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We have recently modeled crack nucleation in a 2D strip electrode as localization of a periodic array of
cohesive zones subject to diffusion induced stresses in an initially crack-free thin strip under galvanostat-
ic solute insertion and extraction. Here we generalize this model to crack nucleation in a cylindrical elec-
trode under axisymmetric diffusion induced stresses, focusing on the effect of the cylindrical geometry on
the crack nucleation condition. Similar to our previous findings for the 2D strip geometry, the present
analysis identifies a critical electrode size, typically in the nanometer range, to avoid crack nucleation.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The technological needs to develop damage resistant lithium-
ion battery electrodes with very large stresses and volume changes
during Li intercalation–deintercalation cycles are calling for stud-
ies on crack nucleation under diffusion induced stresses. In the
past, numerous models have been developed to describe the inser-
tion/extraction of Li in an electrode as diffusion of interstitial
atoms in a host material (García et al., 2005; Christensen and
Newman, 2006a,b; Zhang et al., 2007, 2008; Cheng and Verbrugge,
2008, 2009; Deshpande et al., 2010a,b; Haftbaradaran et al., 2010,
2011; Yang, 2010), a subclass of problems more broadly referred to
as the diffusion induced stresses (DIS) (Prussin, 1961; Li, 1978;
Yang, 2005). In comparison, relatively few studies have explicitly
considered crack nucleation under DIS. Huggins and Nix (2000)
considered a bilayer plate with the top layer subjected to a swell-
ing transformation strain and the bottom layer containing a crack.
The Huggins–Nix model has been extended to the case of non-uni-
form distribution of DIS to predict relationships between charging
rate, size and fracture toughness of an electrode particle for pre-
venting growth of pre-existing cracks (Woodford et al., 2010; Zhao
et al., 2010, 2011). In contrast, we have developed a cohesive mod-
el of crack nucleation in a strip electrode under galvanostatic
ll rights reserved.
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charge and discharge (Bhandakkar and Gao, 2010). Compared to
the Huggins–Nix model and its extensions (Huggins and Nix,
2000; Woodford et al., 2010; Zhao et al., 2010, 2011) which used
Griffith’s criterion to predict a critical condition for crack growth,
the Bhandakkar–Gao model considers spontaneous localization of
a periodic array of cohesive zones during dynamic evolution of
DIS in an initially crack-free electrode.

Recent years have seen the development of various forms of
cylindrical electrodes such as nanorods, nanopillars and nanowires,
with improved performance and cycle life compared to planar and
spherical electrode geometries (Taberna et al., 2006; Chan et al.,
2008). The exact mechanism behind the superior mechanical re-
sponse of cylindrical electrodes is unresolved and is being actively
pursued (e.g. Huang et al., 2010). In the present paper, we extend
the 2D Bhandakkar–Gao model to localization of an array of cohe-
sive zones in a cylindrical electrode under axisymmetric diffusion
induced stress as the maximum DIS exceeds the cohesive strength
of the material (Fig. 1). Such localized deformation is thought to be
initially reversible, and crack nucleation is assumed to occur when
the maximum surface separation within the cohesive zone reaches
a critical value.

2. Diffusion induced stress in a cylindrical electrode

Fig. 1 shows a cylindrical electrode with diameter 2rc subject to
insertion and extraction of an interstitial species such as Li. The
electrode material is taken to be an isotropic linear elastic solid
and the deformation is assumed quasi-static. Following an analogy
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Fig. 1. Schematic illustration of crack nucleation in a cylindrical electrode of
diameter 2rc during galvanostatic (a) intercalation and (b) extraction, modeled as
diffusion along the radial direction (r-axis). The axisymmetric crack nuclei are
uniformly spaced with period p and modeled as localized cohesive zones obeying
the triangular traction-separation law (Eq. (11)).
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between DIS (Zhang et al., 2007, 2008; Cheng and Verbrugge, 2008,
2009; Deshpande et al., 2010a,b; Haftbaradaran et al., 2010, 2011;
Yang, 2010) and thermal stresses, the transport of solute in the cyl-
inder is modeled as a concentration driven diffusion process along
the radial (r) direction of the electrode (Crank, 1980),
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¼ D

1
r
@

@r
r
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� �
; ð1Þ

where D is the diffusivity and c is the molar concentration of solute.
The insertion of solute atoms into host causes a swelling transfor-
mation strain Xc/3, X being the partial molar volume of solute,
which generates the following axial stress in the electrode
(Timoshenko and Goodier, 1970),
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where E is the Young’s modulus and m the Poisson ratio of the
material.

Consider the variations of solute concentration and the corre-
sponding DIS during charging and discharging. The initial solute
concentration in the electrode is assumed to be zero. Under galva-
nostatic boundary conditions as shown in Fig. 1,
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where I is the surface current density and F = 96486.7 C/mol is Far-
aday’s constant, the solute concentration during insertion can be
found as (Crank, 1980)
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and the associated DIS is
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where J0(r) is the Bessel function of the first kind and an are the
roots of J1(a). At the end of charging, the stress approaches a steady
state while the solute concentration rises steadily with time. This
situation persists until the saturation limit of material is reached.
The steady state solution then acts as the initial condition for the
extraction process,
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tc denoting the charging time. During extraction, the solute concen-
tration evolves as
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with the associated DIS
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Fig. 2 plots the variations of solute concentration and the associated
DIS during the first charging and discharging cycle. During inser-
tion, the solute concentration continuously rises with time
(Fig. 2a) while the stress approaches a steady state with tension
near the center and compression near the free surface of the elec-
trode (Fig. 2b). The peak tensile stress occurs at the centre when
reaching the steady state, with magnitude equal to (Fig. 2b)

rpeak ¼ EXIrc=12ð1� mÞFD: ð10Þ

During extraction, the surface current is reversed, and the solute
concentration continuously decreases with time (Fig. 2c) while
the stress approaches a steady state with compression near the cen-
ter and tension at the surface of the electrode. The peak tensile
stress occurs at the surface with the same magnitude as Eq. (10)
when reaching the steady state (Fig. 2d).

Note that the above solutions to DIS neglect a number of nonlin-
ear coupling effects and may be oversimplified in a number of
ways. The reader is referred to Christensen and Newman (2006)
for some detailed discussions. The current density I in the surface
flux boundary condition of Eq. (3) couples the diffusion induced
stress problem with electrochemical kinetics described by the But-
ler–Volmer reaction (Newman and Thomas, 2004; Zhang et al.,
2008; Golmon et al., 2010). Heat generation in the electrode during
charge and discharge also affects DIS. A fully coupled electrochem-
ical–mechanical model with heat generation identified resistive
heating as the most important heat source for electrode particles
(Zhang et al., 2008). By introducing a coupling between internal
stresses and activation energy for diffusion, Haftbaradaran et al.
(2010) discovered a class of nonconventional solutions to DIS with
a surface choking instability once the product between electrode
dimension and charging rate exceeds a critical value. The nonlinear
coupling between DIS and solute concentration in high capacity
electrodes was also demonstrated through validation of continuum
modeling with atomistic simulations of hydrogen diffusion in nick-
el, taking into account the coupling between DIS and the activation
energy for diffusion, an upper bound to solute concentration based
on stoichiometric limit and a concentration-dependent binding en-
ergy between the host and solute (Haftbaradaran et al., 2011). The
effect of concentration-dependent binding energy between
the host and solute on DIS was also analyzed by Yang (2010) for
the thin plate geometry. First principle calculations have shown



Fig. 2. Snapshot profiles of solute concentration and diffusion induced stress. (a) Concentration during insertion, (b) DIS during insertion, (c) concentration during extraction
and (d) DIS during extraction. The concentration is normalized as ĉ ¼ cFD=ðIrcÞ during insertion and ĉ ¼ ðc � c1ÞFD=ðIrcÞ during extraction (Eqs. (4) and (8)), while DIS is
normalized as r̂D ¼ 3ð1� mÞFDrD=ðEXIrcÞ (Eqs. (5) and (9)).
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that the Young’s moduli of Li–Si phase decreases linearly with Li
concentration relative to Si, even in the absence of amorphization
(Shenoy et al., 2010). Stress measurement of a Si thin film on
substrate has shown that the film undergoes plastic flow upon
reaching its yield strength on the order of 1–1.75 GPa (Sethuraman
et al., 2010). Xiao et al. (2011) studied crack spacing in Si thin films
on Cu substrates and pointed out that the crack formation may be
due to localization of plastic strain in Si. These effects will tend to
smooth out the concentration and DIS profiles in the electrode,
making our predictions based on the uncoupled formulation con-
servative in nature.

We can apply Eq. (10) to the recent charging-discharging exper-
iments on silicon nanowire electrodes (Chan et al., 2008) and get
an idea of the magnitude of diffusion induced stresses in high
capacity electrodes. Silicon nanowire electrodes with an average
diameter of 89 nm are found to be charged to near the theoretical
capacity of 4227 mAh g�1 at a charge and discharge rate of 20 h per
half cycle (Chan et al., 2008), corresponding to a surface current
density of I = 0.011 A/m2. For such electrodes the peak tensile
stress during insertion and extraction is estimated to be
0.16 GPa. For a faster charge and discharge rates of 5 h per half cy-
cle charged to a capacity of 3500 mAh g�1, the surface current den-
sity is I = 0.036 A/m2, corresponding to a peak stress of 0.53 GPa
during Li insertion and extraction. The material parameters for
the estimation can be found in our previous work2 (Bhandakkar
and Gao, 2010). In the following, we consider crack nucleation under
these large diffusion induced stresses in the electrode which is as-
sumed to be initially free of cracks.
2 Numerator in Eq. (12) (Bhandakkar and Gao, 2010) should read as 3 � 0.59
instead of 4.
3. Cohesive model of crack nucleation in a cylindrical electrode

Consider crack nucleation as localization of a periodic array of
cohesive zones in an initially crack-free electrode, as shown in
Fig. 1. The cohesive zones are uniformly spaced at a period p near
the center of the electrode during solute insertion and at the edge
of the electrode during solute extraction. We adopt the triangular
traction–separation (r � d) law (Camacho and Ortiz, 1996),

r ¼
rcð1� d=dcÞ; d 6 dc;

0; d > dc;

�
ð11Þ

where rc is the cohesive strength of the electrode material and dc is
the maximum range of cohesive interaction. The fracture energy of
the material, C = rcdc/2, is assumed to be a material constant typi-
cally on the order of surface energy in the absence of significant
plastic deformation.

The emergent cohesive zones are modelled as continuous distri-
butions of prismatic dislocations loops (Bilby and Eshelby, 1968).
During solute insertion, the cohesive zones would develop at the
centre of the electrode as soon as the stress exceeds the cohesive
strength. Within the cohesive zone, the traction and the surface
separation obey Eq. (11), i.e.

rDðr; tÞ þ
Z a

0
Pðr;RÞBðR; tÞdR

¼ rc 1� rc

2C

Z a

r
BðR; tÞdR

� �
; 0 6 R 6 a; ð12Þ

where the first term rD(r, t) is the diffusion induced stress and the
second term is the stress associated with localized deformation
within the cohesive zones modeled as continuous distributions of
prismatic dislocation loops of radius R with density B(R, t).
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The kernel function P(r, R) in Eq. (12) corresponds to the axial
stress at location (r, 0) induced by an infinite array of coaxial pris-
matic dislocation loops of unit Burgers vector in the z-direction and
radius R, located at positions z = np; n = �1, . . . ,1 along the axis.
In practice, since the stress field associated with a prismatic loop in
a cylinder decays cubically (Kroupa, 1960) with distance along the
axis of the cylinder, we determine P(r, R) from 5 prismatic loops
with spacing p along the cylindrical axis. Similar approximation
has been adopted previously in studying interaction among peri-
odic array of cracks in a layer (Bai et al., 2000). The expression
for P(r, R) is given in Supplementary material 1. Similar to the Dug-
dale model (Dugdale, 1960), the cohesive zone size is determined
based on the condition that there exists no singularity at the tip
of the cohesive zone,

lim
r!a

Bðr; tÞ
ffiffiffiffiffiffiffiffiffiffiffi
a� r
p

¼ 0; ð13Þ

and crack nucleation is assumed to occur when the maximum sur-
face separation reaches dc = 2C/rc, i.e.Z a

0
BðR; tÞdR ¼ 2C=rc: ð14Þ

Finally, the spacing p between the cohesive zones is determined by
the condition that the axial stress everywhere in the electrode must
not exceed the cohesive strength.

During solute extraction, the tensile stress region is shifted to
the surface of the electrode while the centre of the electrode is un-
der compression. Therefore, the emergent cohesive zones are
placed periodically along the edge of the electrode with governing
equation

rDðr; tÞ þ
Z rc

rc�a
Pðr;RÞBðR; tÞdg

¼ rc 1þ rc
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Z r
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In this case, the size of the cohesive zones is determined based on

lim
r!rc�a
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r � rc þ a
p
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and the corresponding crack nucleation condition isZ rc�a

rc

BðR; tÞdR ¼ 2C=rc: ð17Þ

Normalizing all stress variables by rc and all length variables by rc

in Eqs. (5), (9) and (12)–(17), we can identify a characteristic length
scale as

‘ft ¼
Cð1� mÞF2D2

Eð1þ mÞX2I2

( )1=3

: ð18Þ
4. Localization spacing p

Following our previous study of crack nucleation in a strip elec-
trode (Bhandakkar and Gao, 2010), we assume that the localization
process would naturally select the cohesive zone spacing such that
the maximum axial stress in the region between two adjacent
cohesive zones is exactly equal to the cohesive strength rc.

For the formation of centre cohesive zones during solute inser-
tion (Fig. 1a), the maximum axial stress in the region between two
adjacent cohesive zones occurs along the axis of the cylinder right
in the middle of the two localization zones. Hence, the cohesive
zone spacing p is determined by solving
Fig. 3. Localization spacing p as a function of the normalized cohesive strength for
the formation of (a) centre cohesive zones during solute insertion and (b) edge
cohesive zones during solute extraction. In both (a) and (b), the cohesive strength rc

is normalized by the peak DIS rpeak = EXIrc/[12(1 � m)FD].

rzð0;p=2Þ ¼ rDð0; tÞ þ

Z a

0
Hð0;p=2;RÞBðR; tÞdR ¼ rc; ð19Þ
together with Eqs. (12)–(14). The kernel function H(r, z, R) corre-
sponds to the axial stress at (r, z) induced by an array of five coaxial
circular prismatic dislocation loops of unit Burgers vector in the
z-direction and radius R, located at z = np; n = �2, . . . , 2 along the
axis. The expression for kernel function H(r, z, R) is given in Supple-
mentary material 1. For a given cohesive strength rc, we solve Eqs.
(12)–(14), followed by checking Eq. (19) and employing the method
of bisection to determine p.

For the formation of edge cohesive zones during solute extrac-
tion (Fig. 1b), the maximum axial stress in the region between
two adjacent cohesive zones occurs along the free surface at the
midpoint between the two localization zones. The cohesive zone
spacing p is then determined by solving

rzðrc;p=2Þ ¼ rDðrc; tÞ þ
Z rc

rc�a
Hðrc;p=2;RÞBðR; tÞdR ¼ rc; ð20Þ

together with Eqs. (15)–(17). We will focus on crack nucleation un-
der a steady state phase after the initial transient has passed but be-
fore the maximum stoichiometric solute concentration of the host
material is reached. Fig. 3a and b plot the cohesive zone spacing
as a function of the cohesive strength during solute insertion and
extraction, respectively. Once the localization spacing p is deter-
mined, the critical conditions for crack nucleation are obtained from
Eqs. (12)–(14) for center cracks during solute insertion and from
Eqs. (15)–(17) for edge cracks during solute extraction by a numer-
ical scheme detailed in Supplementary material 2.

In contrast to the periodic array of localization zones of Fig. 3,
nucleation of isolated localization zone is possible in case the peak
DIS is smaller than the cohesive strength of electrode material.
Such a solution is metastable and may occur at locations with
pre-existing defects/weaknesses. The governing equations and
numerical algorithm for such metastable, isolated localizations
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are similar to those for spontaneous localizations, except the
Green’s function kernel is replaced with S(r, R) which corresponds
to the axial stress at location (r, 0) induced by a single coaxial
circular prismatic dislocation loop of a unit burgers vector in the
z-direction and radius R with center located at z = 0. The expression
for S(r, R) is given in Supplementary material 1. Fig. 4 indicates that
the critical radius and cohesive zone size undergo smooth transi-
tion between multiple localization to isolated localization regimes.
5. Comparison of critical conditions for crack nucleation
between cylinder and strip

The normalized radius of the electrode and the cohesive
strength normalized by the corresponding peak stress in the elec-
trode are related by the blue solid lines in Fig. 4a and b. The critical
size of the cohesive zone at crack nucleation as a function of the
normalized cohesive strength is shown in green dashed lines.

A comparison of the present results with our previous work on
crack nucleation in a strip electrode (Bhandakkar and Gao, 2010)
reveals that the cylindrical geometry does not alter the relation-
ships between cohesive strength, characteristic electrode size and
cohesive zone size qualitatively. There exists a critical electrode
dimension below which crack nucleation becomes impossible irre-
spective of the cohesive strength of the material. This critical dimen-
sion is found to be rI

cr ¼ 7:3‘ft during solute insertion (which is
identical to the corresponding critical dimension in the case of a
strip) and rE

cr ¼ 8:2‘ft during solute extraction (the corresponding
critical dimension in the case of a strip is 6.5‘ft); see Fig. 4a and
b. This analysis suggests that crack nucleation is more likely to oc-
cur at the center of electrode during solute insertion, as opposed to
Fig. 4. The critical conditions for crack nucleation expressed as relationships betwee
normalized critical size of cohesive zone at nucleation. The blue lines plot the critical di
zone at crack nucleation as functions of the normalized cohesive strength. (a) and (c) p
solute insertion while (b) and (d) plot those of edge annular cohesive zones of size a und
rpeak = EXIrc/[12(1 � m)FD]. In (c) and (d), the cohesive strength is normalized by the size-
length scale defined in Eq. (18). (For interpretation of the references to colour in this fig
nucleation at the edge of electrode during solute extraction. This
deviates from our previous analysis (Bhandakkar and Gao, 2010)
where crack nucleation at the edge of the electrode is found to
be more likely. In reality, stress concentration induced by surface
roughness may aid crack nucleation at the surface of electrodes
during solute extraction. A critical dimension for flaw tolerant
cylindrical electrodes is thus identified as

2rcr ¼ 14:6‘ft ¼ 14:6
Cð1� mÞðFDÞ2

Eð1þ mÞðXIÞ2

( )1=3

: ð21Þ

The significance of this equation is that it predicts an initially crack-
free electrode would remain crack free below the critical dimension.
Once the electrode diameter exceeds this critical dimension, nucle-
ation of center circular cracks during solute insertion would become
possible. The plots in Fig. 4a and b are based on cohesive strength
normalized by the peak tensile stresses during solute insertion
and extraction. In order to decouple the effect of electrode size
and cohesive strength, we introduce a size-independent reference
stress rref = EXI‘ft/12(1 � m)FD and replot the results of Fig. 4a and
b in Fig. 4c and d based on a new normalization of the cohesive
strength with respect to rref. The critical dimension for crack nucle-
ation increases almost linearly with cohesive strength for very large
as well as very small values of rc/rref. The peculiar behavior at small
values of rc/rref is owing to the large cohesive interaction range dc

under the constraint of constant fracture energy C = rcdc/2.
Following our previous study (Bhandakkar and Gao, 2010), we

can estimate the critical dimension and current density for flaw
tolerant electrodes based on Eq. (21). The critical dimension for
flaw tolerant Si electrodes charged to near theoretical capacity at
n the normalized radius of electrode, the normalized cohesive strength and the
mension of electrode while the dashed green lines plot the critical size of cohesive
lot the critical conditions for nucleation of center cohesive zones of radius a under
er solute extraction. In (a), (b), the cohesive strength is normalized by the peak DIS

independent reference stress rref = EXI‘ft/[12(1 � m)FD] where ‘ft is the characteristic
ure legend, the reader is referred to the web version of this article.)
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a charge-discharge rate of 20 h per half cycle is estimated to be
467 nm, which falls in the experimental range of Chan et al.
(2008). For nanowire of 89 nm in diameter adopted in experiments
(Chan et al., 2008), we estimate that crack nucleation might occur
in the Si nanowire at the charging-discharging rate of 1.6 h per
half-cycle. Indeed, significant capacity loss is reported, as the
charging/discharging rate changes to below 10 h per half cycle
(Fig. 2c, Chan et al., 2008). Although the reasons for such capacity
loss is not completely clear, the observation would be more or less
consistent with our analysis if crack formation during charging is
assumed to be a prime cause. The broad agreement between exper-
iment and our analysis points to the fact that crack nucleation can
indeed be suppressed in nanostructured electrodes and design of
fracture resistant electrodes can greatly improve the cycling per-
formance of Li batteries.

6. Summary and discussions

In this paper, we have extended our previous model (Bhandakkar
and Gao, 2010) of crack nucleation in a strip electrode as localization
of an array of cohesive zones under galvanostatic diffusion induced
stresses to the corresponding three dimensional problem of a cylin-
drical electrode. It is shown that the cylindrical geometry does not
appreciably change the results reported in Bhandakkar and Gao
(2010). The present analysis reiterates the importance of nanoscale
electrodes in preventing crack formation under large diffusion
induced stresses. The most important result of our analysis is the
existence of a critical electrode diameter

dft ¼ 14:6
Cð1� mÞF2D2

Eð1þ mÞX2I2

( )1=3

; ð22Þ

below which crack nucleation becomes impossible irrespective of the
cohesive strength of material, and contributes towards the under-
standing of the success of nanowire geometries. Our analysis also
highlights an inverse relationship between critical charging current
and electrode dimension, whereby faster charging leads to higher
stresses and more chances of crack nucleation. Similar to Bhandakkar
and Gao (2010), we identify that a potential design criterion for flaw
tolerant electrode is

I2=3d 6 crit; ð23Þ

where I is the operating current and d the dimension of electrode.
Once the critical value of I2/3d for ‘‘fail-safe’’ design of electrode is
determined through careful set of experiments, Eq. (23) can be used
to design the actual electrode dimension and current density.
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