¼ e0~x) on its external surface.

The elastic strain energy in the heterogeneous body presented
in Fig. 1(a) is defined by:

U ¼ 1
2

Z
V
r : edv ð82Þ

where r; e are respectively the stress and strain tensor in configura-
tion Fig. 1(a) and the elastic strain energy in the homogeneous
configuration made only of phase (n + 1) is defined by:

U0 ¼
1
2

Z
V
r0 : e0dv ð83Þ

where r0; e0 are respectively the stress and strain tensor in this
configuration. V denotes the volume of the region inside the surface
Cext . Eq. (82) can also be written as:

U ¼ U0 þ 1
2

R
V r : e� r0 : e0
� �

dv

U ¼ U0 þ 1
2

R
V r : grad~u� r0 : grad~u0
� �

dv

U ¼ U0 þWp � 1
2

R
V r0 : grad~u0dv

9>>>=
>>>; ð84Þ

with Wp ¼ 1
2

R
V r : grad~uð Þdv

4.1. Interface with jump of the stress vector

It is worth noticing that r and r0 in Eq. (84) satisfy both the
equilibrium equation which can be respectively expressed as

div
�!

r ¼ 0 and div
�!

r0 ¼ 0 but where div
�!

r denotes the divergence
with distribution derivatives meaning respecting:

div
�!

r ¼ div
�!

r
n o

þ ½r�~ndCi
ð85Þ

where div
�!

r
n o

denotes the divergence with function derivatives
meaning and dCi

the Dirac distribution over the interface Ci.

div
�!

r
n o

can then be replaced by �½r�~ndCi
.

Wp ¼
1
2

Z
V

r : grad~uð Þdv ¼ 1
2

Z
V

div r~uð Þf gdv � 1
2

Z
V

div
�!

r
n o

~udv

ð86Þ

Taking into account the jump of the stress vector over all the imper-
fect interfaces Ci (sum over i with i 2 Simp):

Wp ¼
1
2

Z
Cext

~u r~nð Þds�
X
i�Simp

Z
Ci

~u ½r�~n
2

ds

�
X
i�Simp

Z
V
�

~u ½r�~ndCi

� �
2

dv ð87Þ

With
R

V
~u ½r�~ndCi

� �
dv ¼

R
Ci
~u ½r�~nds;Wp becomes:

Wp ¼
1
2

Z
Cext

~n r~uð Þds ð88Þ
es containing multi-layer coated particles with imperfect interface bonding
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Consequently by taking into account that div
�!

r0 ¼ 0 and by substi-
tuting Eq. (88) in Eq. (84), the energy U can be written in the follow-
ing form:

U ¼ U0 þ
1
2

Z
Cext

~n r~u� r0~u0� �
dS ð89Þ

Using Eshelby’s procedure which consists in replacing the effect of
the inclusion by a particular distribution of body forces, Christensen
(1979), it can be easily shown that the following relation is still
valid when there may be a jump of the stress vector on the Ci

interfaces:

U ¼ U0 þ
1
2

Z
Cn

~T0:~u�~T:~u0
� 	

dS ð90Þ

where uniform stress has been applied to the external surface. It is
worth noting that Cn can be replaced, in Eq. (90), by any Ci interface
providing there is no jump of stress vector outside this interface (as
already pointed out by Benveniste (1985)). The corresponding
result when uniform displacement has been applied to the external
surface can be written as:

U ¼ U0 �
1
2

Z
Cn

~T0:~u�~T:~u0
� 	

dS ð91Þ
4.2. Interface with jump of the displacement vector

The previous energy approach have already been generalized by
Benveniste (1985) to the case in which there may be a jump in the
displacements at the interfaces. It is still valid when we consider a
composite material with n-layered inclusions.

U ¼ U0 �
1
2

Z
Cn

~T0:~u�~T:~u0
� 	

dS ð92Þ

The sign in front of the integral in Eq. (92) depends on the fact that
uniform stress or uniform strain conditions are applied to the exter-
nal surface. It is worth noting that in the case of jump of the dis-
placement vector the possible interpenetration has to be prevented.

The hereabove presented generalization of the Generalized Self
Consistent Scheme (GSCS) to n-layered inclusions with imperfect
conditions can account for several type of interfaces with for some
of them undergoing a jump of the traction vector, for some others
undergoing a jump of the displacement vector and for some others
being perfect, all this in the same n-layered inclusion.

4.3. (n + 1)-phase model with imperfect interfaces

We can use the solution, presented in Section 2, of the n-phases
inclusion with imperfect interfaces embedded in an infinite matrix
when the bulk and shear modulus of this matrix named respec-
tively KSeff

ðnÞ and lSeff
ðnÞ denote the effective bulk and shear modulus

of the n-layered inclusion based composite (Lðnþ1Þ ¼
3KSeff
ðnÞ J þ 2lSeff

ðnÞ K).
Our criterion for determining the effective properties is to use

the Christensen-Lo’s energy condition U ¼ U0. As already shown
by Hervé and Zaoui (1993), this energy condition, which can be
here, thanks to Eqs. ()()()(90)–(92), still replaced by:Z

Cn

~T0 �~u�~T �~u0
� 	

dS ¼ 0 ð93Þ

reduces to Gnþ1 =0 in the case of an applied hydrostatic pressure and
to Dnþ1 ¼ 0 in the case of an applied simple shear sollicitation when
the proper stress and displacement expressions are used from
Section 2.
Please cite this article in press as: Hervé-Luanco, E. Elastic behavior of composit
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The two conditions Gnþ1 =0 and Dnþ1 ¼ 0 lead to the expression
of the effective bulk modulus KSeff

ðnÞ and the effective shear modulus
lSeff
ðnÞ as shown in Hervé and Zaoui (1993).

These effective moduli are here determined from Eqs. (45) and
(51) of Hervé and Zaoui (1993) where the matrix NðnÞ (respectively
the matrix MðnÞ) has to be replaced by the matrix NSðnÞ (respectively
the matrix MSðnÞ) defined in the present paper (see Appendix B,
where Eq. (45) and (51) of Hervé and Zaoui (1993) have become
respectively Eqs. (B.3) and (B.4) in the case of imperfect interfaces).

5. Applications to interface models leading to size effects in
nano-composites or mismatch in composites

Before considering some new applications with n > 3, we have
first verified that, in the particular case where n ¼ 2 our extended
theory provides the same results as the numerical results available
in the literature.

� In the case of the considered interface model between phase 1
and phase 2 is a linear spring model, we have compared our
predictions of the effective stiffness of composite with such
interface, with Sangani and Mo’s results (Sangani and Mo,
1997). For that purpose, the discontinuity matrices given by
Eq. (43) have been used with i1

s ¼
lð2ÞDn

R1
and fi

s ¼
lð2ÞDt

R1
, where

Dn and Dt are non-dimensional coefficients introduced by the
authors to characterize the interface behavior. This application
provides exactly the same results as for example, their Figs. 3
(Dn !1) and 4 (Dt !1).
� In the case of the considered interface model between phase 1

and phase 2 is a Young–Laplace model, we have compared
our predictions of effective stiffness of porous solids with Duan
et al.’s results Duan et al. (2005c) who have considered two sets
of surface moduli (kS;lS) (referred as cases A and B) taken from
the paper of Miller and Shenoy (2000). For this purpose the two
discontinuity matrices given in Eqs. (70) and (71) have been
used using Eq. (76) where l1

I ; m1
I

� �
are determined from the

two sets of moduli by the link: b1
I ¼

kS
2 ; l1

I ¼ lS. This application
provides exactly the same results as for example, their Figs. 1
(effective bulk modulus function of void radius) and 4 (effective
shear modulus function of void radius). it is worth noting that
Kushch et al. (2013) have made comparison between these
results and the predictions of the effective behavior of periodic
particulate nanocomposites with the same interface model in
the case of the two sets A and B. They have found a very good
agreement for porosity lower than 0.4.

For n > 3 the following Illustrative examples correspond to differ-
ent n-layered spherical inhomogeneities represented in Fig. 2. The
considered imperfect interfaces correspond either to Asymptotic
Rigid interface (named here CARi and characterized by the two dis-
continuity matrices (70) and (71)) or to Asymptotic Soft interface
(named here CASo and characterized by the discontinuity matrices
(43) with (72)).

The first application is devoted to the study of size effects in a
particle-reinforced composite where the inclusions are surrounded
by an interphase which thickness is named tint (Cf Fig. 2(a)). Let f be
the volume fraction of inclusions, (kinc;linc; minc), (kint ;lint ; mint),
(kmat;lmat ; mmat) be respectively the bulk modulus, the shear modu-
lus and the Poisson’s ratio of the inclusions, the interphase and the
matrix and Rinc be the radius of the inclusions.

Let us define the normalized effective shear modulus by leff=l2p

where l2p is the effective shear modulus given by the GSCM con-
sidering only two phases in the composite (inclusions + matrix)
and let us report in Fig. 3 some normalized effective shear moduli
versus the ratio Rinc=tint .
es containing multi-layer coated particles with imperfect interface bonding
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The normalized effective shear moduli obtained by an asymp-
totic approach (corresponding to a thin and rigid interface),
lARi=l2p are compared in Fig. 3 on the one hand with the normal-
ized ones given by the GSCM considering the three phases of the
composite (inclusions + interphase + matrix) without an asymp-
totic approximation (l3p=l2p), and, on the other hand, with the
normalized ones given by the GSCM considering that the inclusions
and the interphase are rigid lRigid=l2p . Similar results, valid for the
bulk moduli are not presented here.

Fig. 4 shows an application to composite with coated inclusions
and an interphase is present around these coated inclusions
(Fig. 2(b)). Let f be now the volume fraction of coated inclusions
and kcoat ;lcoat ; mcoat; tcoat be respectively the bulk modulus, the shear
modulus, the Poisson’s ratio and the thickness of the coated phase.
Moreover we have considered that the thicknesses of the coating
phase and of the interphase are linked by tcoat=tint ¼ 5. The
approach consisting in performing first the calculation of the effec-
tive behavior of the coated inclusion and then to replace these
coated inclusions by their effective behavior for determining the
effective behavior of the whole composite (k2steps and l2steps) has
been compared in Fig. 4 to the correct homogeneization approach
(k4p and l4p) consisting in considering all the phases together in
the n-layered spherical inhomogeneity with n ¼ 4. Rinc denotes in
Fig. 2(b) the radius of the coated inclusions. These results show
as already known, that this replacement works only for the deter-
mination of the effective bulk modulus (k4p

=k2steps ¼ 1, cf the recur-
rence relation Eq. (46) (Hervé and Zaoui, 1993)). It is worth
noticing that the coated inclusions are homogeneous when
Rinc ! tcoat (the coated inclusions are made only of the coating
Fig. 3. Comparison between the normalized shear moduli for differ

Please cite this article in press as: Hervé-Luanco, E. Elastic behavior of composit
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phase) and for Rinc !1 (the coated inclusions are only made of
the inclusion phase) leading, for these two particular values of
Rinc , to the same results for the two approaches also regarding
the effective shear modulus, l4p=l2steps ¼ 1. The approach consist-
ing of replacing the interphase by a thin rigid interface (effective
behavior: kARi and lARi) has also been compared in Fig. 4 to the cor-
rect homogeneization approach (k4p and l4p). We can see that this
approach is a good approximation for Rinc=tint P 100.

In Fig. 6 we have considered a composite containing inclusions
embedded in an accommodating coating phase with linearly vari-
able behavior discretized into various steps (here 100 steps) (cf
Fig. 5 for the normalized value k=kmat of the bulk modulus of the
different phases) and we account for a mismatch occuring at the
CASo interface located in the coating phase, at the distance aC from
the center of the inclusions. (cf FigS. 2(c) and 5). (kASo

;lASo) and
(kud

;lud) represent respectively the effective bulk and shear mod-
ulus of the composite with the presence of the CASo interface or
not (undamaged material in this last case). The fully damaged
material is represented by a composite where all the domain inside
the CASo interface has become porous.

For the composite studied in Fig. 6, we have represented in Fig. 7
the jump of displacement at the CASo interface (3 ur½ �HP=ðh0RincÞ)
obtained from (Eq. (11)) when the composite material is subjected
to an hydrostatic pressure (displacement condition Eq. (5)) and
the jump of displacement at the CASo interface Ur½ �S=ðcRincÞ obtained
from (28) where a simple shear is applied (Eq. (18)), where
uðiÞr ðr; h;/Þ ¼ UrðrÞ sin2 h cos 2U, with still fixed 30% volume fraction
of inclusions and 21.8 % of coated phase and minc ¼ mcoat ¼ mint ¼
mmat ¼ 0:3; kinc=kmat ¼ 100 and for different values of kint .
ent values of kint . (f ¼ 0:3; kinc ¼ 10 kmat , minc ¼ mint ¼ mmat ¼ 0:3).

es containing multi-layer coated particles with imperfect interface bonding
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Fig. 4. Comparison between the one, the two steps homogeneization approaches and the asymptotic approach, f ¼ 30%; minc ¼ mcoat ¼ mint ¼ mmat ¼ 0:3, kinc ¼ 0, kcoat=kmat ¼ 30,
kint=kmat ¼ 5.

Fig. 5. Bulk modulus inside the basic morphological pattern where a CASo interface is located in the coating phase, at the distance aC from the center of the inclusions.

Fig. 6. Effect, on the effective bulk modulus of the composite (left) and on the effective shear modulus (right), of the normalized distance (aC=Rinc) of a partially damaged
interface, for different values of the kint bulk modulus of the thin soft interphase/interface CASo with fixed 30% volume fraction of inclusions and 21.8 % of coated phase,
minc ¼ mcoat ¼ mint ¼ mmat ¼ 0:3, kinc=kmat ¼ 100.
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6. Conclusion

The approach developed in this paper gives a general procedure
to study the elastic behavior of composite materials reinforced by
n-layered inclusions with imperfect bonding conditions between
their different phases. The main point of this procedure is to use
Please cite this article in press as: Hervé-Luanco, E. Elastic behavior of composit
conditions and application to size effects and mismatch in these composites. I
transfert matrices to express the bonding conditions between the
different phases. In the case of imperfect interfaces ‘‘two disconti-
nuity matrices’’ are attached to the interface model characterizing
the imperfect interfaces. The ’’discontinuity matrices’’ attached to
classical imperfect interfaces (linear spring, dislocation-like
models, generalized Young Laplace conditions) have been derived.
es containing multi-layer coated particles with imperfect interface bonding
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Fig. 7. Normalized jump of displacement in the basic morphological pattern at the CASo interface, (3½ur �HP=ðh0Rinc) when an hydrostatic pressure is applied or ½Ur �S=ðcRincÞ
where a simple shear is applied, with still fixed 30% volume fraction of inclusions and 21.8 % of coated phase and minc ¼ mcoat ¼ mint ¼ mmat ¼ 0:3, kinc=kmat ¼ 100, for different
values of kint .
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Section 3 shows in an easy way that we obtain the same ‘‘discon-
tinuity matrices’’ for the interface model based on the generalized
Young–Laplace interface conditions for solids as for the interface
model obtained by an asymptotic method considering a thin stiff
interphase present in a spherical inhomogeneity inside which the
volume fraction of each phase is the same as the one in the com-
posite. The homogeneization method developed by Marcadon
et al. (2007) when a single Morphological Representative Pattern
is used appears to be a generalization of the one developed by
Wang et al. (2005) and Duan et al. (2005a). It is also possible,
thanks to the present approach to introduce not yet studied inter-
face models in micromechanicals models and to use the resolution
of the n-layered spherical inclusion with imperfect interfaces prob-
lem in an approach using several Morphological Representative
Patterns (Bornert et al., 1996; Marcadon et al., 2007).

Moreover the problem of size effect due to the presence of a
constant-thicknessed interphase around inclusions embedded in
a matrix has been solved and some results have been presented.
The influence of the distance between the center of the inclusions
and the place where a mismatch inside a functionally gradient
coating occurs has also been presented.

The same procedure, using ‘‘discontinuity matrices’’ can also be
used in the case of multiply coated fiber reinforced composites
(work in progress).
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Appendix A. Useful matrices

Jint�1

ðRiÞ ¼
1

3ki
I þ 4li

I;

4li
I ;

Ri
1

3ki
IR

2
i �R3

i

0
@

1
A ðA:1Þ

@Jint

@r

�����
Ri

¼
1 � 2

R3
i

0 12li
I ;

R4
i

0
B@

1
CA ðA:2Þ

LðintÞ�1

ðRiÞ is given by the following matrix:
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1
5 mi

I � 1
� �

2 mi
I�5ð Þ

3Ri

mi
Iþ1ð Þ
Ri

4mi
I�5ð Þ

3li
I

2mi
I�1ð Þ
li

I

4 2mi
I�1ð Þ

7R3
i

� 4 2mi
I�1ð Þ

7R3
i

2mi
I�1ð Þ

7li
I
R2

i
� 2mi

I�1ð Þ
7li

I
R2

i

� mi
IR

4
i

7
R4

i 2mi
Iþ7ð Þ

14 � 2mi
I R

5
i

7li
I

4mi
I�7ð ÞR5

i

14li
I

R2
i 2mi

I�1ð Þ
3

R2
i 2mi

I�1ð Þ
2 � R3

i 2mi
I�1ð Þ

3li
I

� R3
i 2mi

I�1ð Þ
2li

I

2
66666666664

3
77777777775

ðA:3Þ

@LðintÞ

@r

�����
Ri

¼

1 �18mi
I

1�2mi
I
R2

i � 12
R5

i
� 2 5�4mi

Ið Þ
1�2mi

Ið ÞR3
i

1 � 3 7�4mi
Ið Þ

1�2mi
I

R2
i

8
R5

i
� 4

R3
i

0 6li
Im

i
I

1�2mi
I
Ri

60li
I

R6
i

� 6li
I mi

I�5ð Þ
1�2mi

Ið ÞR4
i

0 � 2li
I 7þ2mi

Ið Þ
1�2mi

I
Ri �

40li
I

R6
i
� 6li

I 1þmi
Ið Þ

1�2mi
Ið ÞR4

i

2
66666666664

3
77777777775

ðA:4Þ
Appendix B. (n + 1)-phase model

From Hervé and Zaoui (1993), the matrix NðiÞ defined as

Jðiþ1Þ
� 	�1

ðRiÞJðiÞðRiÞ is given by:

NðiÞ ¼ 1
3kiþ1 þ 4liþ1

3ki þ 4liþ1
4

R3
i
ðliþ1 � liÞ

3ðkiþ1 � kiÞR3
i 3kiþ1 þ 4liÞ

0
@

1
A ðB:1Þ

and the matrix MðiÞ ¼ Lðiþ1Þ
� 	�1

ðRiÞLðiÞðRiÞ can be expressed as:

MðiÞ ¼ 1
5ð1� miþ1Þ

ci
3

R2
i ð3bi�7ciÞ
5ð1�2miÞ

0 ð1�2miþ1Þbi
7ðð1�2miÞ

� � �
R5

i ai

2 � R7
i ð2aiþ147aiÞ
70ð1�2miÞ

� 5
6 ð1� 2miþ1ÞaiR

3
i

7ð1�2miþ1ÞaiR
5
i

2ð1�2miÞ

0
BBBBBBB@

� 12ai

R5
i

4ðfi�27aiÞ
15ð1�2miÞR3

i

� � � � 20ðð1�2miþ1Þai

7R7
i

� 12aið1�2miþ1Þ
7ð1�2miÞR5

i

di
7

R2
i 105ð1�miþ1Þþ12aið7�10miþ1Þ�7ei½ �

35ð1�2miÞ

0 eið1�2miþ1Þ
3ð1�2miÞ

1
CCCCCCCA

ðB:2Þ

with
es containing multi-layer coated particles with imperfect interface bonding
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ai ¼ ð7þ 5miÞð7� 10miþ1Þ li
liþ1
� ð7� 10miÞð7þ 5miþ1Þ

bi ¼ 4ð7� 10miÞ þ ð7þ 5miÞ li
liþ1

ci ¼ ð7� 5miþ1Þ þ 2ð4� 5miþ1Þ li
liþ1

di ¼ ð7þ 5miþ1Þ þ 4ð7� 10miþ1Þ li
liþ1

ei ¼ 2ð4� 5miÞ þ ð7� 5miÞ li
liþ1

fi ¼ ð4� 5miÞð7� 5miþ1Þ � ð4� 5miþ1Þð7� 5miÞ li
liþ1

ai ¼ li
liþ1
� 1

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:
Let us define ZS

ab by ZS
ab ¼ PSðn�1Þ

a1 PSðn�1Þ
b2 � PSðn�1Þ

b1 PSðn�1Þ
a2 with a 2 ½1;4�

and b 2 ½1;4�.
The effective behavior (kSeff

ðnÞ ;l
Seff
ðnÞ ), respectively the bulk modu-

lus and the shear modulus, of such materials are given by:

kSeff
ðnÞ ¼

3knR3
nQSðn�1Þ

11 � 4lnQ Sðn�1Þ
21

3ðR3
nQ Sðn�1Þ

11 þ Q Sðn�1Þ
21 Þ

ðB:3Þ

and lSeff
ðnÞ is the positive root of the following second order equation:

A
l
lm
Þ

� �2

þ B
l
lm
Þ

� �
þ C ¼ 0 ðB:4Þ

with:

A¼4R10
n ð1�2mnÞð7�10mnÞZS

12þ20R7
nð7�12mnþ8m2

nÞð7�10mnÞZS
42

þ�� �þ �� �12R5
nð1�2mnÞðZS

14�7ZS
23Þþ20R3

nð1�2mnÞ2ZS
13

þ16ð4�5mnÞð1�2mnÞZS
43

B¼3R10
n ð1�2mnÞð15mn�7ÞZS

12þ60R7
nðmn�3ÞmnZS

42þ���
þ�� ��24R5

nð1�2mnÞðZS
14�7ZS

23Þ�40R3
nð1�2mnÞ2ZS

13

�8ð1�5mnÞð1�2mnÞZS
43

C¼�R10
n ð1�2mnÞð7þ5mnÞZS

12þ10R7
nð7�m2

nÞZ
S
42þ�� �

þ�� �12R5
nð1�2mnÞðZS

14�7ZS
23Þþ20R3

nð1�2mnÞ2ZS
13

�8ð7�5mnÞð1�2mnÞZS
43
Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ijsolstr.2014.
04.008.

References

Benveniste, Y., 1985. The effective mechanical behaviour of composite materials
with imperfect contact between the constituents. Mech. Mater. 4, 197–208.

Benveniste, Y., 2006. A general interface model for a three-dimensional curved thin
anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54,
708–734.
Please cite this article in press as: Hervé-Luanco, E. Elastic behavior of composit
conditions and application to size effects and mismatch in these composites. I
Benveniste, Y., 2008. Revisiting the generalized self-consistent scheme in
composites: clarification of some aspects and a new formulation. J. Mech.
Phys. Solids 56, 2984–3002.

Benveniste, Y., Miloh, T., 2001. Imperfect soft and stiff interfaces in two-
dimensional elasticity. Mech. Mater. 33, 309–323.

Bornert, M., Stolz, C., Zaoui, A., 1996. Morphologically representative pattern-based
bounding in elasticity. J. Mech. Phys. Solids 44, 307–331.

Brisard, S., Dormieux, L., Kondo, D., 2010a. Hashin-sktrikman bounds on the bulk
modulus of a nanocomposite with spherical inclusions and interface effects.
Comput. Mater. Sci. 48, 589–596.

Brisard, S., Dormieux, L., Kondo, D., 2010b. Hashin-sktrikman bounds on the shear
modulus of a nanocomposite with spherical inclusions and interface effects.
Comput. Mater. Sci. 50, 403–410.

Christensen, R., 1979. Mechanics of Composite Materials. Dover.
Duan, H., Wang, J., Huang, Z., Luo, Z.Y., 2005a. Stress concentration tensors of

inhomogeneities with interface effects. Mech. Mater. 37, 723–736.
Duan, H., Wang, J., Huang, Z., Karihaloo, B., 2005b. Eshelby formalism for nano-

inhomogeneities. Proc. R. Soc. London 461, 3335–3353.
Duan, H., Wang, J., Huang, Z., Karihaloo, B., 2005c. Size-dependent effective elastic

constants of solids containing nano-inhomogeneities with interface stress. J.
Mech. Phys. Solids 53, 1574–1596.

Duan, H., Yi, X., Huang, Z., Wang, J., 2007. A unified scheme for prediction of
effective moduli of multiphase composites with interface effects. Part I:
theoreticam framework. Mech. Mater. 39, 81–93.

Duan, H., Wang, J., Karihaloo, B., 2008. Theory of elasticity at the nanoscale. Adv.
Appl. Mech. 42, 1–68.

Gurtin, M., Murdoch, A., 1975. A continuum theory of elastic material surfaces. Arch.
Ration. Mech. Anal. 57, 291–323.

Hashin, Z., 1991. Composite materials with interphase: thermoelastic and inelastic
effects. In: Dvorak, G.J. (Ed.), Inelastic Deformation of Composite Materials.
Springer, New York.

Hashin, Z., 2002. Thin interphase/imperfect interface in elasticity with application
to coated fiber composites. J. Mech. Phys. Solids 50, 2509–2537.

Hervé, E., Zaoui, A., 1993. n-Layered inclusion-based micromechanical modelling.
Int. J. Eng. Sci. 31, 1–10.

Kushch, V.I., Mogilevskaya, S.G., Stolarski, H.K., Crouch, S.L., 2011. Elastic interaction
of spherical nanoinhomogeneities with gurtin-murdoch type interfaces. J.
Mech. Phys. Solids 59, 1702–1716.

Kushch, V.I., Mogilevskaya, S.G., Stolarski, H.K., Crouch, S.L., 2013. Elastic fields and
effective moduli of particulate nanocomposites with the gurtin-murdoch model
of interface. J. Mech. Phys. Solids 59, 1702–1716.

Le Quang, H., He, Q.-C., 2008. Variational principles and bounds for elastic
inhomogeneous materials with coherent imperfect interfaces. Mech. Mater.
40, 865–884.

Love, A., 1944. A Treatise on the Mathematical Theory of Elasticity, 4th Edition.
Dover.

Marcadon, V., Hervé, E., Zaoui, A., 2007. Micromechanical modeling of packing and
size effects in particulate composites. Int. J. Solids Struct. 44, 8213–8228.

Miller, R.E., Shenoy, V.B., 2000. Size-dependent elastic properties of nanosized
structural elements. Nanotechnology 11, 139–147.

Povstenko, Y.Z., 1993. Theoretical investigation of phenomena caused by
heterogeneous surface tension in solids. J. Mech. Phys. Solids 41, 1499–1514.

Sangani, A.S., Mo, G., 1997. Elastic interactions in particulate composites with
perfect as well as imperfect interfaces. J. Mech. Phys. Solids 45, 2001–2031.

Wang, J., Duan, H., Zhang, Z., Huang, Z., 2005. An antiinterpenetration model and
connections between interphase and interface models in particle-reinforced
composites. Int. J. Mech. Sci. 47, 701–718.

Yu, H.Y., 1998. A new dislocation-like model for imperfect interfaces and their effect
on load transfert. Composites A 29, 1057–1062.

Zaoui, A., Marcadon, V., Hervé, E., 2006. Particle size effects in nanocomposites. In:
Sun, Q., Tong, P. (Eds.), IUTAM Symposium on Size Effects on Material and
Structural Behavior at Micron- and Nano-scales. Springer, the Nederlands.
es containing multi-layer coated particles with imperfect interface bonding
nt. J. Solids Struct. (2014), http://dx.doi.org/10.1016/j.ijsolstr.2014.04.008

http://dx.doi.org/10.1016/j.ijsolstr.2014.04.008
http://dx.doi.org/10.1016/j.ijsolstr.2014.04.008
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0005
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0005
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0010
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0010
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0010
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0015
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0015
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0015
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0020
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0020
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0025
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0025
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0030
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0030
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0030
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0035
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0035
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0035
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0040
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0045
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0045
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0050
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0050
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0055
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0055
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0055
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0060
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0060
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0060
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0065
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0065
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0070
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0070
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0075
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0075
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0075
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0080
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0080
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0085
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0085
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0090
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0090
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0090
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0095
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0095
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0095
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0100
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0100
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0100
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0105
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0105
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0110
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0110
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0115
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0115
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0120
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0120
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0125
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0125
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0130
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0130
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0130
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0135
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0135
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0140
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0140
http://refhub.elsevier.com/S0020-7683(14)00157-7/h0140
http://dx.doi.org/10.1016/j.ijsolstr.2014.04.008

	Elastic behavior of composites containing multi-layer coated particles with imperfect interface bonding conditions and application to size effects and mismatch in these composites
	1 Introduction
	2 n-layered spherical inclusion with imperfect interfaces, embedded in an infinite matrix
	2.1 Hydrostatic pressure
	2.2 Simple shear
	2.3 Expression of the discontinuity matrices for several interface models
	2.3.1 Linear spring models
	2.3.2 Dislocation-like model
	2.3.3 Asymptotic method to deal with thin elastic interphase
	2.3.3.1 Method using the above-described procedure
	2.3.3.2 Method using Hashin’s procedure



	3 n-layered spherical inclusion-reinforced composites
	4 (n+1)-phase model with imperfect interfaces
	4.1 Interface with jump of the stress vector
	4.2 Interface with jump of the displacement vector
	4.3 (n+1)-phase model with imperfect interfaces

	5 Applications to interface models leading to size effects in nano-composites or mismatch in composites
	6 Conclusion
	Acknowledgments
	Appendix A Useful matrices
	Appendix B (n+1)-phase model
	Appendix C Supplementary data
	References


