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Highlights

• A stochastic homogenization method is proposed for the prediction of

statistics of effective material properties for textile composites.

• Finite element implementation procedure is given for the computational

multi-scale homogenisation method.

• The statistics of effective elastic properties are obtained using the perturbation-

based method.

• The proposed methodology is validated through numerical study.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Perturbation-based Stochastic Multi-scale

Computational Homogenization Method for Woven

Textile Composites

X.-Y. Zhoua, P. D. Goslinga,∗, C. J. Pearceb, Z. Ullahb, L. Kaczmarczykb

aSchool of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne,
NE1 7RU, UK.

bSchool of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK

Abstract

In this paper, a stochastic homogenization method that couples the state-of-

the-art computational multi-scale homogenization method with the stochas-

tic finite element method, is proposed to predict the statistics of the effective

elastic properties of textile composite materials. Uncertainties associated

with the elastic properties of the constituents are considered. Accurately

modelling the fabric reinforcement plays an important role in the prediction

of the effective elastic properties of textile composites due to their complex

structure. The p-version finite element method is adopted to refine the anal-

ysis. Performance of the proposed method is assessed by comparing the

mean values and coefficients of variation for components of the effective elas-

tic tensor obtained from the present method against corresponding results

calculated by using Monte Carlo simulation method for a plain-weave textile
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composite. Results show that the proposed method has sufficient accuracy to

capture the variability in effective elastic properties of the composite induced

by the variation of the material properties of the constituents.

Keywords: textile composites; effective elastic properties; computational

multi-scale homogenization method; stochastic finite element method.

1. Introduction

Composites are increasingly popular in civil engineering due to their abil-

ity to fulfil demands where conventional materials such as concrete and steel

can not meet engineering requirements, including long term durability or

extreme large clear span/space. Among composites, textile composites are5

preferable due to their low material costs and labour requirements compared

to traditional unidirectional prepreg composites. Understanding the mechan-

ical behaviour of composites is the primary step, and critical in the design

of composite structures. However, several factors, such as fibre yarn and

matrix properties, weaving/braiding architecture, yarn spacing (width) and10

thickness (height), fibre packing density in the yarns, and overall fibre volume

fraction, influence the mechanical performance of fabric composites. Further-

more, it is fundamental that uncertainty quantification forms a key compo-

nent of the structural assessment process. Probabilistic-based methods are

powerful tools in structural design to enable consideration of uncertainties in15

the variability of the mechanical properties.

Homogenization methods have proven to be capable of predicting the

mechanical properties of composites, and to be an efficient alternative to

time consuming and labour intensive experimental methods, particularly for
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complex architectures represented textile fabrics. The most extensively used20

homogenization methods for textile composites are analytical in nature. A

family of methods has been based on the fundamental works of Ishikawa

and Chou (1982) and Chou and Ishikawa (1983) where three 1D analytical

models for 2D woven composites, including ’mosaic’, ’fiber crimp’ and ’bridg-

ing’ models, were developed. Subsequently, these methods were extended by25

Naik (1994) to consider two-dimensional crimp, in which the yarns of the wo-

ven/braided fabrics were divided into slices using parallel planes perpendic-

ular to the fabric plane and along the fibre/yarn direction. To overcome the

limitations of 2D models for estimating through-thickness properties (trans-

verse moduli, E33, G13 and Poisson’s ratio ν13 and ν23), a 3D model was30

proposed by Vandeurzen et al. (1996). In the 1990s and early 2000s, ex-

tensive efforts were devoted to improve the performance of these models in

predicting effective mechanical properties of textile composites (Sankar and

Marrey, 1997; Scida et al., 1999; Ivanov and Tabiei, 2001). A key assumption

of the analytical methods is the iso-strain, iso-stress or mixed iso-strain/iso-35

stress boundary conditions that is used to assemble different material phases

in order to predict the overall material properties. However, one important

limitation of this assumption is the fact that it does not consider the me-

chanical interaction among the different solid phases. It is a well known fact

that the strain field near the interface between different solid phases can be40

complex and may have a crucial impact on the macroscopic response.

More sophisticated asymptotic homogenization methods have been in-

troduced. Gommers et al. (1998) applied the classic Mori-Tanaka method

to predict the effective elastic properties of various types of woven, knitted
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and braided fabric composites. Carvelli and Poggi (2001) and Peng and45

Cao (2002) proposed a dual homogenization method that estimates yarn

properties by microscale to mesoscale homogenization and textile composite

properties by mesoscale to macroscale homogenization. The asymptotic ho-

mogenization approach provides effective overall properties as well as local

stress and strain values. However, considerations are usually restricted to50

very simple microscopic geometries and simple material models, mostly at

small strains.

In the last decade, the computational homogenization has been exten-

sively developed to exploit its performance at predicting the constitutive

properties of heterogeneous materials with arbitrary microscopic geometry55

and constituent behaviours (Michel et al., 1999; Kouznetsova et al., 2001;

Miehe and Koch, 2002; Kaczmarczyk et al., 2008; Perić et al., 2011). The

method has been successfully applied to the estimation of the effective prop-

erties of composites, but applications to textile composites are relatively

scarce (Stig and Hallstrm, 2012; Gager and Pettermann, 2012; Fillep et al.,60

2013).

It is worth mentioning that these well established homogenization schemes

are based on the assumption that the mechanical properties of constituent

materials are deterministic. Arising from various sources such as manufactur-

ing process, assembly, and quality control limits, composite materials exhibit65

uncertainties in their material properties, geometry, and fibre volume frac-

tions, as examples (Sriramula and Chryssanthopoulos, 2009). Taking these

uncertainties into account in designing composite structures, such as through

the use of reliability-based structural design, is essential to ensure that the
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structures perform with sufficient safety during their service. A primary task70

is to determine how these uncertainties affect mechanical behaviour, struc-

tural response, and structural performance. In the present study, we will

consider the influence of uncertainties in the material properties of the com-

posite constituents on the effective macroscopic material properties. The

stochastic finite element method is one of the more widely used methods75

to quantify uncertainty (Matthies, 2007). Kamiński and Kleiber (2000)

proposed a perturbation-based stochastic finite element method (PSFEM)

based homogenization method to undertake the stochastic analysis of com-

posite materials with randomness in Young’s modulus. Sakata et al. (2008b)

extended the perturbation-based method to consider both randomness in80

Young’s modulus and Poisson’s ratio, and Sakata et al. (2008a) considered

the effect of uncertainty in the fibre volume fraction by using an equivalent

inclusion method. To obtain higher order moments, for example skewness

and kurtosis, Kamiński (2007) developed a generalized perturbation-based

stochastic finite element that is able to consider up to 10th order expansion.85

The spectral stochastic finite element method (SSFEM) uses the Karhurn-

Loève expansion to discretize input of known random fields, and a polynomial

chaos expansion to represent the response of unknown random fields such as

displacement in solving standard stochastic elastic problem (Ghanem and

Spanos, 2003). Homogenization theory is combined with the SSFEM to con-90

sider the influence of uncertainties associated with the constituent material

properties on the effective material properties for unidirectional composites

(Tootkaboni and Graham-Brady (2010)) or nonlinear composite materials

(Clément et al., 2013), and geometric uncertainty (Clément et al., 2012).

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In almost all the existing studies, the stochastic finite element based un-95

certainty quantification methods are applied to investigate relatively simple

unidirectional composites with constituents comprising isotropic materials,

whereas corresponding research on woven textile composite is seldom found.

Due to the complex geometry of the fabric and the waviness of the yarn,

the influence of uncertainties in the microscopic material properties on the100

effective elastic properties may differ from those identified in unidirectional

fibre reinforced composites. Furthermore, commonly used reinforcements,

e.g. graphite fibre, are transversely isotropic or orthotropic, requiring 5 or

9 independent material constants, and the composites may comprise more

than two material phases. For instance the warp and weft tows may have105

different material properties. These features introduce a greater number of

random variables, meaning that the PSFEM method may be more efficient

than SSFEM in such cases due to the description of the stochastic function

(Sudret and Der Kiureghian, 2000; Spanos and Kontsos, 2008).

In order to take the variability of material properties in meso-scale con-110

stituents into consideration when predicting the effective elastic properties

of woven textile composite, a stochastic homogenization method is devel-

oped by integrating the stochastic finite element method with a multi-scale

computational homogenization method. The computational homogenization

framework presented in (Michel et al., 1999; Kouznetsova et al., 2001; Perić115

et al., 2011), and the perturbation based stochastic finite element method

presented in (Kleiber and Hien, 1992) and (Kamiński, 2013) are used as the

basis to develop a perturbation based stochastic multi-scale finite element

method (PSMFE). The first step of the method relies on the construction
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of a probabilistic model of the microstructure. We then use the unified120

approach proposed by Kaczmarczyk et al. (2008) to impose the boundary

conditions. Finally, we use the perturbation technique to approximate the

stochastic function via a Taylor series expansion. The proposed approach

is implemented in an in-house finite element modelling software MoFEM

(Kaczmarczyk et. al., 2014). The accuracy and the computational efficiency125

of the developed formulation are demonstrated through numerical studies on

a plain-weave textile composite.

2. Multi-scale computational homogenization theory

The computational homogenization method seeks to determine the macro-

scopic material properties based on the mechanics of the underlying mi-130

crostructure. There are three important assumptions: (i) the characteristic

size of the microstructure is small compared to that of the macrostructure;

(ii) the volume average of the microscopic stress/strain must be equal to the

macroscopic stress/strain; (iii) the volume average of the microscopic strain

power must be equal to the macroscopic strain power (so called Hill-Mandel135

condition). For a textile composite, the computational homogenization can

be realised in five steps: (1) Define the geometry of the Representative Vol-

ume Element (RVE); (2) Discretise the RVE and assignment of material

properties; (3) Apply a given macrostrain to the RVE using appropriate

boundary conditions; (4) Solve RVE boundary value problem; (5) Determine140

the effective macroscopic properties using the volume averaging theorem.

Details of the computational homogenization method for heterogeneous ma-

terials adopted in this work can be found in (Michel et al., 1999; Kouznetsova

8
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et al., 2001; Perić et al., 2011; Kaczmarczyk et al., 2008). In what follows

we briefly present this computational homogenization scheme for determin-145

ing the effective elastic properties of a linear elastic textile composite with

a suitably described RVE structure undergoing small strains following the

notation adopted by Perić et al. (2011).

Let x be the position of a point in the macro-continuum, and an associated

RVE be well defined in geometry. The domain of the RVE, Ωµ, is assumed150

to consist in general of a solid part, Ωs
µ, and a void part Ωv

µ: Ωµ = Ωs
µ ∪ Ωv

µ.

For composites, the solid part consists of constituents of matrix, Ωm
µ , and

of reinforcement Ωr
µ: Ωs

µ =
(
∪ki=1Ωm,i

µ

)
∪
(
∪lj=1Ωr,j

µ

)
with k denoting the

number of different matrices in the composite (usually 1) and l representing

the number of different fibre types (not infrequently 2, with glass and carbon155

combined in the same composite). The multiscale structure is schematically

illustrated in Fig. 1 for textile composite.

2.1. Macro-to-micro transition

For a given macroscopic strain ε̄, the displacement field within the RVE

associated with a point x in the macro-continuum is defined as

uµ(y) = ε̄(x)y + ũµ(y), uµ ∈ Kµ (1)

which is a sum of a linear displacement, ε̄y, and a displacement fluctuation,

ũµ. Kµ is the kinematically admissible displacement filed of the RVE. In the160

following, y denotes the local coordinate of the RVE, and the microscopic

terms are described with subscript µ.

The microscopic strain field within the RVE is the symmetric part of the

spatial gradient of the microscopic displacement field and can be expressed

9
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as

εµ(y) = ∇s
yuµ = ε̄(x) + ε̃µ(y) (2)

where where ∇s
y denotes the symmetric gradient operator with respect to the

microscopic coordinates and the microscopic strain fluctuation field is

ε̃µ = ∇s
yũµ. (3)

Let us assume that the RVE domain Ωµ contains perfectly bonded phases,

the average strain theorem is thus applicable and the volume average of the

microscopic strain yields

ε̄(x) ≡ 1

Vµ

∫

Ωµ

εµ(y)dV = ε̄(x) +
1

Vµ

∫

Ωµ

ε̃µ(y)dV. (4)

where Vµ = ‖Ωµ‖ is the volume of the RVE. The identity Eq.(4) implies that

the estimate of the microscopic strain ε̃µ, or the displacement fluctuation ũµ,

needs to satisfy the constraint

∫

Ωµ

ε̃µ(y)dV =

∫

Ωµ

∇s
yũµ(y)dV = 0. (5)

2.2. Micro-to-macro transition

The principle of virtual work establishes that the RVE is in equilibrium

if, and only if, the variational equation

∫

Ωµ

σµ(y) : ∇s
yηdV −

∫

∂Ωµ

te · ηdA = 0 ∀η ∈ Vµ (6)

holds, where Vµ is an appropriate space of virtual kinematically admissible

displacement field of the RVE, η is virtual displacement field, and te is an165

external traction field exerted on the RVE boundary.

10
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The second assumption, also known as the Hill-Mandel principle, requires

that

σ̄ : ε̄ =
1

Vµ

∫

Ωµ

σµ : εµdV (7)

must hold for any kinematically admissible microscopic strain field, εµ.

Accordingly, the macroscopic stress tensor, σ̄, is taken as the volume

average of the microscopic stress field, σµ, over the RVE:

σ̄(x) ≡ 1

Vµ

∫

Ωµ

σµ(y)dV =
1

Vµ

∫

∂Ωµ

te ⊗ ydA (8)

By combining Eq.(6) with Eq.(7) and taking Eq.(2) and (8) into account,

we can establish that Eq.(7) is equivalent to the following variational equa-

tion: ∫

∂Ωµ

te · ηdA = 0 ∀η ∈ Vµ (9)

As a consequence of Eq.(9), the RVE equilibrium problem is to find, for

a given macroscopic strain ε, a displacement fluctuation ũµ such that

∫

Ωµ

σµ(y) : ∇s
yηdV = 0 ∀η ∈ Vµ (10)

subjected to boundary conditions of Eq.(5) and Eq.(9).

In this work, we consider that the constituents of the composite are linear

elastic materials. Therefore, we have

σµ(y) = Cµ

(
ε̄+∇s

yũµ
)
. (11)

with Cµ denoting the microscale material constitutive law. Under this con-

sideration, the RVE equilibrium problem in Eq.(10) is equivalent to solving

the following linear variational equation for the field ũµ ∈ Vµ under a given

11
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ε,

∫

Ωµ

∇s
yη : Cµ : ∇s

yũµdV = −
[∫

Ωµ

∇s
yη : CµdV

]
: ε̄ ∀η ∈ Vµ (12)

3. Stochastic finite element implementation

3.1. Boundary conditions in matrix form170

The application of appropriate boundary conditions is a key feature in the

solution of the RVE boundary value problem. In general, there are several

ways to apply the boundary constraints, but three of them are commonly

considered in the literature and will be considered in the present study; (1)

linear displacement that assumes the displacement field on the boundary of

the RVE satisfies uµ = ε̄y with ũµ = 0; (2) periodic boundary condition

that assumes the displacement fluctuations on the boundary of RVE are

periodic, ũe+ = ũe− while the tractions are anti-periodic, te+ = −te−; (3)

uniform traction boundary condition that requires the kinematic constraint

on the RVE is minimal and the tractions on the surface of the RVE are

prescribed in terms of the macroscopic stress as te = σ̄ ·n with n the outward

normal at the boundary surface. To impose these three types of boundary

condition, the generalized RVE boundary condition enforcement approach

proposed by Kaczmarczyk et al. (2008) was adopted with extension to 3D

finite element method (FEM) implementation. Accordingly, Eq.(5) is already

satisfied with the choice of linear displacement, periodic displacement and

anti-periodic traction, and the constant traction boundary condition, and

the task is to impose Eq.(9), which is restated in terms of the microscopic

12
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displacement field and the macroscopic strain as

∫

∂Ωµ

te · (uµ − ε̄y) dA = 0 (13)

and written in matrix form as

Pu = Dε̄ = g (14)

where constraint matrix P and global coordinate matrix D are defined by

P =

∫

∂Ω

HNTNdA D =

∫

∂Ω

HNTXdA (15)

where H is a matrix associated with the type of boundary condition consid-

ered (see subsequent definitions), N is the standard shape function matrix

and X is a position matrix evaluated at the integration points on the RVE

boundary ∂Ω

X =
1

2




2x 0 0 y z 0

0 2y 0 x 0 z

0 0 2z 0 x y


 (16)

with x, y and z calculated by using the known nodal coordinates and shape

functions associated with these nodes as



x1 · · · xng

y1 · · · yng

z1 · · · zng


 =




xnd1 xnd2 xnd3

ynd1 ynd2 ynd3

znd1 znd2 znd3







N1 · · · Nng

N1 · · · Nng

N1 · · · Nng


 (17)

where ng are the total number of Gauss points used in each triangular element

on the boundary to perform numerical integration, and xndi , yndi and zndi are

nodal coordinates. The terms N and X in Eq.(14) are fixed for a given RVE

and the nature of the RVE boundary condition is only reflected in the terms

13
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of the H matrix, that assigns an admissible distribution of nodal traction175

forces on the boundary of the RVE.

In the case of linear displacements, the tractions on the boundary are

not subjected to any constraint and H is the identity matrix. Conversely,

for the case of periodic boundary conditions, the tractions should be anti-

periodic and the H matrix on opposite faces will be H+ = −H−. For the

uniform traction boundary condition, the traction contributed by each point

is prescribed as t = σ̄ · n, or in a matrix form,

[ti] =




σxxnx 0 0

0 σyyny 0

0 0 σzznz

σxyny σxynx 0

σxznz 0 σxznx

0 σyznz σzyny




Thus, as an example, H for a linear triangular element on the negative x-face

(n = [nx, ny, nz] = [−1, 0, 0]) is

Hx =




−1 0 0 −1 0 0 −1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 −1 0 0 −1 0 0 −1 0

0 0 −1 0 0 −1 0 0 −1

0 0 0 0 0 0 0 0 0




(18)

The same procedure is applied to obtain the subset of H for other surfaces.
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3.2. Enforcement of the RVE boundary conditions

We now focus on the finite element solution of the RVE boundary value

problem. Following standard notation, the finite element solution to the RVE

boundary value problem converts to a constrained quadratic programming

problem:

min
u

{
1

2
uTKu− uTF

}
subject to Pu−Dε̄ = 0 (19)

where K is the stiffness matrix, F is the load vector, P and D are the

previously defined constraint matrix and coordinate matrix respectively. A

common method to solve this problem is to introduce Lagrange multipliers

λ associated with the constraint. The Lagrangian is thus

L =
1

2
uTKu− uTF + λT (Pu−Dε̄) (20)

for which the Euler conditions for a stationary point are expressed in matrix

form as 
K PT

P 0







u

λ



 =





F

Dε̄



 (21)

which can then be written in a compact form for convenience as

[
K̂
]
{û} =

{
F̂
}
. (22)

Note that, in the absence of body forces, F = 0

3.3. Stochastic finite element formulation180

Now consider randomness in the material properties of the constituents

and define b = {b1, b2, · · · , bn}T as an n-dimensional random vector, that,

in the present case, comprises Young’s modulus, Poisson’s ratio, and shear

15
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modulus. In Eq.(21) or (22), the stiffness matrix K, being a function of the

material properties, is thus a stochastic function. The structural response, in185

terms of displacement u and Lagrange multipliers λ, is a stochastic function

of the material properties.

Using the perturbation technique (Kleiber and Hien, 1992; Kamiński,

2013), an arbitrary stochastic function, ϕ(b), can be approximated via a

second-order Taylor series expansion as:

ϕ(b) = ϕ(b̄) + ε
n∑

i=1

[
Dbiϕ(b̄)

]
δbi + ε2

1

2

n∑

i=1

n∑

j=1

[
Hbibjϕ(b̄)

]
δbiδbj (23)

where b̄ is the mean value of the random vector b, δbi denotes the variation

around mean value of the ith random variable, [Dbi(ϕ)] and
[
Hbibj(ϕ)

]
denote

the first- and second-order partial derivatives of (·) with respect to bi, and ε190

is a scalar representing a given small perturbation.

By extending the stochastic functions F̂ and û in Eq.(22) to the forms of

Eq.(23), substituting into Eq.(22), and equating terms of equal orders of ε,

we arrive at the following zeroth-, first- and second-order equations:

• The zeroth-order [
K̂
]
{û} =

{
F̂
}

(24)

• The first-oder
n∑

p=1

{[
K̂
] {
Dbpû

}
+
[
DbpK̂

]
{û}

}
= 0 (25)

• The second-order
n∑

p=1

n∑

q=1

{[
K̂
] {
Hbpbq û

}
+
[
DbpK̂

] {
Dbpû

}
+
[
HbpbqK̂

]
{û}

}
= 0

(26)
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In the present study, we consider material properties as random variables.

The block related to stiffness matrix, [K], of the microstructure in the com-

pact matrix,
[
K̂
]
, is function of material properties. It can be expressed

as

K =

∫

Ωsµ

BTCµBdV, (27)

and its first- and second-order partial derivatives are

[
DbpK

]
=

∫

Ωsµ

BT
[
DbpCµ

]
BdV, and

[
HbpbqK

]
=

∫

Ωsµ

BT
[
HbpbqCµ

]
BdV.

(28)

where B is the strain-displacement matrix, and DbpCµ and HbpbqCµ are the

first- and second-order partial derivatives of the material constitutive ma-

trix. Hence, the expression of
[
K̂
]

and its first- and second-order partial

derivatives can be written as:

[
K̂
]

=


K PT

P 0


 ,

[
DbpK̂

]
=


DbpK 0

0 0


 , and

[
HbpbqK̂

]
=


HbpbqK 0

0 0


 .

(29)

Computing Eqs.(24 - 26) successively, the zeroth order compact displace-195

ment vector {û} can be derived from Eq.(24). With this at hand, the first

order partial derivative of the compact displacement vector {û} with respect

to the material properties b, i.e.
{
Dbpû

}
, is determined from Eq.(25). Note

that Eq.(25) is solved for each component of
{
Dbpû

}
independently. Fi-

nally, Eq.(26) is solved to determine the second order partial derivative of200

the compact displacement vector
{
Hbpbq û

}
, once again solving for each term

independently.
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3.4. Fibre yarn/tow direction computation through potential flow theory

To assemble the global stiffness matrix K, the complex structure of fabric

reinforcement of the textile composite causes some difficulty to introduce

its contribution when transforming from the material principal coordinate

system to the global coordinate system. Commonly, the yarn directions

can be calculated from the yarn path, which is normally known to establish

geometry modelling. However, it is not robust enough to use for deformed

yarns with varying cross-sections. In MoFEM (Kaczmarczyk et. al., 2014),

an automated approach based on potential flow theory is used to identify the

yarn direction. The principle is to treat each yarn as a invicid, incompressible

and irrotational flow with the same the boundary surface as the yarn. In fluid

dynamics, the flow can be described by a velocity potential function, φ. The

velocity field of the flow is the gradient of φ with components in Cartesian

coordinate expressed as:

vx =
∂φ

∂x
, vy =

∂φ

∂y
, and vz =

∂φ

∂z
(30)

For incompressible flow, the velocity potential function satisfies Laplace’s

function, substituting in the relationship between potential and velocity we

arrive at,

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (31)

Solving Eq.(31) determine the velocity of the flow that represents the yarn

direction for our case. To transform the material response between local yarn

direction and global axes, the axis of rotation is expressed as J = v × ei,

where ei is the unit vector representing the global x-, y- or z-axis, and the
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angle of rotation is calculated by

Θ(θ, ψ, ϕ) = cos−1

(
vei
‖ v ‖

)
i = 1, 2, 3. (32)

With the rotation angle Θ and axis of rotation J at hand, the rotation ma-

trix R, which relates original coordinate system to transformed coordinate205

x
′

= Tx (see Fig.2), can be obtained according the orthogonal transforma-

tion criteria (Filleppa and Haugen, 2005). Then the stress tensor transforma-

tion matrix Tσ and strain tensor transformation matrix Tε can be established

by the relationship between original coordinate system and transformed coor-

dinate system, and therefore the transformed stiffness matrix transformation210

matrix,Ĉ, can be calculated Ĉ = TσCT−1
ε (Slawinski, 2010).

4. Statistics of the effective elasticity tensor

The objective of a homogenization procedure is to determine the effec-

tive elastic moduli, C̄. In the computational homogenization approach no

explicit form of the constitutive behaviour on the the macrolevel is assumed215

a priori, so that the tangent modulus has to be determined numerically by

the relations between the macroscopic stress, σ̄, and the macroscopic strain,

ε̄.

Given that the solutions from Eq. (21) or (22) for u and λ satisfies the

equilibrium, the work done by the tractions on the displacements is equal to

the work of the generalized tractions on the generalized displacements:

uT t = (Dε̄)T λ (33)

With reference to Eq. (8), the macrostress vector can be expressed in terms
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of the Lagrange multipliers λ and matrix D:

σ̄ =
1

Vµ
DTλ (34)

Straightforwardly, the effective moduli can be computed in its discretised

form, using previous averaged stress expression Eq. (34), in the following

way:

C̄ =
σ̄

ε̄
=

1

Vµ

DTλ

ε̄
(35)

In practice, it follows from the above equation that the effective material

stiffness, C̄, can be determined efficiently by first factorising K̂ and then220

solving Eq.(22) six times for every strain mode, with ε̄ a unit vector.

4.1. Stochastic expression of effective elastic moduli

Since the micro-structure displacement u is function of material proper-

ties, and the effective elastic tensor, C̄, is thus a stochastic function when

considering material properties as random variables. It can be approximated

by the perturbation technique using a second-order Taylor series expansion,

as,

[
C̄(b)

]
=
[
C̄(b̄)

]
+ε

n∑

r

[
DbrC̄(b̄)

]
δbr+ε

2 1

2

n∑

r

n∑

s

[
HbrbsC̄(b̄)

]
δbrδbs (36)

where the first- and second-order partial derivative terms
[
DbrC̄(b̄)

]
and

[
HbrbsC̄(b̄)

]
can be calculated by using Eqs.(25, 26, 35).
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4.2. Mean and covariance225

Given the approximation for C̄(b) in Eq.(36), the mean value of the

elasticity moduli is expressed as

E
[
C̄(b)

]
=

∫ +∞

−∞
C̄(b)g(b)db (37)

=

∫ +∞

−∞

{
[
C̄(b̄)

]
+ ε
∑

r

[
DbrC̄(b̄)

]
δbr

+ε2
1

2

∑

r

∑

s

[
HbrbsC̄(b̄)

]
δbrδbs

}
g(b)db

where g(b) is the probability distribution function, that is assumed in this

paper to be Gaussian. Furthermore, the covariance is expressed as

Cov
([
C̄(b)

]
r
,
[
C̄(b)

]
s

)
=

∫ +∞

−∞

{[
C̄(b)

]
r
− E

[
C̄(b)

]}
(38)

×
{[
C̄(b)

]
s
− E

[
C̄(b)

]}
g(b)db

Observing the following
∫ +∞

−∞
g(b)db = 1,

∫ +∞

−∞
δbg(b)db = 0, and

∫ +∞

−∞
δbrδbsg(b)db = COV(br, bs)

(39)

the second-order approximation of the mean value and covariance for the

reduced stiffness matrix is thus calculated as:

E
[
C̄(b)

]
=
[
C̄(b̄)

]
+

1

2

n∑

r

n∑

s

[
HbrbsC̄(b̄)

]
· COV(br, bs), (40)

and

COV
([
C̄(b)

]
r
, [C(b)]s

)
≈

n∑

r

n∑

s

[
DbrC̄(b̄)

] [
DbsC̄(b̄)

]
· COV(br, bs) (41)

+
1

4

n∑

r

n∑

s

n∑

t

n∑

w

[
HbrbsC̄(b̄)

] [
HbtbwC̄(b̄)

]
E [brbsbtbw] .
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5. Numerical example

The analysis of two plain weave textile composites is used to demon-

strate the method described in the preceding sections. The effective elastic

properties and their statistics are predicted. The accuracy of the proposed

method is evaluated by comparing the statistics of effective elastic properties230

against corresponding values obtained using a Monte Carlo simulation (MCS)

method. Relations between the variations of input variables and statistics

of the effective elastic properties are also investigated in terms of sensitivity

analyses.

5.1. Geometric modelling and meshing of RVE microstructure235

Two RVE microstructures with plain weave fabric reinforcement (Barbero

et al., 2005) and (Scida et al., 1999) are selected to evaluate the applicabil-

ity of computational homogenization scheme for textile composites, com-

paring with experimental and/or existing model results. These two models

are named the Barbero model and the Scida model here after. The Barbero240

model is based on photomicrograph measurements of geometrical parameters

and the Mori-Tanaka asymptotic homogenization method has been applied

to predict the effective elastic parameters (Barbero et al., 2005). The geomet-

rical parameters of the Scida model was also obtained by photomicrography,

and experiments were conducted to obtain the longitudinal and transversal245

Young’s moduli and the in-plane Poisson’s ratio. An analytical model was

developed, based on classic thin laminate theory, to estimate the effective

elastic properties (Scida et al., 1999). Both models are characterized by the

same idealized periodic microstructure model proposed by Barbero et al.
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(2005), with the yarns’ cross-sections and the path of the yarns taking the250

form of the sinusoidal functions F (x, y) = A(x) · sin(B(x) · y+C(x)) +D(x)

and F (x, y) = A(y) · sin(B(y) · x + C(y)) + D(y), with coefficients A, B,

C and D determined from the geometric parameters. The geometry of the

plain weave composite is shown in Fig. 3 and comprises four interlaced fibre

yarns. It is described through the periodic length of warp and weft yarns, 4a1255

and 4a2, respectively, waviness amplitude 2a3, and spacing between adjacent

warp or weft yarns, ag1 and ag2. Therefore, the dimension of the RVE is

4a1 × 4a2 × 2a3. These parameters are illustrated in Fig. 3 and their values

are listed in Table 1. The RVE consists of an isotropic epoxy matrix and car-

bon fibre yarns that are assumed to be transversely isotropic material. The260

warp and weft yarns are made of identical material. Although the volume of

the yarn is not entirely occupied by fibres due to the flow of epoxy through

the fibrous preform during infusion, the yarn is considered as a solid volume

in this work in order to focus our attention on material properties. A total of

seven independent material parameters are used to describe the matrix and265

yarn and their values are presented in Table 2.

With geometrical parameters and the mathematical formulation for the

idealized periodic microstructure model available, the 3D geometric models of

Barbero model and Scida model are created using CUBIT, which is a software

toolkit for two- and three-dimensional finite element meshes and geometry270

preparation developed by Sandia National Laboratories in the United States

of America. The cross-section curves and the yarn path curves describing

the warp and weft yarns are constructed with the sinusoidal function model

proposed by Barbero et al. (2005) and geometric parameters listed in Table
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1. A solid volume can be created by sweeping the cross section surfaces along275

the path curves. Hence, four interlaced yarn volumes are generated with two

of them for warp and the other two for weft. Although the mathematical

model provides a perfect common surface between interlaced warp and weft

yarns, overlapping has been found that is unrealistic and results in meshing

errors. To avoid the overlapping problem, a small gap is introduced between280

weft and warp yarns by slightly increasing the waviness amplitude a3 for

yarn path curves but keeping the a3 unchanged when creating cross section

curves.

The generated 3D geometric models are then discretized using 4 node

tetrahedral elements and the mesh operation in CUBIT. Given the need285

for periodic boundary conditions for the computational homogenization, the

resulting mesh should be perfectly symmetrical between opposite boundary

surfaces. For instance, the meshes on the +x surface should match with

those on the −x surface. Hence, the positive boundary surfaces, +x, +y

and +z are meshed first with triangular element and then the meshes are290

copied to the corresponding negative boundary surfaces −x, −y and −z. The

RVE is then finally meshed into tetrahedral elements based on these meshed

surfaces. The RVE of the Barbero model has been discretized into 12148

four-node tetrahedral elements consisting of 5346 elements for the yarns and

6802 elements for the matrix, with a total of 2454 nodes, while the RVE of295

Scida model has been discretized into 20053 tetrahedral elements with 8101

of them for the yarns and 11952 for matrix.
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5.2. Application of the computational homogenization for woven textile com-

posites

The meshed models of the RVEs are imported into the MoFEM finite300

element programme. As previously noted, the wavy yarns leads difficulty

to introduce their contributions to assemble global stiffness matrix when

transforming from the material principal coordinate system to the global co-

ordinate system, especially for transisotropic materials such as carbon fibre,

and the potential flow theory approach is adopted in the present study to au-305

tomatically identify yarn directions. A potential flow calculation is thus run

first for the fabric reinforcement. Constant pressure is applied to each yarns

as shown in Fig. 4a, and the flow velocity can be calculated from Eq.(31).

Using these calculated flow velocities (see Fig. 4b), the yarn directions can

be calculated from Eq.(32). With the obtained direction of yarn elements,310

RVE homogenization calculation is ready to be conducted on MoFEM.

Before considering stochastic analysis, first the applicability of the compu-

tational homogenization method for textile composite is demonstrated. Two

verification studies are performed. The first study is designed to demonstrate

that the proposed method can capture the waviness feature of textile com-315

posite by comparing results for an RVE reinforced by crimp yarns with those

for an RVE reinforced by straight yarns. Three patterns of reinforcement are

considered from single yarn to four interlaced yarns, see Fig. 5. Results are

listed in Table 3 for an RVE under periodic displacement and anti-periodic

traction boundary conditions. The effective engineering properties are re-320

covered from the computationed homogenization method estimated effective

moduli in Eq. (35) by using the equations listed in Appendix A. By ob-

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

serving the results of the estimated C̄, the textile composite is treated as

an orthotropic material. For the single yarn case, the longitudinal modulus,

Ex, significantly decreases from 24.64 GPa for a straight yarn to 15.35 GPa325

for a crimped yarn due to the waviness of the yarn. The other terms are

almost unchanged. For crossed yarns, the transverse modulus has a signif-

icant increase for both the straight and crimp yarns, while the other terms

have slight increase. As expected, the stiffness for the crimp yarn structure

is smaller than for straight yarns. For the interlaced yarn case, the effective330

material properties have significantly increase again with the contribution

from additional two yarns comparing with the cross case.

In the second verification study, the effective engineering parameters pre-

dicted by the adopted computational homogenization method are compared

with experimental and/or numerical results. The results are listed in Table335

4. The reference numerical results for both models are taken from (Barbero

et al., 2005), where both models have been analysed using the Mori-Tanaka

asymptotic homogenization method. For the Scida model, the experimental

results reported are from (Scida et al., 1999). For the computational homoge-

nization, the results for the three boundary conditions of linear displacement340

(Disp.), periodic (Per.), and constant traction (Trac.) are given in the table.

From these results it can be seen that the model predicts moduli values that

are within or very near the published standard deviation.

5.3. Accuracy of the proposed method for uncertainty quantification

To demonstrate the accuracy of the present perturbation-based stochas-345

tic multi-scale computational homogenization method, a comparison between

the present approach and MCS with 5000 samples has been performed. The
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results for the RVE of the Barbero model are also given in details for il-

lustration purposes. Uncertainties in the seven material properties of the

composite material were considered separately with coefficient of variation350

(CV) of 0.1 for each and mean values as listed in Table 2, and the material

properties are considered to follow Normal distributions. Results are given

in Fig. 6 and Table 5 for the mean value from Eq.(40) and Fig. 7 and Table

6 for the coefficient of variation from Eq.(41). Since the influence of vari-

ation of material properties on the mean value will be relatively small (see355

Eq.(40)), we only show a comparison between the proposed method and MCS

for variation in the yarn longitudinal Young’s modulus. From these results,

it can be seen that the mean values estimated by the proposed approach are

in close agreement with those obtained from MCS with relative percentage

differences (RPD) of less than 1%. In general, these figures indicate that CV360

of each component of the effective elastic tensor are accurately estimated by

the proposed method. The variation due to the randomness of Ez, νp, νz, Gz

and Em are well captured.

Nevertheless, it is worth noting that the variability in the components

of effective elastic properties, C12, C13, C22, C23 and C33, arising from the365

uncertainty of νm are not well predicted as shown in Table 6. A further study

was conducted to explore the potential reasons for this by varying the CV of

νm from 0.025 to 0.15. The estimated CV of the effective elastic properties

from the proposed method have been compared with corresponding results

obtained by MCS with 5000 samples in terms of RPD. In general, the RPD370

becomes larger with increases of CV for νm as shown in Fig. 8. The RPDs

for C44, C55 and C66 may be considered as acceptable, as less than 5%. For
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the remaining terms, C11, C12, C13, C22, C23 and C33, the CV of νm must be

less than 0.05 to keep the RPD less than 5%. The RPDs are around 30%

when νm has CoV of 0.15. From a theoretical viewpoint, the effective elastic375

properties are nonlinear functions of νm. For instance, C11 has contribution

from the isotropic material phase Em(1−νm)
(1+νm)(1−2νm)

, whereas the second-order

Taylor series expansion to approximate the stochastic function has a slower

rates of convergence compared with the original function, especially when the

variation is large. When the νm is close to 0.5, it results in division by zero380

problem in Em(1−νm)
(1+νm)(1−2νm)

. For instance, 2, 16, 66 and 149 random numbers in

the 5000 samples for CV of 0.075, 0.1, 0.125 and 0.15 cases are greater than

0.45.

5.4. Sensitivity analysis

Another important issue in uncertainty analysis is to understand how the385

variation in the elastic properties of constituents affect the statistical features

of the effective elastic properties. This can be addressed by conducting a

sensitivity analysis, which is a by-product of the proposed PSMFE method.

Fig. 9 shows how the CV for the material properties of the constituents

influence the CV for different components of the effective elastic tensor when390

using the three different boundary conditions. The CVs of the material

properties are assumed to be 0.1 to ensure the estimates of the CVs for the

effective elastic properties are satisfactorily predicted as demonstrated in the

previous section. The response of the effective elastic properties varies with

different material properties. From Fig. 9 some observations can be drawn:395

(1) Under different boundary conditions, the key features of the variation

for the effective elastic properties are similar; (2) The variation of C11 and
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C22 is most sensitive to the variation of Ez; (3) The variation of C12, C13

and C23 are correlated with almost all material properties except for Gz, and

they are significantly dependent on the variation of the material properties400

of the matrix; (4) The variations of Em and νm of the matrix have significant

influence on the variation of C33; (5) The variation of components C55 and

C66 mainly depend on the variation of Em. Variation of Gz is the main source

of uncertainty for C66.

5.5. P-refinement of the RVE finite element mesh405

P-refinement of the RVE finite element mesh is achieved by using the

strategy proposed by Ainsworth and Coyle (2003) for tetrahedral elements

with hierarchic approximations. As shown in Fig. 10, a tetrahedral element

can be described by 4 vertices (vi, i = 1, · · · , 4), 6 edges (ej, j = 1, · · · , 6),

4 triangular faces (fk, k = 1, · · · , 4) and an interior tetrahedral body. The410

degrees of freedom for each sub-element depend on the order of polynomial

function of the shape function as given in Fig. 10. The total degrees of

freedom is then obtained from the sum of the subelements. Thus, it is possible

to increase the level of approximation without changing the original finite

element mesh. To illustrate the efficacy of p-refinement, a coarse mesh with415

6747 elements and a fine mesh with 12093 elements are considered with

polynomial orders of approximation p = 1, 2, 3 was carried out. Results of

the statistics of the effective elastic properties for the two meshes are shown

in Fig. 11. We can observe that the mean value (see Fig. 11a) significantly

changes when increasing polynomial degree from p = 1 to p = 2, especially420

for the coarse mesh. As expected, the mean value tends to converge to a ”true

value” with increasing polynomial order, which can be observed from Figs.
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11a and 11b, with the polynomial order increasing from p = 2 to p = 3.

6. Conclusions

In this paper, a probabilistic homogenization method is proposed for the425

prediction of the effective elastic properties of textile composites when taking

randomness of the elastic properties of the constituents into consideration.

A state-of-the-art computational homogenization scheme, which introduces

a hierarchy of boundary conditions at the microscale and allows for direct

treatment of micro-to-macro transitions, is adopted as the basis to develop430

the probabilistic homogenization method. Accurate modelling the fabric re-

inforcement plays an important rule in the prediction of the effective elastic

properties of textile composites due to their complex structure. The p-version

of the finite element method is adopted in the present study to refine the

analysis. The second-order perturbation method is adopted to estimate the435

statistics of the components of the effective elastic tensor with the random-

ness arising from the material properties at mesoscale. Numerical studies

have been conducted to demonstrate the capability of the proposed method

in capturing variability in effective elastic properties for composites induced

by randomness of the constituents’ material properties. Plain-weave textile440

composites consisting of epoxy matrix and carbon fibre yarn have been con-

sidered. A comparison with Monte Carlo simulation shows that the proposed

probabilistic homogenization method could provide a reasonable prediction

for the statistics of the effective material properties.
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Kamiński, M., 2007. Generalized perturbation-based stochastic finite element

method in elastostatics. Computers & Structures 85 (10), 586–594.495
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Table 1: Geometrical parameters of the woven textile RVE, unit: µm

Term Symbol Barbero Scida

Warp direction a1 920 600

Warp yarn spacing ag1 170 20

Weft direction a2 920 600

Weft yarn spacing ag2 170 20

Waviness amplitude a3 250 50

RVE length l 3680 2400

RVE width w 3680 2400

RVE thickness h 500 100

Table 2: Material properties of carbon fibre yarn and epoxy matrix, (moduli in GPa)

Fibre yarn Matrix

Property Barbero Scida Property Barbero Scida

Axial modulus Ez 160.755 58.397 Modulus Em 3.4 3.4

Transverse modulus Ep 19.489 20.865 Poisson’s ratio νm 0.35 0.35

Axial Poisson’s ratio νz 0.28 0.241

Transverse Poisson’s ratio νp 0.415 0.386

Axial shear modulus Gz 7.393 8.465
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Table 3: Comparison of the predicted effective elastic properties for composites with

straight and crimp yarn (moduli in GPa)

EEP
Single Cross Interlace

Straight Crimp Straight Crimp Straight Crimp

Ex 24.64 15.35 26.85 19.59 50.02 32.17

Ey 5.06 5.04 26.81 19.69 50.02 32.16

Ez 4.67 4.57 6.90 6.53 9.64 9.21

Gyz 1.43 1.44 2.09 2.13 2.60 2.69

Gxz 1.47 1.52 2.08 2.10 2.60 2.69

Gxy 1.67 1.67 2.79 2.78 3.92 4.02

νyz 0.47 0.45 0.446 0.465 0.426 0.426

νxz 0.344 0.397 0.446 0.465 0.426 0.426

νxy 0.332 0.298 0.085 0.100 0.064 0.108
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Table 4: Comparison of predicted and reference effective elastic properties (moduli in

GPa)

EEP

Barbero model Scida model

Barbero
Comp. homo.

Measured Barbero
Comp. homo.

Disp. Per. Trac. Disp. Per. Trac.

Ex 41.106 37.028 32.560 21.051 24.8 ±1.1 24.900 23.060 22.807 20.204

Ey 41.107 37.013 32.565 21.111 24.8 ±1.1 24.900 23.060 22.807 20.210

Ez 9.807 9.725 9.304 7.828 8.5 ±2.6 10.400 9.263 9.002 8.176

Gyz 3.077 3.119 2.720 2.435 4.2 ±0.7 2.910 2.750 2.500 2.351

Gxz 3.077 3.116 2.720 2.436 4.2 ±0.7 2.910 2.750 2.500 2.351

Gxy 3.574 4.417 4.066 3.899 6.5 ±0.8 4.380 5.149 4.784 4.711

νyz 0.437 0.448 0.426 0.454 0.28±0.07 0.345 0.377 0.373 0.391

νxz 0.437 0.449 0.426 0.454 0.28±0.07 0.345 0.377 0.373 0.391

νxy 0.059 0.077 0.107 0.129 0.1 ±0.01 0.130 0.144 0.144 0.160

Table 5: Relative percentage difference on mean value between the proposed method and

MCS for different material properties (%)

C11 C12 C13 C22 C23 C33 C44 C55 C66

Em -0.0374 -0.0586 -0.1161 -0.0373 -0.1160 -0.1098 -0.0396 -0.1137 -0.1157

νm 0.0638 0.3496 0.4754 0.0641 0.4751 0.2689 0.0117 0.0359 0.0359

νp -0.0124 -0.0567 -0.0632 -0.0124 -0.0632 -0.0192 0.0011 0.0055 0.0055

νz -0.0125 -0.0685 -0.0322 -0.0125 -0.0322 -0.0027 -8.27e-5 -2.04e-4 -2.07e-4

Ep -0.0290 0.0048 -0.0270 -0.0290 -0.0270 -0.0558 -0.0053 -0.0300 -0.0300

Ez -0.0901 -0.0885 -0.0386 -0.0902 -0.0385 -0.0023 -6.53e-4 -0.0075 -0.0075

Gz -0.0344 -0.0445 0.0041 -0.0344 0.0041 -0.0011 -0.1166 -0.0199 -0.0198
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Table 6: Relative percentage difference on CV between the proposed method and MCS

for different material properties (%)

C11 C12 C13 C22 C23 C33 C44 C55 C66

Em 1.4722 1.1155 1.3365 1.4700 1.3364 1.3802 1.4696 1.3529 1.3520

νm 24.6721 22.0496 21.7768 24.7736 21.7868 21.3662 -0.3313 -0.8463 -0.8569

νp 1.6609 1.5563 1.6135 1.6645 1.6147 1.7624 0.9049 1.0152 1.0136

νz 1.2531 1.2417 1.2118 1.2530 1.2118 1.2541 1.3176 0.8308 0.8283

Ep 1.1047 1.1006 2.1484 1.1049 2.1420 1.8045 2.2628 2.2603 2.2602

Ez 1.4243 1.2469 1.4080 1.4243 1.4064 1.4918 1.6464 1.4728 1.4504

Gz 1.5052 1.0548 1.6399 1.5052 1.6386 1.9713 1.2579 1.9432 1.9420
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Figure 3: Geometry of the RVE and the finite element mesh of the reinforcement
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(a) Applying constant pressure to each yarn

(b) Potential flow

Figure 4: Fibre direction - calculated through potential flow theory
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(a) Single - straight (b) Cross - straight (c) Interlace - straight

(d) Single - crimp (e) Cross - crimp (f) Interlace - crimp

Figure 5: Architecture of reinforcement
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Figure 6: Estimated mean values of components of effective elastic tensor under Ez vari-

ation
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Figure 7: Comparisons between MCS and PSMFE on the estimates of CVs of components

of effective elastic tensor due to variation in material properties
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Appendix A. Engineering constants

The stress-strain relations in xyz coordinate system are




εx

εy

εz

εxy

εxz

εyz





= S̄





σx

σy

σz

σxy

σxz

σyz





(A.1)

where S̄ is the effective compliance matrix, which is the inverse of the effective585

elastic matrix, C̄, in Eq. (35).

Under uniaxial loading, σx, Eq. (A.1) can be written as

εx = S̄11σx

εy = S̄12σx

εz = S̄13σx

The effective Young’s modulus in x-direction is

Ex ≡
σx
εx

=
1

S̄11

(A.2)

The effective Poisson’s ratio, νxy and νxz, are

νxy ≡ −
εy
εx

= − S̄12

S̄11

νxz ≡ −
εz
εx

= − S̄13

S̄11

Similarly, other effective engineering properties can be derived by apply-

ing uniaxial loading in the y and z directions, respectively, and pure shear
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on the various coordinate planes. The results are summarized as follows:

Ey =
1

S̄22

νyx = − S̄12

S̄22

νyz = − S̄23

S̄22

Ez =
1

S̄33

νzx = − S̄13

S̄33

νzy = − S̄23

S̄33

Gxy =
1

S̄44

Gxz =
1

S̄55

Gyz =
1

S̄66

(A.3)
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