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This study introduces a micromechanical model for predicting effective thermo-viscoelastic behaviors of
a functionally graded material (FGM). The studied FGM consists of two constituents with varying compo-
sitions through the thickness. The microstructure of the FGM is idealized as solid spherical particles spa-
tially distributed in a homogeneous matrix. The mechanical properties of each constituent can vary with
temperature and time, while the thermal properties are allowed to change with temperature. The FGM
model includes a transition zone where the inclusion and matrix constituents are not well defined. At
the transition zone, an interchange between the two constituents as inclusion and matrix takes place
such that the maximum inclusion volume contents before and after the transition zone are less than
50%. A micromechanical model is used to determine through-thickness effective thermal conductivity,
coefficient of thermal expansion, and time-dependent compliance/stiffness of the FGM. The material
properties at the transition zone are assumed to vary linearly between the two properties at the bounds
of the transition zone. The micromechanical model is designed to be compatible with finite element (FE)
scheme and used to analyze heat conduction and thermo-viscoelastic responses of FGMs. Available
experimental data and analytical solutions in the literature are used to verify the thermo-mechanical
properties of FGMs. The effects of time and temperature dependent constituent properties on the overall
temperature, stress, and displacement fields in the FGM are also examined.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) were first developed in
Japan, in the mid-80s, and were used in thermal protection compo-
nents in the space shuttle. FGMs are engineered materials having
non-uniform spatial variations of microstructures and composi-
tions of the constituents that continuously or discretely change
the mechanical and physical macroscopic properties. FGMs with
various gradations of metal and ceramic constituents are com-
monly used for extreme temperature applications, in which they
can be subjected to a temperature gradient of 1000 K along a thick-
ness of 1 cm. By tailoring thermal protection coatings to form grad-
ual variations in the compositions of the constituents, it is
expected that the stress discontinuities at the interphases between
the dissimilar constituents can be reduced and delamination be-
tween the coatings and the host structures (substrates) can be
avoided. Other constituents, such as polymer, carbon, glass, and
boron, have also been considered for use in FGMs. Under extreme
temperature changes and complex mechanical loadings, the
mechanical and physical properties of constituents in the FGMs
can vary with the temperature and deformation fields (nonlinear
ll rights reserved.
responses) and some of the constituents might exhibit pronounced
time-dependent behaviors.

Analytical and numerical solutions for coupled problems of heat
transfers and thermo-elastic deformations in FGMs have been ob-
tained. Spatial variations in effective thermal and mechanical prop-
erties are often expressed using rule of mixtures based on
polynomial functions of the volume contents of the constituents.
Noda (1999) derived closed form solutions for thermal stress fields
of the FGM plates subject to through-thickness steady heat con-
duction. Crack propagation and stress intensity factor in FGM due
to thermal shock were determined. It was concluded that a proper
selection of the constituent variations in the FGM could reduce
both thermal stresses and stress intensity factors in cracked
FGM. Shen and Noda (2005) presented postbuckling analyses of
an FGM cylinder undergoing radial heat conduction combined with
axial loads and external surface pressures. The thermal and elastic
properties of the constituents were allowed to vary with the tem-
perature fields. Parametric studies showed that the postbuckling
responses of the FGM depend strongly on the material gradation
in the FGM cylinders. Reddy and co-authors (1998a,b, 1999) have
formulated numerical solutions within finite element (FE) schemes
for analyzing coupled heat transfers and thermo-elastic deforma-
tions in FGM plates and cylinders. The thermal and elastic proper-
ties of the constituents were assumed to follow cubic polynomial
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functions of temperatures. Reddy and Chin (1998) have also inves-
tigated the effects of thermo-mechanical coupling on the responses
of FGM plates and cylinders. They suggested that the thermo-
mechanical coupling has significant effects on the stress fields of
FGM under high temperature loadings.

Optimization in microstructural compositions of FGM is neces-
sary to reduce thermal stresses and improve performance of the
FGM. Micromechanics based models have been formulated to ana-
lyze linear thermo-elastic responses of FGMs. Aboudi et al. (1996,
1999) and Pindera et al. (2002) presented higher order microme-
chanical models for analyzing steady linear heat conduction and
thermo-elastic deformations of FGMs. FGMs with one, two, and
three graded directions were studied. A micromechanical model
based on the method of cells was used to obtain effective spatial
variations in the field quantities. Higher order functions of the field
quantities were defined for each constituent. Closed form solutions
of stress and deformation fields in the FGM beams and plates ob-
tained from the higher order theory were comparable to the ones
calculated using FE. Ostoja-Starzewski et al. (1996) presented
micromechanical models to determine effective linear thermal
conductivity and linear elastic constants of FGM fiber reinforced
composites. The solutions depended on three scales: the fine struc-
tures of interphase region, fiber size and spacing, and macroscopic
dimension of the composites. The interphase region between fiber
and matrix was modeled as a finite region having random arrange-
ments of fiber and matrix. Mori–Tanaka’s model and self-consis-
tent micromechanical models have been used to analyze thermo-
elastic responses of FGM, e.g., Reiter et al. (1997), Reddy and Cheng
(2001) and Vel and Batra (2003). The thermo-elastic properties of
the constituents in the above studies were assumed constant. Re-
iter et al. (1997) concluded that the elastic responses of the graded
microstructures, consisting of well defined continuous matrix and
discontinuous inclusions, were better approximated by the Mori–
Tanaka model. At the transition zone, where the inclusions and
matrix are not well defined, the self-consistent micromodel gave
better approximations. Gasik (1998) derived a micromechanical
model for analyzing FGMs with arbitrary distributions of the con-
stituents. The FGM microstructures were idealized by piecewise
homogeneous materials (subcells) having cubic inclusions. Each
subcell corresponded to fixed volume content. The calculated
effective elastic constant and coefficient of thermal expansion
were compared with the ones obtained using Mori–Tanaka, Voigt,
and Kerner’s models. Ueda and Gasik (2000) and Ueda (2002) have
extended the Gasik (1998) micromodel to analyze transient heat
conduction and thermal stresses in FGMs having elastic and inelas-
tic constituents. Parametric studies on the effects of material gra-
dations on the overall stress and deformation fields were
performed. Yin et al. (2004, 2007) formulated effective linear coef-
ficient of thermal expansion and effective elastic material con-
stants, i.e., Young’s moduli and Poisson’s ratio, of FGMs using
micromechanical models. The particle interactions were consid-
ered in obtaining the effective material properties. The properties
of the constituents were assumed independent on temperature
fields (linear behaviors). The calculated effective material proper-
ties were verified with experimental data. It was shown that parti-
cle interactions needed to be considered when the volume
contents of the particles were relatively high. Shabana and Noda
(2008) presented plane stress homogenization schemes for analyz-
ing thermo-elastic responses for functionally graded fiber rein-
forced composites. Two unit-cell models were defined, i.e.,
square and hexagonal arrangements. The effective properties cal-
culated from the unit-cell models were implemented in finite ele-
ments. The proposed model was verified with experimental data
on ZrO2/Ti–6Al4V FGMs.

To the best of my knowledge, studies of FGM with time-depen-
dent material properties are limited. Yang (2000) presented closed
form solutions of stress fields in FG cylinders under creep. Hypo-
thetical material properties were studied. Instead of solving a heat
conduction equation, radial distributions of temperatures were as-
sumed to follow the power law function of the cylinder’s radius.
The multi-axial stress–strain rates followed Norton’s creep model
and the strain–displacement and equilibrium relations of the linear
elastic cylinder were directly applied to the stress–strain rates.
Zhou and Hashida (2001, 2002) and Zhai et al. (2005) studied the
effect of creep on the overall responses and properties of FGMs.
They showed that the residual stresses in the FGM due to high
temperature loadings could cause significant creep responses.
Mukherjee and Paulino (2003) used correspondence principle for
analyzing linear viscoelastic responses of FGMs. Maxwell spring-
dashpot mechanical analog model, which is suitable for viscoelas-
tic fluid model, was used for modeling the spatial relaxation mod-
uli. They also discussed that the correspondence principle fails in
modeling the viscoelastic responses of FGM when the time and
location dependent functions cannot be separated and expressed
in a product form.

This study presents a micromechanical model for predicting
effective thermo-viscoelastic behaviors of FGMs graded in one
direction. The studied FGM consists of two constituents. The
microstructures of the FGM are assumed to be solid spherical par-
ticles spatially distributed in a homogeneous matrix. At the transi-
tion zone, where the inclusion and matrix constituents are not well
defined, there is an interchange between the inclusion and matrix
constituents. At the structural level, continuum finite elements
with multiple integration points through the element’s thickness
are used. A micromechanical model is formulated to obtain effec-
tive thermal conductivity, coefficient of thermal expansion, and
time-dependent compliance/stiffness. These effective properties,
which vary through the thickness, are sampled at the integration
points within the continuum elements. It is also possible to imple-
ment the micromodel within shell, plate, membrane, and other
types of elements in the FE analyses. The mechanical properties
of each constituent are allowed to vary with temperature and time
while the thermal properties depend on the temperature. Available
experimental data and analytical solutions in the literature are
used to verify the thermo-mechanical properties of the FGMs de-
rived in this study. The manuscript is organized as follows. Section
2 presents constitutive equations for the thermo-viscoelastic re-
sponses of isotropic constituents in the FGM. Section 3 describes
a micromechanical model for obtaining effective nonlinear thermal
and viscoelastic properties of the FGM. Section 4 discusses numer-
ical implementation and verification of the micromechanical mod-
el. The effects of time and temperature dependent constituent
properties on the overall temperature, stress, and displacement
fields in the FGM are also examined.
2. Constitutive equations for thermo-viscoelastic responses of
isotropic constituents

The following constitutive relation for linearized thermo-visco-
elastic deformations of solids (non-aging materials) is used for the
constituents:

eijðtÞ ¼
Z t

0
SijklðTs;wt � wsÞ orklðsÞ

os
dsþ

Z t

0
aijðTsÞ oDTðsÞ

os
ds ð1Þ

where S is the creep compliance tensor that depends on tempera-
ture; and a is the temperature-dependent coefficient of linear ther-
mal expansion (CTE) tensor. At reference temperature, To the
constituent is assumed to be stress-free and its properties are inde-
pendent of the temperatures (constant). The linearized strain is de-
fined by eij ¼ 1

2 ½ui;j þ uj;i�, where u is the displacement. The time and
temperature dependent compliance is expressed by:
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Sijklðt; TÞ ¼ Sijklð0; TÞ þ DSijklðt; TÞ ð2Þ

where S(0,T) is the compliance at time 0, which is often considered
as the time independent (instantaneous elastic) compliance, and
DS(t,T) is the transient time-dependent compliance. The tempera-
ture T in the compliance tensor can vary with time. Substituting
Eq. (2) into Eq. (1) gives:

eijðtÞ ¼ eM
ij ðtÞ þ eT

ijðtÞ

eijðtÞ ¼
Z t

0
½Sijklð0; TsÞ þ DSijklðt � s; TsÞ� drklðsÞ

ds
ds

þ
Z t

0
aijðTsÞdDTðsÞ

ds
ds

¼ Sijklð0; TtÞrklðtÞ þ
Z t

0
DSijklðt � s; TsÞdrklðsÞ

ds
ds

þ
Z t

0
aijðTsÞdDTðsÞ

ds
ds ð3Þ

The temperature-dependent creep function is expressed as:
Sijklðt; TÞ ¼ gðTtÞSijklð0Þ þ f ðTtÞDSijklðwtÞ ð4Þ

The transient compliance in Eq. (4) follows the Prony series expo-
nential form, which is:

DSwt

ijkl ¼
XNijkl

n¼1

SijklðnÞ 1� exp½�kijklðnÞw
t �

� �
ð5Þ

where Nijkl is the number of terms for each component in the tran-
sient compliance tensor, SijklðnÞ is the nth coefficient of the Prony ser-
ies for each component in the transient compliance, and kijklðnÞ is the
nth reciprocal of retardation time that corresponds to SijklðnÞ. The
expression of the reduced time function wt in Eq. (5) can be found
in many articles on viscoelasticity, e.g., Wineman and Rajagopal
(2001), and is given as:

wt � wðtÞ ¼
Z t

0

dn

aðTnÞ
ð6Þ

The constitutive relation in Eq. (3) can be easily reduced to
isotropic viscoelastic materials, which has been studied previ-
ously (Haj-Ali and Muliana, 2004; Muliana and Khan, 2008; Sa-
want and Muliana, 2008). It is also assumed that the
corresponding linear elastic Poisson’s ratio for the viscoelastic
solid is constant. Thus, the extensional, D(t), shear, J(t), and bulk,
B(t) linear creep compliances share the same creep function,
which are expressed as:

DðtÞ ¼ Dð0Þ þ DDðwtÞ
JðtÞ ¼ Jð0Þ þ DJðwtÞ Jð0Þ ¼ 2ð1þ mÞDð0Þ
BðtÞ ¼ Bð0Þ þ DBðwtÞ Bð0Þ ¼ 3ð1� 2mÞDð0Þ

DDwt
� DDðwtÞ ¼

XN

n¼1

Dnð1� exp½�knw
t�Þ

DJw
t
� DJðwtÞ ¼

XN

n¼1

Jnð1� exp½�knw
t �Þ Jn ¼ 2ð1þ mÞDn

DBwt
� DBðwtÞ ¼

XN

n¼1

Bnð1� exp½�knw
t�Þ Bn ¼ 3ð1� 2mÞDn

ð7Þ

The integral model for the mechanical strain component in Eq. (1)
can now be applied separately for the deviatoric and volumetric
strains. The total strain is written as:
et
ij ¼ eijðtÞ

¼
Z t

0
JðTs; ðwt � wsÞÞ

oSs
ij

os
dsþ dij

Z t

0
BðTs; ðwt � wsÞÞ or

s
kk

os
ds

þ dij

Z t

0
aðTsÞ oDTðsÞ

os
ds ð8Þ

where Sij and rkk are the components of the deviatoric and volu-
metric stress tensors, respectively. Superscript t indicates the vari-
able at time t. A recursive method is used to solve the
convolution integral forms with temperature-dependent material
properties. Detailed formulation of the recursive integration
scheme can be found in Muliana and Khan (2008). A consistent tan-
gent stiffness matrix is determined by taking the inverse of the par-
tial derivative of the incremental strain with respect to the
incremental stress at the end of each time step. The consistent tan-
gent stiffness, Ct

ijkl, at the converged state, is:

Ct
ijkl �

oDrt
ij

oDeM;t
kl

¼
oDeM;t

ij

oDrt
kl

" #�1

where S ¼ oDeM;t

oDr1

� ��1

ð9Þ

An incremental scalar component of the thermal strain is:

Tt � Tt�Dt þ DTt DeT;t
ij � aðTtÞDTtdij ð10Þ

where aðTtÞ is the temperature dependent coefficient of thermal
expansion scalar and dij is the Kronecker delta.

The Fourier’s heat flux equation is used for the isotropic constit-
uents and is defined by:

qt
i � qiðT; xk; tÞ ¼ �

Z t

0
kðTsÞ oui

os
ds i; k ¼ 1;2;3 ð11Þ

where kt � kðTtÞ is the temperature-dependent thermal conductiv-
ity, xk is the position of the material point, t is the current time, and
ui � T ;i is the component of the temperature gradient. A general en-
ergy equation for a linearized thermo-mechanical deformation
without internal heating and heat generation from the dissipation
of energy is given as (Boley and Weiner, 1997):

qc _T ¼ �qt
i;i ð12Þ

where q is the material density and c is the specific heat at a con-
stant deformation. In general, both q and c can be temperature
dependent. In order to implement the heat conduction in a dis-
placement based FE at the macro-level, Eqs. (11) and (12) are solved
incrementally. A backward finite difference algorithm is used with-
in an incremental time-step. The left-hand side of the energy equa-
tion in Eq. (12) is approximated by:

qc _T � qc
Dt
ðTt � Tt�DtÞ ¼ qc

Dt
DTt ð13Þ

The temperature and temperature gradient at the current time are
expressed as:

Tt ¼ Tt�Dt þ DTt

ut
i ¼ ut�Dt

i þ Dut
i where Dut

i ¼ DTt
;i

ð14Þ

The heat flux at current time t is then defined as:

qt
i ¼ qt�Dt

i þ Dqt
i

Dqt
i ¼ �ktDut

i

ð15Þ

Since the thermal conductivity depends on temperature, the consti-
tutive equation is solved iteratively to obtain correct solutions to
the thermal constitutive behavior. It is then necessary to define
variations of the heat flux with respect to temperature at the end
of increment, which is:
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oqt
i

oTt ¼ �
okt

oTt u
t
i ð16Þ
3. Micromechanical model formulations for FGMs

This section presents the integrated micromechanical and FE
structural framework, illustrated in Fig. 1, for analyzing thermo-
viscoelastic behaviors of FGMs. The studied FGMs are made of
two constituents. A three-dimensional continuum element with
multiple integration (material) points through the thickness is
used at the structural level. Spatial variations in the macroscopic
material properties that are determined by the compositions and
microstructures of the constituents are implemented at the inte-
gration points. A simplified microstructure of the FGM panel, hav-
ing particles distributed in a homogeneous matrix, is also shown in
Fig. 1. It is assumed that the through-thickness material variation
can be represented with piecewise homogeneous media. The effec-
tive thermo-viscoelastic properties for each homogenous compos-
ite medium are obtained using a micromodel of particle reinforced
composites. The through-thickness variations of the volume frac-
tions of the two constituents are given as:

v1
f ¼ 1� z

h

� �n

v2
f ¼ 1� h� z

h

� 	n

ð17Þ

where z is the through-thickness locations and n defines the graded
variations. Along with the gradation in the composition of the two
constituents, there is an interchange between the inclusion and ma-
trix constituents, illustrated in Fig. 2. The interchange takes place at
the transition zone, where interpenetrating between the constitu-
ents can be observed. Below the transition zone, constituent 2 acts
as a discontinuous inclusion and constituent 1 acts as a continuous
thr

ε

σThermo--viscoelastic
responsesforaconsi-
tuent (isotropic)

Representative Volume
Element (RVE)

Example of FGM panel
(planar view)

Spatial variations
of constituents

Uniform
variations of
constituents

Cons. 1
Cons. 2

Fig. 1. Integrated micromechanical–structural fram
matrix. Above the transition zone, constituent 1 is an inclusion dis-
persed in matrix medium of constituent 2.

The overall responses of composites depend on their micro-
structural details, i.e., stiff inclusions in a soft matrix or soft inclu-
sions in a stiff matrix. Furthermore, as volume contents of
inclusions increase, there often exists particle interaction/contact.
This interaction can significantly affect the overall responses of
composites. The rule of mixture approach is not capable of incor-
porating these effects as the effective properties obtained using
the rule of mixture are mainly proportional to the volume contents
of the constituents. In this study, the roles of the constituents as
inclusion and matrix are explicitly accounted for to determine
the effective nonlinear thermo-viscoelastic properties of the FGM.
The effects of the inclusion and matrix constituents on the effective
thermo-viscoelastic properties of composites will be discussed in
Section 4. The volume fractions of the two inclusions in the FGM
graded in z-direction (Fig. 2) are given by:

v2
pf ¼ 1� 1� z

h

� �n z 6 h1 v1
pf ¼ h�z

h

� �n
z P h2

0:0 6 v2
pf < 0:5 0:0 6 v1

pf < 0:5
ð18Þ

It is also possible to pick different nonlinear functions to represent
the variations in the constituent compositions along the graded
directions. The transition zone should be properly characterized
from experimental tests, which will be discussed in Section 4. Since
the inclusion and matrix constituents in the transition zone are not
well defined and there may be interpenetrating between the two
constituents, effective thermo-viscoelastic properties at this zone
cannot be determined using the present micromechanical model.
However, to provide continuous variations in material properties,
instead of obtaining rigorous physical based model for the transi-
tion zone, this study assumes that the properties at the transition
FGM FE panel

y

x

top viewough the thickness
z

Nodal point
Material point

3D homogenized ther-
mo---viscoelasticity

ework of functionally graded materials (FGM).
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v2
f ≈ 1

} Transition zoneh1
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Fig. 2. Three regions of FGM graded in one direction.
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zone vary linearly between the two properties at h1 and h2, ex-
pressed as:

PðzÞ ¼ Pðh1Þ þ
Pðh2Þ � Pðh1Þ

h2 � h1
z h1 < z < h2 ð19Þ

where P is the effective material properties at the transition zone. It
is also possible to define nonlinear functions for the variations in
the effective thermo-mechanical properties at the transition zone,
as previously studied by Reiter et al. (1997) and Yin et al. (2004,
2007). In order to obtain more detailed effective properties at the
transition zone, rigorous physical-based models that incorporate
phase interactions, e.g., Alberola and Mele (1996) and Torquato
(2002), can be used.

3.1. Micromechanical models for effective CTE and moduli of
viscoelastic composites

Exact solutions of deformations and transport mechanisms in
heterogeneous materials can be theoretically obtained by solving
boundary value problems. Depending on the complexity of the
problems, finding exact closed form solutions can be cumbersome.
This study uses a simplified micromechanical model of particle
reinforced composites to determine local CTE and moduli of FGM
having temperature and time dependent properties of the constit-
uents. A micromechanical model developed by Muliana and Kim
(2007) for stress-dependent viscoelastic composites is modified
to incorporate the thermal effects. Several fundamental assump-
tions are made. A microstructure is defined by a representative vol-
RV

Unit---cell

1 2

3

4

Eq

b

Homog

Fig. 3. Representative unit-cell model f
ume element (RVE) that is uniformly repeatable over entire
composite media and the RVE’s length scale is much smaller than
the macrostructural scale. The geometry representation of the RVE
is similar to the one studied by Aboudi and co-authors (1996, 1999,
2002) for FGM with nonuniform particle spacing. A periodic
boundary condition is imposed to the RVE. Field quantities on
the boundary of the RVE are defined as field quantities of the
homogenized composite media. It is also assumed that the RVE is
much larger compared to the atomistic scale, such that the use of
continuum mechanics approach remains valid.

A unit-cell model consisting of four particle and matrix subcells
(Muliana and Kim, 2007) is used to obtain effective properties. The
unit-cell model is illustrated in Fig. 3. Average stresses and strains
represent the effective quantities of fictitious homogeneous media.
The average stresses and strains in the unit-cell model are defined
by:

�rij ¼
1
V

XN

b¼1

Z
VðbÞ

rðbÞij xðbÞk

� �
dV ðbÞ � 1

V

XN

b¼1

V ðbÞrðbÞij ð20Þ

�eij ¼
1
V

XN

b¼1

Z
V ðbÞ

eðbÞij xðbÞk

� �
dV ðbÞ � 1

V

XN

b¼1

V ðbÞeðbÞij ð21Þ

Superscript (b) denotes the subcell number and N is the number of
subcells. The stress rðbÞij and strain eðbÞij are the average stress and
strain within each subcell. The unit-cell volume V is V ¼

PN
b¼1V ðbÞ.

Eqs. (20) and (21) are exact only for linear thermo-elastic re-
sponses of composites. Due to the nonlinear and time-dependent
E

uivalent homogeneous materials

enization

or particulate reinforced polymers.
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responses in the constituents, the solutions for the deformation
fields are performed incrementally. The incremental forms of the
effective stress and strain tensors at the current time are:

�rt
ij ¼ �rt�Dt

ij þ D�rt
ij

�et
ij ¼ �et�Dt

ij þ D�et
ij

ð22Þ

The average stress and strain tensors in the subcells are given as:

rðbÞ;tij ¼ rðbÞ;t�Dt
ij þ DrðbÞ;tij

eðbÞ;tij ¼ eðbÞ;t�Dt
ij þ DeðbÞ;tij

ð23Þ

Superscript (t � Dt) denotes previous converged solutions and pre-
fix D indicates incremental variables within a current time incre-
ment Dt. A linearized relation is first imposed to the incremental
parts of the stress and strain tensors in Eqs. (22) and (23). An iter-
ative corrector scheme is then performed to satisfy both the micro-
mechanical constraints and the nonlinear thermo-viscoelastic
constitutive equations.

Fourth order strain-concentration tensors ðBðbÞ;tÞ, which relate
the subcell average strains, DeðbÞ;t , to the composite effective strain,
D�et , are also defined. This is written as:

DeðbÞ;tij ¼ BðbÞ;tijkl D�et
kl ð24Þ

Since the RVE’s length scale is much smaller than the FGM’s macro-
scale, it is assumed that the temperature changes within a time
increment Dt at each subcell ðDT ðbÞ;tÞ in a unit-cell model is equal
to the effective temperature change at the boundary of the RVE
ðDTtÞ. This is written as:

DTðbÞ;t ¼ DTt ð25Þ

Using the incremental strain and the incremental temperature de-
fined in Eqs. (24) and (25), a constitutive equation for each subcell
can be expressed as:

DrðbÞ;tij ¼ CðbÞ;tijkl DeðbÞ;tkl � aðbÞ;tkl DTðbÞt
h i

¼ CðbÞ;tijkl BðbÞ;tklrs D�et
rs � aðbÞ;tkl DTt

h i
ð26Þ

where CðbÞ;t is the consistent tangent stiffness matrix of each subcell
at a current time t which is defined in Eq. (9). Substituting Eq. (26)
into an incremental form of Eq. (20) gives:

D�rt
ij ¼

1
V

XN

b¼1

V ðbÞCðbÞ;tijkl BðbÞ;tklrs D�et
rs � aðbÞ;tkl DTt

h i
ð27Þ

The effective tangent stiffness matrix Ct for the composites is deter-
mined by:

Ct
ijrs ¼

1
V

XN

b¼1

V ðbÞCðbÞ;tijkl BðbÞ;tklrs ð28Þ

In order to derive strain-concentration matrices for all subcells,
the micromechanical relations together with the subcells constitu-
tive material models must be imposed. Detailed micromechanical
relations and formulations of the BðbÞ;t matrices are given in Muli-
ana and Kim (2007) and Muliana and Sawant (in press). The
homogenized properties in the micromodel are derived by assum-
ing perfect bond along the interfaces of the subcells and imposing
displacement compatibility and traction continuity at the subcells’
interface. The effective stress–strain relations for the particle rein-
forced composites (Fig. 3) are then rewritten as:

D�rt
ij ¼ Ct

ijklD�et
kl

� DTt

V
V ðAÞCðAÞ;tijkl aðAÞ;tkl þ V ð3ÞCð3Þ;tijkl að3Þ;tkl þ V ð4ÞCð4Þ;tijkl að4Þ;tkl

h i
¼ Ct

ijkl D�et
kl � DTt �at

kl


 �
ð29Þ
where V ðAÞ ¼ V ð1Þ þ V ð2Þ. The effective tangent CTE in Eq. (29), for the
isotropic case, is then expressed as:

�at
ij ¼ �atdij

¼
Ct;�1

ijkl

V
V ðAÞCðAÞ;tklmna

ðAÞ;t
mn þ V ð3ÞCð3Þ;tklmna

ð3Þ;t
mn þ V ð4ÞCð4Þ;tklmna

ð4Þ;t
mn

h i
ð30Þ

where aðAÞ;tij and CðAÞ;tijkl in Eq. (30) are defined by:

aðAÞ;tij ¼ aðAÞ;tdij ¼
1

V ðAÞ
V ð1Það1Þ;tij þ V ð2Það2Þ;tij

h i
ð31Þ

CðAÞ;tijkl ¼ Xt;�1
ijkl and Xt

ijkl ¼
1

V ðAÞ
V ð1ÞCð1Þ;t�1

ijkl þ V ð2ÞCð2Þ;t�1
ijkl

� �
ð32Þ

It is seen that the effective CTE in Eq. (30) depends on the elastic
material constant and CTE of each constituent. Thus, for the temper-
ature dependent constituent mechanical and thermal properties,
the effective CTE can change with temperatures. In case of visco-
elastic constituents are considered, the effective CTE also changes
with time.

3.2. Micromechanical models for effective thermal conductivity in
composites

The effective heat flux, defined based on a volume averaging
method, is written as:

�qi ¼
1
V

XN

b¼1

Z
VðbÞ

qðbÞi xðbÞk

� �
dV ðbÞ � 1

V

XN

b¼1

V ðbÞqðbÞi i; k ¼ 1;2;3 ð33Þ

where qðbÞi is the component of the heat flux in the subcell (b). The
Fourier’s heat flux equation is used and is written as:

�qi ¼ ��kij �uj where �uj ¼
oT
oxj

ð34Þ

where �k and �u are the effective thermal conductivity and tempera-
ture gradient, respectively. When the thermal conductivity of each
constituent is allowed to change with the temperature field and
the temperature field at current time is yet to be solved, an iterative
method within an incremental formulation is used to determine the
effective heat flux. This is written as:

�qt
i ¼ �qt�Dt

i þ D�qt
i

Tt ¼ Tt�Dt þ DTt
ð35Þ

The homogenized relation in Eq. (33) is applied to the incremental
parts of the heat flux and temperature gradient. Linearized solu-
tions are first obtained within the current incremental time fol-
lowed by iteration to minimize residual from linearization. In
order to determine the temperature field at any time throughout
the composite media, Tðxi; tÞ, the following linearized heat conduc-
tion (energy equation) is solved:

qc _T ¼ ��qi;i for i ¼ 1;2;3 ð36Þ

It is assumed that the thermo-mechanical coupling, heat generation
due to dissipation of energy, and internal heat source are negligible.
The conduction of heat and the deformation of materials are cou-
pled as the material properties depend on temperature. The effec-
tive heat capacity in Eq. (36) is obtained using a volume
averaging method which is expressed as:

qc ¼ 1
V

XN

b¼1

Z
VðbÞ
ðqcÞðbÞ xðbÞk

� �
dV ðbÞ � 1

V

XN

b¼1

V ðbÞðqcÞðbÞ ð37Þ

The temperature distribution Tt � Tðxi; tÞ determined by solving Eq.
(36) is used as prescribed temperature boundary conditions for the
RVE. Due to the assumption that the RVE’s length scale is much



Table 1
Elastic and thermal properties of silicon carbide and carbon (Reiter et al., 1997).

Constituents E (GPa) m a (10�6/K) k (W/mK)

Silicon carbide 320 0.30 4.2 120
Carbon 28 0.30 9.3 450
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smaller than the macrostructural scale, the transient heat conduc-
tion is solved only at the composite (macro) level, while a steady
state heat conduction is assumed at the microstructural level.

Second order concentration tensors ðFðbÞ;tÞ, which relate the
subcell average incremental temperature gradients, DuðbÞ;t , to the
composite incremental effective temperature gradient, D�ut , are de-
fined by:

DuðbÞ;ti ¼ FðbÞ;tij D�ut
j ð38Þ

Using the relation in Eq. (38), an incremental heat flux equation in
each subcell is given as:

DqðbÞ;ti ¼ �kðbÞ;tij FðbÞ;tjk D�ut
k ð39Þ

Substituting Eq. (33) into (39), the component of the incremental
effective heat flux is written as:

D�qt
i ¼ �

1
V

X4

b¼1

V ðbÞkðbÞ;tij FðbÞ;tjk D�ut
k ð40Þ

Thus, the temperature-dependent heat conduction at the current
time is expressed as:

�kt
ij ¼

1
V

X4

b¼1

V ðbÞkðbÞ;tik FðbÞ;tkj ð41Þ

In order to define the concentration tensors ðFðbÞ;tÞ, micromechan-
ical relations and constitutive equations for each constituents are
used. The micromechanical relations for the heat flux �qt and tem-
perature gradient �ut were previously developed by Muliana (2007)
which in the incremental forms are expressed as:

D�qt
i ¼ V ð1Þ þ V ð2Þ

� �
DqðAÞ;ti þ V ð3ÞDqð3Þ;ti þ V ð4ÞDqð4Þ;ti

DqðAÞ;ti ¼ Dqð1Þ;ti ¼ Dqð2Þ;ti

ð42Þ

D�ut
i ¼

1
V ð1Þ þ V ð2Þ

V ð1ÞDuð1Þ;ti þ V ð2ÞDuð2Þ;ti

h i
¼ Duð3Þ;ti ¼ Duð4Þ;ti

ð43Þ

The FðbÞ;t matrices are:

Fð1Þ;t ¼

kð2Þ11 Vð1ÞþV ð2Þð Þ
Vð1Þkð2Þ11 þV ð2Þkð1Þ11

0:0 0:0

0:0
kð2Þ22 V ð1ÞþVð2Þð Þ
V ð1Þkð2Þ

22
þVð2Þkð1Þ

22

0:0

0:0 0:0
kð3Þ

33
V ð1ÞþVð3Þð Þ

V ð1Þkð3Þ33 þVð3Þkð1Þ33

2
66666664

3
77777775

Fð2Þ;t ¼

kð1Þ
11

Vð1ÞþV ð2Þð Þ
Vð1Þkð2Þ11 þV ð2Þkð1Þ11

0:0 0:0

0:0
kð1Þ22 V ð1ÞþVð2Þð Þ
V ð1Þkð2Þ22 þVð2Þkð1Þ22

0:0

0:0 0:0
kð4Þ33 V ð2ÞþVð4Þð Þ
V ð2Þkð3Þ

33
þVð4Þkð2Þ

33

2
66666664

3
77777775

Fð3Þ;t ¼

kð4Þ11 Vð3ÞþV ð4Þð Þ
Vð3Þkð4Þ11 þV ð4Þkð3Þ11

0:0 0:0

0:0
kð4Þ22 V ð3ÞþVð4Þð Þ
V ð3Þkð4Þ

22
þVð4Þkð3Þ

22

0:0

0:0 0:0
kð1Þ

33
V ð1ÞþVð3Þð Þ

V ð1Þkð3Þ33 þVð3Þkð1Þ33

2
66666664

3
77777775

Fð4Þ;t ¼

kð3Þ
11

Vð3ÞþV ð4Þð Þ
Vð3Þkð4Þ11 þV ð4Þkð3Þ11

0:0 0:0

0:0
kð3Þ22 V ð3ÞþVð4Þð Þ
V ð3Þkð4Þ22 þVð4Þkð3Þ22

0:0

0:0 0:0
kð2Þ33 V ð2ÞþVð4Þð Þ
V ð2Þkð4Þ

33
þVð4Þkð2Þ

33

2
66666664

3
77777775

ð44Þ
4. Numerical implementation and verification

The present micromechanical model is used to obtain effective
thermo-viscoelastic properties and to analyze thermo-viscoelastic
behaviors of FGMs. The studied FGM consists of two constituents,
acting as a discontinuous inclusion and homogeneous matrix.
The compositions of the two constituents vary continuously
through the FGM thickness. The FGM model also includes a transi-
tion zone where the inclusion and matrix constituents are not well
defined. At the transition zone, an interchange between the two
constituents as inclusion and matrix occurs. The effects of the
microstructural characteristics, i.e., softer inclusion in stiffer ma-
trix or stiffer inclusion in softer matrix, on the through-thickness
thermo-elastic properties of the FGM are first examined. The ther-
mal and elastic properties, obtained using the present microme-
chanical model, are also compared with existing experimental
data and the micromechanical model with particle interaction. Fi-
nally, the effects of time and temperature dependent constituent
properties on the overall heat conduction and deformation of
FGM are studied.

4.1. Effects of the inclusion and matrix properties

Several micromechanical models have been used to determine
local effective properties of the FGM. The variations in the local
effective properties are often defined in terms of volume contents
of two constituents, which vary from 0 to 1. As the volume content
of the inclusion increases, the matrix constituent becomes more
discontinuous due to contact between the inclusions. Reiter et al.
(1997) have shown that the overall responses of FGMs change with
altering the inclusion and matrix constituents, although composi-
tions of the two constituents are kept constant.

This study compares the effective linear elastic properties of the
FGM having carbon (C) and silicon carbide (SiC) constituents ob-
tained using the present micromechanical model and the Mori–Ta-
naka (MT). The properties of the C and SiC constituents are given in
Table 1. Fig. 4 illustrates elastic constants of isotropic FGM at var-
ious compositions of the SiC constituent. The FGM is assumed to
have a linear through-thickness variation of the constituents in
which the parameter (n) in Eq. (17) is equal to one. The linear elas-
tic properties obtained from the present micromodel are compara-
ble to the ones of the Mori–Tanaka. Slight mismatches are shown
for the effective Poisson’s ratios and bulk moduli. It is noted that
the Poisson’s ratios of the two constituents are equal (0.3). The
present micromodel gives constant values of the effective Poisson’s
ratio (0.3), while the MT model shows variations in the effective
Poisson’s ratio. It is also shown that the FGM through-thickness
properties with SiC inclusion and carbon matrix differ than the
ones having carbon inclusion and SiC matrix, although the compo-
sitions of the two constituents are kept constant. The differences
are due to the significant mismatches in the magnitude of the
properties of the two constituents. The differences should be ex-
pected as the responses of composites having stiff inclusions in a
soft matrix differ than the responses of composites with soft inclu-
sions in a stiff matrix. Thus, it is important to properly identify de-
tailed microstructural arrangements, i.e., inclusion and matrix
constituents, in predicting effective properties of the FGM. Com-
parisons of the thermal properties, i.e., effective coefficient of ther-
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Fig. 4. Effective linear elastic moduli of FGM with linear through-thickness constituent gradation (MT – Mori and Tanaka model).
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mal expansion (CTE) and thermal conductivity, are given in Fig. 5.
Micromechanical models of Rosen and Hashin (1970) and Hatta
and Taya (1985) are used for the effective CTE and thermal conduc-
tivity, respectively. The results also indicate that the different roles
of the constituents as the inclusion and matrix can influence the
overall thermal properties of the FGM.

The FGM model is divided into three zones through its thick-
ness. The first zone considers SiC as inclusions (solid spherical par-
ticles) and C as homogeneous matrix, the second zone is the
transition zone, and the third zone consists of C inclusions and
SiC matrix. The effective thermo-viscoelastic properties in zones
one and three are determined using the micromechanical model
of solid spherical particle composites. The effective properties in
the transition zone are obtained using Eq. (19). Fig. 6 illustrates
effective elastic moduli (extensional moduli) of FGM having a lin-
ear through-thickness variation of the SiC and C constituents.
Examples of FGM extensional elastic moduli with the limits of
transition zone between 40% and 45% are shown. As discussed in
Yin et al. (2007) and Moon et al. (2005), the location of the transi-
tion zone should be characterized from experiments, which could
vary significantly for different FGM/composite systems. At the
transition zone, contact among inclusions or interpenetrating be-
tween the constituents is observed. In heat conduction problems,
the interpenetrating between the constituents, which is often re-
ferred to as percolation, accelerates the heat conduction process
indicated by high effective thermal conductivity. Bao and Cai
(1997) have discussed that for ceramic/metal composites, the per-
colation limit of the effective thermal conductivity is typically be-
tween 40% and 60%. Moon et al. (2005) have shown a discontinuity
in the effective elastic modulus of Al–Al2O3 composites between 0%
and 40%, 40–70%, and 70–100% volume content of Al. They also
mentioned that the effects of interpenetrating between constitu-
ents and percolation on the overall responses of composites de-
pend on the mismatch between the properties of the
constituents. From a micromechanical modeling effort of a com-
posite with same size of solid spherical inclusions, contact between
inclusions can be avoided when the inclusion volume content is
less than 56%. Unless the three FGM regions in Fig. 2 can be deter-
mined from experiments, the transition region is assumed within
40–60% of the composition of the constituents. It should be noted
that interpenetrating between the constituents and percolation
could also occur in composites with relatively low inclusion vol-
ume contents, e.g., 20%. This may be due to the material processing,
which forms clusters of particles. A high ratio between the inclu-
sion and matrix conductivities can also cause percolation at low
particle content (Agari and Uno, 1985).

The effects of the constituent properties on the effective proper-
ties at the boundaries of the transition zone are examined. Fig. 7
illustrates the overall elastic moduli of FGM with several ratios of
the constituent elastic properties, E1=E2: 2, 5, and 11.48. It is seen
that, as the ratio increases, also the slope that measures a change
in the effective elastic property with volume content in the transi-
tion zone increases. Similar effects should be expected for the ther-
mal properties, as previously studied by Yin et al. (2007). The
overall response of the FGM is also influenced by the variations
of the constituent compositions along the graded directions which
have been extensively studied, e.g., Praven and Reddy (1998). Fig. 8
illustrates the comparisons of the effective elastic moduli of SiC/C
FGM with linear and cubic variations in the constituent composi-
tions. The transition zone is chosen between 40% and 60% volume
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Table 2
Elastic properties of cenoshpere, polyester, polyester–plasticizer (Parameswaran and
Shukla, 2000).

Constituents E (GPa) m

Cenosphere 6 0.35
Polyester 3.6 0.41
Polyester–plasticizer 2.5 0.33
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contents of SiC. Significant differences in the location and slope of
the transition zone in the FGMs with linear and cubic variations
should be expected.
4.2. Verification of the thermal and elastic properties

Effective thermal and elastic properties of FGMs are verified
with existing experimental data. Experimental data reported by
Parameswaran and Shukla (2000) on cenosphere/polyester FGMs
are first used for comparisons. The elastic properties of the constit-
uents are given in Table 2. Nonlinear variations in cenosphere’s
volume contents through the 25 cm thick FGMs are shown in
Fig. 9. The maximum volume content of the cenosphere is 45% in
which the transition zone can be neglected. The fitted functions
for the cenosphere’s volume contents in the two matrix systems
are given by:
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polyester : vc ¼�8:35�10�4z2þ4:22�10�2z�5:3�10�2

z P 1 mm

poly-plas : vc ¼�10�3z2þ4:22�10�2z�7:7�10�2

z P 1 mm ð45Þ

The effective linear elastic properties of the FGM are determined
using the present micromechanical model with cenosphere as the
inclusions. Fig. 10 illustrates micromodel predictions of elastic
Graded location (cm)

Present micromodel

Experimental data (Parameswaran and Shukla, 2000)
Polyester matrix Polyester--plasticizer matrix

Fig. 10. Prediction of (a) elastic moduli and (b) Poisson’s ratio of cenoshpere based
FGM.

Table 3
Elastic properties of Ni3Al and TiC (Zhai et al., 1993).

Constituents E (GPa) m

Ni3Al 199 0.295
TiC 460 0.19
moduli and Poisson’s ratios of cenosphere/polyester and ceno-
sphere/polyester–plasticizer FGM systems. Good predictions are
observed. The elastic modulus obtained using the micromodel hav-
ing particle interaction (Yin et al., 2004) is also shown for compar-
ison. Next, experimental data of elastic properties of Ni3Al/TiC FGM
reported by Zhai et al. (1993) are used for comparisons. The elastic
properties of the constituents are given in Table 3. The studied FGM
has a linear variation in the composition of the constituents. Fig. 11
shows predictions of the elastic moduli and Poissons’ ratio. The
transition zone is considered between 40% of Ni3Al volume content
and 40% of TiC volume content. Due to a low ratio in the elastic
properties of the constituents, the discontinuities in the effective
properties between the two bounds of the transition zone is rela-
tively small. Unlike in the previous study (Fig. 6), pronounced dis-
continuities are due to significant mismatches in the properties of
the constituents. Predictions from the present micromechanical
model match very well with the ones obtained from the micromod-
el with particle interactions (Yin et al., 2004). In this study, instead
of considering particle interactions, which is essential for compos-
ites with high inclusion volume contents, a simplified micromodel
with periodic boundary conditions and an interchange of the inclu-
sion and matrix constituents are employed.

Effective CTEs of FGMs obtained using the present micromodel
are also compared with experimental data. Two FGMs are studied,
i.e., Mo/SiO2 (Ishibashi et al., 2000) and Al/Al2O3 (Neubrand et al.,
2002). The linear elastic moduli and CTEs of the constituents at a
fixed temperature are reported in Table 4. Following Yin et al.
(2007), the volume content of the Mo inclusions is:

vMo
pf ¼ 0:2 exp �28ðr � 0:085Þ2

� �
� 0:1r þ 0:1

� �
r ¼ z=h 0 6 z 6 h h ¼ 2:5 cm

ð46Þ

The maximum volume content of Mo is less than 0.3. The FGM hav-
ing Al/Al2O3 constituents also shows maximum volume content of
30%. Thus, in both FGM systems, transition zones are neglected.
Fig. 12 illustrates comparisons of effective CTEs of the two FGMs
at a constant temperature. Responses from the micromodel match
well with experimental data and also with the micromodel of par-
ticle interaction. In order to examine the effect of temperature on
the CTE of the Al/Al2O3 FGM, temperature-dependent properties
of the aluminum constituent, which are taken from Aboudi
(1985), are considered. Fig. 13 shows the variations of elastic mod-
ulus and CTE of aluminum with temperature. Linear and quadratic
polynomial functions are used to fit the CTE and elastic modulus,
respectively. Effective CTE of the Al/Al2O3 FGM is given in Fig. 14.
The limits of the transition zone are between 40% and 60%. The ef-
fect of temperature on the effective CTE is more pronounced in the
region with relatively high contents of aluminum which is ex-
pected. The mismatch in the constituent properties increases with
increasing temperatures which results in a higher slope of the tran-
sition zone.

Next, CTEs of FGM having Al2O3 and NiCr constituents at tem-
peratures: 0–1200 �C are studied. The linear elastic moduli and
CTE of the constituents at temperature 10 �C are reported in Table
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Table 4
Linear thermo-elastic properties of Mo/SiO2 and Al/Al2O3.

Constituents E (GPa) m a (10�6/K)

Mo 324 0.31 5.1
SiO2 80.4 0.18 0.54
Al 69 0.33 23.1
Al2O3 390 0.2 7.7

Experimental data (Ishibashi et al., 2000)
Present micromodel

Micromodel with particle interac-
tion (Yin et al., 2007)
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5. The CTE of the NiCr constituent varies with temperatures, which
is experimentally studied by Petrus and Ferguson (1997), while the
CTE of the Al2O3 constituent is independent of temperature. The
temperature-dependent CTE of the NiCr is expressed as:

aNiCr ¼ ð12þ 0:002TÞ � 10�6=C ð47Þ

Fig. 15 presents predictions of the effective CTEs at various temper-
atures for the FGMs having Al2O3 volume contents of 0%, 20%,40%,
and 60%. At 60% Al2O3 volume content, the effective CTE is obtained
using the micromodel with 40% NiCr particles dispersed in homog-
enous Al2O3 matrix. The present micromechanical model is capable
of predicting temperature-dependent CTEs. A micromechanical
model prediction without interchange in the inclusion and matrix
constituents (using 60% Al2O3 particles in the micromodel) is also
reported (dashed line). Although the dashed-line slightly over pre-
dicts the experimental data, the mismatch is negligible. The insig-
nificant mismatch is due to a relatively low ratio of the
constituent properties and moderate volume content of Al2O3. It
has previously been shown (Fig. 5a) that the high ratio of the con-
stituents can result in a significant mismatch in the effective CTEs
with altering the inclusion and matrix constituents, although the
composition of the constituents are kept constant.
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Table 5
Linear thermo-elastic properties of Al2O3 and NiCr at 10 �C.

Constituents E (GPa) m a (10�6/K)

Al2O3 380 0.26 8.6
NiCr 156 0.27 12.0
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Table 6
Calibrated Prony series coefficients for polyester (Muliana, 2004).

n kn (s�1) Dn � 10�6 (ksi�1) Dn (GPa�1)

1 1 143.76 0.0208
2 10�1 130.99 0.019
3 10�2 137.05 0.0199
4 10�3 140.83 0.0204
5 10�4 345.00 0.05
6 10�5 580.00 0.0841
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The effective thermal conductivities of FGMs obtained from the
present micromodel are also compared to the ones of Yin et al.
(2007), in which particle interactions are incorporated. Fig. 16
illustrates a good match between the two models on predicting
effective thermal conductivities of FGM having NiCrAlY/ZrO2Y2O3

constituents. The transition zone is assumed between 40% and
60% volume fractions of the ZrO2Y2O3 constituent.

4.3. Effects of temperature and time on the overall responses of FGM

The effects of time and temperature on the overall thermal and
elastic properties of FGMs are studied. The present micromechan-
ical model is used to provide effective properties of FGMs. The pre-
sented studies consider a linear variation in compositions of the
constituents in FGMs. The first study deals with relaxation moduli
of cenosphere/polyester FGM. The linear elastic properties of the
constituents are given in Table 2. The elastic modulus of the poly-
ester constituent relaxes with time while the properties of the cen-
osphere are constant. Time-dependent creep compliance of the
polyester is taken from Muliana (2004) and it is given in Table 6.
These values are fitted using exponential function in Eq. (7) from
3600-s creep tests. Fig. 17 illustrates relaxation moduli of previ-
ously studied cenosphere/polyester FGM. The moduli along the
graded location relax with different rates due to different compo-
sitions of the constituents. Relaxation occurs faster at early times
with decreasing rates at later times. After about 2 h, the moduli
at the distance 1 cm (polyester rich area) decreases by 16% from



Te
m

pe
ra

tu
re

(K
)

Volume content of Zirconia constituent

t=1s

kZr = 1.683+ 0.0003T W ⁄ mK kTi6Al = 1. + 0.017T W ⁄ mK

t=2s

t=5s

t=10s

t=20s

t=50s

t=325s (steady state)

Te
m

pe
ra

tu
re

(K
)

Volume content of Zirconia constituent

t=2s

t=1390s (steady state)

kZr = 1.683 W ⁄ mK kTi6Al = 1.W ⁄ mK

t=10s
t=20s

t=50s

a

b

ig. 19. Temperature profiles for FGM of Zr/Ti6Al constituents: (a) nonlinear and
) linear.

A.H. Muliana / International Journal of Solids and Structures 46 (2009) 1911–1924 1923
its initial elastic value, while at the distance 23 cm the moduli has
decreased by 8% from its initial elastic value. The FGM model does
not include a transition zone since the maximum volume content
of the cenosphere particles is 45% (Parameswaran and Shukla,
2000). The second study analyzes relaxation moduli of FGMs hav-
ing Al2O3 and NiCr constituents. The elastic modulus of NiCr con-
stituent is assumed to relax with time while the one of Al2O3

constituent is constant. Fig. 18 shows relaxation moduli of the
FGM obtained using the present micromodel. The transition zone
is modeled between 40% and 60% volume fractions of Al2O3 con-
stituent. As expected, the effective moduli along the graded loca-
tions in the FGM relax with time at different rates. The difference
in moduli of the two constituents increases during relaxation pro-
cess, which results in higher jumps in the effective moduli between
the two bounds of the transition zone.

A sequentially coupled analysis of heat conduction and defor-
mation in an FGM made of zirconia and Ti6Al constituents is per-
formed. Thermal and elastic properties of the constituents at a
particular location depend on the temperature at that location
(nonlinear analyses). The temperature dependent properties of
the constituents are taken from Reddy and Chin (1998). Fig. 19
illustrates temperature profiles during transient heat transfer anal-
yses in the FGM panel. The transition zone is taken within 45–55%
volume content of zirconia. The temperature dependent thermal
conductivities of the constituents accelerate the heat conduction
process. Steady state (SS) time for the nonlinear analyses is 325 s
while for the linear analyses is 1390 s. Thus, assuming constant
thermal conductivities can lead to significant errors in determining
temperature profiles. These errors will be accumulated in the
stress analyses of FGM. Next, the FGM panel is subjected to a con-
stant uniaxial pressure along its thickness direction. Heat conduc-
tion (Fig. 19a) is then performed on the stressed FGM. Fig. 20a and
b presents axial displacements and in-plane shear stresses in the
FGM panels at various times. It is seen that the displacements
and shear stresses vary with increasing time due to the non-con-
stant (temperature dependent) elastic properties of the
constituents.

5. Conclusions

This study presents a micromechanical modeling framework for
predicting thermal properties and thermo-viscoelastic behaviors of
FGMs graded in one direction. The studied FGM comprises of two
constituents: one constituent acts as discontinuous inclusions
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F
(b
and the other constituent acts as homogeneous matrix. The micro-
structures of the FGM are idealized as solid spherical particles spa-
tially distributed in homogeneous matrix. The mechanical
properties of each constituent are allowed to vary with tempera-
ture and time while the thermal properties are allowed to vary
with temperature. The FGM model includes a transition zone
where the inclusion and matrix constituents are not well defined.
At the transition zone, an interchange between the inclusion and
matrix constituents takes place such that the maximum inclusion
volume contents are less than 50%. This study also assumes a sym-
metrical constituent-inversion before and after the transition zone.
This is done to simplify the micromechanical formulation such that
the effect of microstructural details, e.g., particle interactions or
interpenetrating between the constituents, can be minimized. Par-
ticle interactions can significantly affect overall performance of
composites when high inclusion volume contents are considered.
Furthermore, for composite systems having high volume contents
of particles (inclusion), i.e., above 60%, it is not possible to have
all particles/inclusions fully surrounded by continuous matrix. In
this situation, more discontinuities exist in the matrix. It should
be noted that degree of mismatches in the properties of constitu-
ents also determines the overall behaviors of FGM. Furthermore,
when the constituents exhibit time and temperature-dependent
behaviors, the mismatches in the constituent properties change
during deformations. Available experimental data and analytical
solutions in the literature are used to verify the micromechanical
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formulation. The present micromodel is suitable for analyzing
thermo-mechanical responses of FGM having field and time depen-
dent constituent properties.
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