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The purpose of this paper is to investigate the static behavior of helical structures under axial loads.
Taking into account their translational invariance, the homogenization theory is applied. This approach,
based on asymptotic expansion, gives the first-order approximation of the 3D elasticity problem from the
solution of a 2D microscopic problem posed on the cross-section and a 1D macroscopic problem, which
turns out to be a Navier–Bernoulli–Saint-Venant beam problem. By contrast with earlier references in
which a reduced 3D model was built on a slice of the helical structure, the contribution of this paper
is to propose a 2D microscopic model. Homogenization is first applied to helical single wire structures,
i.e. helical springs. Next, axial elastic properties of a seven-wire strand are computed. The approach is val-
idated through comparison with reference results: analytical solution for helical single wire structures
and 3D detailed finite element solution for seven-wire strands.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Helical structures are widely used in mechanical and civil engi-
neering applications. These structures are usually subjected to
large loads which can lead to the material degradation and cracks
associated with corrosion and mechanical fatigue. This threatens
the structural strength. In this framework, non-destructive testing
is a crucial tool for detection, localization and measurement of
material discontinuities. The choice of the appropriate technique
depends on dimensions and accessibility of the structure. Particu-
larly, ultrasonics allow to control large components, such as plates
and tubes, by analyzing their elastic guided waves. The purpose of
this study, which is composed of two parts, is to develop a numer-
ical model for the analysis of the elastic wave propagation phe-
nomenon in prestressed helical structures. This problem requires
the computation of the static prestress state. Therefore, a first
model will be developed in Part 1 of this paper, to compute this
static state. Taking into account this prestress state, a second mod-
el will be developed in Part 2, in order to analyze the wave propa-
gation in these prestressed structures. The goal of this first part of
this paper is thus to develop an approach that allows the computa-
tion of the prestress state in helical structures subjected to axial
load.

Numerous works have been devoted to the modeling of the sta-
tic behavior of helical structures as springs and multi-wire cables
ll rights reserved.

ssède).
under axial loads. For helical springs, an analytical model was pro-
posed among others in Ancker and Goodier (1958) and Wahl
(1963) considering the spring as an Euler–Bernoulli beam with
pitch and curvature corrections. Numerical approaches describing
the static behavior of helical springs have been also developed.
Among these works, a finite element model of half of a spring slice
has been proposed in Jiang and Henshall (2000).

The static behavior of seven-wire strands has been widely stud-
ied in literature. Various analytical models based on different
assumptions have been proposed, such as the model of Costello
(1977) which is one of the most popular. These models are re-
viewed in Jolicoeur and Cardou (1991) and compared in Jolicoeur
and Cardou (1991) and Ghoreishi et al. (2007). Besides, numerical
models relying on the finite element method were developed.
Some of them are based on beam elements (Durville, 1998;
Nawrocki and Labrosse, 2000; Páczelt and Beleznai, 2011), see also
Nemov et al. (2010) and Bajas et al. (2010) in which ITER supercon-
ducting cables composed of a large number of strands are studied.
But most of the time, 3D models are used, see e.g. Boso et al.
(2006), Ghoreishi et al. (2007), _Imrak and Erdönmez (2010), Nemov
et al. (2010), Stanova et al. (2011a,b) and Erdönmez and _Imrak
(2011). In order to obtain a good representation of the geometry
as well as the displacement solution, which may involve bending
phenomena, quadratic elements are employed. This leads to mod-
els which can be computationally expensive, when the model axial
length is about the pitch length. Therefore, as soon as the loading
fulfills helical symmetry, one can take benefit of this property to
reduce the model size. This has been achieved in Jiang et al.
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Fig. 1. Left: One helix pitch and its twisted basis associated to the twisted
coordinate system ðx; y; ZÞ. Right: view normal to the Z-axis. The point Z ¼ s ¼ 0 lies
in the ðeX ; eY Þ plane.
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(1999) and Jiang et al. (2008) in which the computational domain
is restricted to a basic sector of a helical slice. Helical symmetry
may also be accounted for within the framework of homogeniza-
tion theory. This has been proposed first in Cartraud and Messager
(2006) using axial periodicity, and then improved in Messager and
Cartraud (2008), in which helical symmetry enables to consider
one slice of a strand. The derivation of the slice model is different
in Jiang et al. (1999), Jiang et al. (2008) and Messager and Cartraud
(2008). However, in both cases, helical symmetry yields displace-
ment constraints between the two faces of the slice, with a loading
under the form of an axial strain and a twist rate.

This work further advances Cartraud and Messager (2006) and
Messager and Cartraud (2008), taking advantage of the transla-
tional invariance. Helical symmetry can be actually considered
more efficiently. Thus the model can be reduced to a 2D one, i.e.
a cross-section model. This requires to formulate the homogeniza-
tion theory in a twisted coordinate system. This technique then al-
lows the computation of the static prestressed state of helical
structures (single wire and multi-wire) from the solution of a 2D
problem. Let us mention that an advanced analytical 2D model
has been recently proposed in Argatov (2011). This model takes
into account Poisson’s effect, contact deformation and allows to
obtain the overall strand stiffness as well as local contact stresses.
In this reference, plane strain was assumed to formulate the 2D
problem while in the present work helical symmetry is used.

The method developed in this paper is restricted to multi-wire
helical structures composed of a stack of helical wires wrapped
with the same twisting rate around a straight axis. As explained
in Section 3, this excludes the case of double helical structures
(such as independent wire rope core for instance) and cross-lay
strands.

This paper is organized as follows. First, in Section 2, the curvi-
linear coordinate system is introduced. Then in Section 3 the trans-
lational invariance is defined, which is a necessary condition for
the helical homogenization approach. Based on the asymptotic
expansion method and exploiting the translational invariance
property, the homogenization procedure is presented in Section
4. Its finite element solution is detailed in Section 5. The helical
homogenization approach is validated for helical single wire and
seven-wire structures by comparison with analytical or numerical
models in Section 6.
2. Curvilinear coordinate system

A helical structure is considered (see Fig. 1). Let ðeX ; eY ; eZÞ its
Cartesian orthonormal basis. The helix centreline is defined by its
helix radius R in the Cartesian plane ðeX ; eYÞ and the length of
one helix pitch along the Z-axis denoted by L. This helix centerline
can be described by the following position vector:

rðsÞ ¼ R cos
2p
l

sþ h

� �
eX þ R sin

2p
l

sþ h

� �
eY þ

L
l

seZ ; ð1Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4p2R2

p
is the curvilinear length of one helix pitch

and h is the helix phase angle in the Z ¼ 0 plane. For a seven-wire
strand, h is equal to ðN � 1Þp=3, where N ¼ 1; ::;6 refers to the num-
ber of the helical wire. h is equal to zero for a single wire helical
structure. The helix lay angle U is defined by tan U ¼ 2pR=L. A com-
plete helix is described by the parameter s varying from 0 to l.

2.1. Serret–Frenet basis

A Serret–Frenet basis ðen; eb; etÞ associated to the helix can be
defined (see e.g. Gray et al. (2006)), where the unit vectors
en; eb; et are given by et ¼ dr=ds; den=ds ¼ seb � jet and
deb=ds ¼ �sen. For helical curves, the curvature j ¼ 4p2R=l2 and
the torsion s ¼ 2pL=l2 are constant. In the Cartesian basis, en; eb

and et are expressed by:

en ¼ � cos
2p
l

sþ h

� �
eX � sin

2p
l

sþ h

� �
eY ;

eb ¼
L
l

sin
2p
l

sþ h

� �
eX �

L
l

cos
2p

l
sþ h

� �
eY þ

2p
l

ReZ ;

et ¼ �
2pR

l
sin

2p
l

sþ h

� �
eX þ

2pR
l

cos
2p
l

sþ h

� �
eY þ

L
l

eZ :

ð2Þ

The normal vector en remains parallel to the ðeX ; eYÞ plane while
eb and et move in the three directions of the Cartesian basis as s
and h vary.

2.2. Twisted basis

A special case of the Serret–Frenet basis denoted by ðex; ey; eZÞ
corresponding to j ¼ 0 and s ¼ 2p=L can be considered. It corre-
sponds to a twisted coordinate system along the Z-axis ðs � ZÞwith
axial periodicity L. The unit vectors ex and ey rotate around the Z-
axis and remain parallel to the ðeX ; eY Þ plane (see Fig. 1). In the
Cartesian basis, ex and ey are expressed as:

ex ¼ � cos
2p
L

Z þ h

� �
eX � sin

2p
L

Z þ h

� �
eY ;

ey ¼ sin
2p
L

Z þ h

� �
eX � cos

2p
L

Z þ h

� �
eY :

ð3Þ

It should also be noted that this twisted coordinate system coin-
cides with the one proposed in Onipede and Dong (1996), Nicolet
et al. (2004) and Nicolet and Zola (2007) for the analysis of twisted
and helical structures.

2.3. Covariant and contravariant bases

Differential operators can not be expressed directly in the Ser-
ret–Frenet or twisted bases. They have first to be expressed in
the covariant and contravariant bases. The reader can find an in-
depth treatment of curvilinear coordinate systems in Chapelle
and Bathe (2003); Synge and Schild (1978); Wempner (1981) for
instance.

From the twisted basis ðex; ey; eZÞ, a new coordinate system
ðx; y; ZÞ is built, for which any position vector can be expressed as:
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Xðx; y; ZÞ ¼ xexðZÞ þ yeyðZÞ þ ZeZ : ð4Þ

The covariant basis ðg1; g2; g3Þ is obtained from the position vector
by ðg1;g2;g3Þ ¼ ð@X=@x; @X=@y; @X=@ZÞ, which yields in the twisted
basis:

g1 ¼ exðZÞ; g2 ¼ eyðZÞ;
g3 ¼ �syexðZÞ þ sxeyðZÞ þ eZ :

ð5Þ

Note that the covariant basis is not orthogonal.
The covariant metric tensor, defined by gmn ¼ gm � gn, is then

given by:

g ¼
1 0 �sy

0 1 sx

�sy sx s2ðx2 þ y2Þ þ 1

2
64

3
75: ð6Þ

The covariant basis gives rise to the contravariant one ðg1;g2;g3Þ,
defined from gi � gj ¼ dj

i. Superscripts and subscripts refer to the
covariant and contravariant vectors, respectively. g1;g2 and g3 are
expressed in the twisted basis as:

g1 ¼ exðZÞ þ syeZ ;g2 ¼ eyðZÞ � sxeZ ; g3 ¼ eZ : ð7Þ

The Christoffel symbol of the second kind Ck
ij, defined

by Ck
ij ¼ gi;j � gk, can be calculated from the covariant and

contravariant bases, which leads to:

Ck
11 ¼ Ck

12 ¼ Ck
21 ¼ Ck

22 ¼ 0;

C1
13 ¼ C1

31 ¼ 0; C1
23 ¼ C1

32 ¼ �s; C1
33 ¼ �s2x;

C2
23 ¼ C2

32 ¼ 0; C2
33 ¼ �s2y; C2

13 ¼ C2
31 ¼ s;

C3
13 ¼ C3

31 ¼ C3
23 ¼ C3

32 ¼ C3
33 ¼ 0:

ð8Þ

It is noteworthy that the coefficients Ck
ij do not depend on the

axial variable Z. As shown in the next section, this is a necessary
condition for translational invariance.
2.4. Strain tensor

The strain tensor is now rewritten in the curvilinear coordinate
system. In the contravariant basis, the strain–displacement rela-
tion is Chapelle and Bathe, 2003:

� ¼ �ijgi � gj; �ij ¼
1
2
ðui;j þ uj;iÞ � Ck

ijuk; ð9Þ

where the ui’s denote the displacement covariant components.
Using the relation (7) between the contravariant and the

twisted bases, the strain vector can then be expressed in the
twisted basis as follows:

f�g ¼ Lxy þ LZ
@

@Z

� �
fug;
Lxy ¼

@=@x 0 0
0 @=@y 0
0 0 K

@=@y @=@x 0
K �s @=@x

s K @=@y

2
666666664

3
777777775
; LZ ¼

0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0

2
666666664

3
777777775
; ð10Þ

where K ¼ sðy@=@x� x@=@yÞ. The column vectors fug ¼ ½ux uy uZ �T

and f�g ¼ ½�xx �yy �ZZ 2�xy 2�xZ 2�yZ �T are the displacement vector and
the strain vector respectively, both written in the orthonormal
twisted basis ðex; ey; eZÞ.
2.5. Constitutive law

For an isotropic material, the elasticity tensor is given in the
covariant basis by Chapelle and Bathe, 2003:

C ¼ Cijklgi � gj � gk � gl;

Cijkl ¼ mE
ð1þ mÞð1� 2mÞ g

ijgkl þ E
2ð1þ mÞ ðg

ikgjl þ gilgjkÞ;
ð11Þ

where E and m are the Young modulus and the Poisson’s ratio,
respectively. Using the relation between the covariant and the
twisted bases and after simplifications, it can be checked that the
elasticity tensor components in the twisted basis are given by:

Cabdc ¼
mE

ð1þ mÞð1� 2mÞ dabddc þ
E

2ð1þ mÞ ðdaddbc þ dacdbdÞ; ð12Þ

where greek subscripts fa; b; c; dg denote components x; y; Z in the
twisted basis. The above expression coincides with the one obtained
in the Cartesian basis, as the twisted basis is orthonormal.

3. Translational invariance

Translational invariance is a key property for applying the
homogenization theory. For cylindrical structures, translational
invariance means that both the cross-section and the material
properties do not vary along the axis. For curved structures, there
is another condition which states that the differential operator
coefficients must not depend on the axial variable (Treyssède,
2011). As a consequence, for helical structures, the translational
invariance requires the following three conditions (Treyssède,
2008; Treyssède and Laguerre, 2010):

1. The material properties do not vary along the Z-axis in the
twisted coordinate system;

2. The coefficients of the differential operators (gradient, diver-
gence, Laplacian, . . .) are independent on the axial variable Z;

3. The cross-section does not vary along the Z-axis in the twisted
coordinate system.

Throughout this work, the material is assumed to be homoge-
neous and isotropic. In this case, the first condition is verified. To
satisfy the second condition, it is sufficient to prove that the Chris-
toffel symbols do not depend on the axial variable Z, which has
been verified in the last section (see Eq. 8). Thus it remains only
to verify the third condition.

Let us consider a helical single wire structure. The cross-section
shape in the ðeX ; eYÞ plane at the axial position Z1 is similar to that
given at the position Z2: there only exists a rotation of angle
2pðZ2 � Z1Þ=L around the Z-axis between these two cross-section
shapes. Moreover, because the twisted basis plane ðex; eyÞ also ro-
tates around Z, the cross-section indeed remains fixed in this plane.
Therefore, the translational invariance is checked for helical single
wire structures. Fig. 2 shows the cross-section of four helical single
wires with R ¼ 2a and different helical angles in the ðeX ; eYÞ plane.
a is the radius of the circular cross-section (the cross-section being
circular in the plane normal to the helical curve). Note that for
small angle U, the cross-section shape in this plane is nearly circu-
lar because the structure is close to a cylinder (Fig. 2a). However
the cross-section shape deviates from the circular one as U
increases.

Let us now consider multi-wire helical structures. They are
composed of a stack of helical wires, wrapped around a straight
wire. A seven-wire strand is a special case of helical multi-wire
structures containing one layer of six helical wires wrapped around
the central wire. In the twisted basis, a cylindrical structure of axis
Z with isotropic material is translationally invariant for any value



Fig. 2. Cross-section of helical wires, R=a ¼ 2 and (a) U ¼ 10� , (b) U ¼ 30� , (c) U ¼ 50� , (d) U ¼ 70� .

Fig. 3. 3D helical structures. (a) single wire, (b) seven-wire strand.
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of the torsion s (see Treyssède and Laguerre (2010)). It therefore
remains fixed in the Cartesian as in the twisted coordinate systems.
The central wire is hence translationally invariant. As shown for
helical single wire, the peripheral helical wires, which have the
same helix parameters are also translationally invariant in the
twisted coordinate system. The geometric invariance is then veri-
fied for the seven-wire strand in the twisted coordinate system
and the problem is translationally invariant.

Let us briefly examine more complex structures. In multi-layer
wire ropes, more than one layer of helical wires is present. Trans-
lational invariance in such structures is still satisfied if the torsion
of each wire remains identical. This implies that translational
invariance is not fulfilled in case of cross-lay strands because the
torsion can be positive or negative. This loss of invariance is obvi-
ous if one thinks of contact discontinuities between two layers of
opposite torsion. Contact discontinuities also necessarily occur in
double helical structures, composed of one central strand wrapped
by several peripheral strands. Such double helical structures,
sometimes referred to as IWRC (independent wire rope core),
hence cannot fulfill translational invariance.

To conclude this section, let us define the cross-section bound-
ary in the plane Z ¼ 0. The surface boundary of a helical single wire
with circular cross-section is described in the Serret–Frenet basis
by the following position vector:

Xðx; y; sÞ ¼ rðsÞ þ a cos tenðsÞ þ a sin tebðsÞ; ð13Þ

where t 2 ½0; 2p�. Substituting Eq. (2) into Eq. (13), the cross-section
shape parameterization in the ðeX ; eYÞ plane is:

XðtÞ ¼ ðR� a cos tÞ cosðga sin t þ hÞ þ L
l a sin t sinðga sin t þ hÞ;

YðtÞ ¼ ðR� a cos tÞ sinðga sin t þ hÞ þ L
l a sin t cosðga sin t þ hÞ;

(

ð14Þ

where g ¼ �4p2R=lL. This curve has been used to plot the cross-sec-
tions on Fig. 2. It has also been used for the FE mesh generation in
Section 6.
4. Helical homogenization procedure

In this work, helical structures are supposed to be subjected to
external loads at its end sections. Moreover, only axial loads (trac-
tion and torsion) are considered. Targeted helical structures are
helical springs and seven-wire strands.

As explained in introduction, the purpose of this paper is to pro-
pose an approach for obtaining the static stress state, which will be
used in the second part of this paper as a prestress state, for a wave
propagation analysis. This can be achieved efficiently using an
homogenization method. This approach, based on the asymptotic
expansion method, exploits the translational invariance property.
Homogenization splits the initial 3D elasticity problem into 2D
problems posed on the cross-section, and a 1D straight beam prob-
lem. The overall beam behavior is computed thanks to the solution
of the 2D problems. This solution, combined with the solution of
the beam problem, provides also the local stress state.

For the present work, let us consider a slender helical structure
of axial length H (see Fig. 3), with a cross-section denoted Se. This
structure occupies the configuration Xe ¼ Se � ½0;H�. The boundary
of Xe is defined by @Xe ¼ Ce [ Ce

0 [ Ce
H , with Ce

0 ¼ Se � f0g and
Ce

H ¼ Se � fHg the two end cross-sections of the helical structure
and Ce the cross-section boundary. This structure exhibits a small
parameter e, corresponding to the inverse of the slenderness ratio,
i.e. the ratio between the diameter of the cross-section Se and the
length H.
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4.1. The initial problem

The linear elasticity problem consists in finding the fields re;�e

and ue, solution of:

r � re ¼ 0;
re ¼ C : �eðueÞ;
�eðueÞ ¼ rsðueÞ;
re � n ¼ 0 on Ce;

8>>><
>>>:

ð15Þ

where C is the elasticity tensor, which is supposed to be constant
under the assumption of small displacements. rsð�Þ and r � ð�Þ de-
note respectively the symmetric gradient (strain) and divergence
operators. The solution must also verify the boundary conditions
at the end sections. They are supposed to be under the form of
stress data: re � ð�eZÞ ¼ t0 on Ce

0 and re � eZ ¼ tH on Ce
H , where t0

and tH are the tractions at the end sections located at Z ¼ 0 and
Z ¼ H. Moreover t0 and tH are such that the overall structure equi-
librium is fulfilled, which is a necessary condition for problem (15)
to have a solution.

For seven-wire strand, the solution must verify Eq. (15) on each
wire as well as contact equations, on the contact line between the
central wire and each helical wire. This raises the problem of con-
tact assumptions. In Ghoreishi et al., 2007, stick and slip conditions
have been studied for computing the overall behavior. In Gnanavel
and Parthasarathy (2011), an analytical model with frictional con-
tact was developed. Overall stiffness as well as maximum normal
contact stresses were calculated from the authors’s model and
the Costello’s model which assumes stick contact. In Argatov
(2011) hypothesis of slip contact is made and maximum contact
pressures (core-wire and wire-wire) were compared to FE compu-
tations performed with frictional contact in Jiang et al. (2008). All
of these previous works have shown that the overall stiffness
and contact stresses are very little sensitive to contact conditions.
Therefore in this work, for simplicity, the contact is assumed to be
stick. This amounts to perfect bonding conditions between wires:
uc ¼ up and ðr � nÞþc þ ðr � nÞ

�
p ¼ 0, where the subscripts c and p

are related to the central and peripheral wires.
The solution of this problem (15) with boundary conditions and

contact equations for multi-wire strand provides the prestress
state. As mentioned previously, this problem may be computation-
ally expensive to solve under this form, and the homogenization
method aims to simplify it.

4.2. Asymptotic expansion method

To our knowledge very few works have been devoted to the
asymptotic analysis of helical structures starting from a 3D formu-
lation. We just mention Nicolet et al., 2007 in the framework of
electrostatics. Therefore, the approach presented in this paper is
based on Buannic and Cartraud (2000) and Buannic and Cartraud
(2001a) developed for axially invariant and periodic beam-like
structures respectively. More about asymptotic expansion method
for slender structures may be found in some books (Sanchez-Hu-
bert and Sanchez-Palencia, 1992; Kalamkarov and Kolpakov,
1997; Trabucho and Viaño, 1996).

The first step of the method consists in defining a problem
equivalent to problem (15), but posed on a fixed domain that does
not depend on the small parameter e. A change of variables is thus
introduced which takes into account the structure slenderness, in
the twisted coordinates system: ðx; y; fÞ ¼ ðx; y; eZÞ. f ¼ eZ denotes
the slow scale or macroscopic 1D-variable and fx; yg denote the
fast scale or microscopic 2D-variables. According to this change
of variables, the differential operators become
rsð:Þ ¼ rs
xyð:Þ þ ers

fð:Þ;
r � ð:Þ ¼ rxy � ð:Þ þ erf � ð:Þ;

ð16Þ

where rs
fð:Þ and rf � ð:Þ correspond to partial differentiations with

respect to the macroscopic variable f. rs
xyð:Þ and rs

xy � ð:Þ denote
the differential operators with respect to the microscopic variables
x and y.

Next, the displacement solution is searched under an asymp-
totic expansion form:

uðxÞ ¼ u0
xðfÞex þ u0

yðfÞey þ eu1ðx; y; fÞ þ e2u2ðx; y; fÞ þ . . . ð17Þ

In this expression, the translational invariance is taken into account
since the kth order displacement ukðx; y; fÞ does not depend on the
microscopic axial coordinate Z. Moreover, it is usually considered
that the 0th order displacement has no axial component, which re-
sults from the property that for slender structures, the bending stiff-
ness is much lower than axial stiffness. So 0th order displacement
corresponds to a transverse deflection. Note that a proof of this re-
sult may be found in Trabucho and Viaño (1996) for homogeneous
beams, and in Kolpakov (1991) for beams with periodic structure.
As axial loads are considered in this work, and under the assump-
tion that bending is not coupled with tension and torsion, this 0th
order term vanishes.

Reporting expansion (17) in problem (15) with the use of (16),
and considering f and fx; yg as independent coordinates, one is led
to a sequence of problems. On one hand 2D microscopic problems
posed on the cross-section S, which will be denoted Pm

2D, where m
denotes the order of e in the equilibrium equation. On the other
hand a sequence of 1D macroscopic problems will be also obtained,
but only the lowest order macroscopic problem will be considered
in the following.

4.3. Microscopic problems

The lowest order 2D microscopic problem posed on the cross-
section S is P1

2D with the following equations:

rxy � r1 ¼ 0;
r1 ¼ C : �1;

�1 ¼ rs
xyðu1Þ;

r1 � n ¼ 0 on @S:

8>>>><
>>>>:

ð18Þ

It is important to notice that though this problem is 2D, the dis-
placement u1 has three components. This results from the property
than in a matrix form, from Eq. (10), one has:

frs
xyðu1Þg ¼ Lxyfu1g ¼ Lxy

u1
x

u1
y

u1
f

8><
>:

9>=
>;: ð19Þ

Problem P1
2D is well-posed and has a unique solution up to a rigid

body motion (Sanchez-Hubert and Sanchez-Palencia, 1992; Buannic
and Cartraud, 2000). The stress solution is obviously equal to zero.
The displacement is thus a rigid body motion solution of
rs

xyðu1Þ ¼ 0, its expression in the twisted basis is:

u1 ¼ u1
f ðfÞeZ þu1ðfÞ½xey � yex�; ð20Þ

corresponding to an overall translation u1
f and rotation u1 around

the Z-axis. The solution of problem (18) is then given by u1 with
at this step arbitrary u1

f ðfÞ and u1ðfÞ and �1 ¼ r1 ¼ 0.
The next order microscopic problem P2

2D involves r2;�2 and u2

solution of:
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rxy � r2 ¼ 0;
r2 ¼ C : �2;

�2 ¼ rs
xyðu2Þ þ rs

fðu1Þ;
r2 � n ¼ 0 on @S:

8>>>><
>>>>:

ð21Þ

Note that the displacement vector u1, obtained from the solu-
tion of the problem P1

2D, appears through rs
fðu1Þ in P2

2D. From Eq.
(20), it can be seen that the components of this strain tensor are,
under a matrix form:

frs
fðu1Þg ¼ 0 0 EE 0 �yET xET

� �T
; ð22Þ

where EE ¼ @u1
f =@f and ET ¼ @u1=@f and thus can be identified as

macroscopic strains, i.e. extension and torsion respectively. There-
fore, the other part of the strain rs

xyðu2Þ is a microscopic strain.
Thanks to the problem linearity, its solution is a linear function

of the macroscopic strains, up to a rigid body displacement which
is of the form (20). So one has:

u2 ¼ vEðx; yÞEEðfÞ þ vTðx; yÞETðfÞ þ u2
f ðfÞeZ þu2ðfÞ½xey � yex�;

r2 ¼ rEðx; yÞEE þ rTðx; yÞET :

ð23Þ

As it will be shown in the next section, the lowest order macro-
scopic problem is a 1D beam problem, with extension and torsion.
It thus involves macroscopic beam stresses which are simply de-
fined from the integration over the cross-section S of the local or
microscopic stresses r1. Consequently the axial force T and the tor-
que M take the form:

TðfÞ ¼
Z

S
r2

ffdS;

MðfÞ ¼
Z

S
ð�yr2

xf þ xr2
yfÞdS

ð24Þ

and from the solution of problem (21), one can define the overall
beam behavior such that:

T
M

� �
¼ ½khom� EE

ET

( )
; ð25Þ

where ½khom� is the stiffness matrix, which is symmetric.

4.4. Macroscopic problem

The lowest order macroscopic problem can be derived from
compatibility conditions which express that problem (21) admits
a solution, see e.g. Buannic and Cartraud (2000); Buannic and Cart-
raud (2001a). It amounts to integrate equilibrium equations of
problem (21) over the cross-section. This yields:

dT=df ¼ 0;
dM=df ¼ 0;

T

M

� �
¼ ½khom� EE

ET

( )
;

EE ¼ @u1
f =@f;

ET ¼ @u1=@f;

8>>>>>>>>><
>>>>>>>>>:

ð26Þ

with boundary conditions at f ¼ 0 and f ¼ eH. Since we have stress
data for the 3D initial problem, and taking into account the overall
equilibrium, these boundary conditions can be written as:

Tð0Þ ¼
R

S t0 � ð�eZÞdS;

Mð0Þ ¼
R

Sðyt0 � ex � xt0 � eyÞdS;

TðeHÞ ¼ Tð0Þ;
MðeHÞ ¼ Mð0Þ;

8>>>><
>>>>:

ð27Þ
which corresponds to the application of the Saint-Venant principle,
rigorously justified in the framework of asymptotic analysis of
beams in Buannic and Cartraud, 2001b.

The solution of this 1D macroscopic problem (26) and (27) is
thus straightforward with a uniform macroscopic state:
T ¼ Tð0Þ;M ¼ Mð0Þ, with the macroscopic strains EE and ET ob-
tained from the inversion of (25) and u1

f and u1 calculated thanks
to (26)4–5 and defined up to a constant.

4.5. Summary

One can summarize the results of the asymptotic expansion
method with the following expressions:

uðxÞ ¼ eðu1
f ðfÞeZ þu1ðfÞ½xey � yex�Þ þ e2ðvEðx; yÞEE þ vTðx; yÞET

þ u2
f ðfÞeZ þu2ðfÞ½xey � yex�Þ þ Oðe3Þ;

r ¼ eðrEðx; yÞEE þ rTðx; yÞETÞ þ Oðe2Þ: ð28Þ

It is recalled that microscopic fields vEðx; yÞ;vTðx; yÞ;rEðx; yÞ rTðx; yÞ
are provided by the solution of the 2D microscopic problem (21)
posed on the cross-section. Then, the expansions given in (28) can
be easily computed up to the second-order rigid body motion, com-
bining the previous solution of the 1D macroscopic problem with
these microscopic fields.

5. Finite element solution

The variational formulation of the 2D microscopic problem (21)
in the twisted coordinate system takes the form:

8du2ðx; yÞ;
Z

S
rs

xyðdu2Þ : r2dxdy ¼ 0 ð29Þ

and from Eq. (21)3:

r2 ¼ C : ðrs
xyðu2Þ þ �macroÞ; ð30Þ

with �macro ¼ rs
fðu1Þ. Hence one has:

8du2ðx; yÞ;
Z

S
rs

xyðdu2Þ : C : rs
xyðu2Þdxdy ¼ �

Z
S
rs

xyðdu2Þ

: C : �macrodxdy: ð31Þ

We recall that frs
xyðu2Þg ¼ Lxyfu2g, see (19). Then a finite element

approximation of the form fu2g ¼ ½Ne�fUeg is introduced, where
½Ne� is the matrix of shape functions, and fUeg the nodal displace-
ments, with three degrees of freedom at each node. The variational
formulation yields:

½K�fUg ¼ fFg;

½Ke� ¼
Z

Se
½Ne�T LT

xy½C�Lxy½Ne�dxdy;

fFeg ¼ �
Z

Se
½Ne�T LT

xy½C�f�macrogdxdy;

ð32Þ

with ½K� the stiffness matrix obtained from the assembly of element
stiffness matrices ½Ke�.

Note that in (32) the external load is given under the form of a
macroscopic strain f�macrog.

Once this system is solved, the stresses are computed thanks to
(30) and after integration over the cross-section, the macroscopic
beam stresses, i.e. the axial force and the torque are computed,
thus providing the overall behavior ½khom�.

6. Validation of the homogenization approach

In this section, the microscopic response is computed for helical
springs and seven-wire strands under axial loading. The 2D FE



Fig. 4. Correction factor W vs. a=R for U ¼ 70� ;75�;80�;85� .
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model based on helical homogenization has been implemented in
an in-house code. This model is first validated for helical springs by
comparison with an analytical solution. Another validation is also
presented for seven-wire strands with a reference solution ob-
tained from a 3D FE model.

For helical single wire or multi-wire structures subjected to a
given macroscopic extension EE (ET ¼ 0), first the 2D model is gen-
erated. The cross-section is meshed, with six-node triangle ele-
ments to improve the geometrical description as well as results
accuracy. The solution of the microscopic 2D problem is defined
up to a rigid body displacement in the twisted coordinate system,
see Eq. (20), which can be fixed by prescribing the axial displace-
ment uZ of an arbitrary node and the binormal displacement uy

of a node on the line y ¼ 0. Then Eq. (32) is solved, and in the
post-processing step, the computation of the axial force T and mo-
ment M are performed as well as the overall behavior.
6.1. Helical single wire structures

A helical single wire structure with circular cross-section is
studied. R;U;n and a denote the helix radius, helix angle, number
of helix pitches and the wire radius, respectively. Two types of
structures can be distinguished: helical springs (large helix angle
U and ratio R=a) and civil engineering cable (small angle U). The
homogenization approach proposed in this paper is valid for any
type of helical structures. However, in the literature, analytical
solution is available only in the case of helical spring. Therefore,
the validation of the homogenization approach is performed in that
case.

The analytical solution may be found in Ancker and Goodier,
1958. When one end-section is clamped while the other is sub-
jected to axial load T with a fixed rotation, the axial deflection d
at its end is given by:

d ¼ 4TR3n

Ga4 W;

W ¼ 1� 3
16

a
R

	 
2

þ 1
ð1þ mÞ tan2 U

1� m
2
� m2

1þ 3�7m�20m2�8m3

48ð1þmÞ ðaR Þ
2 þ 1þm

tan2 U

 !
þ � � � ;

ð33Þ

where W is a pitch and curvature correction factor.
The inputs of the analytical solution are the ratio a=R, the helix

angle U and the Poisson coefficient m. For given geometric and
material parameters, Eq. (33) is used to compute the correction
factor W.

The numerical results provided by the homogenization ap-
proach are compared with the analytical solutions for helical
springs as follows. For a given d, the macroscopic strain
EE ¼ d=nL; ET ¼ 0 is imposed as the loading in (32) on the 2D FE
model. Then the axial force T is computed. This leads to a numer-
ical value of W according to Eq. (33)1, which is compared to the
analytical solution given by Eq. (33)2. For m ¼ 0:3, Fig. 4 shows
the variation of the correction factor W as a function of a=R for helix
angle U ¼ 70�;75� , 80� and 85�. Only small differences between
numerical and analytical results can be seen for a=R 6 0:2. This dif-
ference increases with a=R and as U decreases but remains less
than 0:7% for U ¼ 70� and a=R ¼ 0:35, which is small.

The same evolution of the differences between the numerical
results and the analytical solution was observed in Jiang et al.,
2008, using a 3D FE model, with a free rotation. They are due to
the non validity of the analytical model for large a=R and small he-
lix angle U. However, our numerical results are in good agreement
with those obtained from the analytical model providing a first val-
idation of the computational homogenization approach.

Now, the 2D FE model is used to highlight the 3D microscopic
displacements under extension. Fig. 5 shows the microscopic dis-
placements u2 of helical spring with helix parameters R=a ¼ 10
and U ¼ 75� subjected to axial extension EE ¼ 40%. Note that this
example corresponds to an extreme situation, where a large load
is applied on helical spring with a small helix angle U. The mesh
is made of 4327 dofs. It can be seen that axial displacement in
Fig. 5(b) exhibits a linear evolution over the cross-section, which
indicates the local bending response. For the geometrical and
material properties a ¼ 2:7 mm;m ¼ 0:3 and E ¼ 2e11 Pa, the com-
puted axial force and torque are T ¼ 930:9 N and M ¼ �1:83 N:m.
This example will be used, in Part 2 of this paper, for the wave
propagation analysis in prestressed elastic helical springs.

6.2. Seven-wire strands

Multi-wire cables form a large class of civil engineering compo-
nents. Seven-wire strands, composed of one layer of helical wires
wrapped around a central wire, are the basic element of these
cables. The major advantage of the twisted structure is its ability
to carry large loads.

The static behavior of seven-wire strands was studied among
others in Ghoreishi et al. (2007) using a 3D FE model. In that paper
the overall strand stiffness was identified from computations per-
formed on a model of two pitch length, and these results are con-
sidered as reference results in the following.

The static behavior is computed using the computational
homogenization approach and the 2D FE model. The 2D mesh is
generated as follows: an independent mesh for each wire of the se-
ven-wire strand is first considered. As mentioned before, the con-
tact condition between the central and peripheral wires are
assumed stick. Linear relations are then imposed at the contact
point between the central and the peripheral wires, expressing
the displacement continuity (uc ¼ up), where the subscripts c and
p correspond to the central and peripheral wires, respectively. In
practice, the system (32) is condensed to take into account these
conditions.

As an example, Fig. 6 shows the mesh of the cross-section of a
strand with the following parameters: central wire with radius a
and helical wires with helix radius R=a ¼ 1:967 and angle
U ¼ 7:9�. The cross-section of the central straight wire is circular.
As for the previous helical single wire structure, the cross-section
of helical wires is no longer circular in the ðeX ; eYÞ plane. Note that
the helix radius R must be smaller than 2a, otherwise the adjacent
helical wires would overlap each other. This example will be con-
sidered later in this section as well as in Part 2.



Fig. 5. Dimensionless microscopic displacements in the cross-section of a helical spring (R=a ¼ 10;U ¼ 75�) under axial deformation EE ¼ 40%. (a) u2
x=a, (b) u2

f =a.

Fig. 6. Mesh of seven-wire strand (R=a ¼ 1:967;U ¼ 7:9� ; a is the radius of the
central wire).
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Now, the overall behavior of seven-wire strand is computed.
The stiffness components studied are the axial stiffness and the
coupling between extension and torsion, i.e. the 11 and 21 compo-
nents of the matrix ½khom� introduced in (25). In order to compare
results obtained from the 2D FE model with the reference solution
of Ghoreishi et al., 2007, we set R=a ¼ 2; m ¼ 0:3 and the stiffness
components are written in the dimensionless form:
k11 ¼ khom

11 =ðEpR2Þ; k21 ¼ khom
21 =ðEpR3Þ.

Fig. 7 displays the variation of the axial stiffness k11 as a func-
tion of the helix angle U, which varies between 2:5� and 35�. For
U 6 25�, the difference between the two results is below 2%. This
difference increases with U and reaches 10% for U ¼ 35�.

The variation of the coupling term k21 as a function of the helix
angle U is shown in Fig. 8. For U 6 8�, the coupling term obtained
by the two FE models are very close. For large helix angle, the dif-
ference between the two solutions is below 4%.
The difference between the 2D and the reference 3D FE solu-
tions can be explained by the use of a different mesh in the 2D
model compared to the reference model. Indeed, the 2D mesh of
a seven-wire strand with U ¼ 5� use 1122 triangular elements
and 2514 nodes, while the cross-section in the reference 3D model
is made of 72 elements and 210 nodes. Both the 2D and 3D FE
models use quadratic elements. Moreover, an elliptical approxima-
tion of the cross-section shape was used in the 3D model, while the
geometry is rigorously represented in the 2D model, according to
Eq. (14). However as can be seen from Fig. (2), this approximation
seems to be justified for examples studied with U 6 35�.

Overall the macroscopic behavior of the seven-wire strand com-
puted by the 2D FE model according to the homogenization ap-
proach is in good agreement with that obtained from the 3D
model. This provides a second validation of the helical computa-
tional homogenization approach.

Lastly, microscopic displacements computed using the 2D FE
model are analyzed. From the symmetry between the six helical
wires, the displacements of only one peripheral wire is discussed.
Fig. 9 shows the microscopic displacements in the cross-section
of the seven-wire strand considered in Fig. 6
(R=a ¼ 1:967;U ¼ 7:9�), subjected to EE ¼ 0:6%. The in plane com-
ponent u2

x of the central and the peripheral wire are shown in
Fig. 9(a) and (c), respectively. One can observe the Poisson effect,
with a linear evolution over the cross-section of u2

x in the central
wire, and an affine evolution in the peripheral wire, which is main-
tained in contact with the central wire. The axial displacement is
presented in Fig. 9(b) and (d) for the central and the peripheral
wire, respectively. One can notice that for the central wire the
microscopic axial displacement is close to zero except in the vicin-
ity of contact points where small variations occur. In the helical
wire, a linear evolution of the microscopic axial displacement over
the cross-section is found, due to local bending. For this example,
the core wire radius is a ¼ 2:7 mm (the helical wire radius being
0:967 a). Material properties are: m ¼ 0:28 and E ¼ 2:17e11 Pa.
The computed axial force and torque are T ¼ 190:3 kN and
M ¼ 118:1 N:m. This example will used in Part 2 of this paper,
for wave propagation analysis in prestressed strands.



Fig. 7. Dimensionless axial stiffness of seven-wire strand. k11 vs. U. R=a ¼ 2.

Fig. 8. Dimensionless stiffness coupling term of seven-wire strand. k21 vs. U. R=a ¼ 2.

Fig. 9. Dimensionless microscopic displacements of a seven-wire strand under axial deformation EE ¼ 0:6%. (a) u2
x=a and (b) u2

f =a in the central wire (c) u2
x=a and (d) u2

f =a in
the peripheral wire.
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7. Conclusions

In this paper, the asymptotic expansion method has been ap-
plied to helical structures subjected to axial loads (traction and tor-
sion) at its end sections. Thanks to the use of a twisted coordinate
system, the 3D elastic problem has been reduced to a 2D micro-
scopic problem posed on the cross-section and a 1D macroscopic
beam problem, which has an analytical solution. Therefore the
main contribution of this work is the derivation of the 2D micro-
scopic problem, which fully exploits the translational invariance
of the problem. The solution of this problem enables the computa-
tion of the overall beam stiffness as well as microscopic stresses
corresponding to a given macroscopic loading. The proposed ap-
proach has been validated for helical single wire structures and se-
ven-wire strands and compares favorably with reference analytical
results or 3D FE computations.

In Part 2 of this paper, the solution of the microscopic problem
is used in order to take into account effects of prestress and geom-
etry deformation on wave propagation.
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