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Abstract

This paper investigates the nonlinear mechanics of layered composites that

include a stiff elastic constituent and a soft viscoelastic constituent. Layered

composites buckle with an infinite wavelength at small compressive strains

in the case of a high volume fraction of the stiff constituent (the non-dilute

case). An iterative algorithm is derived for the finite deformation of viscoelas-

tic non-dilute layered composites with neo-Hookean phases. After validation

by comparison to nonlinear finite element simulations, we analyze the effect

of initial layer direction, strain rate, and prestrain on the response to time-

dependent prescribed compressive strains. Interestingly, these composites

have both a very high stiffness prior to buckling and a large energy dissipa-

tion capacity in the postbuckling regime. When these composites are sub-

jected to cyclic strains of small amplitude, the effective stiffness and damping

properties can be tuned by orders of magnitude by adjusting the prestrain.
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1. Introduction

Composite materials that consist of parallel plane layers of two different

constituents have been a focus of active research in recent years due to the

relative simplicity of these microstructures and to the possibility of obtaining

multifunctional structures and composites. For example, layered structures

that mimic the microstructure of elasmoid fish scales have been designed in

order to simultaneously achieve excellent flexibility and protection [6, 31, 35].

The wrinkling of layers due to elastic instability has been proposed as a way

to alter elastic wave propagation [33]. Due to axial-shear coupling in layered

structures, large rotational motion can be obtained from local compressive

loads, which could be used as an actuation mechanism [32]. Layered compos-

ites also exist at the nano-scale since the microstructure of block copolymers

also consists of parallel layers [22]. Elastic and viscoelastic layered composites

are also very common geological structures [4, 25]. Furthermore, investigat-

ing the mechanics of layered composites is important as it can be considered

as an approximate model for polymers reinforced by elastic fibers, platelets

or other similar types of inclusions [21].

Among the possible applications of layered composites, previous work has

shown that layered composites with a stiff constituent and a soft viscoelas-

tic constituent can simultaneously achieve high stiffness and high damping

[7, 23, 24]. These materials would be very useful in structural applications

and in high vibration environments; traditional engineering materials such as

metals or polymers do not simultaneously exhibit high stiffness and damp-

ing [1, 18]. Viscoelastic layered composites were first analyzed by Chen and

Lakes [7] who derived formulae using the linear viscoelastic theory for the
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Reuss (loading in the direction normal to the layers) and Voigt (loading in

the layer direction) topologies and demonstrated that simultaneously high

stiffness and high damping can be achieved with the Reuss topology due

to high normal strains in the soft constituent. Meaud and Hulbert subse-

quently showed that these formulae should take into account Poisson effects,

as they are very sensitive to changes in the Poisson’s ratio and bulk loss

factor of the viscoelastic constituent [23]. Meaud et al. [24] later derived the

dynamic properties of layered composites when loaded uniaxially in an arbi-

trary direction. Using optimization studies, they found that the large shear

strains in the soft constituent induced by axial shear coupling can be used

to simultaneously achieve even higher damping and stiffness than with the

Reuss topology [24]. However, the effective properties of viscoelastic layered

composites tend to deviate from the linear viscoelastic theory even at small

macroscopic strains according to nonlinear finite element simulations [24] .

While elastic instability and buckling have been traditionally considered

a failure mechanism for structures and composite materials due to a loss

in load-bearing capacity (see for example [5]), harnessing these instabilities

to obtain tunable and/or multifunctional structures and materials has been

a topic of active research in recent years [2, 30, 17, 33, 39]. The buckling

of fibre-reinforced and layered composites has been extensively investigated

since the work of Rosen in the 1960s [29] because it is one of the major failure

mechanism for these composites. In particular, Triantafyllidis and Maker [38]

derived analytical solutions for the bifurcation instabilities of layered compos-

ites under compressive loading. Nestorovic and Triantafyllidis [26] extended

the analysis to combined normal and shear loading. For fibre reinforced
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composites of infinite size, Parnes and Chiskis [28] demonstrated that the

wavelength of the instability is infinite in the non-dilute case (i.e., when the

volume fraction of the stiff constituent is high) and finite in the dilute case

(i.e., when the volume fraction of the stiff constituent is low). Rudykh and

deBotton [34] analyzed the buckling of hyperelastic fiber-reinforced compos-

ites. In the case of elastic phases (i.e., no viscoelasticity), the finite defor-

mation and postbuckling response of layered composites has been analyzed

in [21, 19, 31]. In particular, Lopez-Pamies and Ponte-Castañeda [21] an-

alyzed how the layer direction tends to change upon loading in non-dilute

layered composites when certain deformation modes (such as pure shear)

are applied. Rudykh and Boyce [31] derived closed form formulae for the

finite deformation of hyperelastic layered composites (in the non-dilute case)

and showed that rotation of the layers occurs even under purely compressive

loads. The formulae derived by Rudykh and Boyce [31] are extended in this

paper to the case of viscoelastic layered composites. Li et al. [19] investigated

the transition from short wavelength wrinkling to longwave instabilities for

elastic layered composites using analytical, computational and experimental

methods.

The finite deformation mechanics of viscoelastic layered composites has

not been extensively investigated. However, Biot [4] analyzed the creep buck-

ling of viscoelastic layered composites under confined conditions. Further-

more, some relevant research has been published regarding the buckling of

fibre reinforced viscoelastic composites [3] and of thin films on viscous or

viscoelastic substrates [15, 14, 13, 16]. For these composites and structures,

multiple buckling modes with finite wavelengths can exist. Most of these pa-
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pers are focused on determining the dominant buckling wavelength and the

growth rate of the dominant buckling mode under constant stress. The insta-

bility of a thin film on a viscous substrate has been extensively analyzed by

Huang and Suo in a series of papers [15, 14]. Huang et al. [13, 16] investigated

the modes of instability and the kinetics of wrinkling for a thin film on a vis-

coelastic substrate. While the wavelength of the buckling mode can change

over time in the case of thin film on viscous or viscoelastic substrates, only

an infinite wavelength should be present in the case of a non-dilute layered

composites. However, despite the relative simplicity of the mode of defor-

mation, we demonstrate in this paper that interesting nonlinear viscoelastic

properties can be obtained with these composites.

The goal of this paper is to explore the nonlinear mechanics of viscoelastic

layered composites under finite deformation. The composites consist of two

phases: a stiff elastic constituent and a soft viscoelastic constituent. First,

an elastic buckling analysis is used to gain insight into the finite deformation

mechanics of the viscoelastic composites. We derive an iterative algorithm for

the finite deformation response of viscoelastic layered composites in the case

of neo-Hookean incompressible phases. After validation of this algorithm by

comparison with finite element simulations, we perform a parametric study

regarding the effects of varying the strain rate, prestrain, and initial layer di-

rection on the finite deformation mechanics. While the theoretical formulae

and algorithm are derived for composites of infinite size with incompressible

constituents, we use finite element simulations to demonstrate that compress-

ibility has a negligible effect on the response and to determine the minimum

size needed to approximate the theoretical results for infinite size.
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2. Theoretical and numerical modeling

In this paper A refers to the stiff elastic material while B refers to the

soft viscoelastic material. The stress, strain and effective properties refer to

the values obtained for uniaxial loading in the vertical direction, X (see Fig.

1).
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Figure 1: Layered composite with materials A and B. TA and TB denote the layer

thicknesses. The volume fraction of material A is ϕA = TA/(TA + TB) . The x axis and

the unit vector M̂ are in the layer direction while the z axis and the unit vector N̂ are

perpendicular to the layer direction. The composite is loaded in the X direction. θ0 is

angle between the X axis and the layer direction in the undeformed configuration.
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2.1. Linear buckling theory for elastic layered composites

While this paper focuses on the nonlinear mechanics of viscoelastic lay-

ered composites, we first investigated the buckling of elastic layered compos-

ites to determine the transition from dilute (finite buckling wavelength) to

non-dilute (infinite buckling wavelength) composites. An infinite wavelength

is later used as an assumption in the derivation of the finite deformation

response of viscoelastic layered composites. For the buckling analysis, the

initial angle, θ0, is assumed to be 0.

Parnes and Chiskis [28] derived equations for the critical buckling wave-

length, Lcr, and the critical buckling strain of elastic fibre reinforced com-

posites, ϵcr. These equations were derived using the plane stress assumption;

the stiff fibres were modeled as Euler Bernoulli beams. In order to model

the buckling of layered composites, we modified the equations and used a

plane strain assumption and a thin plate theory for the stiff layers. While

two modes (a shear mode and a transverse mode) are known to exist for

the buckling of polymers reinforced by elastic fibers and layered composites

[29, 28], Parnes and Chiskis showed that the shear mode has a lower critical

strain than the transverse mode [28]. Therefore only the shear buckling mode

was considered. The expression for the critical strain is the same as given in

[28] for the plane stress assumption:

ϵS = Γ
[
2 +

1 + f1

ηf

ΨS

]
+

η2
f

3
(1)

where f1 is given by f1 = 1/(1 − 2νA), where νA is the Poisson’s ratio of

phase A, Γ is a function of the material parameters and ΨS is given by:

ΨS =

(
sinh(ηm) − ηf cosh(ηm)

)2

(2 + f1) sinh(ηm) cosh(ηm) + f1ηm

(2)
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ηf and ηm are functions of the thickness of the stiff layer, TA, thickness of

the soft layer, TB, and wavelength, L:

ηf =
πTA

L
(3)

ηm =
πTB

L
(4)

Since we use a plane strain assumption here, the expression for Γ is changed

from the expression given in [28] to the following expression:

Γ =
1 − ν2

A

1 + νB

EB

EA

(5)

where EA and EB are the Young’s moduli of materials A and B, respectively;

νB is the Poisson’s ratio of material B. The buckling strain, ϵcr, and the

buckling wavelength, Lcr, are found numerically by finding the minimum

value of ϵS in Eq. 1.

2.2. Finite deformation response of viscoelastic layered composites

Incremental equations were derived for the finite deformation mechanics

of viscoelastic composites in the quasi-static regime (i.e., the dimensions are

assumed to be small enough such that the effect of inertia can be neglected).

These equations are an extension of the equations given by Rudykh and

Boyce [31] for hyperelastic layered composites (without viscoelasticity). The

composites are assumed to have infinite dimensions and to be non-dilute

(such that the buckling wavelength is infinite at any strain rate). Because of

these assumptions, the stresses and strains are uniform within each phase. As

in [31], we assume here that both phases are incompressible. The macroscopic

deformation gradient, F̄, is written as:

F̄ = ϕAFA + ϕBFB (6)
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where FA and FB are the deformation gradients in phases A and B, respec-

tively; ϕA and ϕB are the volume fractions of phases A and B, respectively.

As described in [31], the displacement continuity condition gives the following

equations for FA and FB:

FA = F̄(I + ϕBα(t)M̂ ⊗ N̂) (7)

FB = F̄(I − ϕAα(t)M̂ ⊗ N̂) (8)

where I is the identity matrix, M̂ is a unit vector in the layer direction and N̂

is the unit normal vector (in the undeformed configuration, see Fig. 1). α(t)

is a time-dependent coefficient that is found, as in [31], using the following

traction continuity condition at the interface between phase A and B:

σA.n = σB.n (9)

where n is the unit vector normal to the interface in the current configura-

tion; σA and σB are the Cauchy stresses in phases A and B, respectively.

Material A is modeled as a neo-Hookean hyperelastic material. Material B is

modeled using a finite strain viscoelastic theory with internal variables, that

was proposed by Holzapfel [11, 12]. Only one viscoelastic branch is included

here (see Fig. 2) but the extension to more than one viscoelastic branch

would be straightforward. The Cauchy stress in material B is related to the

second Piola-Kirchoff stress in material B, SB, by:

σB = FBSB(FB)T (10)

As in [12], the deviatoric part of the 2nd Piola-Kirchoff stress, SB
D, is written

as:

SB
D = SD

∞ + Qα (11)
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where SD
∞ is the long-term deviatoric part and Qα is the non-equilibrium

part of the second Piola-Kirchoff stress. The long-term elastic behavior is

governed by a neo-Hookean strain energy potential with a shear modulus of

value µ
(∞)
B , such that:

SD
∞ = µ

(∞)
B

[
I − Trace(CB)

3
CB

−1
]

(12)

where CB is the right Cauchy-Green tensor in phase B. The non-equilibrium

stress is governed by the following rate equation:

Q̇α +
Qα

τα

= ṠD
α (13)

where τα is the relaxation time constant and SD
α is assumed (as in [11, 12])

to be given by a neo-Hookean strain energy potential that is proportional to

the strain energy for the long-term behavior. With this assumption, SD
α can

be written as:

SD
α = µ

(α)
B

[
I − Trace(CB)

3
CB

−1
]

(14)

where µ
(α)
B is the shear modulus for the non-equilibrium behavior.

We follow the iterative algorithm described by Holzapfel [11, 12] for finite

deformation viscoelastic models to increment the stress in material B. At

step i of the algorithm, the value of Qα|i+1 is computed using the following

equation:

Qα|i+1 = β∞
α exp(ξα) SD

∞
∣∣
i+1

+ Hα|i (15)

where β∞
α = µ

(α)
B /µ

(∞)
B ; and ξα = − ∆t

2τα
, where τα is the relaxation time

constant and ∆t is the time-step; Hα|i is a history term (known from the

previous time step); and SD
∞

∣∣
i+1

is calculated using Eq. 12. Before starting
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Figure 2: Rheological model for material B. The deviatoric part of the 2nd Piola-Kirchoff

stress, SB
D, is the sum of the long-term 2nd Kirchoff-Piola stress, SD

∞ and of the non-

equilibrium stress, Qα. The long-term behavior is modeled using a neo-Hookean strain

energy potential with a shear modulus of value µ
(∞)
B . The non-equilibrium behavior is

governed by a neo-Hookean potential with a shear modulus of value µ
(α)
B . The relaxation

time constant, τ
(α)
B , given in Table 1, is given by τ

(α)
B = η

(α)
B /µ

(α)
B .

the next iteration of the algorithm, the value of Hα|i+1 is computed using

the equation [12]:

Hα|i+1 = exp(ξα)
[
exp(ξα) Qα|i+1 − β∞

α SD
∞

∣∣
i+1

]
(16)

An equation for the value of α(t) at time step i + 1, αi+1, is needed, which

requires determining the Cauchy stress in phase B. Using Eqs. 11, 15 and

16, the Cauchy stress at step i + 1 can be written:

σB
∣∣
i+1

= − pB
∣∣
i+1

I +
[
1 + β∞

α exp(ξα)
]

σD
∞

∣∣
i+1

+ FB
i+1 Hα|i (F

B
i+1)

T (17)

where pB
∣∣
i+1

is the hydrostatic pressure at step i+1 in material B, σD
∞

∣∣
i+1

=

FB
i+1 SB

D

∣∣
∞ (FB

i+1)
T. Since the long-term behavior of B is neo-Hookean,

σD
∞

∣∣
i+1

= µB
∞

[
bB

i+1 −
1

3
Trace(bB

i+1)I
]

(18)
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where bB denotes the left Cauchy-Green tensor in phase B. Projecting the

traction continuity equation onto the vector F̄i+1M̂, we obtain equation for

the value of α at time step i + 1:

αi+1 =

([
1 + β∞

α exp(ξα)
]
µB
∞ − µA

)
F̄i+1N̂.F̄i+1M̂ + a(

µAϕB +
[
1 + β∞

α exp(ξα)
]
µB
∞ϕA

)
F̄i+1M̂.F̄i+1M̂ + b

(19)

where

a = (F̄i+1 Hα|i N̂).(F̄i+1M̂) (20)

b = ϕA(F̄i+1(M̂ ⊗ N̂) Hα|i N̂).(F̄i+1M̂) (21)

Note that if the viscoelasticity of material B is not taken into account,

a = b = 0, and the value for αi+1 matches the expression given in [31]

for hyperelastic layered composites.

An incremental algorithm was implemented in order to find the macro-

scopic stress component σ̄XX as a function of time. The algorithm starts

with the value Hα|0 = 0 for phase B. At each iteration i, the value of Hα|i
is known. The value of the macroscopic stretch, λ̄X , is incremented. The

value of the macroscopic shear, γ̄i+1, is first found by solving the equation

σ̄XZ |i+1 = 0. Then the value of σ̄XX |i+1 is computed. For the finite de-

formation response of composites with initially vertical layers (θ0 = 0), the

simulations were obtained by assuming that the initial angle has a small fi-

nite value (θ0 = 1×10−2 deg) in order to take into account the effect of small

imperfections. This value was chosen such that (1) the composites buckle at

any strain rate and (2) using a lower value would not significantly change

the stress vs strain curve.
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2.3. Finite element modeling

Numerical simulations were conducted using the nonlinear finite element

code ABAQUS [9]. The model was meshed with two-dimensional 4-node

bilinear, reduced integration hybrid elements with constant pressure and

hourglass control (CPE4RH elements) in order to model incompressible and

nearly incompressible materials. Periodic boundary conditions were used in

order to model composites of infinite size [23, 27] by applying the following

constraint equations to the displacement of nodes on the edges of the unit

cell:

UX |top − UX |bottom − UX |TL = 0 (22)

UZ |top − UZ |bottom − UZ |TL = 0 (23)

UX |left − UX |right = 0 (24)

UZ |left − UZ |right − UZ |BR = 0 (25)

UZ |TR − UZ |BR − UZ |TL = 0 (26)

UX |TR − UX |TL = 0 (27)

where the superscripts top, bottom, left and right refer to interior nodes on

the top, bottom, left and right edges of the unit cell, respectively; the super-

scripts BL, BR, TL and TR refer to bottom left, bottom right, top left and

top right nodes of the unit cell, respectively. UX |TL is a prescribed function of

time. In order to constrain rigid body motion, UZ |BL = UX |BL = UX |BR=0.

Python scripting was used [9] to automate the meshing and simulation pro-

cess. A representative unit cell is shown in Fig. 3.
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A B

θ

W

H

Figure 3: Finite element model in ABAQUS. θ refers to the angle with respect to the

vertical direction. Numerical results were obtained using periodic boundary conditions

with a unit cell of width, W , and height, H.

2.3.1. Buckling analysis

Finite element simulations were used to validate the theoretical equations

that were derived for the critical buckling strain, ϵcr, and the buckling wave-

length, Lcr, of elastic layered composites. To obtain these numerical values,

the BUCKLE procedure was used in ABAQUS/Standard [9]. If the com-

posite buckles with a finite wavelength, Lcr, the buckling shape is a periodic

shape of period Lcr in the X direction. However, a unit cell of height H

with periodic boundary conditions can only deform with a shape of period

H/i, where i is any positive integer. Therefore, in order to compute the

true value for ϵcr and Lcr using the finite element code, we first computed

the theoretical values for the buckling wavelength, Lcr|th. We then ran the

buckling simulations with a unit cell of height H >> Lcr|th (typically we

chose H = 20× Lcr|th). With this choice, the buckling wavelength predicted

by ABAQUS, Lcr|FEM , was a discrete value that was equal to or directly

adjacent to the expected value for Lcr|th. A more elegant approach would

have been to use Bloch wave analysis for a unit cell of height H (where H can

14



  

take any value) [8, 2] or the adaptive representative volume element recently

proposed by Ton et al. [37]. However, since the main goal of these buckling

simulations was to validate the buckling theory and to select appropriate

volume fractions for non-dilute composites, the approach described above is

sufficient. In the case of an infinite buckling wavelength, the height H of the

unit cell has no influence on the results. For all simulations, the width of the

unit cell was chosen to include only one layer of the phase A and one layer

of phase B, since the theory predicts that the shearing mode has a lower

critical strain than the transverse mode [28].

2.3.2. Finite deformation simulation

Finite deformation simulations were conducted in ABAQUS/Standard

using general Dynamic, Implicit steps while taking into account nonlinear

geometrical effects. Most simulations were run for the case of initially vertical

layers (corresponding to an initial angle, θ0, of 0 degree). As in the theoretical

results, we used a very small initial angle to mimic the presence of small

geometric imperfections and to attain realistic results. Since the first buckling

mode is similar to a change in the angle θ, almost identical results would be

obtained if small imperfections proportional to the first buckling mode were

added instead of using a small non-zero value for θ0.

2.4. Material models and parameters

Model parameters are listed in Table 1. Two different models were

used for material A. The first model corresponds to an incompressible neo-

Hookean strain energy potential:

Ψ =
µA

2
(I1 − 3) (28)
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where I1 is the first strain invariant and µA is the initial shear modulus

of material A. The 2nd model corresponds to a compressible neo-Hookean

strain energy potential:

Ψ =
µA

2
(I1 − 3) +

KA

2
(J − 1)2 (29)

where J is the Jacobian determinant and KA is the initial bulk modulus of

material A. The properties of material A were chosen such that the plane

strain modulus of material A, ĒA = (EA)/(1 − ν2), is similar to the plane

strain modulus of steel. Material B was modeled as a standard linear solid

using the finite deformation viscoelastic model in ABAQUS. This model is

equivalent to the finite deformation viscoelastic model used in the theory (see

Appendix C). The deviatoric part of the instantaneous stress was modeled

using an incompressible neo-Hookean strain energy potential. The parame-

ters for material B were chosen to resemble those of a high loss polyurethane

[36]. The mechanical properties of material B as a function of time and tem-

perature are shown in Fig. 4. In particular, note the strong rate-dependence

of the constant strain rate response (Fig. 4B).

Both materials were considered to be incompressible for the results ob-

tained with the theoretical model. Most of the numerical results were ob-

tained with an incompressible model for material A. In the incompressible

case, the value of the initial shear modulus of material A, µA, was chosen such

that the plane strain modulus, ĒA, was equal to its value in the compressible

case. Simulations demonstrate that the assumption of incompressibility of

material A has limited influence on the numerical results (see Fig. 11).
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Table 1: Model parameters for material A and material B

Symbol Description Value

µA Initial shear modulus (compressible) 76, 900 MPa

Initial shear modulus (incompressible) 54,900 MPa

KA Initial bulk modulus (compressible) 166, 700 MPa

µ
(∞)
B Long-term shear modulus 1.115 MPa

µ
(α)
B Viscoelastic branch shear modulus 150 MPa

τ
(α)
B Relaxation time constant 0.15 s
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Figure 4: Mechanical properties of material B. A. Relaxation shear modulus vs time. B.

Shear stress vs shear strain for loading/unloading at a constant shear strain rate of 0.1, 1

and 10%/s. C. Dynamic shear modulus, |G∗|, vs frequency. D. Shear loss factor, ηG, vs

frequency
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3. Results

3.1. Buckling of elastic layered composites

Both the theory and finite element simulations were first used to deter-

mine the critical buckling wavelength and critical buckling strain of elastic

layered composites of infinite size. Figs. 5A and B show the nondimensional

wavenumber (k̄cr = Wkcr = (2πW )/Lcr, where W is the width of the unit

cell and Lcr is the critical buckling wavelength) as well as the critical strain,

ϵcr, as functions of the volume fraction of material A, ϕA. Since material B

is a viscoelastic material, we considered two different values for the Young’s

modulus of material B: the long-term Young’s modulus, E
(∞)
B , as well as the

instantaneous Young’s modulus, E
(0)
B = E

(∞)
B + E

(α)
B . E

(∞)
B and E

(0)
B corre-

spond to the lower and upper bounds, respectively, for the time-dependent

Young’s modulus of material B. The numerical results demonstrate that

there is excellent agreement between simulation and theory. Three different

cases can be identified in Fig. 5A: (1) when ϕA < 1%, kcr ̸= 0 both in

the case EB = E
(∞)
B and EB = E

(0)
B ; (2) when 1% < ϕA < 5%, kcr ̸= 0 if

EB = E
(0)
B and kcr = 0 if EB = E

(∞)
B ; (3) when ϕA > 5%, kcr = 0 both in the

case EB = E
(∞)
B and EB = E

(0)
B . The value of ϵcr decreases monotonically as

ϕA is increased (Fig. 5B). For any given value of ϕA, ϵcr is higher in the case

EB = E
(0)
B than in the case EB = E

(∞)
B , which indicates that increasing EB

tends to increase the buckling strain of the composite. Fig. 5C illustrates

the buckling shape in the case k̄cr = 0 (which corresponds to Lcr = ∞) while

Fig. 5D is an example of the buckling shape in the case k̄cr ̸= 0 (which

corresponds to 0 < Lcr < ∞).

These numerical results give important qualitative information regarding
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Figure 5: Dependence of the buckling wavenumber and critical strain on the volume

fraction on material A and the Young’s modulus of material B. A. Non-dimensional

wavenumber, k̄cr, vs ϕA for long and short term EB . B. Critical strain vs ϕA for long

and short term EB. C. Buckling shape with infinite wavelength (k̄cr=0) for non-dilute

composites. In that case, the layers deform but remain straight. The amplitude of the

buckling shape is parameterized by the angle θ. D. Buckling shape with finite wavelength,

Lcr, for dilute composites.

the finite deformation response of viscoelastic layered composites. The relax-

ation modulus of a viscoelastic material decreases as a function of time (see

Fig. 4A). If the viscoelastic composite is loaded in compression at a constant
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strain rate, the composite will buckle with an infinite wavelength provided

that ϕA > 5%. If 1% < ϕA < 5%, the mode of deformation might pro-

gressively change from a small finite wavelength to a larger finite or possibly

infinite wavelength (depending on the strain rate). If ϕA < 1%, the compos-

ite will deform with a finite buckling wavelength (that might increase over

time). This paper deals with the case of an infinite wavelength (at any strain

rate), which corresponds to ϕA > 5% with the parameters used here. We

refer to this case as the non-dilute case. Since the buckling strain is higher

in the case EB = E
(0)
B than in the case EB = E

(∞)
B (Fig. 5B), the buckling

strain is expected to be higher at high strain rates than at low strain rates

in the case of a viscoelastic composite.

3.2. Finite deformation for viscoelastic layered composites: constant rate re-

sponse

The finite deformation response of viscoelastic layered composites sub-

jected to uniaxial compression at a constant strain rate was analyzed in order

to characterize the nonlinear mechanics of these composites. The composites

are first loaded to a compressive engineering strain of amplitude ϵmax and

then unloaded at the same strain rate. Note that in this paper compressive

strains and stresses are denoted by positive values. All numerical results are

obtained for ϕA = 25%.

3.2.1. Validation of the finite deformation theory

The finite deformation theory for viscoelastic layered composites was val-

idated by comparison to finite element simulations. The stress vs. strain

response was plotted for small and large initial angles (1 and 45 degrees) and
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for a broad range of strain rates (0.1 to 10%/s). As shown in Fig. 6, the

theory (shown in solid lines) and the simulated response (dotted lines) match

exactly. Thus, the finite deformation theory was used with confidence for all

the results for infinite size composites with incompressible constituents.
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Figure 6: Comparison between the finite deformation theory and finite deformation finite

element simulations for viscoelastic composites. The theory is shown in solid line; simula-

tions, shown in dashed lines, are indistinguishable from the theory for different values of

the initial angle, θ0, and a wide range of strain rates.

3.2.2. Loading in the layer direction (θ0 ≈ 0)

The response of composites loaded in the layer direction was simulated

using a small initial value for θ0, in order to take into account the presence of

a small imperfection. When the strain amplitude is low (0.2%), the composite

behaves like a linear elastic material at high (10%/s) and moderate (1%/s)
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strain rates (Fig. 7A). However, at a low strain rate (0.1%/s), the response is

highly nonlinear due to buckling (with an infinite wavelength), since the angle

θ increases quickly (Fig. 7B) at the same strain amplitude at which the stress

deviates from the linear elastic response (at the point depicted by a ∗). For

a higher strain amplitude (1%), nonlinearities in the response and buckling

are apparent at all strain rates (Figs. 7C and D). Because a (very small)

non-zero value is used for the initial angle, there is no true bifurcation, such

that the angle increases monotonically during loading. However, the rate of

increase of the angle (i.e., the angular velocity) changes dramatically at the

strain that corresponds to the departure from a linear response in the stress

vs strain curve. The transition from a very low angular velocity to a much

higher angular velocity tends to be less visible as the strain rate is increased.

In all cases, the initial stress response is characteristic of a linear elastic

response. Before buckling, material A carries most of the load; material B

is not deformed in shear. However, at finite strains the composite buckles,

characterized by a change in the slope of the stress-strain response (depicted

by a ∗). The post-buckling slope is negative in these simulations. When

the composite buckles, there is a large area within the stress-strain curve,

implying large energy dissipation. This energy dissipation is a consequence

of the viscoelasticity of material B and of the large shear deformation of

material B due to the rotation of the layers in the postbuckling regime.

The buckling strain tends to increase as the strain rate increases in Fig.

7. This dependence of the buckling strain was further investigated in Fig.

8 in which the relationship between the the critical buckling strain and the

strain rate is observed to be monotonic. At low strain rate, the curve tends
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Figure 7: Constant strain rate responses for .1%/s, 1%/s and 10%/s at low and high

compressive strains. A. Stress vs. strain, ϵmax = 0.2% B. Angle vs. strain, ϵmax = 0.2%

C. Stress vs. strain, ϵmax = 1% D. Angle vs. strain, ϵmax = 1%. The critical buckling

points are identified by ∗.

to converge to the value obtained using a linear buckling analysis when EB =

E
(∞)
B , the long term Young’s modulus for material B; at high strain rate, the

curve tends to converge to the value obtained using a linear buckling analysis

when EB = E
(0)
B , the short term Young’s modulus for material B. Note that

a small difference can be observed between the value at a large strain rate

and the linear buckling critical strain for EB = E
(0)
B . This difference might

be due to the fact that the buckling analysis is a linear theory that neglects

nonlinear effects.
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3.2.3. Response of hyperelastic layered composites

Buckling is also visible in the constant strain rate response of elastic

layered composite for θ0 ≈ 0 (Figs. 9A and B). The strain energy of material

A (computed using Eq. 28) increases at a fast rate prior to buckling for

θ0 ≈ 0. For higher values of θ0, buckling is not apparent and the strain

energy of material A increases monotonically at a much lower rate (see for

example θ0 = 45 degrees). As discussed in [31], for high values of the initial

angle, the composite does not buckle, but the layers rotate upon loading

(hence the strain energy of material A remains very small because A is not

deformed). While the slope of the stress vs strain curve is negative in the
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post-buckling regime in the case of viscoelastic layered composites (Fig. 7),

the slope of the stress vs strain remains positive in the post-buckling regime

if the constituents are not viscoelastic (Figs. 9A and B).
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Figure 9: Finite deformation mechanics of hyperelastic layered composites for A and
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(∞)
B , the long-term Young’s modulus, and B and D. EB = E

(0)
B , the short

term Young’s modulus. In A and B, the macroscopic stress is plotted as a function of

macroscopic strain. In C and D, the strain energy (per unit volume) of material A is

plotted as a function of the macroscopic strain.
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3.2.4. Effect of the initial angle

The influence of the initial angle, θ0, on the constant strain rate response

is analyzed in Fig. 10. When the initial angle is small (θ0 = .1◦), the initial

response is linear elastic, since the slope of the response is constant and does

not depend on the strain rate. As strain increases, there is an abrupt change

in the slope of the response (depicted by a ∗). Beyond this critical point, the

slope of the response is negative. The value of the strain at the critical point,

and the slope of the response after this critical point, depends strongly on the

strain rate. As the initial angle is increased, the initial linear elastic response

and the critical point become less and less visible. Furthermore, for θ0 = 10◦

and θ0 = 45◦, the slope of the response is never negative. Additionally, we

also note that at higher angles, the nominal stresses in the composite are

lower. For the large initial angles, the response is characteristic of a linear

viscoelastic material. True buckling is a bifurcation that occurs in the limit

θ0 → 0. As the size of the imperfection (parametrized by θ0) is increased, a

more progressive transition from the pre-buckling to the post-buckling regime

is observed.

3.2.5. Effect of compressibility

The finite deformation theory that was derived assumes that the two

constituents are incompressible. While this assumption is a good approxi-

mation for polymers and rubber-like materials, it does not hold for materials

like steel. Fig. 11 compares the stress vs. strain response for two different

values for the Poisson’s ratio of material A (νA = 0.3 and νA = 0.5). The

Young’s modulus in this instance is such that the plane strain modulus is

the same (i.e EA

1−ν2 is a constant). Barely any difference can be discerned
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Figure 10: Constant strain rate responses for .1%/s, 1%/s and 10%/s at various initial

angles. A. Stress vs. strain, θ = .1◦ B. Stress vs. strain, θ = 1◦ C. Stress vs. strain,

θ = 10◦ D. Stress vs. strain, θ = 45◦

between the two responses which indicates that assuming incompressibility

does not affect the numerical results as long as the change in the effective

plane strain stiffness is accounted for accordingly. This near independence

of the numerical results on the Poisson’s ratio is likely due to the fact that

the deformation of material A is nearly isochoric in the postbuckling regime

even if A is compressible.

3.2.6. Effect of a finite height

While numerical results for composites of infinite size are interesting, any

manufactured composite would have a finite size. Furthermore, for mechan-

ical testing of such a composite, the horizontal displacement on the top and
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bottom boundaries might have to be fixed. The effect of a finite height was

investigated using the following boundary conditions:

UZ |top = UZ |bottom = 0

UX |top = U(t)

UX |bottom = 0

(30)

where the X and Z directions are represented in Fig. 1, U(t) is the prescribed

displacement on the top boundary. Periodic boundary conditions were used

for the left and right boundaries using Eqs. 24 and 25 (i.e., we assumed that

the number of layers is infinite). Buckling analysis and finite deformation

simulations show that the height of the composite can have a dramatic effect

on the finite deformation response. Fig. 12A depicts the critical buckling
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strain as a function of the height for the upper and lower bounds of EB. In

both cases, as the height of the model is increased, the critical buckling strain

converges to the theoretical value for a model of infinite height. While the

buckling wavelength is infinite in the case of the composite of infinite size, the

buckling wavelength, Lcr, is equal to the height of the model in the case of a

finite height with these boundary condititions (Fig. 12C). In the non-dilute

case (also called longwave mode by Li et al. [19]), buckling is a macroscopic

instability that is affected by the boundary conditions [8, 21]. Fig. 12B is

the stress vs strain response attained through finite deformation simulations.

Once again, as the height of the model is increased, the response converges

towards the response for the composite of infinite height. Note that both for

the critical strain and the stress vs strain curve there is a small difference

between the results obtained the theoretical finite deformation model and

the numerical simulations with a large size: the critical strain and the stress

are slightly higher in the finite height case than in the theoretical model for

infinite height. This small difference is due to the fixed horizontal displace-

ment on the top and bottom boundaries in the finite height simulations,

which tends to constrain the mode of deformation (the applied boundary

conditions correspond to an incompressible deformation). However, despite

these small differences, these numerical results demonstrate that the finite

deformation model for composites of infinite height can capture very well

the stress vs strain response for composites of finite height, provided that

H/W & 50.
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. C. Buckled shape of a unit cell of width W for a composite of finite

height, H, and infinite number of layers.

3.3. Effect of prestrain on dynamic properties under cyclic loading

Because of the dramatic effect of buckling on the stress vs strain curve

of these viscoelastic layered composites, the effect of prestrain on their dy-

namical mechanical properties was investigated. The dynamical mechanical

properties, typically measured using DMA (with or without prestrain) are
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mechanical properties that characterize the response of a material to cyclic

loading [18]. For these numerical results, the strain is given by the equation:

ε(t) = ε̇t if 0 < t < tr

= ε0 if tr < t < ts

= ε0 + ∆ϵ sin(2πft) if t > ts

(31)

where tr is the rise time, ts is the time of the start of the harmonic loading,

ϵ̇ is the strain rate (ϵ̇ = ϵ0/tr), ϵ0 is the prestrain, f is the frequency of

the cyclic loading and ∆ϵ is the amplitude of the cyclic loading. ϵ(t) is

represented graphically in Figs. 13A and 13B. In all the cases considered in

this section, ∆ε is 1 × 10−3%, f = 1 Hz while ε0 is varied. The numerical

results at different frequencies would be qualitatively similar. The stress

response for one particular case is shown in Figs. 13C and 13D. In this case,

the nominal stress increases until the prestrain value is reached because the

prestrain is below the critical strain. Then, as the strain is held constant, the

stress gradually decreases and reaches a steady state value close to the initial

value (due to viscoelastic stress relaxation). Harmonic loading results in a

hysteresis loop. The dynamic Young’s modulus, |E∗|, (which is a measure of

stiffness under cyclic loading), and the loss factor, η (which is a measure of

damping) were computed for the last cycle (Fig. 13D) of harmonic loading

using the equations given in Appendix A.

Since the buckling shape (Fig. 5C) of a non-dilute composite with ini-

tially vertical layers (θ0 ≈ 0) is similar to the undeformed shape of a layered

composite with θ0 ̸= 0, we compared the finite deformation simulation of the

cyclic loading with a prestrain for θ0 ≈ 0 to the linear viscoelastic theory

(without prestrain) of composites with θ0 ̸= 0. We first computed the value
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Figure 13: Engineering strain vs time for A. The entire loading cycle. B. The harmonic

loading. And the stress vs strain response for C. The entire loading cycle. D. The final

cycle.

of the angle θs(ϵ0), that is reached after prestraining the composite with ini-

tially vertical layers to a prestrain of value ϵ0, which is held constant until

the stress relaxes to a constant value (see Fig. 14A). We then computed

|E∗| and η using the linear viscoelastic theory for θ0 = θs(ϵ0) (Fig. 14B) by

adapting the equations given in [23] to the plane strain case (see Appendix

B).
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is ∆θ

Figs. 15A and B show the stiffness and damping values as functions of

prestrain. As the prestrain is increased from 0 to 10%, the effective dy-

namic modulus decreases by two orders of magnitude (for ϕA=25%) and the

damping increases by two orders of magnitude. These results are due to the

rotation of the layers as the prestrain is increased. On the same graphs,

the value obtained using the linear viscoelastic theory using an initial angle,

θ0 = θs(ϵ0), are plotted as a function of ϵ0. There is an agreement in the

general trend between the finite deformation theory with prestrain and linear

viscoelastic theory with an initial angle. Some small differences are visible at

the highest prestrain values. These differences are likely due to the fact that

the geometry of buckling mode shape is not exactly identical to the geome-

try of undeformed composites with θ ̸= 0 (see Fig. 5C). Furthermore, after

prestraining the composite, the non-zero stress values in the two constituents

might affect the response of the composite to the cyclic load.
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The dynamic modulus is plotted as a function of the damping in the

stiffness-loss map shown in Fig. 15C. Each point of each line corresponds to

the values obtained for |E∗| and η at a fixed prestrain value. As the prestrain

is increased the points first move toward the right side of the figure (indicating

a large increase in the damping and small reduction in the stiffness), before

moving towards the bottom (indicating a large decrease in the stiffness and

a small increase in the damping). The same effect is obtained by simulating

composites with increasing angle (in the small strain regime).

4. Discussion and conclusions

4.1. Analytical and numerical investigation of the nonlinear mechanics of

viscoelastic composites

In this paper, we investigated the nonlinear mechanics of viscoelastic lay-

ered composites. Due to the remarkable simplicity of the microstructure

and mode of deformation, analytical expressions could be derived for the fi-

nite deformation of non-dilute composites. Theoretical results were shown

to match results from finite element simulations. Elastic buckling analysis

helped to determine the source of the nonlinear nature of the stress vs strain

response. Geometric softening due to buckling is responsible for the strong

nonlinearity in the stress vs strain curve, which explains the nonlinearity in

the stiffness and damping that was previously observed in finite deformation

finite element simulations [23]. In the postbuckling regime, the layers tend

to rotate upon loading, which reduces the effective stiffness of the compos-

ites. Due to this geometric softening (due to the rotation of the layers) and

to the time-dependent decrease in the effective stiffness of the viscoelastic
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constituent, a negative slope is observed in the constant strain rate response

of viscoelastic layered composites.

While the focus of this paper was on the mechanics of layered composites,

parts of the results might be qualitatively similar for other types of composite

microstructures. The rate-dependent buckling and negative slope in the post-

buckling regime that were observed here are caused by the presence of a time-
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dependent Young’s modulus for the soft material (i.e., viscoelasticity) and

of geometric softening. More complex microstructures, that exhibit strong

geometrical nonlinearities, would have similar characteristics. Furthermore,

while neo-Hookean constitutive models were used here for the derivation of

the theoretical model, using other types of constitutive models would lead

to similar finite deformation responses (see for example the numerical results

shown in [23]).

4.2. The stiffness and damping of viscoelastic layered composites can be tuned

by prestrain

Our findings might be used to design layered composites with simulta-

neously high stiffness and high damping. In a previous paper, Meaud et al.

[23] demonstrated that excellent dynamic properties can be achieved by se-

lecting optimal values for the angle between the layer direction and the load

direction. We have shown in this paper that almost identical properties are

obtained by applying a small amount of prestrain to layered composites with

layers that are in the load direction prior to the application of the prestrain.

There is a well known tradeoff between stiffness and damping in common en-

gineering and natural materials [18]. Simultaneously optimizing stiffness and

damping for a category of composite materials is a multiobjective optimiza-

tion problem with competing objectives, for which a Pareto set of optimal

designs can be defined [23]. For layered composites with a given volume

fraction and given constitutive materials, the amount of prestrain allows one

to move along the Pareto set and to tune by orders of magnitude the values

of the stiffness and damping in response to cyclic loads of small amplitudes.

This dramatic change in the mechanical properties is reversible since it is a
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consequence of the buckling instability and to the rotation of the layers.

Composites with initially vertical layers also have interesting properties in

response to loads of finite amplitude. Without any prestrain, the composites

have an excellent load-bearing capacity due to their high stiffness. In the

event of a load of large amplitude, the structures will buckle, thus allowing

the viscoelastic constituent to dissipate a very large amount of mechanical

energy. Furthermore, even though the mode of deformation and the buckling

strains are affected by the boundary conditions of layered composites of finite

size, the height only needs to be about 50 times the unit cell width to achieve

a similar stress vs strain response to a layered composites of infinite size.

4.3. Dilute viscoelastic layered composites

While the finite deformation of viscoelastic dilute layered composites was

not addressed in this paper, it might be a promising area of future research.

Due to their wavy mode of deformation, the case of dilute elastic layered

composites, previously investigated by Li et al. [19], can be used to cre-

ate bandgaps for elastic wave propagation [31]. For dilute layered compos-

ites with viscoelastic constituents, the elastic buckling analysis suggests that

the mode of deformation should be rate-dependent and time-dependent: the

buckling shape might switch from an infinite wavelength to a finite wave-

length depending on the volume fraction and strain rate. This interesting

behavior might be used to design adaptive materials with tunable and mul-

tifunctional properties. More generally, viscoelasticity and rate dependence

might be exploited to expand the design-space for materials with unconven-

tional mechanical properties or multifunctional characteristics.
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Appendix A. Computation of the dynamic modulus and loss fac-

tor

In order to determine the effective stiffness and damping of layered com-

posites with prestrain, we used the approach described here that can directly

be applied even in the case of a nonlinear response. The values obtained

with the proposed definitions match the conventional definitions for linear

viscoelastic materials at infinitesimal strains without prestrain. In the case

of a linear viscoelastic material, after reaching steady-state during the cyclic

part of Eq. 31, the stress can be written as:

σ(t) = ∆σ sin(ωt + δ) + σ0 (A.1)

where ∆σ is the amplitude of the stress curve, δ corresponds to the phase lag

and ω is the radian frequency of the excitation. σ0 is the static stress value

which occurs when the strain is equal to ε0.

In this paper we consider the effective stiffness of a layered viscoelastic

composite as the absolute value of its dynamic modulus, |E∗|, which can

be obtained graphically by analyzing the stress versus strain response of

the composite. The overall effective stiffness is obtained by dividing the

difference between the maximum and minimum values of the stress, σmax −

σmin = 2∆σ, by the difference between the maximum and minimum value

of the strain, ϵmax − ϵmin = 2∆ϵ. |E∗| corresponds to the slope of the line

that connects the lower left corner to the upper right corner of the box as

shown in Fig A.16A for a linear viscoelastic material. We propose to extend

this graphical interpretation to define the effective stiffness of a nonlinear

viscoelastic material, as shown in A.16B.
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Figure A.16: Force displacement boundary along with line depicting the dynamic modulus,

|E∗|. A. Shown for a linear viscoelastic material. B. Shown for a nonlinear viscoelastic

material

In the case of a linear viscoelastic material, damping is commonly defined

as the tangent of the phase lag, tan(δ), between stress and strain. However,

when nonlinearities affect the response of the material at finite strain ampli-

tudes, the damping cannot be evaluated using tan(δ) since the stress is no

longer a harmonic function of time. A more general definition of damping is

needed. This can be obtained by noting the link between tan(δ) and energy

dissipation in the case of a linear viscoelastic material. The energy dissi-

pated per cycle per unit volume, Wd, can be computed using the following

equation:

Wd =

∫ T

0

σ(t)
dε

dt
dt (A.2)

Where T = 2π/ω is the period of the input. Computing the integral in

Eq. A.2 we get:

Wd = π∆ε∆σ sin(δ) (A.3)
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Solving Eq. A.3 for tan(δ) we get

tan(δ) = tan
[
sin−1

( Wd

π∆ε∆σ

)]
(A.4)

We note that π∆ε∆σ corresponds to the maximum energy per cycle that

a linear viscoelastic material can dissipate for given values of ∆ε and ∆σ.

Let Wmax
d (∆ε, ∆σ) be this value. We can then write for a linear viscoelastic

material:

tan(δ) = tan
[
sin−1

( Wd

Wmax
d (∆ε, ∆σ)

)]
(A.5)

We propose in this paper to define the effective loss factor for a nonlinear

viscoelastic material, η, to be:

η = tan
[
sin−1

( Wd

Wmax
d (∆ε, ∆σ)

)]
(A.6)

Graphically, Wd corresponds to the area with the stress-strain curve and

Wmax
d (∆ε, ∆σ) corresponds to the ellipse whose area is π∆ϵ∆σ. This is

graphically shown in Figs. A.17A and A.17B.

Appendix B. Plane strain linear viscoelastic theory

Meaud and Hulbert [23] derived the complex Young’s moduli for Reuss

composites (loading in the z direction, see Fig. 1) and Voigt composites

(loading in the x direction) in response to dynamic loading for the gener-

alized plane strain case (i.e, the out of plane dimension is assumed infinite

such that the normal strains in the two phases are identical in the out of

plane direction). These equations are adapted here to the plane strain case.

41



  
Strain

St
re

ss
 (M

P
a)

 

 

2∆ε

2∆σ

W
d

max

W
d

Strain

St
re

ss

 

 

2∆ε

2∆σ

W
d

max

W
d

A B

Figure A.17: Energy dissipated along with maximum energy dissipated within the same

stress-strain boundary. A. Linear viscoelastic material. B. Nonlinear viscoelastic material.

Applying the condition ϵA
y = ϵB

y = 0 to constitutive equations 10 and 13 from

Liu et al. [20] in conjunction with equilibrium equations 15 through 17 and

kinematic equations 18 through 20 we derive the Young’s modulus for the

Reuss configuration, Eeff
z .

Eeff
z =

EAEB

ϕAEB + ϕB

(
EA(1 − ν2

B) + EBνA(1 + νB)
)

+
q1ϕBνB

(
νAEB−EA(1+νB)

)
q2

(B.1)

where q1 and q2 are:

q1 = EBνAϕA(νA + 1) − EAνBϕA(νB + 1) (B.2)

q2 = EBϕB(ν2
A − 1) + EAϕA(ν2

B − 1) (B.3)

For the Voigt configuration we use the same constitutive equations but

use equilibrium equations 23 through 25 and kinematic equations 26 through
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28 from Liu et al. [20] to solve for Eeff
x .

Eeff
x =

ϕAEA

1 − ν2
A

+
ϕBEB

1 − ν2
B

(B.4)

The effective modulus in the X direction is then computed using Eq. 15

given in [23].

Appendix C. Finite deformation viscoelastic model in ABAQUS

According to [10], the deviatoric part of the Kirchoff stress, τD(t), is

given by the following expression for finite deformation viscoelastic models

in ABAQUS:

τD(t) = τ 0
D(t)+ dev

[ ∫ t

0

Ġ(τ ′)

G0

F̄−1
t (t− τ ′)τD

0 (t− τ ′)F̄−T
t (t− τ ′)dτ ′

]
(C.1)

where τ 0
D(t) is the instantaneous deviatoric part of the Kirchoff stress, G0

is the instantaneous shear modulus and .̄ denotes the isochoric part. Since

the material is assumed to be incompressible,

τD(t) = JσD(t) = σD(t) and F̄−T
t (t − τ ′) = F−T

t (t − τ ′) (C.2)

Ft(t − τ ′) is given by:

F(t − τ ′) = Ft(t − τ ′)F(t) (C.3)

Therefore

F̄−1
t (t−τ ′) = F−1(t)F−1(t−τ ′) and F̄−T

t (t−τ ′) = F−T(t−τ ′)F−T(t) (C.4)
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Therefore the deviatoric part of the Cauchy stress is given by:

σD(t) = σD
0 (t)

+ dev
[
F−1(t)

∫ t

0

Ġ(τ ′)

G0

F−1(t − τ ′)σD
0 (t − τ ′)F−T(t − τ ′)dτ ′F−T(t)

]
(C.5)

Using the change of variable τ = t − τ ′, this equation can be written:

σD(t) = σD
0 (t)

+ dev
[
F−1(t)

∫ t

0

Ġ(t − τ)

G0

F−1(τ)σD
0 (τ)F−T(τ)dτF−T(t)

] (C.6)

Since the deviatoric part of the instantaneous 2nd Piola Kirchoff stress,

SD
0 (τ), is given by:

SD
0 (τ) = F−1(τ)σD

0 (τ)F−T(τ), (C.7)

the equation for σD(t) can be written:

σD(t) = σD
0 (t) + dev

[
F−1(t)

∫ t

0

Ġ(t − τ)

G0

SD
0 (τ)dτF−T(t)

]
(C.8)

After integration by part, we obtain:

σD(t) = dev
[
F−1(t)

∫ t

0

G(t − τ)

G0

ṠD
0 (τ)dτF−T(t)

]
(C.9)

For a 1 term Prony series, the relaxation modulus is given by:

G(t) =
[
1 + β∞

α exp(− t

τα

)
]
G∞ (C.10)

where G∞ is the long term shear modulus, τα is the relaxation time constant

and
[
1 + β∞

α

]
G∞ = G0 is the instantaneous shear modulus. σD(t) can be

written:

σD(t) = σD
∞(t) + dev

[
F−1(t)Qα(t)F−T(t)

]
(C.11)
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where σD
∞(t) is the long-term deviatoric Cauchy stress and Qα(t) is given by:

Qα(t) =

∫ t

0

β∞
α exp(

−(t − τ)

τα

)ṠD
0 (τ)dτ (C.12)

It is easy to prove that Qα(t) is solution to Eq. 13. The deviatoric part of

the 2nd Piola-Kirchoff stress can be written:

SD(t) = SD
∞(t) + Qα(t) (C.13)

where SD(t) = F−1(t)σD(t)F−T(t) is the deviatoric part of the 2nd Piola-

Kirchoff stress and SD
∞(t) = F−1(t)σD

∞(t)F−T(t) is the long term part of the

deviatoric part of the 2nd Piola-Kirchoff stress. Hence, the finite deformation

viscoelastic model used in ABAQUS is equivalent to the model used for the

theoretical finite deformation algorithm.
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