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This paper presents a theoretical method to investigate the multiple scattering of electro-
elastic waves and the dynamic stress around a buried cavity in a functionally graded
piezoelectric material layer bonded to a homogeneous piezoelectric material. The analyti-
cal solutions of wave fields are expressed by employing wave function expansion method,
and the expanded mode coefficients are determined by satisfying the boundary conditions
around the cavity. The image method is used to satisfy the mechanical and electrically
short conditions at the free surface of the structure. According to the analytical expression
of this problem, the numerical solutions of the dynamic stress concentration factor around
the cavity are presented. The effects of the piezoelectric property, the position of the cavity
in the layer, the incident wave number and the material properties on the dynamic stress
around the cavity are analyzed. Analyses show that the piezoelectric property has great
effect on the dynamic stress in the region of higher frequencies, and the effect increases
with the decrease of the thickness of FGPM layer. If the material properties of the homoge-
neous piezoelectric material are greater than those at the surface of the structure, the
dynamic stress resulting from the piezoelectric property is greater. The effect material
properties at the two boundaries of FGPM layer on the distribution of dynamic stress
around the cavity is also examined.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded piezoelectric materials (FGPMs) are the new generation of composites and important area of mate-
rials science research. In recent years, FGPMs are widely applied in smart materials and structures, so the theoretical inves-
tigation on FGPMs has received considerable attention in the literatures. The study of elastic wave propagation through
FGPMs has many important applications. Through analysis, we can predict the response of composite materials to various
types of loading, and obtain the high strength and toughness of materials. The problem is also a theoretical background
of the non-destructive analysis of FGPM microstructures by using ultrasonic technique.

During the serving of composite structures, many failures induced by various loading have been found in these materials.
The discontinuities, such as holes, cracks and inclusions in composite structures, are the major reason for these failures. If the
discontinuities exist in composite structures, it is definitely vital to determine them and analyze their effects. With the ad-
vent of FGPMs, the fracture mechanics under various loading conditions in piezoelectric materials has received much atten-
tion in recent years. In the past decade, considerable amounts of analytical, numerical and experimental work about the
stress in piezoelectric materials have been done to improve the reliability of structures.
. All rights reserved.
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Up to present time, analyses about the stress problem in FGPMs mainly focus on the behavior under the static loading.
Soh et al. (2000) analyzed the behavior of a bi-piezoelectric ceramic layer with a central interfacial crack subjected to anti-
plane shear and in-plane electric loading. Using integral transform method, Wang and Noda (2001) discussed the fracture
behavior of a cracked smart actuator made of piezoelectric materials with functionally grade material properties. By means
of singular integral equation technique, Wang (2003) investigated the mode III crack problem in FGPMs, and both a single
crack and a series of collinear cracks were considered. Li and Weng (2002) studied the problem of a finite crack in a strip of
FGPMs under an anti-plane mechanical loading and in-plane electric loading. The non-local theory was also applied to obtain
the behavior of two collinear cracks in FGPMs under anti-plane shear loading for permeable electric boundary conditions
(Zhou and Wu, 2006). By making using of the Gauss–Chebyshev integration technique, Chue and Ou (2005) investigated
the singular electromechanical field near the crack tips of an internal crack in FGPMs.

Due to the increasing demand of an understanding of dynamic processes in piezoelectric composites, it is highly desirable
to study the stress in FGPMs in a fully dynamic framework. However, considering the complexity of wave scattering resulting
from the non-homogeneous property of FGPMs and the complexity of multiple scattering from the scatterer and the bound-
ary, relatively little work has been done regarding on the wave propagation in FGPMs. Recently, Chen et al. (2003) have con-
sidered the electromechanical impact response of FGPMs with a crack using integral transform technique. Ma et al. (2004)
have investigated the stress and electric displacement intensity factors of two collinear cracks subjected to anti-plane shear
waves in FGPMs. Most recently, Fang et al. (2007) studied the dynamic stress from a circular cavity buried in a semi-infinite
functionally graded piezoelectric material, and both the displacement field and the piezoelectric field were considered. To
the author’s knowledge, the multiple scattering of electro-elastic waves and dynamic stress around a cavity in a functionally
graded piezoelectric material layer are still unavailable in the literatures.

The objective of this paper is to investigate the analytical solutions of the electro-elastic field and dynamic stress around a
cavity embedded in a functionally graded piezoelectric material layer bonded to a homogeneous piezoelectric material. The
incidence of anti-plane shear waves at the surface of the structure is applied, and both the displacement field and piezoelec-
tric field in functionally graded piezoelectric materials are presented. The mechanical and electrically short conditions at the
free surface are considered, and the image method is used to satisfy the free boundary conditions of the structure. The wave
fields and electric potentials are expanded by using wave function expansion method (Pao and Mow, 1973). The expanded
mode coefficients are determined by satisfying the boundary conditions around the cavity. Addition theorem for Bessel func-
tions is used to accomplish the translation between different coordinate systems. The analytical solution of the dynamic
stress concentration factor around the cavity is presented, and the numerical solutions are graphically illustrated. The effects
of the piezoelectric property, the incident wave number and the position of the cavity in the FGPM layer on the dynamic
stress concentration factors around the cavity are also analyzed.

2. Wave motion equations in FGPMs and their solutions

Consider a FGPM layer bonded to a homogeneous piezoelectric material, as depicted in Fig. 1. The mechanical and elec-
trically short conditions at the free surface are considered. c1

44; e
1
15; e

1
11;q1 are the elastic stiffness, piezoelectric constant,

dielectric constant and density of materials at the surface of FGPM layer, and c2
44; e

2
15; e

2
11;q2 those of the homogeneous pie-

zoelectric material. The material properties in the FGPM layer vary smoothly along the x-direction. Let a circular cavity lie in
the functionally graded piezoelectric material layer. The distance between the center of the cavity and the upper edge of the
layer is h1, and that between the center of the cavity and the lower edge of the FGPM layer is h2.
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Fig. 1. Schematic of the buried cavity and the incident elastic waves in a functionally graded piezoelectric material layer.
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All materials exhibit transversely isotropic behavior and are polarized in the z-direction. Let an anti-plane shear wave
with frequency x hit the surface of the FGPM layer in the positive x-direction. In this case, the mechanically and electrically
coupled constitutive equations can be written as
rzx ¼ c44ðxÞ
ou
ox
þ e15ðxÞ

o/
ox
; rzy ¼ c44ðxÞ

ou
oy
þ e15ðxÞ

o/
oy
; ð1Þ

Dx ¼ e15ðxÞ
ou
ox
� e11ðxÞ

o/
ox
; Dy ¼ e15ðxÞ

ou
oy
� e11ðxÞ

o/
oy
; ð2Þ
where rzj, u, Dj and /(j = x,y) are the shear stress, anti-plane displacement, in-plane electric displacement and electric po-
tential, respectively; c44(x) is the elastic stiffness of graded materials measured in a constant electric field, e11(x) is the dielec-
tric constant of graded materials measured in constant strain and e15(x) is the piezoelectric constant of graded materials.

The anti-plane governing equation and Maxwell’s equation in FGPMs are described as
orzx

ox
þ orzy

oy
¼ qðxÞ o

2u
ot2 ; ð3Þ

oDx

ox
þ oDy

oy
¼ 0; ð4Þ
Substituting Eqs. (1) and (2) into Eqs. (3) and (4), the following equations can be obtained:
oc44ðxÞ
ox

ou
ox
þ c44ðxÞ

o2u
ox2 þ

oe15ðxÞ
ox

o/
ox
þ e15ðxÞ

o2/
ox2 þ c44ðxÞ

o2u
oy2 þ e15ðxÞ

o2/
oy2 ¼ qðxÞ o

2u
ot2 ; ð5Þ

oe15ðxÞ
ox

ou
ox
þ e15ðxÞ

o2u
ox2 �

oe11ðxÞ
ox

o/
ox
� e11ðxÞ

o2/
ox2 þ e15ðxÞ

o2u
oy2 � e11ðxÞ

o2/
oy2 ¼ 0: ð6Þ
For convenience, it is assumed that all material properties vary continuously and have the same exponential function distri-
bution along the x-direction in the layer, i.e.
c44ðxÞ ¼ c0
44 expð2bxÞ; e15ðxÞ ¼ e0

15 expð2bxÞ; e11ðxÞ ¼ e0
11 expð2bxÞ; qðxÞ ¼ q0 expð2bxÞ; ð7Þ
According to the continuous condition of the material properties in the layer and at the position of x = h2, the constants
b; c0

44; e0
15; e0

11 and q0 can be calculated as
b ¼ 1
2ðh1 þ h2Þ

ln
c2

44

c1
44

� �
; ð8Þ

c0
44 ¼ c1

44 expð2bh1Þ; e0
15 ¼ e1

15 expð2bh1Þ; e0
11 ¼ e1

11 expð2bh1Þ; q0 ¼ q1 expð2bh1Þ: ð9Þ
In the above formulations, it is assumed that the ratio c2
44=c1

44 is equal to e2
15=e1

15; e2
11=e

1
11, and q2/q1. Though the variations are

unrealistic, it would allow us to comprehend the effect of material properties of FGPMs on the dynamic stress around the
cavity and can provide references for the non-destruction detection in FGPMs.

Substituting Eq. (7) into Eqs. (5) and (6), the following equations are obtained:
2bc0
44

ou
ox
þ c0

44r2uþ 2be0
15

o/
ox
þ e0

15r2/ ¼ 2bq0 o2u
ot2 ; ð10Þ

2be0
15

ou
ox
þ e0

15r2u ¼ 2be0
11

o/
ox
þ e0

11r2/: ð11Þ
Here, r2 = o2/ox2 + o2/o y2 is the two-dimensional Laplace operator in the variables x and y.
Assume that another electro-elastic field w is expressed as
w ¼ /� k1u; ð12Þ
where k1 ¼ e0
15=e

0
11.

From Eqs. (10) and (11), the following equations can be obtained:
r2uþ 2b
ou
ox
¼ 1

c2
SH

o2u
ot2 ; ð13Þ

2b
ow
ox
þr2w ¼ 0; ð14Þ
where cSH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
le=q0

p
with le ¼ c0

44 þ ½ðe0
15Þ

2
=e0

11� being the wave speed of electro-elastic waves.
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The steady solution of this problem is investigated. Assuming that u = u0Ue�ixt, Eq. (13) can be changed into
r2U þ 2b
oU
ox
þ k2U ¼ 0; ð15Þ
where x is the frequency of the incident waves and k = x/cSH is the wave number of incident waves.
To solve Eq. (15), the solution can be proposed as
U ¼ expð�bxÞwðx; yÞ; ð16Þ
where w(x,y) is the function introduced for derivation.
Substituting Eq. (16) into Eq. (15), one can see that the function w(x,y) should satisfy the following equation:
r2wþ j2w ¼ 0; ð17Þ
Here, j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � b2Þ

q
.

According to Eqs. (15)–(17), one can see that there exist elastic waves with the form of u = u0Ue�ixt = u0 exp(�bx)ei(jx�xt),
which denotes the propagating wave with its amplitude of vibration attenuating in the x-direction.

Similarly, the solution of w in Eq. (14) has the following form:
w ¼ w0 expð�bxÞeiðibx�xtÞ: ð18Þ
Note that all field quantities have the same time variation e�ixt, which is suppressed in all subsequent representations for
notational convenience.

According to Eqs. (14) and (17), the general solutions of the scattered field of electro-elastic waves resulting from the cav-
ity in FGPMs can be described, using wave function expansion method (Pao and Mow, 1973), as
us ¼ expð�br cos hÞ
X1

n¼�1
anHð1Þn ðjrÞeinh; ð19Þ

ws ¼ expð�br cos hÞ
X1

n¼�1
bnHð1Þn ðibrÞeinh; ð20Þ
where (r,h) is the corresponding cylindrical coordinate system shown in Fig. 1, Hð1Þn ð�Þ is the nth Hankel function of
the first kind, and an and bn determined by satisfying the boundary conditions are the mode coefficients of the scat-
tered waves. Note that Hankel function Hð1Þn ð�Þ denotes the outgoing wave and satisfies the radiation condition at
infinity. The solution of the scattered–reflected waves has the same form as that of the scattered waves (Fang
et al., 2006).
3. The multiple scattering of electro-elastic waves and the total wave field

Consider the electro-elastic waves propagating along the positive x-direction in the FGPM structure. In the local coordi-
nate system (r,h) of the real cavity, the incident waves can be expanded as Pao and Mow (1973)
uðiÞ1 ¼ u0 exp½�bxþ h1ðij� bÞ�eijx ¼ u0 exp½�br cos hþ h1ðij� bÞ�
X1

n¼�1
inJnðjrÞeinh; ð21Þ
where u0 is the amplitude of the incident waves, j is the wave number of the propagating waves and Jn(�) is the nth Bessel
function of the first kind.

Similarly, the incident field w(i) is expressed as
wðiÞ1 ¼ k1u0 expð�bx� 2bh1Þe�bx ¼ k1u0 expð�br cos h� 2bh1Þ
X1

n¼�1
inJnðibrÞeinh: ð22Þ
In the local coordinate system (r,h) of the real cavity, the scattered field can be described as
uðsÞ1 ¼ expð�br cos hÞ
X1
l¼1

X1
n¼�1

Al
n1Hð1Þn ðjrÞeinh; ð23Þ

wðsÞ1 ¼ k1 expð�br cos hÞ
X1
l¼1

X1
n¼�1

Bl
n1Hð1Þn ðibrÞeinh: ð24Þ
where l denotes the scattering time between the real and image cavities, and Al
n and Bl

n ðl ¼ 1;2; . . . ;1Þ determined by sat-
isfying the boundary conditions are the mode coefficients of the lth scattering resulting from the real cavity.

When the electro-elastic wave propagates in the FGPM layer, it is scattered by the circular cavity at first. Then, the out-
going scattered wave from the cavity is reflected on the straight surface (x = �h1), and the reflected waves arise. The reflected
waves are scattered by the cavity again. This complex phenomenon is shown in Fig. 1.
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To satisfy the mechanical and electrically short conditions at the free surface, the image method is applied. The reflected
waves at the edge of FGPM layer are described by the scattered waves resulting from the virtual image cavity. The distance
between the virtual image cavity and the straight boundary is also h1. The magnitudes of the incident waves and scattered
waves of the real and image cavities are the same, however, the directions of them are opposite. So, the boundary conditions
at the free surface can be satisfied.

For the image cavity, the waves propagate in the negative x0-direction and can be expressed as
uðiÞ2 ¼ u0 exp½bx0 þ h1ðij� bÞ�e�ijx0 ¼ u0 exp½br0 cos hþ h1ðij� bÞ�
X1

n¼�1
i�nJnðjr0Þeinh0 ; ð25Þ

wðiÞ2 ¼ k1u0 expðbx0 � 2bh1Þebx0 ¼ k1u0 expðbr0 cos h� 2bh1Þ
X1

n¼�1
i�nJnðibr0Þeinh0 : ð26Þ
Likewise, in the local coordinate system (r0,h0), the scattered fields resulting from the image cavity can be described as
uðsÞ2 ¼ expðbr0 cos h0Þ
X1
l¼1

X1
n¼�1

Al
n2Hð1Þn ðjr0Þeinh0 ; ð27Þ

wðsÞ2 ¼ k1 expðbr0 cos h0Þ
X1
l¼1

X1
n¼�1

Bl
n2Hð1Þn ðibr0Þeinh0 ; ð28Þ
where Al
n2 and Bl

n2 ðl ¼ 1;2; . . . ;1Þ determined by satisfying the boundary conditions are the mode coefficients of the lthscat-
tering resulting from the image cavity.

Thus, the total field of elastic waves in the material is taken to be the superposition of the incident field, the scattered field
and the reflected field at the surface of materials, namely,
ut ¼ uðiÞ1 þ uðsÞ1 þ uðsÞ2 : ð29Þ
So, the total electric potential in the material is expressed as
/t ¼ k1ut þ wðiÞ1 þ wðsÞ1 þ wðsÞ2 : ð30Þ
In the cavity, the elastic wave field vanishes and only the electric field exists. The electric potential in the real cavity is the
standing wave and is expressed as
/I
1 ¼ k1

X1
l¼1

X1
n¼�1

Cl
n1JnðibrÞeinh: ð31Þ
Similarly, the electric potential in the image cavity is written as
/I
2 ¼ k1

X1
l¼1

X1
n¼�1

Cl
n2Jnðibr0Þeinh0 : ð32Þ
To make computation tractable, the expression of elastic fields and electric fields in the local coordinate system (r0,h0) can be
translated into another local coordinate system (r,h). According to addition theorem for Bessel functions (Stratton, 1941), the
following relation can be derived:
Hð1Þn ðpr0Þeinh0 ¼
X1

m¼�1
ð�1Þm�nHð1Þm�nð2ph1ÞJmðprÞeimh: ð33Þ
Similarly,
Hð1Þn ðprÞeinh ¼
X1

m¼�1
Hð1Þm�nð2ph1ÞJmðpr0Þeimh0 : ð34Þ
So, the following translation of coordinate systems can be obtained:
expðbr0 cos h0Þ
X1

n¼�1
Hð1Þn ðpr0Þeinh0 ¼ exp½bð2h1 þ r cos hÞ� �

X1
n¼�1

X1
m¼�1

ð�1Þm�nHð1Þm�nð2ph1ÞJmðprÞeimh; ð35Þ
where r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4h2

1 þ 4rh1 cos h
q

and cos h0 ¼ ððr0Þ2 þ 4h2
1 � r2Þ=4h1r0.
expð�br cos hÞ
X1

n¼�1
Hð1Þn ðprÞeinh ¼ exp½bð2h1 � r0 cos h0Þ�

X1
n¼�1

X1
m¼�1

Hð1Þm�nð2ph1ÞJmðpr0Þeimh0 ; ð36Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0Þ2 þ 4h2

1 � 4r0h1 cos h0
q

, and cos h ¼ �ðr2 þ 4h2
1 � ðr0Þ

2Þ=4h1r.
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4. Boundary conditions around the cavity

Without loss of generality, the case that the cavity is free of traction is investigated. For the cavity, the boundary condi-
tions around it are that the radial shear stress is equal to zero, and the electric potential and normal electric displacement are
continuous. They can be expressed as
rrzjr¼a ¼
out

or

����
r¼a

þ k2
o/t

or

����
r¼a

¼ 0; ð37Þ

Djr¼a ¼ e15
out

or

����
r¼a

� e11
o/t

or

����
r¼a

¼ �e0
o/I

or

�����
r¼a

; k3
oðwðiÞ1 þ wðsÞ1 þ wðsÞ2 Þ

or

�����
r¼a

¼ o/I

or

�����
r¼a

: ð38Þ

/tjr¼a ¼ /Ijr¼a: ð39Þ
Here, k2 ¼ e0
15=c0

44 and k3 ¼ e0
11=e0. Note that e0 = 8.85 � 10�12 F/m is the dielectric constant of vacuum.

5. Determination of scattering mode coefficients and dynamic stress concentration factor

Multiple scattering of waves takes place between the real and image cavities. By satisfying the boundary conditions
around the cavities, the mode coefficients of electro-elastic waves are determined. Substituting Eqs. (29)–(32) into Eqs.
(37)–(39), multiplying by e�ish at both sides of Eqs. (37)–(39), and then integrating from �p to p, the following recurrence
formulae can be obtained.

When l = 1, the relations among every mode coefficient of the scattered waves are written as
ð1þ k1k2ÞA1
s1fba cos hHð1Þs ðjaÞ � ½sHð1Þs ðjaÞ � jaHð1Þsþ1ðjaÞ�g

þ k1k2B1
s1fba cos hHð1Þs ðibaÞ � ½sHð1Þs ðibaÞ � ibaHð1Þsþ1ðibaÞ�g

¼ �ð1þ k1k2Þis exp½h1ðij� bÞ�fba cos hJsðjaÞ � ½sJsðjaÞ � jaJsþ1ðjaÞ�g
� k1k2is expð�2bh1Þfba cos hJsðibaÞ � ½sJsðibaÞ � ibaJsþ1ðibaÞ�g: ð40Þ

ð1þ k1k2ÞA1
s2fba cos h0Hð1Þs ðjaÞ þ ½sHð1Þs ðjaÞ � jaHð1Þsþ1ðjaÞ�g

þ k1k2B1
s2fba cos h0Hð1Þs ðibaÞ þ ½sHð1Þs ðibaÞ � ibaHð1Þsþ1ðibaÞ�g

¼ �ð1þ k1k2Þi�s exp½h1ðij� bÞ�fba cos h0JsðjaÞ þ ½sJsðjaÞ � jaJsþ1ðjaÞ�g
� k1k2i�s expð�2bh1Þfba cos hJsðibaÞ þ ½sJsðibaÞ � jaJsþ1ðibaÞ�g: ð41Þ

k1k3B1
s1fba cos hHð1Þs ðibaÞ � ½sHð1Þs ðibaÞ � ibaHð1Þsþ1ðibaÞ�g

� k1C1
s1fba cos hJsðibaÞ � ½sJsðibaÞ � ibaJsþ1ðibaÞ�g

¼ �k1k3is expð�2bh1Þfba cos hJsðibaÞ � ½sJsðibaÞ � ibaJsþ1ðibaÞ�g: ð42Þ

k1k3B1
s2fba cos h0Hð1Þs ðibaÞ þ ½sHð1Þs ðibaÞ � ibaHð1Þsþ1ðibaÞ�g

� k1C1
s2fba cos h0JsðibaÞ þ ½sJsðibaÞ � ibaJsþ1ðibaÞ�g

¼ �k1k3i�s expð�2bh1Þfba cos h0JsðibaÞ þ ½sJsðibaÞ � ibaJsþ1ðibaÞ�g: ð43Þ

A1
s1Hð1Þs ðjaÞ þ B1

s1Hð1Þs ðibaÞ � C1
s1JsðibaÞ ¼ �is expð�2bh1Þ½JsðjaÞ þ JsðibaÞ�: ð44Þ

A1
s2Hð1Þs ðjaÞ þ B1

s2Hð1Þs ðibaÞ � C1
s2JsðibaÞ ¼ �i�s expð�2bh1Þ½JsðjaÞ þ JsðibaÞ�: ð45Þ
When l = 2,3, . . . ,1, the relations among every mode coefficient of the scattered waves are written as
Al
s1ð1þ k1k2Þ expð�ba cos hÞf�ba cos hHð1Þs ðjaÞ þ ½sHð1Þs ðjaÞ � jaHð1Þsþ1ðjaÞ�g
þ Bl

s1k1k2 expð�ba cos hÞf�ba cos hHð1Þs ðibaÞ þ ½sHð1Þs ðibaÞ � ibaHð1Þsþ1ðibaÞ�g

¼ �Al�1
s2 ð1þ k1k2Þ exp½bð2h1 þ a cos hÞ� ba cos h

X1
m¼�1

ð�1Þs�mHð1Þs�mð2jh1ÞJsðjaÞ
(

þ
X1

m¼�1
ð�1Þs�mHð1Þs�mð2jh1Þ½sJsðjaÞ � jaJsþ1ðjaÞ�

)
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� k1k2Bl�1
s2 exp½bð2h1 þ a cos hÞ� ba cos h

X1
m¼�1

ð�1Þs�mHð1Þs�mð2ibh1ÞJsðibaÞ
(

þ
X1

m¼�1
ð�1Þs�mHð1Þs�mð2ibh1Þ½sJsðibaÞ � ibaJsþ1ðibaÞ�

)
;

ðl ¼ 2;3; . . . ;1Þ: ð46Þ

ð1þ k1k2ÞAl
s2 expðba cos h0Þfba cos h0Hð1Þs ðjaÞ þ ½sHð1Þs ðjaÞ � jaHð1Þsþ1ðjaÞ�g

þ k1k2Bl
s2 expðba cos h0Þfba cos h0Hð1Þs ðibaÞ þ ½sHð1Þs ðibaÞ � ibaHð1Þsþ1ðibaÞ�g

¼ �ð1þ k1k2ÞAl�1
s1 exp½bð2h1 � a cos h0Þ� �ba cos h0

X1
m¼�1

Hð1Þs�mð2jh1ÞJsðjaÞ
(

þ
X1

m¼�1
Hð1Þs�mð2jh1Þ½sJsðjaÞ � jaJsþ1ðjaÞ�

)

� k1k2Bl�1
s1 exp½bð2h1 � a cos h0Þ� ba cos h0

X1
m¼�1

Hð1Þs�mð2ibh1ÞJsðibaÞ
(

þ
X1

m¼�1
Hð1Þs�mð2ibh1Þ½sJsðibaÞ � ibaJsþ1ðibaÞ�

)
;

ðl ¼ 2;3; . . . ;1Þ ð47Þ

k1k3Bl
s1 expð�ba cos hÞf�ba cos hHð1Þs ðibaÞ þ ½sHð1Þs ðibaÞ � ibaHð1Þsþ1ðibaÞ�g

� k1C1
s1½sJsðibaÞ � ibaJsþ1ðibaÞ�

¼ �k1k3Bl�1
s2 exp½bð2h1 þ a cos hÞ� ba cos h

X1
m¼�1

ð�1Þs�mHð1Þs�mð2ibh1ÞJsðibaÞ
(

þ
X1

m¼�1
ð�1Þs�mHð1Þs�mð2ibh1Þ½sJsðibaÞ � ibaJsþ1ðibaÞ�

)
;

ðl ¼ 2;3; . . . ;1Þ: ð48Þ

k1k3Bl
s2 expðba cos h0Þfba cos h0Hð1Þs ðibaÞ þ ½sHð1Þs ðibaÞ � ibaHð1Þsþ1ðibaÞ�g

� k1C1
s2½sJsðibaÞ � ibaJsþ1ðibaÞ�

� k1k3Bl�1
s1 exp½bð2h1 � a cos h0Þ� ba cos h0

X1
m¼�1

Hð1Þs�mð2ibh1ÞJnðibaÞ
(

þ
X1

m¼�1
Hð1Þð2ibh1Þ½sJsðibaÞ�ibaJsþ1ðibaÞ�

s�m

)
;

ðl ¼ 2;3; . . . ;1Þ; ð49Þ

expð�ba cos hÞfAl
s1Hð1Þs ðjaÞ þ Bl

s1Hð1Þs ðibaÞg � Cl
n1JnðibaÞ

¼ � exp½bð2h1 þ a cos hÞ�

� Al�1
s2

X1
m¼�1

ð�1Þs�mHð1Þs�mð2jh1ÞJsðjaÞ þ Bl�1
s2

X1
m¼�1

ð�1Þs�mHð1Þs�mð2ibh1ÞJsðibaÞ
( )

;

ðl ¼ 2;3; . . . ;1Þ: ð50Þ

expðba cos h0ÞfAl
s2Hð1Þs ðjaÞ þ Bl

s2Hð1Þs ðibaÞg � Cl
s2JsðibaÞ

¼ � exp½bð2h1 � a cos h0Þ�

� Al�1
s1

X1
m¼�1

Hð1Þs�mð2jh1ÞJsðjaÞ þ Bl�1
s1

X1
m¼�1

Hð1Þs�mð2ibh1ÞJsðibaÞ
( )

;

ðl ¼ 2;3; . . . ;1Þ: ð51Þ
Eqs. (40)–(51) are the algebra equations determining the mode coefficients Al
n1; Al

n2; Bl
n1; Bl

n2; Cl
n1 and Cl

n2 of the scattered
and refracted waves.
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According to the definition of the dynamic stress concentration factor (DSCF), the DSCF is the ratio of the hoop shear stress
around the cavity and the maximum stress result in from the incident waves (Pao and Mow, 1973). Thus, the DSCF around
the circular cavity in FGPMs is expressed as
DSCF ¼ s�hz ¼ jshz=s0j: ð52Þ
Here,
shz ¼
1
r

c44
out

z

oh
þ e15

o/t

oh

� �
: ð53Þ
It should be noted that s0 = u0lek denotes the maximum stress resulting from the incident waves.
Thus, the DSCF around the circular cavity in FGPMs is expressed as
DSCF ¼ e2ba cos h

ka
oðui

z þ uðsÞz1 þ uðsÞz2 Þ
oh

� c0
44

owðiÞ1

oh
� c0

44
owðsÞ1

oh
� c0

44
owðsÞ2

oh

( )

¼ eba cos hþh1ðij�bÞ

ka
ba sin h

X1
n¼�1

inJnðjaÞeinh þ
X1

n¼�1
inþ1nJnðjaÞeinh

" #(

þ ba sin h
X1
l¼1

X1
n¼�1

Al
n1Hð1Þn ðjaÞeinh þ

X1
l¼1

X1
n¼�1

inAl
n1Hð1Þn ðjaÞeinh

" #)

þ ebð2bþ3a cos hÞ

ka
�ba sin h

X1
l¼1

X1
n¼�1

X1
m¼�1

ð�1Þm�nAl
n2Hð1Þm�nð2jbÞJmðjaÞ

(
eimh

þ
X1
l¼1

X1
n¼�1

X1
m¼�1

ð�1Þm�nimAl
n2Hð1Þm�nð2jbÞJmðjaÞeimh

)

� c0
44

eba cos h�2bh1

ka
ba sin h

X1
n¼�1

inJnðibaÞeinh þ
X1

n¼�1
inþ1nJnðibaÞeinh

" #(

þ ba sin h
X1
l¼1

X1
n¼�1

Bl
n1Hð1Þn ðibaÞeinh þ

X1
l¼1

X1
n¼�1

inBl
n1Hð1Þn ðibaÞeinh

" #)

� c0
44

ebð2bþ3a cos hÞ

ka
�ba sin h

X1
l¼1

X1
n¼�1

X1
m¼�1

ð�1Þm�nBl
n2Hð1Þm�nð2ibbÞJmðibaÞeimh

(

þ
X1
l¼1

X1
n¼�1

X1
m¼�1

ð�1Þm�nimBl
n2Hð1Þm�nð2ibbÞJmðibaÞeimh

)
:

ð54Þ
6. Numerical examples and discussion

Fatigue failures often occur in regions with high stress concentrations, so an understanding of the distribution of the dy-
namic stress is very useful in structural design. According to the expression of DSCF, the DSCFs around the circular cavity are
computed. It is found that the truncations after l = 10 and n = m = 12 give practically adequate results at any desired fre-
quency. It is noted that the truncations of l, n and m are only related to the incident wave frequency, and the smaller trun-
cated numbers of them can be adopted when the wave frequency is smaller.

In the following analysis, it is convenient to make the variables dimensionless. To accomplish this step, we may intro-
duce a characteristic length a, where a is the radius of the cavity. The following dimensionless variables and quantities
have been chosen for computation: the incident wave number is ka = 0.1–3.0, the position of the cavity beneath the sur-
face of FGPM structure is h1/a = 1.1–5.0 and h2/a = 1.1–5.0, and the ratio of the material properties of the FGPMs is
p ¼ c2

44=c1
44 ¼ 0:2—5:0.

To validate the present dynamical model, comparison with the previous literatures is given. Fig. 2 illustrates the angular
distribution of the dynamic stress around the circular cavity with p = 1.0, e15 = e11 = 0 and h1/a = 5.0. p = 1.0 means that the
functionally graded materials reduce to the homogeneous materials. e15 = e11 = 0 implies that the piezoelectric effect is not
taken into consideration. When the distance ratio is h1/a = 5.0, the effect of the edge of the structure can be ignored. It can be
seen that the angular distribution of DSCFs is symmetric about both axes when the dimensionless wave number is small. So,
the effect of the boundary disappears. When ka = 0.5, the maximum value of DSCFs is about 2.0, and appears at the positions
of h = p/2,3p/2. Through comparison, it is found that the results coincide with those in an infinite homogeneous material
(Datta et al., 1984; Fang et al., 2007; Rice and Sadd, 1984).

Fig. 3 illustrates the angular distribution of the DSCFs around the circular cavity with p = 1.0, e15 = e11 = 0 and h1/a = 1.1. It
can be seen that when the buried depth is h1/a = 1.1, because of the multiple scattering between the cavity and the edge of
layer, the DSCFs at the illuminated sides of the cavity are greater than those at the shadow sides of the cavity. At the positions



Fig. 3. Angular distribution of dynamic stress concentration factor around the cavity in a semi-infinite homogeneous material without piezoelectric effects
(p = 1.0, e15 = e11 = 0, h1/a = 1.1).

Fig. 2. Angular distribution of dynamic stress concentration factor around the cavity in an infinite homogeneous material without piezoelectric effects
(p = 1.0, e15 = e11 = 0, h1/a = 5.0).
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of h = 0,p, the DSCFs are the minimum. Comparing the results in Figs. 2 and 3, it is clear that the effect of the edge of the
structure on the dynamic stress in the region of high frequencies is greater than that in the region of low frequency.

Fig. 4 illustrates the angular distribution of the DSCFs around the circular cavity in a homogeneous piezoelectric material
with p = 1.0 and h1/a = 1.1. Comparing the results in Figs. 3 and 4, it is clear that the effect of the piezoelectric property on the
dynamic stress in the region of high frequency is greater than that in the region of low frequency. At the illuminated sides of
the cavity, the effect of the piezoelectric property on the dynamic stress is greater.

Figs. 5–7 display the angular distribution of the DSCFs around the circular cavity with p = 2.0 when the values of h1/a and
h2/a are different. From Figs. 3–5, it can be seen that when the buried depth of the cavity and the thickness of the functionally
graded layer are small, the dynamic stress near the boundary increases greatly. The greater the dimensionless wave number,
the greater the increase of the dynamic stress near the boundary is. The maximum dynamic stress has a trend of shifting
towards the illuminated side of the cavity. When the value of h2/a becomes great, the boundary effect decreases. However,
the effect of the value of h1/a is much greater that of the value of h1/a. Comparing the results in Figs. 5 and 6, it is clear that
the increase of the value of h2/a leads to the decrease of the dynamic stress near the boundary. In Figs. 5 and 7, it can be seen
that when the buried depth of the cavity is relatively great, the thickness of the layer expresses little effect on the dynamic
stress around the cavity.

Figs. 8–10 display the angular distribution of the DSCFs around the circular cavity with p = 0.5 when the values of h1/a and
h2/a are different. From Figs. 2, 8 and 9, it can be seen that when the values of h1/a and h2/a are small, the distribution of the
maximum dynamic stress has a trend of shifting towards the shadow side of the cavity, and the greater the dimensionless



Fig. 4. Angular distribution of dynamic stress concentration factor around the cavity in a homogeneous piezoelectric material (p = 1.0, h1/a = 1.1).

Fig. 5. Angular distribution of dynamic stress concentration factor around the cavity in the FGPM layer (p = 2.0, h1/a = 1.1, h2/a = 1.1).

Fig. 6. Angular distribution of dynamic stress concentration factor around the cavity (p = 2.0, h1/a = 1.1, h2/a = 5.0).
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Fig. 7. Angular distribution of dynamic stress concentration factor around the cavity (p = 2.0, h1/a = 5.0, h2/a = 1.1).

Fig. 8. Angular distribution of dynamic stress concentration factor around the cavity (p = 0.5, h1/a = 1.1, h2/a = 1.1).
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wave number, the more distinct the shifting trend is. When the value of p is p < 1.0, the variation of the value of h2/a only
expresses effect on the dynamic stress at the shadow side of the cavity.

From Figs. 5–10, it is clear that the maximum dynamic stress around the cavity increases with the increase of the value of
p. The effects of h1/a and h2/a on the dynamic stress around the cavity also increase with the increase of the value of p.

Fig. 11 shows the effect of the value of p on DSCFs at the position of h = p/2 as a function of the dimensionless wave num-
ber ka with parameters: h1/a = 1.1 and h2/a = 1.1. It can be seen that if the ratio p < 1.0, the variation of the DSCFs with
dimensionless wave number is little, and the effect of the value of p on the dynamic stress is also little. However, when
the ratio p > 1.0, the fluctuation of the DSCFs is great as the dimensionless wave number varies, and the greater the value
of p, the more evident the fluctuation is. In the region of low frequency, the dynamic stress decreases with the increase
of the value of p. In the region of higher frequencies, the dynamic stress increases with the increase of the value of p. The
effect of wave frequency on the dynamic stress is greater when the ratio p > 1.0. The piezoelectric property in FGPMs makes
the dynamic stress around the cavity become greater. The effect of the piezoelectric property on the dynamic stress is greater
in the case of p > 1.0 than that in the case of p < 1.0. That is to say, when the material properties of the homogeneous pie-
zoelectric material are greater than those at the surface of the structure, the dynamic stress resulting from the piezoelectric
property is greater.

Fig. 12 shows the effect of the value of p on DSCFs at the position of h = p/2 as a function of the dimensionless wave num-
ber ka with parameters: h1/a = 1.1 and h2/a = 5.0. Comparing with the results in Fig. 11, it is found that with the increase of
the thickness of FGPM layer, the effect of the value of p on the dynamic stress decreases greatly, especially when the value of
p is p > 1.0. The effect of the piezoelectric property on the dynamic stress decreases with the increase of the thickness of the
FGPM layer.



Fig. 9. Angular distribution of dynamic stress concentration factor around the cavity (p = 0.5, h1/a = 1.1, h2/a = 5.0).

Fig. 10. Angular distribution of dynamic stress concentration factor around the cavity (p = 0.5, h1/a = 5.0, h2/a = 1.1).
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7. Conclusions

The propagation and multiple scattering of electro-elastic waves in a functionally graded piezoelectric material layer with
a circular cavity are investigated theoretically by employing image method and wave functions expansion method. The ana-
lytical solution and numerical solution of this problem are presented. For the homogeneous materials, our results are in good
agreement with the solutions in previous literatures. Comparing with the solution in the static case, analysis shows that the
piezoelectric property has great effect on the dynamic stress in the region of higher frequencies.

In contrast to the homogeneous medium, it is found that the graded property and piezoelectric property of FGPMs have
great influence on the value and distribution of the dynamic stress concentration factors around the cavity. When the buried
depth of the cavity and the thickness of the functionally graded layer are both small, the dynamic stress near the edge of the
structure increases greatly. The greater the dimensionless wave number, the greater the increase of the dynamic stress
around the cavity is. When the buried depth of the cavity is relatively great, the thickness of the layer expresses little effect
on the dynamic stress around the cavity. The maximum dynamic stress around the cavity increases with the increase of the
value of p. When the material properties of the homogeneous piezoelectric material are greater than those at the surface of
the structure, the dynamic stress resulting from the piezoelectric property is greater.

Therefore, to reduce the dynamic stress and avoid fatigue failures of structures, it is proposed that the material properties
of the homogeneous piezoelectric material are less than those at the surface of the structure. If the buried depth of cavity is
smaller, a small value of p should be chosen. When the value of p is small, the thinkness of FGPM layer may be great. When
designing the FGPMs under higher frequencies, the buried depth of cavity should be greater.



Fig. 12. Effect of material properties of FGM layer on dynamic stress concentration factor with h = p/2, h1/a = 1.1, h2/a = 5.0.

Fig. 11. Effect of material properties of FGM layer on dynamic stress concentration factor with h = p/2, h1/a = 1.1, h2/a = 1.1.
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