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The paper focuses on the comparison of two approaches used for calculation of the effective elastic prop-
erties of particulate composites: the dipole moments representation and the technique based on property
contribution tensors. Its specific goal is to bridge the gap between the two methods and to identify the
key microstructural parameters affecting overall elastic stiffness of heterogeneous materials. The basic
concepts of the homogenization theory including a consistent way of introducing the macroscopic field
parameters are discussed and clarified. We provide a detailed comparison of the analytical expressions
for the dipole moment tensors obtained by the multipole expansion method and for the stiffness
contribution tensors and show that they coincide.
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1. Introduction

In the present paper we discuss the connection between two
approaches that can be applied to calculate effective elastic
properties of heterogeneous materials: (1) the multipole expansion
and (2) the property contribution tensors. It can be considered as
extension of the work of the present authors (Kushch and
Sevostianov, 2014), where conductive properties were discussed,
to the case of effective elastic properties.

Connection between the compliance contribution tensors and
far-field asymptotes received some attention in literature. Jasiuk
et al. (1994) and Jasiuk (1995) considering 2-D polygonal holes,
made an observation that the far-field asymptotic of the hole-gen-
erated fields fully determines the compliance contribution of the
hole.

Actually, sufficiency of the far-fields for proper description of
the contributions of the inhomogeneities to effective properties
extends to the general 3-D case as shown by Sevostianov and
Kachanov (2011). The extra overall strain due to the presence of
an inhomogeneity in reference volume V is given by the
well-known expression in terms of an integral over the boundary
@V (Hill, 1963):

De ¼ 1
2V

Z
@V
ðDunþ nDuÞdS; ð1:1Þ
where Du are extra displacements due to the inhomogeneity and ni

is the outward unit normal to @V . Volume V can be arbitrarily large,
hence the far-field asymptotics of Du is sufficient for determination
of the compliance contribution of an inhomogeneity. Formula (1.1)
gives the compliance contribution of an inhomogeneity in terms of
experimentally measurable quantities – displacements of the
specimen boundaries; in this context, volume V must be large to
neglect the inhomogeneity-boundary interaction thus making the
far-field asymptotic necessary.

The far-field asymptotics of elastic field is shape-dependent,
even in cases when the inhomogeneity compliance contribution
is isotropic (for example, when the inhomogeneity shape has the
symmetry of any equilateral polygon, except square).This is in con-
trast with shape independence of the inhomogeneity contributions
to the physical properties characterized by second-rank tensors
(see Kushch and Sevostianov, 2014), such as the conductive or
dielectric ones: for them, the isotropic case is characterized by
only one constant, hence any isotropic – in regard to these
properties – shape (such as any equilateral polygon including
square) can be replaced by a circle of appropriate radius.

The structure of the far-field and its shape dependence can
be clarified using the multipole expansions (Kushch, 2013).
Batchelor (1974) suggested to calculate average stress – and thus
the effective stiffness of composite – in terms of the induced dipole
moments of particles populating the representative volume
element (RVE). The elastic dipole moment is formally defined (see,
for example, Vakulenko and Kosheleva, 1980; Kosheleva, 1983)
as the coefficient in the multipole series expansion of displacement
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disturbance field associated with the dipole term. Multipole expan-
sions can be illustrated on a system of forces distributed in volume
V . At distance r that is much larger than linear dimensions of V , elas-
tic fields can be represented as a sum of terms: the first one is gener-
ated by the principal vector of forces (it decreases as r�2 for stresses
and r�1 for displacements); the second one – by dipoles, i.e. pairs of
equal and opposite point forces applied at closely spaced points (it
decreases as r�3 and r�2); the third one – by quadrupoles – closely
spaced dipoles of opposite signs (it decreases as r�4 and r�3), etc.
The first term (generated by the principal vector) is a dominant
one. Such expansions can be extended from a discrete system of
forces to a distribution of stresses (or strains) in V: the role of the
principal vector is played then by the integral

R
V rijdV and higher

order moments take the form
R

V xkrijdV ,
R

V xkxlrijdV , etc. We refer
to the book of Lur’e (1964) for the case of discrete system of forces
and the book of Kanaun and Levin (2008) for a more general form
of distributions.

The connection between the property contribution tensors and
multipole expansion method is not yet well recognized and
understood. This work aims at establishing the connection between
two different approaches to the problem of homogenization
and to identify and discuss the key microstructural parameters
affecting overall elastic properties of heterogeneous materials. It
follows the idea proposed by the present authors (Kushch and
Sevostianov, 2014) for overall conductivity (thermal or electric)
of heterogeneous materials.
2. Background material

For readers convenience, in this section we briefly outline the
concepts of (1) property contribution tensors and (2) the multipole
expansion. These topics, being known for several decades, are not
widely used in the problems of homogenization.

2.1. Compliance and stiffness contribution tensors

Compliance contribution tensors have been first introduced by
Horii and Nemat-Nasser (1983) for pores of ellipsoidal shape
(explicit formulas connecting compliance contribution tensor and
Eshelby tensor for an ellipsoidal pore are given in the appendix
of the mentioned paper). Components of this tensor for two-
dimensional pores of arbitrary shape were given by Kachanov
et al. (1994) and for ellipsoidal inhomogeneities – by Sevostianov
and Kachanov (1999). Connection between compliance and stiff-
ness contribution tensors has been discussed by Sevostianov and
Kachanov (2007b). The significance of these tensors for the homog-
enization theory is that their sum is the proper microstructural
parameter in whose terms the considered effective property has
to be expressed. In other words, it is these tensors that have to
be summed up, or averaged over a RVE to calculate overall elastic
properties.

In the context of linear elastic properties, the average, over rep-
resentative volume V strain can be represented as a sum

hei ¼ S0 : r1 þ De; ð2:1Þ

where S0 is the compliance tensor of the matrix and r1 represents
the homogeneous boundary conditions (tractions on @V have the
form tj@V ¼ r1 � n where r1 is a constant tensor); r1 can be viewed
as a far-field, or remotely applied, stress. The material is assumed to
be linear elastic, hence the extra strain De due to inhomogeneity of
volume V1 is proportional to applied stress and compliance contri-
bution tensor is the proportionality factor in this relation:

De ¼ ðV1=VÞH : r1: ð2:2Þ
In the case of multiple inhomogeneities, De ¼ ð1=VÞ
P

iV iH
ðiÞ :

r1 so that the extra compliance due to inhomogeneities is given
by

DS ¼ ð1=VÞ
X

i

V iH
ðiÞ: ð2:3Þ

Alternatively, one can consider the extra average stress Dr due
to an inhomogeneity under given applied displacement homoge-
neous boundary conditions (displacements on @V have the form
uj@V ¼ e1 � x where e1 is a constant tensor). This defines the
stiffness contribution tensor of an inhomogeneity:

Dr ¼ ðV1=VÞN : e1; ð2:4Þ

In the case of multiple inhomogeneities, the extra stiffness due
to inhomogeneities is given by

DC ¼ ð1=VÞ
X

i

V iN
ðiÞ: ð2:5Þ

The property contribution tensors, obviously, have the same
rank and symmetry as the tensors characterizing the property: H
and N are fourth-rank tensors with ijkl components symmetric
with respect to i$ j, k$ l and ij$ kl.

The H- and N-tensors are determined by the shape of the
inhomogeneity, as well as properties of the matrix and of the
inhomogeneity material.

Remark. The property contribution tensors defined via Eqs. (2.2)
and (2.5) do not depend on the size of inhomogeneity. This
definition is different from those used, for example, by Sevostianov
and Kachanov, 2002, where multiplier ðV1=VÞ was absorbed by the
tensors. The present definition has a number of advantages. For
example, the problem of distinction between infinite cylinder and
a needle is irrelevant. The difference between these two shapes is
in the multiplier ðV1=VÞ only.

The compliance and stiffness contribution tensors are
also affected by elastic interactions. In the non-interaction
approximation, they are taken by treating the inhomogeneities as
isolated ones. These tensors for a given inhomogeneity are
interrelated, as follows. The overall compliance of certain
volume containing one inhomogeneity S0 þH is an inverse of its
stiffness tensor C0 þN, i.e. their product equals the fourth-rank
unit tensor implying that N ¼ �C0 : H : C0 � N : H : C0. The
H- and N-tensors scale as the ratio l3

=V that can be made
arbitrarily small by enlarging V . Hence the second term can be
neglected so that

N ¼ �C0 : H : C0 ð2:6Þ

or, in the case of the isotropic matrix,

�Nijkl ¼ k2
0Hmmnndijdkl þ l2

0Hijkl þ k0l0ðdijHmmkl þ dklHmmijÞ; ð2:7Þ

where k0 and l0 are Lame constants of the matrix.
For an ellipsoidal inhomogeneity, compliance and stiffness

contribution tensors can be explicitly expressed in terms of Hill’s
tensors Q and P (Walpole, 1966) or in terms of Eshelby’s tensor s
(given for example in book of Mura, 1987) and, therefore, in terms
of ellipsoid geometry. For compliance contribution tensor, one can
write (Sevostianov and Kachanov, 1999):

H ¼ ½ðS1 � S0Þ�1 þ Q �
�1
: ð2:8Þ

where S1 is compliance of the inhomogeneity material. In the case
of a pore, H ¼ Q�1. Similarly, the stiffness contribution tensor is
obtained as

N ¼ ½ðC1 � C0Þ�1 þ P�
�1
: ð2:9Þ
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with C1 being inhomogeneity stiffness. For a perfectly rigid inhomo-
geneity, N ¼ P�1.

We now consider a spheroidal inhomogeneity with the rotation
axis i3, semi-axes a1 ¼ a2 ¼ a and a3 and aspect ratio c ¼ a3=a. The
Eshelby tensor and all the property contribution tensors are
elementary functions of c. To express the H and N-tensors in terms
of c, we represent them as linear combinations of six tensors
Tð1Þ; . . . ;Tð6Þ that form a tensor basis for transversely-isotropic
fourth-rank tensors (see Appendix C):

H ¼
X6

m¼1

hmTðmÞ; N ¼
X6

m¼1

nmTðmÞ: ð2:10Þ

This reduces the problem to calculation of scalar coefficients hm

and nm as functions of c and material constants.
Although various applications require quantitative character-

ization of inhomogeneities of irregular shape, most of the existing
results are based on Eshelby (1957, 1961) solution for the ellipsoi-
dal inhomogeneity. While for 2-D non-elliptical inhomogeneities
many analytical and numerical results have been obtained, only
a limited number of numerical results and approximate estimates
are available for more complex 3-D shapes (see literature review of
Sevostianov and Giraud, 2012).

2.2. Multipole expansion for displacement disturbance field

The local stress equilibrium equations in the constituents of
composite are

r � rðiÞ ¼ 0; rðiÞ ¼ Ci : eðiÞ; 2eðiÞ ¼ ruðiÞ þ ðruðiÞÞT : ð2:11Þ

Here, uðiÞ is the displacement vector, eðiÞ is the strain tensor, rðiÞ is
the stress tensor and Ci is the elastic stiffness tensor of ith phase:
i ¼ 0 for matrix and i ¼ 1 for inhomogeneities. Both the matrix
and inhomogeneities are assumed to be anisotropic. Due to linearity
of the considered problem, the displacement field in the matrix
domain uð0Þ in a vicinity of inhomogeneity can be splitted as

uð0Þ ¼ ufar þ udis; ð2:12Þ

where ufar is an incident field and udis is a disturbance field due to
this inhomogeneity. From the physical reasonings, udis ! 0 for
kxk ! 1 that enables its series expansion over the multipoles. For
our study, the dipole moment t of ufar multipole expansion is of
particular interest. In order to avoid possible ambiguities in the ter-
minology and interpretation of results, we start with the definitions.

In the conductivity theory, the induced dipole moment of
inclusion is commonly defined as a vector governing asymptotic
behavior of the disturbance field (Landau and Lifshitz, 1951). This
quantity was de-facto employed by Maxwell to derive his famous
formula for the effective conductivity of a composite containing
spherical particles. Its counterpart, an elastic dipole moment
tensor draws more attention of mathematicians (Ammari et al.,
2007; Nazarov, 2009) and physicists (e.g., Puls, 1985; Pfeiffer and
Mahan, 1993; Balluffi, 2012). In the theory of multipoles, the dipole
moment is understood as a series coefficient, associated with the
dipole term. The formal multipole expansion of the displacement
field around the inclusion (Vakulenko and Kosheleva, 1980;
Kosheleva, 1983) is written in our notations as

udisðxÞ ¼
X1
k¼1

rr . . .r|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k

GðxÞ � � �|{z}
ðkþ1Þ

Tk; ð2:13Þ

where x ¼ xjij is the position vector and GðxÞ is Green’s tensor
(Kelvin, 1848). The ðkþ 1Þ-rank tensors Tk are defined as

Tk ¼ ð�1Þk�1

ðk� 1Þ!

Z
V1

x0x0 . . . x0|fflfflfflfflffl{zfflfflfflfflffl}
k�1

ðC1 � C0Þ : eðx0Þdx0: ð2:14Þ
So the dipole approximation is given by the first term of series in
Eq. (2.14), namely,

rGðxÞ : T1; ð2:15Þ

where the elastic dipole moment

T1 ¼ ðC1 � C0Þ :

Z
V1

eðx0Þdx0: ð2:16Þ

An alternative less formal definition has been suggested by
Batchelor (1974) who introduced the induced dipole moment t of
a single inhomogeneity as ‘‘a measure of the net additional dipole
strength . . . resulting from the replacement of matrix material there
by particle material’’. In the elasticity theory framework, t is the
second rank tensor written as

tðiÞ ¼
Z

Vi

ðr� C0 : eÞdx; ð2:17Þ

where Vi is the volume of ith inhomogeneity with stiffness C1.
As easy to see, tðiÞ is consistent with T1 defined by Eq. (2.14).
Sometimes, this tensor is also referred as the ‘‘average elastic
polarization’’ (Lipton, 1993). In what follows, we call t the induced
elastic dipole moment tensor or, briefly, the dipole moment.

It has been shown (Kushch, 2013) that for any finite domain V
with surface S,

C0 :

Z
S
ðn � ruð0Þx� uð0ÞnÞdS ¼

t ¼ const; V1 � V ;

0; otherwise:

�
ð2:18Þ

Alternatively, Eq. (2.18) can be viewed as a definition of the dipole
moment. The advantage of such definition is that, in contrast to
Eqs. (2.16) and (2.16), it does not require the knowledge of the field
inside the inhomogeneity. As a consequence, Eq. (2.18) is valid for
any (not necessarily linear) far field, general type anisotropy of
matrix material and arbitrary (in terms of shape, structure,
properties, interface bonding conditions, etc.) inhomogeneities
including the cavities and cracks. It appears that integral in
Eq. (2.18) equals zero for any (not necessarily linear) regular field
ufar and only the disturbance field udis contributes to the dipole
moment: tðuð0ÞÞ ¼ tðudisÞ.

Due to linearity of the problem, the induced dipole moment is
proportional to the far-field strain, so t ¼ ðC1 � C0ÞW : e1, where
ðC1 � C0ÞW is referred as the elastic polarization tensor (Lipton,
1993) and W is known as Wu strain tensor (see Wu, 1966). What
important in the context of our study, is that the integral in
Eq. (2.14) over RVE containing a number of inhomogeneities equals
to the sum of induced dipole moments of each separate inhomoge-
neity. It will be clear from the analysis to follow that the elastic
polarization tensor quite closely relate the stiffness contribution
tensor, so this summation rule is consistent with the above
mentioned observation that these tensors contribute to the overall
elastic properties additively.
3. Isotropic matrix

3.1. Compliance and stiffness contribution tensors for a spheroidal
inhomogeneity

We assume here that both the matrix and the inhomogeneity
are isotropic. Results can be extended to cases when the inhomo-
geneities – but not the matrix – possess an arbitrary anisotropy
since the latter would only affect the field of the fictitious body
force. Components of tensors P and Q for a spheroidal inhomoge-
neity have been first given by Walpole (1966). They can be written
in terms of the tensor basis Tð1Þ; . . . ;Tð6Þ as follows (Sevostianov and
Kachanov, 1999):
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P ¼
X6

m¼1

pmTðmÞ; Q ¼
X6

m¼1

qmTðmÞ; ð3:1Þ

where factors pm and qm are given by:

p1 ¼ 1
2l
½ð1� jÞf 0 þ jf 1�; p2 ¼

1
2l
½ð2� jÞf 0 þ jf 1�;

p3 ¼ p4 ¼ �
j
l

f 1; p5 ¼ 1
l
ð1� f 0 � 4jf 1Þ;

p6 ¼
1
l
½ð1� jÞð1� 2f 0Þ þ 2jf 1� ð3:2Þ

and

q1 ¼ l½4j� 1� 2ð3j� 1Þf 0 � 2jf 1�;
q2 ¼ 2l½1� ð2� jÞf 0 � jf 1�; q3 ¼ q4 ¼ 2l½ð2j� 1Þf 0 þ 2jf 1�;
q5 ¼ 4lðf 0 þ 4jf 1Þ; q6 ¼ 8ljðf 0 � f 1Þ: ð3:3Þ

In Eqs. (3.2) and (3.3), j ¼ 1=½2ð1� m0Þ� and the following shape
functions are introduced:

f 0 ¼
1� g

2ð1� c2Þ ; f 1 ¼
1

4ð1� c2Þ2
½ð2þ c2Þg � 3c2�; ð3:4Þ

gðcÞ ¼

c2ffiffiffiffiffiffiffiffi
c2�1
p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
; oblate spheroid; c P 1;

c2

2
ffiffiffiffiffiffiffiffi
1�c2
p ln 1þ

ffiffiffiffiffiffiffiffi
1�c2
p

1�
ffiffiffiffiffiffiffiffi
1�c2
p ; prolate spheroid; c 6 1:

8><
>: ð3:5Þ

Representing tensors of the isotropic elastic constants in the
same basis and doing inversions in formulas (2.8) and (2.9) using
(C.4), we arrive at the following results (see Sevostianov and
Kachanov, 1999).

(A) Coefficients hm of the compliance contribution tensor:

h1 ¼ 1
2D

K� þ
4
3
l� þ q6

� �
; h2 ¼

1
2l� þ q2

;

h5 ¼
4

4l� þ q5
; h3 ¼ h4 ¼ �

1
D

K� �
2
3
l� þ q3

� �
;

h6 ¼
2
D

K� þ
1
3
l� þ q1

� �
; ð3:6Þ

where K is a bulk modulus, l is a shear modulus, factors qi are given
by (3.3) and the following notations for elastic constants are used:

K� ¼ K1K0=ðK0 � K1Þ; l� ¼ l1l0=ðl0 � l1Þ;
D ¼ 2½3l�K� þ K�ðq1 þ q6 � 2q3Þ þ ðl�=3Þð4q1 þ q6 þ 4q3Þ

þ ðq1q6 � q2
3Þ�:

ð3:7Þ

(B) Coefficients nm of the stiffness contribution tensor are:

n1 ¼
1

2D1

dkþ dl
dlð3dkþ 2dlÞ þ p6

� �
; n2 ¼

2dl
1þ 2p2dl

;

n3 ¼ n4 ¼ �
1
D1
� dk

2dlð3dkþ 2dlÞ þ p3

� �
; n5 ¼

4dl
1þ dlp5

;

n6 ¼
1
D1

dkþ 2dl
2dlð3dkþ 2dlÞ þ 2p1

� �
;

ð3:8Þ

where the pi factors are given by (3.2) and the following notations
are used:

dl ¼ l1 � l0; dk ¼ k1 � k0;

D1 ¼ 1þ ðdkþ 2dlÞp6 þ 4ðdkþ dlÞp1 þ 4dkp3

2dlð3dkþ 2dlÞ þ 2p1p6 � 2p2
3:

ð3:9Þ

In the case of a pore (K1 ¼ l1 ¼ 0), formulas for hi simplified as:
h1 ¼ q6

4ðq1q6 � q2
3Þ

; h2 ¼
1
q2

; h3 ¼ h4 ¼ �
q3

2ðq1q6 � q2
3Þ

;

h5 ¼
4
q5

; h6 ¼
q1

q1q6 � q2
3

: ð3:10Þ

For a perfectly rigid inhomogeneity (dk!1; dl!1) formulas for
coefficients ni simplified as

n1 ¼ p6

4ðp1p6 � p2
3Þ

; n2 ¼
1
p2

; n3 ¼ n4 ¼ �
p3

2ðp1p6 � p2
3Þ

;

n5 ¼
4
p5

; n6 ¼
p1

p1p6 � p2
3

: ð3:11Þ

For the spheroidal geometry, the H – tensor reduces, after some
algebra, to three groups of terms: isotropic terms expressed in unit
tensors of the second and fourth ranks, I and J, terms containing
the dyad nn and a term containing nnnn:

H¼ W1IIþW2J|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
isotropic terms

þW3ðInnþnnIÞþW4ðJ �nnþnn � JÞþW5nnnn

2
64

3
75;

ð3:12Þ

where scalar factors Wi are expressed in terms of coefficients hi:

W1 ¼ h1 � h2=2; W2 ¼ h2; W3 ¼ 2h3 þ h2 � 2h1;

W4 ¼ h5 � 2h2; W5 ¼ h6 þ h1 þ h2=2� 2h3 � h5:
ð3:13Þ

Similarly, for the N -tensor we have

N ¼ U1IIþ U2J|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
isotropic terms

þU3ðInnþ nnIÞ þ U4ðJ � nnþ nn � JÞ þ U5nnnn

2
64

3
75;

ð3:14Þ

where factors Ui are expressed in terms of coefficients ni by formu-
las similar to (3.13):

U1 ¼ n1 � n2=2; U2 ¼ n2; U3 ¼ 2n3 þ n2 � 2n1;

U4 ¼ n5 � 2n2; U5 ¼ n6 þ n1 þ n2=2� 2n3 � n5:
ð3:15Þ
3.2. Induced dipole moments

3.2.1. General form for isotropic matrix
We denote Rc the radius of minimal sphere fully encompassing

the inhomogeneity. For r ¼ kxk > Rc , the multipole expansion of
the disturbance displacement field udis caused by this inhomogene-
ity is given by the series

udisðxÞ ¼
X3

i¼1

X1
t¼0

X
jsj6t

aðiÞts UðiÞts ðxÞ; ð3:16Þ

where UðiÞts are the irregular vector solutions of Lame equation

defined in Appendix B and aðiÞts are the expansion coefficients, or
multipole moments. The Cartesian components of the displacement

vector are real numbers, hence u ¼ u. Since UðiÞt;�s ¼ ð�1ÞsUðiÞts , the

series expansion coefficients aðiÞts obey the similar relations, i.e.,

aðiÞt;�s ¼ ð�1ÞsaðiÞts . For r !1, the leading, Oðr�2Þ asymptotic term is
the dipole sum

X3

i¼1

X
jsj6i�1

aðiÞi�1;sU
ðiÞ
i�1;sðxÞ: ð3:17Þ

Although integration in Eq. (2.18) can be done over any surface
S encompassing the inclusion, the spherical surface of radius r > Rc

is the most convenient choice. It has been shown by Kushch (2013)
that only the terms entering Eq. (3.17) contribute to t in Eq. (2.18).
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Omitting the details, we write the final formulas for the compo-
nents of the dipole moment tensor t of inhomogeneity in terms
of the multipole expansion coefficients:

t11 þ t22 þ t33 ¼ 24pl0ð1� m0Þ
ð1� 2m0Þ

að1Þ00 ;

2t33 � t11 � t22 ¼ �32pl0ð1� m0Það3Þ20 ;

t11 � t22 � 2it12 ¼ �64pl0ð1� m0Það3Þ22 ;

t13 � it23 ¼ �16pl0ð1� m0Það3Þ21 ;

ð3:18Þ

where i2 ¼ �1. As expected, two representations of the asymptotic
(dipole) term, by Eqs. (3.17) and (2.15), are equivalent:

rGðxÞ : t �
X3

i¼1

X
jsj6i�1

aðiÞi�1;sU
ðiÞ
i�1;sðxÞ: ð3:19Þ

Eqs. (3.17) and (2.15) are general and valid for an arbitrary
inhomogeneity, in terms of shape, structure, properties and
interface bonding. On the contrary, the constants aðiÞts and tij are
case-dependent. In a few particular cases, the explicit expressions
for them can be obtained in closed form. Below, we consider two of
them.

3.2.2. Spherical inhomogeneity
Consider an unbounded domain containing a single spherical

inhomogeneity of radius R. At the interface S, the perfect mechan-
ical contact between the constituents is assumed:

sutS ¼ 0; sTntS ¼ 0; ð3:20Þ

where sf tS ¼ ðf
ð0Þ � f ð1ÞÞjS means a jump of quantity f across the

interface S and Tn ¼ r � n is the normal traction vector. Due to reg-
ularity of ufar in a vicinity of inhomogeneity, its local expansion is

ufarðxÞ ¼
X3

i¼1

X1
t¼0

X
jsj6t

cðiÞts uðiÞts ðxÞ; ð3:21Þ

where uðiÞts are the regular vector solutions of Lame equation defined
in Appendix B. We consider the particular case of linear
displacement ufar ¼ e1 � x, where e1 ¼ fe1ij g is the uniform far-field
strain tensor. In this case,

ufar ¼ cð3Þ00 uð3Þ00 þ
X2

s¼�2

cð1Þ2s uð1Þ2s ; ð3:22Þ

where

cð3Þ00 ¼ ðe
1
11 þ e122 þ e133Þ
2ð2m0 � 1Þ ; cð1Þ20 ¼

ð2e133 � e111 � e122Þ
3

;

cð1Þ21 ¼ e113 � ie123; cð1Þ22 ¼ e111 � e122 � 2ie112; cðiÞ2;�s ¼ ð�1ÞscðiÞ2s

ð3:23Þ

are the only non-zero series expansion coefficients in Eq. (3.21).
Moreover, in the case of linear ufar the disturbance udis in
Eq. (3.16) reduces to Eq. (3.17). I.e., an asymptotic field coincides
with the actual field in a whole matrix domain.

Analytical solution for this problem is straightforward and
yields

að1Þ00

R3 ¼
ð3k1 � 3k0Þ
ð3k1 þ 4l0Þ

2ð2m0 � 1Þ
3

cð3Þ00 ;

að3Þ2s

R3 ¼ �
Mcð1Þ2s

ð2þ sÞ!ð2� sÞ! ; M ¼ 15ðl1 � l0Þ
½l1ð8� 10m0Þ þ l0ð7� 5m0Þ�

:

ð3:24Þ

Comparison with Eq. (3.18) gives us an explicit formula for the elas-
tic dipole moment of spherical inhomogeneity of volume V1 ¼ 4

3 pR3

in terms of remote strain field e1:
ðt11 þ t22 þ t33Þ
2l0ð1� m0ÞV1

¼ 3
ð1� 2m0Þ

ð3k1 � 3k0Þ
ð3k1 þ 4l0Þ

ðe111 þ e122 þ e133Þ;

2t33 � t11 � t22

2l0ð1� m0ÞV1
¼ Mð2e133 � e111 � e122Þ;

t13 � it23

2l0ð1� m0ÞV1
¼ Mðe113 � ie123Þ;

t11 � t22 � 2it12

2l0ð1� m0ÞV1
¼ Mðe111 � e122 � 2ie112Þ:

ð3:25Þ

Or, in compact form,

TrðtÞ ¼ 3ðk1 � k0Þ
ð3k0 þ 4l0Þ
ð3k1 þ 4l0Þ

Trðe1ÞV1;

DevðtÞ ¼ 2l0ð1� m0ÞMDevðe1ÞV1:

ð3:26Þ
3.2.3. Spheroidal inhomogeneity
Consider now an unbounded domain containing a single

spheroidal inhomogeneity with the inter-foci distance 2d and
boundary defined by n ¼ n0, where n0 relates the aspect ratio
c ¼ a3=a1 by c ¼ n0=n0 > 1 for prolate spheroid and c ¼ n0=n0 < 1

for oblate one. Here, n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

0 � 1
q

; for the spheroidal coordinates

and other notations, see Appendix A.
The displacement field outside the inhomogeneity is taken in

the form of Eq. (2.12), with

udisðrÞ ¼
X3

i¼1

X1
t¼0

X
jsj6t

bðiÞts VðiÞts ðr;dÞ; ð3:27Þ

VðiÞts are the spheroidal vector solutions of Lame equation and bðiÞts are

the unknown multipole strengths: bðiÞt;�s ¼ ð�1Þsþi�1bðiÞts . For the

explicit form of VðiÞts , see Kushch (1996). In the case of uniform
remotely applied field ufar ¼ e1 � x, only a few first terms of the
series in Eq. (3.26) contribute to the solution:

udisðrÞ ¼
X3

i¼1

X
jsj6i�1

bðiÞi�1;sV
ðiÞ
i�1;sðxÞ: ð3:28Þ

To determine an asymptotic behavior of the disturbance filed
of the spheroid, we observe that, at some distance from inhomoge-
neity, udis can be also expanded over the spherical solutions UðiÞts .
This is readily done by applying the re-expansion formula

ð�1ÞsVðiÞts ðr;dÞ ¼
Xi

j¼1

X1
k¼t

KðiÞðjÞtks ðdÞU
ðjÞ
kþj�i;sðrÞ; ðkrk > dÞ; ð3:29Þ

(explicit expressions for constants KðiÞðjÞtks are given in the book of
Kushch (2013)). It follows from Eq. (3.28) that, for r ¼ kxk ! 1,

VðiÞi�1;sðr; dÞ � ð�1Þsþ1 d2

3
UðiÞi�1;sðrÞ; ð3:30Þ

so we get

aðiÞi�1;s ¼
d2

3
ð�1Þsþ1bðiÞi�1;s: ð3:31Þ

By substitution of Eq. (3.30) into Eq. (3.24), we obtain the desired
expression of elastic dipole moment in terms of bðiÞts :

t11 þ t22 þ t33 ¼ � 3k
2ð1� 2m0Þ

bð1Þ00 ; 2t33 � t11 � t22 ¼ 2kbð3Þ20 ;

t11 � t22 � 2it12 ¼ 4kbð3Þ22 ; t13 � it23 ¼ �kbð3Þ21 ; ð3:32Þ

where k ¼ 16
3 pd2l0ð1� m0Þ .

Again, these formulas are valid for the disturbance caused by
the spheroid due to any (not necessarily uniform) far field. To
evaluate the elastic dipole moment t, one has to know bðiÞi�1;s. For
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a single inhomogeneity under uniform remote load, this task is
ready. In particular, the explicit expressions for the multipole
strengths of rigid prolate spheroidal inclusion are

bð1Þ00 Q 0
1 � 2bð3Þ20 n0Q 0

2 þ
2
3
ð1� 2mÞQ 0

1

� �
¼ dn0e133;

bð1Þ00 Q 1
1 þ bð3Þ20 �n0Q 1

2 þ
5� 4m

3
Q 1

1

� �
¼ dn0 e111 þ e122

	 

;

bð3Þ21 ð1� m0Þ 1=n0
2 þ Q 0

1

� �
� 2n0Q 0

2

h i
¼ �dn0 e113 � ie123

	 

;

bð3Þ22 ð7� 8mÞQ 1
1 � n0Q 1

2

h i
¼ �dn0 e111 � e122 � 2ie112

	 

;

ð3:33Þ

where Qs
t ¼ Qs

tðn0Þ are the associated Legendre functions of second
kind (Hobson, 1931). The multipole strengths for the oblate shape
is also given by Eq. (3.32) where n0 is replaced with in0 and Qs

tðinÞ
are the real-valued functions of imaginary argument (Kushch,
2013).

4. Transversely-isotropic matrix

In the Cartesian coordinate system Ox1x2x3 with Ox3 axis
aligned with the anisotropy axis of transversely isotropic material,
the generalized Hooke’s law is written in explicit form as

r11 ¼ C11e11 þ C12e22 þ C13e33; r13 ¼ 2C44e13;

r22 ¼ C12e11 þ C11e22 þ C13e33; r23 ¼ 2C44e23;

r33 ¼ C13e11 þ C13e22 þ C33e33; r12 ¼ 2C66e12:

ð4:1Þ

Hereafter two-indices notation Cij is adopted for components of the
fourth rank stiffness tensor C and 2C66 ¼ ðC11 � C12Þ.

4.1. Compliance- and stiffness contribution tensors

The explicit results in elementary functions can be obtained
only in the case of a transversely isotropic matrix with symmetry
axis x3, containing a spheroidal inhomogeneity provided the
spheroid axis is parallel to x3. In this case, Hill’s tensor P has the
following coefficients in representation (3.1) (Sevostianov et al.,
2005):

p1 ¼
p
2

X3

q¼1

ðbq � AqaqÞJðqÞ1 ; p2 ¼
p
2

X3

q¼1

ð2bq � AqaqÞJðqÞ1 ;

p3 ¼ p4 ¼ �
p
2

X3

q¼1

cq JðqÞ1 � c2AqJðqÞ2

� �
;

p5 ¼ p
X3

q¼1

c2ð2bq � AqaqÞJðqÞ2 � cq JðqÞ1 � c2AqJðqÞ2

� �
þ dqJðqÞ1

h i
;

p6 ¼ 2p
X3

q¼1

dqc2JðqÞ2 ;

ð4:2Þ

where coefficients al; bl; cl, and dl depend on elastic stuffiness as
follows:

al ¼
1
el
ðC66 � C11ÞðC33 � AlC44Þ þ ðC13 þ C44Þ2
h i

;

bl ¼
1
el
ðC44 � AlC11ÞðC33 � AlC44Þ þ AlðC13 þ C44Þ2
h i

;

cl ¼
1
el
ðC13 þ C44ÞðC44 � AlC66Þ;

dl ¼
1
el
ðC44 � AlC11ÞðC44 � AlC66Þ;

el ¼ 4pC11C44C66

Y3

j¼1ðj–lÞ
ðAj � AlÞ;

ð4:3Þ

A1 ¼ C44=C66, and A2 and A3 are roots of
C11C44/
2 þ ðC13Þ2 þ 2C13C44 � C11C33

h i
/þ C33C44 ¼ 0: ð4:4Þ

The shape factors JðqÞi (functions of the aspect ratio c) are given by

JðqÞ1 ¼Aq

Z 1

�1

ð1�u2Þdu

½1þðc2�1Þu2�½Aqþð1�AqÞu2�3=2

¼k2
q 2�c2Aqkqln

kqþ1
kq�1

� �� �
;

JðqÞ2 ¼Aq

Z 1

�1

u2du

½1þðc2�1Þu2�½Aqþð1�AqÞu2�3=2¼k2
q kqln

kqþ1
kq�1

� �
�2

� �
;

ð4:5Þ

where kq ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Aqc2

p
.

Calculations of property contribution tensors are simplified in
the cases of strongly oblate and strongly prolate inhomogeneities,
especially in the cases of perfectly rigid inhomogeneities and
pores. We consider these cases below. Note that unlike the case
of the isotropic matrix, spherical shape (c ¼ 1) does not offer drastic
simplifications.

For a perfectly rigid disk, N-tensor is given by

N ¼ ðn1Tð1Þ þ n2Tð2ÞÞ; ð4:6Þ

where

n1 ¼
4
3

ffiffiffiffiffiffiffiffiffiffiffi
A2A3
p ffiffiffiffiffiffi

A2
p

þ
ffiffiffiffiffiffi
A3
p	 


C0
11 þ C0

12 þ 2C0
66

� �
ffiffiffiffiffiffiffiffiffiffiffi
A2A3
p

C0
44 þ C0

33

;

n2 ¼
32
3

ffiffiffiffiffiffiffi
C0

44

C0
66

s
þ 2

ffiffiffiffiffiffiffiffiffiffiffi
A2A3
p

C0
44 þ C0

33ffiffiffiffiffiffiffiffiffiffiffi
A2A3
p ffiffiffiffiffiffi

A2
p

þ
ffiffiffiffiffiffi
A3
p	 


C0
11 þ C0

12 þ 2C0
66

� �
2
4

3
5:
ð4:7Þ

In the case of a crack-like pore, H-tensor is given by

H ¼ ðh5Tð5Þ þ h6Tð6ÞÞ; ð4:8Þ

where

h5¼
8

3C0
44

ffiffiffiffiffiffiffi
C0

66

C0
44

s
þ

�2 C0
13

� �2
þC0

33 C0
11þC0

12þ2C0
66

� �
ffiffiffi
2
p

C0
44

ffiffiffiffiffiffi
A2
p
þ

ffiffiffiffiffiffi
A3
p	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C0
33 C0

11þC0
12þ2C0

66

� �r
2
664

3
775
�1

;

h6¼
8
3

ð
ffiffiffiffiffiffi
A2
p
þ

ffiffiffiffiffiffi
A3
p
Þ C0

11þC0
12þ2C0

66

� �
C0

33 C0
11þC0

12þ2C0
66

� �
�2 C0

13

� �2 :

ð4:9Þ

Perfectly rigid cylindrical fiber is described by the following ni coeffi-
cients of representation (2.10):

n1 ¼
1
2
ðC0

11 þ C0
12Þ þ C0

66; n2 ¼
4C0

66ðC
0
11 þ C0

12 þ 2C0
66Þ

C0
11 þ C0

12 þ 4C0
66

;

n3 ¼ n4 ¼ C0
13 þ C0

44; n5 ¼ 8C0
44; n6 !1:

ð4:10Þ

Note that n6 !1 implies that the presence of the fiber makes the
RVE perfectly rigid in the axial direction. The hi factors of tensor
H in Eq. (2.10) for a cylindrical pore are:

h1 ¼
2ðC0

13Þ
2 � C0

33ðC
0
11 þ C0

12 þ 2C0
66Þ

4C0
66ð2ðC

0
13Þ

2
� C0

33ðC
0
11 þ C0

12ÞÞ
; h2 ¼

2

C0
11 þ C0

12

þ 1

C0
66

;

h3 ¼ h4 ¼
C0

13

2ðC0
13Þ

2
� C0

33ðC
0
11 þ C0

12Þ
;

h5 ¼
2

C0
44

; h6 ¼
C0

11 þ C0
12

ðC0
11 þ C0

12ÞC
0
33 � 2ðC0

13Þ
2 :

ð4:11Þ
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4.2. Induced dipole moments

Eq. (2.15) holds for a solid of any elastic anisotropy. I.e., an
asymptotic of the disturbance field of arbitrary inclusion is given
by the formula

udis !
kxk!1

rGðxÞ : t; ð4:12Þ

where t is the dipole moment defined by Eq. (2.18). An explicit
form of the elastostatic Green’s function can be obtained for a
transversely-isotropic material only (Lifshitz and Rosentsweig,
1947).

In this case, we introduce the vector functions

WðjÞ
ts ðxÞ ¼ Ys�1

t ðxjÞe1 � Ysþ1
t ðxjÞe2 þ

kjffiffiffiffiffi
Aj

p Ys
tðxjÞe3 ðj ¼ 1;2Þ;

Wð3Þ
ts ðxÞ ¼ Ys�1

t ðx3Þe1 þ Ysþ1
t ðx3Þe2 ðt ¼ 0;1;2; . . . ; jsj 6 t þ 1Þ:

ð4:13Þ

Here, Ys
t are the scalar solid spherical harmonics (Appendix A),

e1 ¼ ði1 þ ii2Þ=2; e2 ¼ e1 and e3 ¼ i3 are the complex Cartesian
basis vectors, Aj are roots of Eq. (4.4), and

kj ¼
mjðC13 þ C44Þ
C33 � mjC44

ðj ¼ 1;2Þ: ð4:14Þ

Also, xi ¼ xijij and xij are the scaled Cartesian variables

x1j ¼ x1; x2j ¼ x2; x3j ¼ x3=
ffiffiffiffiffi
Aj

q
; r2

j ¼ ðxijÞ2: ð4:15Þ

It is straightforward to show that the functions WðjÞ
ts ðxÞ obey

the equilibrium equation (2.11). Moreover, it appears that the
identity

rGðxÞ : t �
X3

i¼1

X
jsj62

AðiÞ1sWðiÞ
1sðxÞ ð4:16Þ

analogous to Eq. (3.19) takes place provided the dipole moments tij

and the expansion coefficients AðiÞ1s are related by

t11 þ t22 ¼ 2C11

X2

j¼1

ffiffiffiffiffi
Aj

q
AðjÞ10; t33 ¼ C33

X2

j¼1

kjffiffiffiffiffi
Aj

p AðjÞ10;

t11 � t22 � 2it12 ¼ �2C44

X3

j¼1

ð1þ kjÞffiffiffiffiffi
Aj

p AðjÞ12;

t13 � it23 ¼ �C44

X2

j¼1

ð1þ 2kjÞAðjÞ11 � Að3Þ11

" #
:

ð4:17Þ

Noteworthy, Eqs. (4.16) and (4.17) enable an efficient way of
rGðxÞ evaluation. To illustrate this, we take tkj ¼ dj3dk3. The left
side of Eq. (4.16) simplifies to ui ¼ @Gi3=@x3. Also, we find form
Eq. (4.17) that

Að1Þ10 ¼ �
1

C33
ffiffiffiffiffiffi
A1
p
ð~k2 � ~k1Þ

; Að2Þ10 ¼ �
ffiffiffiffiffiffi
A1
pffiffiffiffiffiffi

A2
p Að1Þ10 ; ð4:18Þ

where ~kj ¼ kj=Aj; all other AðiÞ1s ¼ 0. Then, Eq. (4.16) yields

@G33

@x3
¼ Að1Þ10 Wð1Þ

10 ðxÞ þ Að2Þ10 Wð2Þ
10 ðxÞ

h i
� e3

¼ 1

C33
~k2 � ~k1

� � ~k1
x31

r3
1

� ~k2
x32

r3
2

� �
ð4:19Þ

and two analogous expressions for @G13=@x3 and @G23=@x3. By taking
appropriate values of tkj, all the derivatives @Gij=@xk can be
expressed in terms of WðiÞ

1s . Obtained here for the first time, these
formulas are remarkably simple and transparent as compared to
those available in literature (e.g., Lee, 2009).

The problem about a single inhomogeneity embedded into an
infinite transversely isotropic solid is a particular case of more
general, multiple inclusion model derived by Kushch (2003). The
multipole series expansion of the disturbance field udis of a single
inhomogeneity is

udis ¼
X3

i¼1

X1
t¼0

X
jsj6tþ1

BðjÞts WðjÞ
ts ðxÞ: ð4:20Þ

The irregular vector solutions WðjÞ
ts entering Eq. (4.20) are

defined by Eq. (4.13), with replace Ys
tðxjÞ to Fs

tðxj; djÞ, Eq. (A.5) of
Appendix A. The corresponding spheroidal coordinates ðnj;gj;/jÞ
are given by Eqs. (A.1) and (A.2). Eq. (4.20) is valid for arbitrary
spheroidal inclusion (including the strongly oblate and prolate
shapes) whose symmetry axis coincides with the transverse isot-
ropy axis of matrix solid. In the case of spherical inclusion of radius
R the coordinate systems are chosen to get nj ¼ nj0 ¼ const at the
surface r ¼ R (Kushch, 2003):

dj ¼ R=nj0; nj0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj=jmj � 1j

q
: ð4:21Þ

The leading, dipole term of the sum Eq. (4.20) is

X3

i¼1

X
jsj62

BðjÞ1sWðjÞðjÞ
1s ðxÞ; ð4:22Þ

where BðjÞ1s are the problem-related multipole strengths. The magni-
tude of BðjÞ1s is affected by the inclusion size, properties, orientation
and interface bonding type – but their relation to the dipole
moments tij is always given by Eq. (4.17) where now

AðjÞ1s ¼
4p
3

R3d2
j BðjÞ1s : ð4:23Þ

This is a direct consequence of the asymptotic formula (Kushch,
2013)

Fs
tðxj; djÞ !

kxjk!1

d2
j

3
Ys

tðxjÞ: ð4:24Þ

Provided BðjÞ1s are found by solving the corresponding boundary value
problem, an explicit expression of the dipole moment t can be writ-
ten. For the details of solution, see Kushch (2003) and Kushch and
Sevostianov (2004).

5. Connection between the dipole moments and stiffness
contribution tensors

The connection between the induced dipole moment and stiff-
ness contribution tensor of inhomogeneity is readily found. Direct
comparison of Eqs. (2.4) and (2.5) with the Batchelor’s (1974)
formula

hri ¼ C0 : hei þ nhti; ð5:1Þ

where n is a number density of inhomogeneities, yields an expres-
sion of the dipole moment t for a single inhomogeneity of volume
V1 in terms of the stiffness contribution tensor N and arbitrary
far-field strain e1:

t ¼ V1N : e1: ð5:2Þ

In particular, Eq. (5.2) must be valid for the explicit expressions of t
and N derived in the previous sections. Noteworthy, such a compar-
ison is not straightforward due to different notations. We illustrate
their equivalence on the particular case of rigid spheroidal inclusion
in isotropic elastic solid, subject to uniform far load. By combining
Eqs. (3.31) and (3.32), we get the following set of equalities:
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2n0Q 0
2þ2ð1�2m0ÞQ0

1

h i
t33�n0Q 0

2ðt11þt22Þ¼dn0Ke133;

2 Q 1
1�n0Q 1

2

� �
t33� ð3�4m0ÞQ 1

1�n0Q1
2

h i
ðt11þt22Þ¼2Kdn0 e111þe122

	 

;

ð7�8m0ÞQ 1
1�n0Q 1

2

h i
ðt11�t22�2it12Þ¼�4Kdn0 e111�e122�2ie112

	 

;

ð1�m0Þ 1=n0
2þQ 0

1

� �
�2n0Q 0

2

h i
ðt13�it23Þ¼Kdn0 e113�ie123

	 

:

ð5:3Þ

For a perfectly rigid inhomogeneity, N ¼ P�1 and Eq. (5.2) is reduced
to t ¼ V1P�1 : e1. Its inversion yields

V1e1 ¼ P : t ¼
X6

m¼1

pmðTðmÞ : tÞ: ð5:4Þ

By taking the explicit form of basic tensors TðmÞ from Eq. (C.1) into
account, one finds that

V1e1 ¼ ½p1ðt11 þ t22Þ þ p3t33�ði1i1 þ i2i2Þ þ
p2

2
ðt11 � t22Þði1i1 � i2i2Þ

þ ½p4ðt11 þ t22Þ þ p6t33�i3i3 þ p2t12ði1i2 þ i2i1Þ

þ p5

2
½t13ði1i3 þ i3i1Þ þ t23ði2i3 þ i3i2Þ�: ð5:5Þ

Next, we compare this formula with the identity

e1 ¼1
2
ðe111þe122Þði1i1þ i2i2Þþ

1
2
ðe111�e122Þði1i1� i2i2Þ

þe133i3i3þe112ði1i2þ i2i1Þþe113ði1i3þ i3i1Þþe123ði2i3þ i3i2Þ: ð5:6Þ

to get the following, quite similar to Eq. (5.3) set of equalities:

p1ðt11 þ t22Þ þ p3t33 ¼ ðV1=2Þðe111 þ e122Þ;
p4ðt11 þ t22Þ þ p6t33 ¼ V1e133;

p2ðt11 � t22 � 2it12Þ ¼ V1ðe111 � e122 � 2ie112Þ;
p5ðt13 � it23Þ ¼ 2V1ðe113 � ie123Þ:

ð5:7Þ

Recall now that pm are expressed in terms of f 0 and f 1, see Eq.
(3.2). The functions f 0 and f 1 are related to the associate Legendre
functions Q s

t as follows:

f 0 ¼
1
2

1� n0
2Q0

1

� �
¼ �1

2
n0n0Q 1

1; f 1 ¼
n0

2n0Q 0
2

4ð1� m0Þ
: ð5:8Þ

For example,

p5 ¼
1
l0
½1� f 0 � 4f 1� ¼

1
l0

1
2

1þ n0
2Q 0

1

� �
� n0

2n0Q 0
2

ð1� m0Þ

" #
: ð5:9Þ

In view of V1 ¼ 4
3 pd3n0n0

2, the last lines of Eqs. (5.3) and (5.7) are
identical. It is straightforward to check that the lines 1 to 3 of
Eqs. (5.3) and (5.7) coincide as well, that confirms Eq. (5.2).

6. Effective stiffness of a composite

Now, we proceed to the composites and show how the devel-
oped theory applies to evaluation of their effective elastic stiffness.
Homogenization is old and well-known – but still not always cor-
rectly formulated – problem of micromechanics. In what follows,
we discuss some basic concepts of this theory including a consis-
tent way of introducing the macroscopic field parameters.

6.1. Definition of macro parameters: volume vs. surface averaging

The effective elastic stiffness tensor C� ¼ fC�ijklg relates the mac-
roscopic strain hei and stress hri fields by

hri ¼ C� : hei; ð6:1Þ

The macroscopic strain hei and stress hri tensors in Eq. (6.1)
are conventionally defined as the representative volume-averaged
quantities:
hei¼def 1
V

Z
V
edx; hri¼def 1

V

Z
V
rdx: ð6:2Þ

For the matrix type composite, V ¼
PN

i¼0Vi, Vi being the volume of
ith inhomogeneity and V0 being the matrix volume inside RVE.
Hence, the total integral is a sum

hei ¼ 1
V

XN

i¼0

Z
Vi

eðiÞdx; ð6:3Þ

where eðiÞ is the strain in ith inhomogeneity.
The definition Eq. (6.2) looks self-obvious – but, in fact, is not

always correct. The simple counter-example is a porous material
where eðiÞ is not defined – and hence Eqs. (6.2) and (6.3) do not
apply. The more substantial counter-examples concern the
composites with imperfect interfaces. Citing form Böhm (2013),
‘‘If the displacements show discontinuities, . . . correction terms
involving the displacement jumps across imperfect interfaces or cracks
must be introduced’’. The opposite case is a nanocomposite with
coherent interface (e.g., Duan et al., 2005) where the normal
traction jump across the interface is non-zero due to the surface
stress. It appears that Eq. (6.2) is valid only for composites with
perfectly bonded constituents.

Alternate, surface averaging-based definition of the macro-
scopic strain and stress parameters (Hill, 1963)

hei¼def 1
2V

Z
S0

ðnuþ unÞdS; hri¼def 1
V

Z
S0

xðr � nÞdS; ð6:4Þ

eliminates the problem. In the case of perfect interfaces, this defini-
tion is consistent with the conventional one, Eq. (6.2) but holds true
for the composites with imperfect interfaces.

The definition Eq. (6.4) is advantageous for it involves only the
observable quantities, namely, displacement and stress, at the sur-
face of composite specimen. In essence, we consider RVE as a
‘‘black box’’ whose interior structure may affect numerical value
of the macro parameters – but not the way they are defined. This
makes the definition general, valid for composites with arbitrary
interior microstructure and arbitrary interface bonding as well as
for porous and cracked materials. What is also important, numer-
ical simulation becomes directly linked to experimental study.

6.2. RVE-averaged stress tensor

The Betti reciprocity theorem written for the matrix domain V0

of RVE states that the equalityXN

q¼0

Z
Sq

Tnðuð0ÞÞ � u0 � Tnðu0Þ � uð0Þ

 �

dS ¼ 0 ð6:5Þ

is valid for any displacement vector u0 obeying the equilibrium
equation r � ðC : ruÞ ¼ 0: Following Kushch and Sevostianov
(2004), we take it in the form u0ij ¼ iixj. After somewhat tedious
algebra (for the details, see Kushch, 2013), we come out with the
formula

hriji ¼ C0
ijklhekli þ

1
V

XN

q¼1

Z
Sq

Tnðuð0ÞÞ � u0ij � Tnðu0ijÞ � uð0Þ
h i

dS; ð6:6Þ

consistent with the result of Russel and Acrivos (1972). In tensor
form,

hri ¼ C0 : hei þ 1
V

XN

q¼1

tðqÞ;

tðqÞ ¼ C0 :

Z
Sq

ðn � ruð0Þx� uð0ÞnÞdS:

ð6:7Þ

where the second term in Eq. (6.7) is entirely due to qth inhomoge-
neity. As seen from Eq. (2.18), tðqÞ is exactly the dipole moment of
the disturbance field of this inhomogeneity.
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Eq. (6.7), together with Eq. (6.1), provides accurate evaluation of
the effective stiffness tensor of composite, with the interactions
between the inclusions taken into account. No restrictions are
imposed on the shape of inclusions, elastic properties of
constituents and interface bonding type. Noteworthy, the integrals
in Eq. (6.7) involve only the matrix phase displacement field, uð0Þ.
These integrals are identically zero for all but dipole term in the
uð0Þ multipole expansion in a vicinity of each inhomogeneity and
represent contribution of these inhomogeneities to the overall
stiffness tensor. In the multipole expansion method, where the
disturbance field is initially written as a series over the multipoles,
analytical integration in Eq. (6.7) is ready and yields the exact,
finite form expressions for the macroscopic strain, stress and
effective elastic moduli.

6.3. Relation to dipole moments and stiffness contribution tensors

In Eq. (6.7) and below, the surface averaging-based definition of
the macro quantities Eq. (6.4) is used, where domain V is a repre-
sentative volume element (RVE) of composite and S is an outer
boundary of V . To determine effective stiffness tensor of compos-
ite, we employ Eqs. (5.2) and (6.7). By combining them, we get

hri ¼ C0 : hei þ 1
V

X
i

tðiÞ ¼ C0 : hei þ
X

i

V i

V
NðiÞ : hei: ð6:8Þ

Then, comparison with Eq. (6.1) yields

C� ¼ C0 þ
X

i

V i

V
NðiÞ: ð6:9Þ

In the general case, tðiÞ and NðiÞ are affected by interaction
between the inhomogeneities (more specifically, by the superposi-
tion of disturbance fields caused by other inhomogeneities):
N ¼ Nðc; . . .Þ where c is the volume content of particles. In the
dilute limit c ! 0; N! Nð0Þ and can be evaluated from the single
inhomogeneity problem, see the previous Section. Expectedly,
Eq. (6.9) for low c reduces to NIA theory for a dilute composite
(e.g., Sevostianov and Kachanov, 2007). For a finite c, the interac-
tion effects are important and must be taken into account in order
to provide an adequate estimate of the effective conductivity
tensor. This, in turn, necessitates consideration of the multiple
inhomogeneity model with aid of the appropriate analytical
(e.g., Kushch, 2013) or numerical (e.g., Sevostianov et al., 2008)
method.

Eqs. (6.8) and (6.9) are the most general formulas for the
average stress and effective elastic moduli, respectively. All we
need in each specific case is to substitute there the appropriate for-
mulas for the dipole moments. So, for the spherical particle com-
posite with isotropic matrix they are given by Eq. (3.18). The
substitution yields

hr11i þ hr22i þ hr33i ¼ 2l0
ð1þ m0Þ
ð1� 2m0Þ

hekki þ 3~að1Þ00 ;

2hr33i � hr11i � hr22i ¼ 2l0½2he33i � he11i � he22i� � 4~að3Þ20 ;

hr11i � hr22i � 2ihr12i ¼ 2l0½he11i � he22i � 2ihe12i� � 8~að3Þ22 ;

hr13i � ihr23i ¼ 2l0½he13i � ihe23i� � 2~að3Þ21 ;

ð6:10Þ

where

~aðjÞts ¼
8p
a3 l0ð1� m0Þ

X
i

aðjÞðiÞts ð6:11Þ

and summation is made over the particles inside RVE. Noteworthy,
Eq. (6.10) is consistent with the results of Kushch (1987) and
Sangani (1987).
Quite analogously, the formulas of Eq. (4.17) are appropriate for
the composite with transversely isotropic matrix containing
transversely isotropic spherical inhomogeneities. By combining
them with Eq. (6.8) we get

hr11i þ hr22i ¼ C0
1k þ C0

2k

� �
hekki þ 2C0

11

X2

j¼1

ffiffiffiffiffi
Aj

q
~AðjÞ10;

hr33i ¼ C0
3khekki þ C0

33

X2

j¼1

kjffiffiffiffiffi
Aj

p ~AðjÞ10;

hr11i � hr22i � 2ihr12i ¼ �2iC0
66he12i � 2C0

44

X3

j¼1

ð1þ kjÞffiffiffiffiffi
Aj

p ~AðjÞ12;

hr13i � ihr23i ¼ C0
44ðhe13i � ihe23iÞ � C0

44

X2

j¼1

ð1þ 2kjÞ~AðjÞ11 � ~Að3Þ11

" #
;

ð6:12Þ

where

~AðjÞ1s ¼
4p
3a3

X
i

ðd�i Þ
2R3

i AðjÞðiÞ1s : ð6:13Þ

Again, summation is made over all the inclusions populating the
RVE. These formulas are consistent with those derived earlier
(Kushch, 1997; Kushch and Sevostianov, 2004).

It should be clearly understood that the dipole-related
expansion coefficients in Eqs. (6.10), (6.11) and other analogous
formulas must be found from the appropriate model of composite.
For dilute composites, the explicit expressions of ~aðjÞts Eq. (3.23) can
be substituted into Eq. (6.10) to get the formulas of NIA theory
(e.g., Sevostianov and Kachanov, 2007). For composites with
moderate and high volume content of disperse phase, where the
interactions contribute to the effective properties quite
significantly, determination of the dipole moments from the
multiple particle finite cluster or representative unit cell models
is the preferable option. For the comparative numerical study of
particulate composite with transversely isotropic constituents
by means of the NIA, effective field method (Kanaun and Levin,
2008) and RUC-based multipole expansion method, see
Sevostianov et al. (2005).

7. Conclusions

We considered the homogenization problem for an elastic
particulate composite with a specific goal to bridge the gap
between the two different approaches to the problem that use
(a) multipole expansion and (b) property contribution tensors.
We also identified the key microstructural parameters affecting
overall stiffness of heterogeneous materials. The basic concepts
of the homogenization theory including a consistent way of intro-
ducing the macroscopic field parameters are discussed and clarified.

The multipole expansions of elastic disturbance fields of inclu-
sion in both isotropic and anisotropic matrix have been obtained.
The dipole moment conservation law has been suggested as an
alternative definition of the dipole moment. The induced dipole
moment tensor of inhomogeneity is written in terms of the
multipole expansion coefficients. The relations between the far
field asymptotic, derivatives of Green function for anisotropic solid
and dipole moment have been established. As a bi-product, the
derivatives of anisotropic Green function are expressed in terms
of the vector solutions for the elastic equilibrium equations.
Obtained for the first time, these formulas are remarkably simple
and transparent as compared to those available in literature. The
explicit expression of the multipole strengths and thus the dipole
moment have been obtained for the inhomogeneities of spheroidal
shape.
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The dipole moments are shown to be closely related to the com-
pliance and stiffness contribution tensors. The significance of these
tensors is that their sum is the proper structural parameter in
whose terms the considered effective property has to be expressed.
In other words, it is these tensors that have to be summed up, or
averaged over a RVE for calculation of effective elastic properties.
It is shown that the mathematical expressions for dipole moments
and the stiffness contribution tensors coincide. In particular, it
allows one to use available results obtained by multipole
expansion method to write formulas for stiffness and compliance
contribution tensors and vice versa. Also, the multipole expansion
method can be used to validate applicability of various
approximate schemes (effective media, differential, effective field
etc.) that use compliance and stiffness contribution tensors as
the basic building block.
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Appendix A. Spherical and spheroidal solid harmonics

The Cartesian ðx1; x2; x3Þ, spherical ðr; h;uÞ and spheroidal
ðn;g;uÞ coordinates relate each others by Hobson (1931)

x1 þ ix2 ¼ rsinh expðiuÞ ¼ dng expðiuÞ; x3 ¼ rcosh ¼ dng; ðA:1Þ

where

n2 ¼ n2 � 1; g2 ¼ 1� g2 ð1 6 n <1;�1 6 g 6 1;0 6 u < 2pÞ:
ðA:2Þ

In the case Red > 0, the formulas of Eqs. (A.1) and (A.2) define a
family of confocal prolate spheroids with rotation axis i3 and
inter-foci distance 2d. In the case of oblate spheroid, one must
replace n with in and d with ð�idÞ in all relevant formulas.

The regular ys
t and irregular Ys

t solid spherical harmonics are
defined as

ys
tðxÞ ¼

rt

ðt þ sÞ! v
s
tðh;uÞ; Ys

tðxÞ ¼
ðt � sÞ!

rtþ1 vs
tðh;uÞ; ðA:3Þ

where

vs
tðh;uÞ ¼ Ps

tðcoshÞ expðisuÞ ðA:4Þ

are the scalar surface harmonics and Ps
t are the associated Legendre

functions of first kind. The regular f s
t and irregular Fs

t spheroidal
solid harmonics are given by

f s
tðx;dÞ ¼ P�s

t ðnÞvs
tðg;uÞ; Fs

tðx;dÞ ¼ Q�s
t ðnÞvs

tðg;uÞ; ðA:5Þ

Q s
t being the associated Legendre functions of second kind

(Hobson, 1931).
Appendix B. Vector solutions of Lame’s equation in spherical
coordinates

The regular (finite at r ¼ 0) functions uðiÞts ¼ uðiÞts ðxÞ
(x ¼ fx1; x2; x3gT) satisfying the Lame equation are defined as

uð1Þts ¼
rt�1

ðt þ sÞ! Sð1Þts þ tSð3Þts

� �
; uð2Þts ¼ �

1
ðt þ 1Þ

rt

ðt þ sÞ! Sð2Þts ;

uð3Þts ¼
rtþ1

ðt þ sÞ! btS
ð1Þ
ts þ ctS

ð3Þ
ts

� �
;

ðB:1Þ
where m is Poisson ratio, bt ¼ tþ5�4m
ðtþ1Þð2tþ3Þ and ct ¼ t�2þ4m

2tþ3 (Kushch,

1987). In Eq. (B.1), SðiÞts ¼ SðiÞts ðh;uÞ are the vector spherical harmonics
(Morse and Feshbach, 1953) taken here as in the following form:

Sð1Þts ¼ eh
@

@h
vs

t þ
eu

sinh
@

@u
vs

t ; Sð2Þts ¼
eh

sinh
@

@u
vs

t � eu
@

@h
vs

t ;

Sð3Þts ¼ ervs
t ; t ¼ 0;1; . . . jsj 6 t: ðB:2Þ

The singular (infinite at r ¼ 0 and vanishing at infinity)

functions UðiÞts are given by UðiÞts ¼ uðiÞ�ðtþ1Þ;s, where uðiÞ�ðtþ1Þ;s is defined

by Eq. (B.1) with use SðiÞ�ðtþ1Þ;s ¼ SðiÞts and replace 1=ð�t � 1þ sÞ! to

ðt � sÞ!. The functions uðiÞts ðxÞ and UðiÞts ðxÞ are vectorial counterparts
of the solid spherical harmonics ys

tðxÞ and Ys
tðxÞ, respectively.

Appendix C. Analytic inversion and multiplication of 4th rank
tensors with transversely-isotropic symmetry

In this appendix we outline a convenient technique of analytic
inversion and multiplication of 4th rank tensors with trans-
versely-isotropic symmetry. It is based on expressing tensors in
‘‘standard’’ tensor bases (Kunin, 1983; Walpole, 1984; Kanaun
and Levin, 2008). In the case of the transversely isotropic elastic
symmetry, the following basis is most convenient:

TðmÞ ¼ T ðmÞijkl

n o
; m ¼ 1;2; . . . ;6;

where

Tð1Þijkl ¼ hijhkl; Tð2Þijkl ¼ ðhikhlj þ hilhkj � hijhklÞ=2;

Tð3Þijkl ¼ hijmkml; T ð4Þijkl ¼ hklmimj; Tð6Þijkl ¼ mimjmkml;

Tð5Þijkl ¼ ðhikmlmj þ hilmkmj þ hjkmlmi þ hjlmkmiÞ=4;

ðC:1Þ

hij ¼ dij �mimj and m ¼ m1i1 þm2i2 þm3i3 is a unit vector along
the axis of transverse symmetry.

These tensors form a closed algebra with respect to the opera-
tion of (non-commutative) multiplication (contraction over two
indices):

ðTðaÞ : TðbÞÞijkl � TðaÞijpqTðbÞpqkl: ðC:2Þ

Then, the inverse of any fourth rank tensor X, as well as the product
X : Y of two such tensors are readily found in the closed form, as
soon as the representations in the basis

X ¼
X6

m¼1

XmTðmÞ; Y ¼
X6

m¼1

YmTðmÞ ðC:3Þ

are established. Indeed:
(a) inverse tensor X�1 defined by X�1

ijpqXpqkl ¼ XijpqX�1
pqkl ¼ Jijkl is

given by
X�1 ¼ X6

2D
Tð1Þ þ 1

X2
Tð2Þ � X3

D
Tð3Þ � X4

D
Tð4Þ þ 4

X5
Tð5Þ þ 2X1

D
Tð6Þ

ðC:4Þ

where D ¼ 2ðX1X6 � X3X4Þ.

(b) product of two tensors X : Y (tensor with ijkl components

equal to XijpqYpqkl) is
X : Y ¼ ð2X1Y1 þ X3Y4ÞTð1Þ þ X2Y2Tð2Þ þ ð2X1Y3 þ X3Y6ÞTð3Þ

þ ð2X4Y1 þ X6Y4ÞTð4Þ þ
1
2

X5Y5Tð5Þ

þ ðX6Y6 þ 2X4Y3ÞTð6Þ: ðC:5Þ
General transversely isotropic fourth-rank tensor, being repre-
sented in this basis
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Wijkl ¼
X6

m¼1

wmTm
ijkl ðC:6Þ

has the following components:

w1 ¼ ðW1111 þW1122Þ=2; w2 ¼ 2W1212; w3 ¼ W1133;

w4 ¼ W3311; w5 ¼ 4W1313; w6 ¼ W3333:
ðC:7Þ
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