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Abstract 

Foam structures have found an increasingly wide utilization in modern industry because of 

their porous geometric characteristic and favorable mechanical properties like lightness, high 

strength and so on. Elastic buckling, plastic yielding, brittle fracture and crushing are typical 

failure mechanisms of foam structures. The influences of foam geometry and morphology on the 

failure mechanisms are still not fully understand. In this paper the Kelvin cell model is used to 

simulate the foam structure and to study the influence of relative density and geometric properties 

on failure behavior. By extensive FEM analyses of representative volume elements under 

multi-axial loading with periodic boundary conditions the macroscopic failure limit surface is 

calculated in stress space. Locally at the microstructure the probabilistic Weibull model and the 

maximum principal stress criterion are used as failure criterion. 

Key words: failure criterion, open-cell foam, Kelvin cell, Weibull stress criterion 

1. Introduction 

Foam structures are convenient light and stiff structures which preserve the high moduli and 

collapse strengths of the original materials but exhibit much lower densities. Foam structures are 

expected to have various engineering applications. For example, they are used in lightweight 

structural sandwich panels and in energy absorptions devices because of their low relative densities 

and high specific strengths (Ashby, 2000; Gibson and Ashby, 1999). In many applications they may 

be subjected to multi-axial loads. Foam structures can fail by several mechanisms like elastic 

buckling, plastic yielding, brittle crushing or brittle fracture depending on the properties of the 

original material which they are made of and on the relative density and the geometric properties 

(Jang et al., 2008; Jang and Kyriakides, 2009a, b). These mechanisms occur on the micro-structure 
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of foams, i.e. at struts and nodes (DeRuntz and Hoffman, 1969). The failure behavior on the 

macro-scale associated with all these mechanisms mentioned above has to be found by mechanical 

analyses. The mechanical behavior of foam structures, suitable homogenization methods and the 

influence of imperfection are discussed by several researchers (Deshpande and Fleck, 2000, 2001; 

Gibson et al., 1989; Sridhar and Fleck, 2005; Thiyagasundaram et al., 2010). The Kelvin cell is a 

simple geometry which is frequently used to simulate foam structure (Gong and Kyriakides, 2005; 

Gong et al., 2005a; Gong et al., 2005b; Jang et al., 2010; Mills, 2007; Sullivan and Ghosn, 2009; 

Sullivan et al., 2009; Takahashi et al., 2010).  

With brittle foams, multi-axial loading situations are more complex to assess than for simple 

compact structures of homogeneous materials. The fracture of brittle materials initiates from flaws 

distributed in the material. The size of the flaws affects the strength, why in that case the strength of 

brittle materials should be expressed by a probability function. Weibull proposed a statistical theory 

of brittle fracture (Weibull, 1951). The experimental results also show that the fracture statistics of 

ceramics obeys Weibull distribution, that is why it is widely used in failure probability analysis 

(Amaral et al., 2007; Danzer et al., 2007; Karolczuk, 2013; Klein, 2009). For an inhomogeneous 

stress state, the Weibull stress introduced by Beremin (Beremin, 1983) plays an important role to 

characterize the failure strength and to predict the failure limit surface. It can be estimated from 

experiment (Fuis and Navrat, 2011; Gao et al., 1998; Lei Y, 1998; Minami et al., 1992; O'Dowd et 

al., 2000; Yin et al., 2004). 

The failure of foam structures under multi-axial loading can be caused by different mechanism 

like stretching, bending and buckling. The yield criteria under different macroscopic loading are 

studied by many authors based on experimental observations and numerical simulation (Aghdam et 

al., 2000; Bigoni and Piccolroaz, 2004; C Chen, 1999; Demiray et al., 2007; Deshpande and Fleck, 

2000, 2001; Piccolroaz and Bigoni, 2009; Takahashi et al., 2010). Altenbach (Altenbach et al., 2014) 

gives a summary on different yield and failure criteria and their limitations. But all the failure 

criteria mentioned above do not consider the failure probability, which is essentially for ceramic 

foams. In this paper, we are using the open cell Kelvin foam to simulate the foam structure made 

from a brittle material like ceramic and study the multi-axial failure behavior using a probabilistic 

Weibull model and for comparison the maximum principal stress as local failure criterion. 
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2. Model description 

2.1 Kelvin cell foam models 

The Kelvin cell, or tetrakaidecahedron, consists of six flat quadrilateral and eight hexagonal 

faces. The edges of all faces are considered as solid beams, which results in an open cell foam. The 

Kelvin cell in a body-centered cubic arrangement results in a partition of the 3D Euclidean space.  

 

Fig. 1 A single representative volume element of a Kelvin cell and its periodic arrangement. 

2.2 Homogenization 

Due to the regularity of the Kelvin cell, some of the mechanical properties of interest for foam 

structure can be evaluated by considering just a single representative volume element (RVE) of a 

Kelvin cell foam (Dement'ev and Tarakanov, 1970; Gong and Kyriakides, 2005; Gong et al., 2005b; 

Jang et al., 2008; Laroussi et al., 2002; Mills, 2007; Warren and Kraynik, 1997; Zhu, 1997). 

Homogenization of a heterogeneous material is a process leading to its macroscopic 

characterization with fewer parameters than those needed for a full description of the object. On the 

meso-scale the structure is composed of periodic unit cells as representative volume elements 

(RVE). Within a homogenization volume � , which is bounded by surface � , the local 

displacements �� can be written as 

�� = ��̅�	� + ��∗,                            (1) 

where ��̅�  are the homogenized global linear elastic strains, 	�  the locations and ��∗  the 

displacement fluctuations. All homogenized or effective quantities are denoted by an upper bar. The 

displacement fluctuations exist due to the inhomogeneous local displacements inside the considered 

RVE. Differentiation of Eq. (1) and considering the symmetries of the strain tensor for small 

deformation problem we get for the average strain 
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��̅� = 1�
 �12 ���,� + ��,�� − 12���,�∗ + ��,�∗ ��� d� 

	= �� � ��� ����� +����� − �� ���∗�� + ��∗���� d�.           (2) 

For a cubic RVE like the Kelvin cell, the local displacements at the boundary are in the 

Cartesian coordinate system 

��!" = ��̅�	�!" + ��∗!",                             (3) 

��!# = ��̅�	�!# + ��∗!#,                             (4) 

where the upper index “$ +” means the positive and “$ −” the negative orientated boundary in 

j-direction. The chosen boundary conditions ensure periodicity. Additionally, the Kelvin cell and 

the applied loads are point symmetric regarding the center of the RVE. This ensures that we have 

equal displacement fluctuations and tractions with opposite signs at opposite boundaries. 

��∗!" = ��∗!#,                              (5) 

%� !" = −%� !#.                              (6) 

This makes sure that the displacement fluctuation term 
�� ���∗�� + ��∗��� in Eq. (2) vanishes. The 

average stresses on the macro-scale also called as global stresses and strains for the RVE are (Hill, 

1972) 

&'�� = �� � &��� d� = �� � 	%� 	�d�,                     (7) 

��̅� = �� � �� ����� + ����� d�.                     (8) 

Thus the Hill-Mandel condition is fulfilled. The difference of Eq. (3) and Eq. (4) can be written as 

�� !" − �� !# = ��̅��	�!" − 	�!#� = ��̅�(	�! ,              (9) 

where 	(	�!  is the dimension of the RVE. The effective elastic properties of the Kelvin cell are 

described by Hooke’s law 

&'�! = )�̅!�*��̅*,                              (10) 

with the effective elasticity tensor )�̅!�*. Written in Voigt’s notation, we have 

&'+ = ,	&'��, &'��, &'--, &'��, &'�-, &'�-./ ≡ ,	&'�, &'�, &'-, &'1, &'2, &'3./ ,          (11) 

�4̅ = ,	��̅�, ��̅�, �-̅-, 2��̅�, 2��̅-, 2��̅-./ ≡ ,	��̅, ��̅, �-̅, �1̅, �2̅, �3̅./ .         (12) 

For a complete anisotropic case Eq. (10) simplifies to 

&'+ = )+̅4�4̅ 		.                              (13) 
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Due to the symmetry )+̅4 = )4̅+ , the stiffness tensor has 21 independent elastic constants for the 

general anisotropic linear elastic solid. The Kelvin cell has a cubic symmetry and therefore only 

contains 3 independent elastic constants. For a coordinate system with basis vectors pointing into 

the crystallographic axes <100>, <010>, <001> the elastic constants are 

)�̅� = )�̅� = )-̅- , )�̅� = )�̅- = )�̅- , )1̅1 = )2̅2 = )3̅3.           (14) 

)�̅� = ��#56�7'��"56���#�56� , )�̅� = 567'��"56���#�56� , )3̅3 = 8̅.               (15) 

Inversely, if the elastic constants are known we can define the elastic properties also by the 

engineering elastic modulus 9' = �:;̅;#:;̅<��:;̅;"�:;̅<��:;̅;":;̅<� , the Poisson’s ratio =̅ = :;̅<�:;̅;":;̅<� and the shear 

modulus 8̅ = )3̅3. The anisotropy ratio is defined as �> = �:?̅?�:;̅;#:;̅<� . 

2.3 Implementation in ABAQUS 

2.3.1 Geometric model 

The RVE of a Kelvin cell foam is shown in Fig. 1. All struts are cylinders with a length l=1. 

Thus the structure length of the RVE is L=2√2A. The simple theoretical relation between relative 

density and strut radius is B = -CD<�√�*< (Zhu, 1997), which neglects the overlap of struts at the node. 

By analyzing the geometry of FEM volume models, we found that the relation between strut radius 

r and relative density B is	E = FGHI;J. In this simulation we found the parameters as a=2.4289 and 

b=1.9023. We focus on 1% and 2% relative density, which results in the strut radii of r=0.0557l and 

r=0.0802l, respectively. In order to simplify the simulation and to study only the structural influence 

on the mechanical properties, the Young’s modulus E=1MPa and Poisson’s ratio ==0.25 are chosen 

as elastic material constants for the struts within the FEM model. 

2.3.2 Boundary conditions 

Because of the geometric symmetry of the Kelvin cell, boundary surfaces are parallel and have 

the same shape at opposite sides. The periodic boundary conditions for the displacements are 

applied by using “equation” constraints which need a periodic surface mesh on each axis. But the 

tetrahedral meshes generated by the ABAQUS software do not guarantee that every single point on 

the boundary surface may have a corresponding point on the opposite surface. So we copy one 

master surface mesh to the positive RVE surface as mirror surface and use “tie” constraints to 
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connect the mirror surface and the original surface to make these two surfaces deform 

simultaneously as shown in Fig. 2 (Storm et al., 2013). We set three reference points as master 

nodes on each direction respectively. Then the equation constraints between the corresponding 

points on the master surface and the mirror surface respectively and the reference points are built 

��!" − �� !# = ��̅��	�!" − 	�!#� = ��̅�(	�! = ��KLMN,             (16) 

where ��KLMN are the given displacements �� at reference points j. 

For any cube-like RVE model (	�! = O is constant. Then the strains can be calculated as 

��̅� = PQRSTNUVWN .                                (17) 

In addition, the antiperiodic reciprocal surface tractions must be fulfilled. Due to the point 

symmetry of the Kelvin cell this is satisfied automatically.  

 

Fig. 2 Modelling periodic boundary conditions on models without periodic surface meshes (Storm et al., 

2013). 

2.3.3 Computation of the stiffness tensor 

Since the analysis is done within the elastic and small deformation region, the superposition 

principle can be applied. One simple load case is enough to determine the components of the 

stiffness matrix for a Kelvin cell. In this load case a uniaxial deformation and a shear deformation 

within the corresponding orthogonal plane � ̅ = ���̅, 0, 0, 0, 0, �3̅) are applied simultaneously. From 

the FEM calculation we get the reaction forces at the reference points and divide them by the 

nominal area of the cross section in each direction, which results in components of the average 

stress tensor for the RVE. 

&'� = )�̅���̅ = X;RST; YZ[ , &'� = )�̅���̅ = X<RST; YZ[,                   (18) 
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)�̅� = &'�/��̅ , )�̅� = &'�/��̅,                        (19) 

]�̅- = &'3 = )3̅3�3̅ = �� ^X_RST< YZ[ + X<RST_ YZ[`.                  (20) 

In the above equations a�KLMN  denotes the reaction force a  into 	�  direction at the respective 

reference point j, �bcd the nominal area of each surface of the RVE which is O�. 

2.3.4  Failure limit	surface 

A failure limit	surface is defined by a set of points in the homogenized	stress space, where	a 

local failure criterion on the micro-scale reaches a critical value. Typically, the stress space is 

spanned by the three homogenized	principal stresses (&'�, &'�, &'-) (not in Voigt’s notation). For 

convenience the failure limit surface can be expressed using	a cylindrical	coordinate	system (&'K, 
θ,	&'v), which is calculated from the principal stresses	by 

&'K = w2x� ,  cos 3z = {_� F-{<I-/�,  &'v = |;√-.               (21) 

Here &'v denotes a stress coordinate along the hydrostatic axis in principal stress space, &'K denotes 

a stress coordinate along the deviatoric axis in principal stress space, &'}, &'}}, &'}}} are projections of 

&'�, &'�, &'- on the π-plane, z denotes the angular coordinate as depicted in Fig. 3, which is also 

known as positive cosine Lode angle. It starts from &'} and has the range [0, π/3]. The principal 

stresses and the cylindrical	stress coordinates are related by 

~&'�&'�&'-� = �√- ~&'v&'v&'v� +��- &'K �
cos zcos�z − ��- �cos�z + ��- ��.                      (22) 

In the equations above we make use of three stress invariants: ��̅ = &'�� = &'� + &'� + &'- , 

x�̅ = ��&'�!�&'�!� = �3 ,�&'� − &'��� + �&'� − &'-�� + �&'- −&'���. , x-̅ = &'���&'�!� &'�!�,  where &'�!� = &'�! −
|;̅- δ�! is the deviatoric stress tensor. 
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Fig. 3 Cylindrical coordinate system,	z starts from &'�. 

A brittle material like ceramic foam is more sensitive to tension than to compression. The 

failure behavior under global multi-axial tension loading condition is discussed. To compute a 

failure limit	surface for a periodic	structure the following steps are necessary: 

• Compute the elastic constants )�̅!  as described in section 2.3.3 

• Define a set of stress states in cylindrical coordinates (&'K, θ, &'v) as shown in Fig. 4a, 

which comprises one-fourth of an ellipse on	the	&'v − &'K  plane divided into 9 equal 

angular segments. The intercept in &'K  axis is √κ/κ and in &'�  axis is √�  where � 

denotes an elongation factor of the ellipsoid, here we set � = 10. The range of angle z is 

z = �0, C-� = ,0, 60°. and divided into 8 equal segments. Translating the stress states to 

the principal stresses coordinate system (&'�, &'�, &'-) by using Eq. (22), it forms the red 

segment of points in Fig. 4b. The other segments in Fig. 4b can be constructed by cyclic 

permutations of &'�, &'� and &'-. Finally, there are totally 90 points (each point stands for 

a load case) in cylindrical coordinates (&'K, θ, &'v) in Fig. 4a. 

• Compute the corresponding strains ��̅ = )�̅!#�&'!  and apply them as displacement 

boundary conditions for the unit cell according to Eq. (17). 

• Apply FEM to solve the boundary value problem for the Kelvin cell. 



  

9 

 

• Determine for each loading case the local maximum stress &�c�M according to the chosen 

failure criterion. &� is the critical material strength assumed as unit	value	1	MPa. When 

&�c�M = &�, the material is assumed to fail. 

• Scale the global principal stresses (&'�, &'�, &'-) by a factor λ = &�/&�c�M to get the stress 

state (&'�λ, &'�λ, &'-λ) which describes one point on an iso-surface of failure. In order to 

allow a linear scaling, the failure criterion has to be homogeneous of degree one in the 

stress tensor and the local stress must be linearly dependent on global stresses &'�, &'�	 
and &'-. 

To analyze	the anisotropic properties, three kinds of global loading are applied with respect 

to the	coordinate axes	of the RVE. Loading case S<100> only contains principal stresses, and the 

principal stress axes are consistent with the axes	of RVE. Then rotate the stress state along the 

second principal stress axis by 45° to get loading case S<101>, and then rotate the stress state along 

the new third principal axis to get loading case S<111> to make sure that the first principal stress 

axis of S<111> is consistent with the space diagonal of the RVE. 

a) b)  

Fig. 4 a) Initial stress states in the cylindrical coordinate system. Each point stands for a loading case. b) 

Initial stress states in principal stress space (projected to the π-plane).  

2.3.5 Weibull stress 

The probability function for the brittle fracture strength of a solid subject to a homogeneous 

stress field can be expressed by the Weibull distribution. In case of complex stress state like in 

foams, Weibull statistic was extended by the weakest link statistics. It has been widely used to 

estimate the probability that a given sample will fail under a given load. 

��&�� = 1 − exp �−F����I��,                          (23) 
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where m and &� denote the Weibull modulus (also named as shape parameter) and the scale 

parameter of the Weibull distribution, respectively. In particular, m defines the shape of the 

probability density function and quantifies the statistical scatter. In this work, we assumed m=6.3, 

which is a typical value for ceramic. 

 

Fig. 5 Weibull failure probability distribution. 

The Weibull stress &� is defined (Beremin, 1983) as 

&� = � ��� � &��d��� ��/�,                          (24) 

or in a FEM convenient form 

&� = �∑ �&����¡S�¢� �Q����/�,                          (25) 

where �£ is a reference volume, �� is the volume of the i-th element integration point experiencing 

the maximum principal stress &��, �L	 is the number of element integration points within the model. 

The principle of independent action (PIA) (Barnett et al., 1967; Freudenthal, 1968; Manderscheid, 

1987) considers the influence of all principal stresses on the Weibull stress. In this paper a modified 

PIA stress was used and &�� in Eq. (25) is replaced by an equivalent stress 

&L¤� = �F�;"|�;|� I� + F�<"|�<|� I� + F�_"|�_|� I� 	��/�,             (26) 

and the Weibull stress is expressed as 

&� = �∑ �&L¤� ��¡¦�¢� �Q����/�.                      (27) 

This criterion postulates that the Weibull stress &� of the RVE controls the fracture probability.  
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2.3.6 The Bigoni - Piccolroaz failure criterion 

The numerically computed failure limit surfaces might be described in an analytical form. 

Bigoni and Piccolroaz (Bigoni, 2012; Bigoni and Piccolroaz, 2004) proposed the following 

structure for a universal failure criterion. 

a�&'� = §�&'v� + �6R¨�©� = 0.                           (28) 

Here the function §�&'v�  describes the dependence on the hydrostatic stress and ª�z�  the 

dependence on the Lode angle. Eq. (28) can be written as a function for &'K: &'K = −	§�&'v�ª�z�.                             (29) 

In this paper we assume the failure function as follows 

§�&'v� = −« F #�6¬ I¡,                           (30) 

ª�z� = �cos�,�":.­?#;_cos−1,� cos�-©�.�	,                     (31) 

and we get 

&'K = ®F¯°±6¬¯ I²cos�,�":.­?#;_ cos−1,� cos�-©�.�.                      (32) 

The parameters A and B describe the size of the failure limit surface in hydrostatic and deviatoric 

stress direction. The parameters n, C and D influence the shape of the failure limit surface. 

3. Results 

3.1  Elastic constants 

In this paper, beam models as well as volume models are used in FEM-analysis of Kelvin cell. 

As explained in Section 2.3.1, the exact strut radius differs somewhat from Zhu’s model. The beam 

model ignores the material overlapped at nodes and the stress concentration at the corners. The 

volume model is more realistic than the beam model. Comparing with Zhu’s (Zhu, 1997) result 

volume models are stiffer than beam models. Poisson’s ratios of different models are almost the 

same nearly 0.5. In Table 1 the differences between volume model, beam model and Zhu’s beam 

model are listed. The differences between beam and volume models increase with increasing 

relative density. 

Table 1 Comparison of elastic constants for different models (Err1=(Vol-Beam)/Beam, Err2=(Vol-Zhu)/Zhu, 

Err3=(Beam-Zhu’s)/Zhu’s) 
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Volume 

model 
Beam model Err1(%) Zhu’s result Err2(%) Err3(%) 

9' (1%) [Mpa] 7.17E-05 6.21E-05 13.3 5.95E-05 20.5 4.52 

9' (2%) [Mpa] 3.19E-04 2.58E-04 19.3 2.36E-04 35.4 9.28 

8̅ (1%) [Mpa] 2.20E-05 2.07E-05 5.98 1.95E-05 12.9 6.14 

8̅ (2%) [Mpa] 9.54E-05 8.69E-05 9.78 7.76E-05 23.0 12.0 

³̅ (1%) 4.90E-01 4.91E-01 -0.18 4.91E-01 -0.19 -0.02 

³̅ (2%) 4.79E-01 4.82 E-01 -0.56 4.82E-01 -0.63 -0.07 

3.2 Maximum principal stress criterion – FEM volume model 

One common failure criterion for brittle materials is the maximum principal stress criterion. 

Let us order the local stresses as &� > &� > &-. The criterion assumes that a material fails when one 

of the principal stresses &� exceeds the uniaxial tensile or compressive strength of the material &µ. 
If we suppose that tension and compression strength of the strut material are the same, then the 

maximum local stress is &locf = &max = max	�|&�|, |	&-|�. The scale factor λ = �·�¸Z·T = ��[¹º is 

used to draw a failure limit surface, which describes a global loading limit, where locally the 

material reaches the strength limit. The corresponding failure limit surfaces are shown in Figs. 6-9 

for relative densities of 1% (left) and 2% (right). The characteristic Lode angles are 0°，15°，30°，
60°. It is clearly to see that the failure limit surface is strongly dependent on the global loading 

direction. 

 

Fig. 6 Failure limit surface on the π-plane using maximum principal stress criterion (tic marks represent the absolute 

values). 
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Fig. 7 The influence of Lode angle on meridional profile under global loading case S<100> using maximum 

principal stress criterion. 

 

Fig. 8 The influence of Lode angle on meridional profile under global loading case S<101> using maximum 

principal stress criterion. 

 

Fig. 9 The influence of Lode angle on meridional profile under global loading case S<111> using maximum 

principal stress criterion. 

3.3 Weibull stress criterion - FEM volume model 
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For the computation of the Weibull stress, the concept of independent action (PIA) is applied 

according to Eq. (26) and Eq. (27). Assuming the Weibull stress criterion, the structure is more 

sensitive to global tension than to global compression, so we focus on the tension part. The 

normalized failure limit surfaces have parabolic shape on the &'v − &'K plane. The failure limit 

surfaces for 1% and 2% relative density have a similar shape but are different in size as depicted in 

Figs. 10-13. Fig. 10 shows projections of failure limit surface on the deviatoric plane. Figs.11-13 

show failure limit surfaces as meridional profiles in the cylindrical coordinate system. The failure 

limit surface corresponding to the Weibull stress criterion also shows pronounced anisotropic 

properties. Under global loading S<100> the Lode angle θ has only a small influence on &'K. Under 

global loading <101> &'K decreases with increasing angle θ, whereas under global loading <111> 

&'K increases with increasing angle θ.  
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Fig. 10 Failure limit surface for a Kelvin cell on the π-plane using Weibull stress criterion (tic marks represent the 

absolute values). 

 

Fig. 11 The influence of Lode angle on meridional profile under global loading case S<100> using Weibull 

stress criterion. 

 

Fig. 12 The influence of Lode angle on meridional profile under global loading S<101> using Weibull stress 

criterion. 
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Fig. 13 The influence of Lode angle on meridional profile under global loading S<111> using Weibull stress 

criterion. 

3.4 Weibull stress criterion - Beam Models 

Under the same conditions the failure limit surfaces have been calculated by using a beam 

model. Each strut is modelled using 8 Timoshenko beam elements having a circular cross section. 

The shape of failure limit surfaces is similar with those of the volume model, but the global loading 

case has only a small influence on the failure limit surface shape. The failure limit surfaces of the 

beam models projected onto the π-plane are shown in Fig. 14. They have a similar shape for 

different relative densities but are different from the corresponding volume models.  

 

Fig. 14 Failure limit surface on the π-plane for beam model using Weibull stress criterion (tic marks represent the 

absolute values).  

The comparison of effective normalized failure stresses according to both local maximum 

principal stress failure criterion and effective Weibull stress criterion are listed in Table 2 and 3. 

Volume models show a significantly smaller effective failure stress than beam models, because 

beam models neglect the stress concentrations at the foam nodes, where four struts met.  
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Table 2 Effective normalized failure stress according to the local maximum principal stress failure criterion 

 S<100> S<101> S<111> &'K  θ &'v  B  Volume Beam Err(%) Volume Beam Err(%) Volume Beam Err(%) 

- 0 0 1% 5.31E-05 1.72E-04 -69.2 6.34E-05 1.76E-04 -64.0 6.83E-05 1.66E-04 -58.9 

- 0 0 2% 1.41E-04 5.12E-04 -72.4 1.75E-04 5.25E-04 -66.7 1.85E-04 4.92E-04 -62.4 

- 15 0 1% 4.80E-05 1.55E-04 -69.1 6.44E-05 1.77E-04 -63.7 6.78E-05 1.52E-04 -55.4 

- 15 0 2% 1.32E-04 4.63E-04 -71.6 1.77E-04 5.29E-04 -66.2 1.88E-04 4.53E-04 -58.5 

- 30 0 1% 4.58E-05 1.51E-04 -69.6 6.68E-05 1.78E-04 -62.5 6.56E-05 1.47E-04 -55.5 

- 30 0 2% 1.26E-04 4.50E-04 -72.0 1.97E-04 5.32E-04 -62.9 1.81E-04 4.40E-04 -58.9 

- 60 0 1% 5.21E-05 1.72E-04 -69.7 6.28E-05 1.76E-04 -64.4 7.10E-05 1.66E-04 -57.3 

- 60 0 2% 1.42E-04 5.12E-04 -72.2 1.76E-04 5.25E-04 -66.5 1.85E-04 4.92E-04 -62.3 

0 - - 1% 2.15E-03 5.97E-03 -64.0 2.15E-03 5.97E-03 -64.0 2.15E-03 5.97E-03 -64.0 

0 - - 2% 3.99E-03 1.24E-02 -67.7 3.99E-03 1.24E-02 -67.7 3.99E-03 1.24E-02 -67.7 
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Table 3 Effective normalized failure stress according to Weibull stress failure criterion 

 S<100> S<101> S<111> &'K  θ &'v  B  Volume Beam Err(%) Volume Beam Err(%) Volume Beam Err(%) 

- 0 0 1% 3.84E-04 4.61E-04 -16.6 5.59E-04 5.13E-04 8.95 4.44E-04 4.88E-04 -9.07 

- 0 0 2% 9.51E-04 1.22E-03 -22.0 1.49E-03 1.37E-03 8.65 1.11E-03 1.29E-03 -14.0 

- 15 0 1% 3.76E-04 4.54E-04 -17.2 5.27E-04 5.18E-04 1.90 4.49E-04 4.88E-04 -8.06 

- 15 0 2% 9.33E-04 1.20E-03 -22.5 1.37E-03 1.38E-03 -0.48 1.13E-03 1.29E-03 -12.9 

- 30 0 1% 3.66E-04 4.49E-04 -18.6 4.63E-04 5.18E-04 -10.5 4.54E-04 4.89E-04 -7.12 

- 30 0 2% 9.10E-04 1.19E-03 -23.9 1.17E-03 1.38E-03 -14.6 1.15E-03 1.30E-03 -11.7 

- 60 0 1% 3.76E-04 4.73E-04 -20.4 4.15E-04 5.07E-04 -18.1 4.93E-04 5.06E-04 -2.44 

- 60 0 2% 9.38E-04 1.26E-03 -25.8 1.04E-03 1.34E-03 -22.6 1.27E-03 1.35E-03 -6.18 

0 - - 1% 7.38E-03 7.52E-03 -1.76 7.38E-03 7.52E-03 -1.76 7.38E-03 7.52E-03 -1.76 

0 - - 2% 1.35E-02 1.24E-02 8.76 1.35E-02 1.24E-02 8.76 1.35E-02 1.24E-02 8.76 
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3.5 The fit function for the Weibull model 

The failure limit surfaces of both beam and volume model have similar shapes on the &'v − &'K 
plane but different shapes on the π-plane. The failure limit surfaces can be approximated by the fit 

function. After scaling the global stresses &'K and &'v by the factor &�,  Eq. (32) changes to: 

�6R�� = ®»¯°±6¬±�¯ ¼²
�c½�,�":.­?#;_ �c½°;,� �c½�-©�.�	,                      (33) 

where z = ,0, C-. = ,0, 60°.. The parameters A and B can be expressed as � = C�¾¿�<+  and = C�¾¿�_4  . 

There are 5 parameters À, Á, C, D and n to be determined. 

From the expressions of parameters A and B we noticed that A has a relationship with the cross 

section area which means it is determined by the tensile strut stiffness and B has a relationship to the 

static moment determining the bending stiffness of the strut. From the function Eq. (33) and Figs. 

11-13 we know that A is related to the maximum value of hydrostatic stress 
�6¬�� and B is influenced 

by both 
�6¬�� and 

�6R��. The parameters C and D are used to describe the shape of the deviatoric section. 

n describes the shape on the &'v − &'K plane. 

The failure limit surface looks like a half of a paraboloid. Figs. 15-17 compare the simulated 

failure limit surface and the corresponding fitted function for 1% relative density for both the 

volume model (left) and beam model (right). The solid lines stand for the fitted function and the dots 

represent the corresponding FEM results. The values for the parameters in Eq. (33) for the different 

relative densities and models (volume, beam) are given in Tables 4-6. 
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Fig. 15 The comparison between the failure function and 3D-FEM results with 1% relative density under 

loading case S<100> in the cylindrical coordinate system (left is volume model, right is beam model). 

 

Fig. 16 The comparison between the failure function and 3D-FEM results with 1% relative density under 

loading case S<101> in the cylindrical coordinate system (left is volume model, right is beam model). 

 

Fig. 17 The comparison between the failure function and 3D-FEM results with 1% relative density under 

loading case S<111> in the cylindrical coordinate system (left is volume model, right is beam model). 
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Table 4 The fitted parameters for both volume and beam models under global loading S<100>. 

 1% volume 2% volume 1% beam 2% beam 

À  1.31876 1.50161 1.28806 1.45582 

Á  1.47804 1.78745 1.20596 1.36759 

C 0.04168 0.04517 -0.11779 -0.22710 

D 0.62786 0.63586 0.58384 0.46270 

n 0.42803 0.43919 0.48060 0.46382 

Table 5 The fitted parameters for both volume and beam models under global loading S<101>. 

 1% volume 2% volume 1% beam 2% beam 

À  1.31876 1.50161 1.28806 1.45582 

Á  1.38287 1.62815 1.54042 1.78759 

C 1.07277 1.07536 1.55485 1.60645 

D 0.59551 0.67509 0.01295 0. 01728 

n 0.54745 0.56079 0.51289 0.49984 

Table 6 The fitted parameters for both volume and beam models under global loading S<111>. 

 1% volume 2% volume 1% beam 2% beam 

À  1.31876 1.50161 1.28806 1.45582 

Á  1.28540 1.47641 1.10143 1.26680 

C 0.39350 -0.48071 -0.24363 -0.34227 

D -0.59905 0.62761 0.35806 0.36341 

n 0.53367 0.53336 0.52302 0.48560 

4 Conclusions 

In this paper, at first the maximum principal stress criterion is used to prove that the failure 

limit surface of a Kelvin cell foam is anisotropic. Then, it is proposed that the probabilistic Weibull 

model can be used to describe the global failure limit surface of a foam structure, which is made 

from a brittle material like ceramic. The Weibull stress is a global equivalent stress for the 

heterogeneous local stress distribution. In this paper the calculation of Weibull stress is based on the 

principle of independent action and takes into consideration all three principal stresses. It is 

dependent on the global multi-axial stress state. The failure limit surface is calculated by scaling the 
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global stress state with the Weibull stress. The global stress states as well as the Weibull stress are 

determined using finite element simulations either using continuum or beam elements. With both 

techniques comparable results can be derived. The resulting failure limit surface describes an 

iso-surface where the failure probability is equal to 63%. For the Weibull stress criterion analytical 

functions have been found, consisting of parameters, which are determined by the cross section area 

and the static moment of the struts. In this way the results of present extensive numerical 

computations are made available for other researchers in a simple mathematical form. Analyses 

with beam models suggest that the global loading direction has only a small influence on the shape 

of failure limit surfaces. But simulations with volume models show that the failure limit surface is 

strongly depending on global loading. The reason is that beam models ignore the material overlap 

and the stress concentration at the foam nodes and. In conclusion, beam models can be used to 

describe the failure behavior of foam structure only under simple loading cases but under complex 

loading cases they neglect much important information. Therefore, volume models are more 

appropriate. The failure limit surfaces for the maximum principal stress criterion are more isotropic 

(hexagonal cross section shape) than the failure limit surfaces for the Weibull stress failure criterion, 

where we observe a compression-tension asymmetry which is depicted by the triangular cross 

section shape (especially for the S<101> loading case). Furthermore, the equivalent Weibull stress 

can be used to study the failure behavior of the RVE under different failure probabilities.  
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Highlights 

 

• We introduce Weibull failure surface under 63% failure probability 

• We compare failure surface under Maximum principal stress criterion and Weibull stress 

criterion. 

• We compare the volume model and beam model result to analysis the beam model 

limitation. 

• We fitting the failure surface by Bigoni-Piccolroaz failure criterion 

 

 


