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A THEORY FOR RUBBER-LIKE RODS 

 

Abstract :  A theory  for incompressible rubber-like straight rods undergoing finite strains and finite rotations 

is presented. Strains are expanded asymptotically for transverse coordinate of undeformed rod. The equations of 

equilibrium and corresponding boundary conditions are derived by implementing minimum total potential 

energy principle. Necessary conditions for  the satisfaction of  the stress-free boundary conditions on the top and 

bottom free surfaces of the rubber-like rods are derived. For the illustration and test of the proposed theory, the 

flexural buckling problem of  Mooney-Rivlin rods  under axial compressive loads is considered. Exact solutions 

corresponding to (i) various alternatives about the perturbation terms of the strain components, (ii) a very 

rigorous rod theory developed previously, and (iii) the three dimensional elasticity are obtained and compared. 

Degree of accuracy of  the aforementioned approaches is discussed basing on the three dimensional elasticity 

solution. It is observed that considering all of  the second order permutation terms yields very appealing results, 

almost coinciding with the results corresponding to the three dimensional elasticity for thin and quite thick rods. 

 

Key words : Asymptotic, Constitutive, Flexural buckling, Elastomers, Large deformation, Large strain, 

Nonlinear elasticity, Perturbation, Polymers, Rubbers, Shear deformation, Stability, Thick rod (bar, beam, 

column),  Thin  rod  (bar, beam, column) 

        

1. Introduction 

Theory of elasticity is a delicate approach to solve the problems of the elastic media. Since it is 

generally quite difficult to solve the corresponding three dimensional boundary value problems analytically or 

numerically; rod, plate and shell theories have been proposed and used by researchers and engineers. Obtained 

through the reduction from three dimensions to one or two dimensions; the rod, plate and shell theories contain 

assumptions depending on the degree of accuracy demanded by the researchers and engineers. The mentioned 

assumptions have simplified the problems considerably with the expense of sacrificing from the accuracy of the 

solution of the problems. Due to the diversity of the degree of accuracy desired in the concerning problems; 

various rod, plate and shell theories have still been going on to be proposed and used. It has always been a 

problem haunting the minds of  the researchers to establish rod, plate and shell theories approaching the 

solutions of  the theory of elasticity as much as possible. In this context; new theories for rods, plates and shells 
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have unavoidably been tested by comparing the solutions obtained by using them with those corresponding to 

the theory of elasticity. 

 Rubber-like materials are hyperelastic materials capable of making very large elastic deformations (e.g., 

a stretch (Eringen, 1980) of 17.62 was measured by Smith and Chu (1972).). The compressibility of rubber-like 

materials is generally very small and, therefore, they are generally considered to be incompressible, except a few 

of them (e.g., polyurethane, foam rubber, hyperelastic soft tissue (Blatz and Ko, 1962; Simmonds, 1987; 

Yıldırım and Yükseler, 2011; Yükseler, 1996a). The stress-strain relations of rubber-like materials are highly 

nonlinear (Erman and Mark, 1997; Gent, 2005; Treloar, 1975). Therefore, a study pertaining to rubber-like 

materials should unavoidably include physical nonlinearity if the study is not restricted with the infinitesimally 

small deformations. 

 Rubber-like rods are used in various branches of engineering and science. Although there has been a 

host of researches about the rods (beams and columns) undergoing (i) infinitesimally small displacements and 

strains,  considering and disregarding the zero traction conditions on the top and bottom free surfaces of  the rods 

(e.g. Baghani et al., 2014; Bickford, 1982; Carrera et al., 2012; Dong et al., 2013; Ghosh et al., 2013; Kang, 

2014; Li, 2014; Miranda et al., 2013; Pradhan and Chakraverty, 2014; Reddy, 1984; Salamat-talab et al., 2012; 

Sarkar and Ganguli, 2013; Thai and Vo, 2012; Timoshenko, 1921; Vlasov, 1961; Wang et al., 2000), (ii) large 

displacements but infinitesimally small strains (e.g. Chen, 2010; Chen and Hung, 2014; Freno and Cizmas, 2012; 

Jang, 2013; Karlson and Leamy, 2013; Lin and Lin, 2011; Monsalve et al., 2007; Nallathambi et al., 2010; 

Neukirch et al., 2012; Posada et al., 2011; Pulngern et al., 2013; Reddy, 2010; Reddy and Borgi, 2014; 

Sapountzakis and Mokos, 2008; Tari, 2013); there have been only very few studies on the rods undergoing finite 

strains (e.g., Dias and Audoly, 2014; Hori and Sasagawa, 2000), considering both of the geometrical and 

physical nonlinearities, and specially rubber-like rods (e.g. Attard and Hunt, 2008; Dai and Li, 2009; 

Lacarbonara, 2008; Libai and Simmonds, 1998; Makowski and Stumpf, 1988). The author of the present paper 

has not met any comment on the stress-free conditions on the top and bottom free surfaces of the rubber-like rods 

in the relevant literature. To the best of the author’s knowledge, the most detailed analysis on the rods 

undergoing finite strains was performed by Makowski and Stumpf (1988). Makowski and Stumpf (1988) 

proposed a non-simple shearable rod model containing only two independent kinematical variables, namely the 

displacement and rotation vectors. The model had the assumptions that material fibres initially normal to the 

reference curve remained straight (but not necessarily normal) during the deformation and that the deformation 

was isochoric. Not only the strains themselves, but also the gradients of the strains were considered as the 
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constitutive variables and, therefore, additional stress-resultants to the conventional ones were defined in their 

analysis.  

In this study, a theory for incompressible rubber-like straight rods of rectangular cross-sections 

undergoing finite strains and rotations is presented. No assumption is made about the deformation of  the 

material fibres initially normal to the reference line. In Section 2, the position vectors and base vectors of generic 

points in the undeformed and deformed rod spaces are defined. Using the base vectors defined in Section 2, the 

strain components are expressed in terms of deformation variables and expanded asymptotically in Section 3. In 

Section 4, expression of  the transverse coordinate of the deformed rod in terms of the transverse coordinate of 

the undeformed rod and deformation variables by using the incompressibility condition is presented. In Section 

5, the strain components and their perturbation terms are expressed in terms of the displacement components. 

Constitutive equations and stress resultants are defined in Section 6. In Section 7, equations of equilibrium and 

natural boundary conditions are obtained by using the calculus of variations (Dikmen, 1979a ; Hildebrand, 

1965). Effective stress-resultants corresponding to the proposed theory are presented in this section, as well. In 

Section 8, general expressions on the satisfaction of  the stress-free boundary conditions on the top and bottom 

free surfaces of the rubber-like rods are presented. In Section 9; as an illustration of the developed approach, the 

flexural buckling of  Mooney-Rivlin straight rods with movable clamped edges is concerned. One dimensional 

constitutive equations for a Mooney-Rivlin rod are derived. A check of the resulting one dimensional 

constitutive equations with those corresponding to the elementary beam theory in case of the infinitesimally 

small deformations is presented. Buckling equations and closed-form solutions for various combinations of the 

perturbation terms of the strain components for finite deformations are obtained and compared with the rod 

theory developed by Makowski and Stumpf (1988) and the three dimensional elasticity solution 

(Nowinski,1969) in this section, as well. In Section 10, concluding remarks are presented.      

 

2. Analysis 

Let r and r  denote the position vectors of the generic points H and H in the undeformed and 

deformed rod spaces, respectively, and 

2( , ) ( ) ( )s s sξ ξ= +r ρ e        ,                                                                                                                         (1) 

( , ) ( ) ( ( )s s s , ) sξ ξ ξ= +
2

r ρ A                                                                                                             (2)  
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where s   is the arc length along the reference line Γ (which is a straight line having a constant angle of ϕ with 

the horizontal) of the undeformed rod of a rectangular cross-section with unit width; ξ  is the perpendicular 

distance BH  from the reference line Γ  of the undeformed rod to the point H  and  ]
2

,
2

[
hh

−∈ξ    where h  

is the undeformed rod thickness; ξ   is the distance BH  from the reference line Γ  of the deformed rod to the 

point H, not being necessarily normal to Γ ; αe and αe  form orthonormal biads in the undeformed and 

deformed configurations, respectively, such that 1e  is in the direction of the reference line Γ  and 1e  is tangent 

to the reference line Γ ; αi  and k are fixed Cartesian base vectors; 
jA  form an orthonormal triad in the 

deformed configuration such that 3 =A k  and 2A  is in the direction of BH  having an angle of γ (not being 

the shear angle at the point  B generally) with the normal to Γ ; ρρρρ  and ρρρρ  are position vectors of  generic 

points B  and B  on Γ  and Γ , respectively, as shown in Fig. 1. Here and henceforth, the Greek indices 

represent the numbers 1, 2 and Latin indices represent the numbers 1, 2, 3. Additionally, 

211 ii
ρ

ρe ϕϕ sincos)( +==′=
sd

d
s                                                                                                                (3) 

)sin(cos 21 ii
ρ

ρ ϕϕλ +==′
sd

d
1λ= e                                                                                                     (4) 

where ϕ  and ϕ  are defined in Fig. 1  and  

.
ds

ds
λ ′ ′= = r r                                                                                                                                                  (5) 

is the stretch (Eringen, 1980). Here and henceforth, the notation (.)′    is  used  to denote partial derivative with 

respect to s . For the base vectors αe  and  αe  , 

0ee 21 =′=′   ,                                                                                                                                           (6) 

2 1= ×e k e , 12 ee ϕ′−=′                                                                                                                                      (7) 

can be written. ξ  and ξ  will be named as transverse coordinates of the generic points H  and H  in the 

undeformed and deformed rod spaces, respectively. The particle at H   in the undeformed state (material state or  

reference state (Eringen and Şuhubi, 1974)) is considered to move to the position of H  in the deformed state 
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Fig. 1. Undeformed and deformed geometries 

 

 

(or spatial state (Eringen and Şuhubi, 1974)). Here and henceforth, the  suffix (‾‾)   is  used  to denote that the 

related parameter belongs to the undeformed  configuration. To be used in the later parts of the analysis,   

1 1cosγA = e 2-sinγe  , 2 1sinγA = e 2+cosγe                                                                                                   (8) 

and 

1 1cosψA = e 2-sinψ e  , 2 1sinψA = e 2+cosψ e                                                                                     (9) 

can be obtained via Figs. 1,2. ψ , shown in Fig. 2, is the angle of rotation.  

               

Fig. 2. The angle of rotation 
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The covariant base vectors (Cinemre, 1989) in the undeformed configuration at H  can be expressed as  

1
′g = r ,  2 ξ

∂
∂

r
g =  ,  3g = k                                                                                                                 (10) 

(Başar and Kratzig, 1985; Green and Zerna, 1968). Using Eqs.(1,3,6,10), αg  can be rewritten as 

11 eg =  , 2g = 2e       .                                                                                                                                       (11) 

The contravariant base vectors in the undeformed state can be checked to be obtained as      

1

1 eg =  , 
2

2g = e  , 
3g = k  .                                                                                                                          (12) 

To be used in Section 9, the contravariant metric tensor at H  in the undeformed state can be noted to be equal 

to the Kronecker’s delta  

ijijg δ=                                                                                                                                                       (13) 

where    

ijg =
i jg .g    .                                                                                                                                                (14)                                      

  The covariant base vectors  at H  in the deformed configuration can be expressed as  

1
′g = r  ,  2 ξ

∂
∂

r
g =  , 3g = k ,                                                                                                                       (15) 

by using the material coordinates (Eringen and Şuhubi, 1974). Using Eqs.(2,4,6,9,15), αg  can be rewritten as 

1 2ξ′ ′+g = Aρρρρ + 2ξ ′A = 2λ ξ ′+
1

e A + 1Aψξ ′   ,    2 2

ξ
ξ

∂
∂

g = A      .                                                         (16) 

 

3. Expressions of Strains 

Using the approach proposed by Simmonds and Danielson (1972), the base vectors at the the point H  

in the deformed rod can be expressed as 

j

i Ag )E(δ ijij +=                                                                                                                                              (17) 

via the orthonormal base vectors 
i

A , where ijE  are named as pseudo strains1 (Reissner, 1970; Taber, 1988). 

Using Eqs. (8,15,16,17), 

                                                
1 Due to being orthonormal of 

i
A , there is no difference between 

i
A and 

iA . 
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,0====== 333231132321 EEEEEE ,
ξ
ξ

∂
∂

=+ 22E1                                                            

,cos ψξγλ ′+=+ 11E1 γλξ sin+′=12E                                                                                                  (18) 

can be obtained. For the later analysis, the nonzero pseudo strain components are nondimensionalized and 

expanded asymptotically (Dikmen, 1979b) as 

*
11 11E E= = * (1)* *

11 11e εκ ξ+ 2 (2)* *2
11ε κ ξ+ )( 3εO+ ,                                                                                        (19) 

*
22 22E E= = * (1)* *

22 22e εκ ξ+ 2 (2)* *2
22ε κ ξ+ )( 3εO+ ,                                                                              (20) 

*
12 12E E= = * (1)* *

12 12e εκ ξ+ 2 (2)* *2
12ε κ ξ+ )( 3εO+                                                                                 (21) 

where *
eαβ , *)(

11
ακ , *)(

22
ακ  and *)(

12
ακ  are nondimensional perturbation terms of  the pseudo strain components. 

ε  is a thickness parameter defined as 

ε = L/2h                                                                                                                                                     (22) 

 where L  is the length of the undeformed rod. Here and henceforth, the notation 
*(.)   is  used  to denote that 

the related parameter is nondimensional and the analysis using Eqs.(19-21) with )( 3εO will be named as 

‘second order analysis’.  

 

4. Relationship Between the Transverse Coordinates  

Due to incompressibility, the third invariant of the right Cauchy-Green deformation tensor (Green and 

Adkins, 1960; Makowski and Stumpf, 1988; Simmonds, 1986; Yükseler, 1996b) must be equal to 1: 

3 1 /I g g= =                                                                                                                                        (23) 

where 

 ijgg =  ,  
2

11 22 12( )
ij

g g g g g= = −                                                                                                  (24) 

and where 

ijg = i jg .g  , ijg = i jg .g   .                                                                                                                    (25) 

Using Eqs.(17,18, 225 ), the nonzero components of the metric tensor at H  in the deformed state can be 

obtained as 

22 )()1( 121111 EEg ++=   ,  )1( 221212 EEg +=   ,   
2

,
)1(( 22

2

22 E)g +== ξξ   ,  33 1g =   .                 (26)                                                          



  

 9

Via Eqs.(10,11,23-26), 

1)1()1( 22 =++ 2211 EE  .                                                                                                                              (27) 

For an asymptotical analysis, nondimensional quantities 

( ,)(/2(), ** ξξξ h= ξ ),        Lss /* =                                                                                                     (28) 

are introduced. The transverse coordinate of any generic point H  in the deformed rod space can be expanded 

asymptotically as  

*ξ (0)*ξ= + (1)*εξ +  )( 2εO     .                                                                                                                      (29) 

Using Eqs.(16-21,28,29) in Eq.(27), equating  coefficients of like powers of ε  (neglecting  )( 2εO ) and 

integrating give the expression of the transverse coordinate in the deformed configuration in terms of the 

transverse coordinate in the undeformed configuration and the thickness parameter as 

 
* *

0Bξ ξ= *2
1Bε ξ+ )( 2εO+   ,                                                                                                                   (30)                                    

where   

1
0 ( cos )B λ γ −=    ,       2/*3

01 ψ�BB −=                                                                                           (31)                                                                                               

where 

ψψ =*  .                                                                                                                                                  (32) 

The notation (.)�  is  used  to denote partial derivative with respect to 
*s . For the determination of the 

integration constants, the reference line is assumed to be composed of the same points regardless of the 

deformation (Erdölen and Yükseler, 2003; Simmonds, 1986; Taber, 1987; Yükseler, 2003; Yükseler, 2005; 

Yükseler, 2008), i.e. 

 0
0
= =ξξ .                                                                                                                                                         (33) 

 

5. Kinematics 

A displacement vector d  of  a point  B   on the reference line Γ  is shown in Fig. 1 and can be defined 

as  

   = −d ρ ρ                                                                                                                                                      (34) 
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by using the position vectors of a particle on the reference lines Γ  and Γ  or by using the components of the 

displacement vector relative to the base vectors αA :  

d = u 1A + v 2A    .                                                                                                                                              (35) 

Considering the derivative of Eq. (35) with respect to s  and  using Eqs.(34,8,9,3,4,18), 

ψξψψγλ ′−+=+′+′= 11Evu 1coscos  ,                                                                                               (36) 

 ξψψγλ ′−=+′−′= 12Euv sinsin                                                                                                           (37) 

and consequently, 

ψξψ cos)(1 ++′+′=+ vuE11   ,     ξψψ ′++′−′= sinuvE12     ,                                                     (38) 

can be obtained. Using Eqs.(19-21,28,30-32,38) and 

Lv)/(u,)v,(u ** =     ,                                                                                                                                        (39) 

 the perturbation terms of  *
11E   and *

12E  can be obtained in terms of the displacement components as 

 1cos *****
11 −++= ψψ�� vue   ,  *

0
*)1(

11 ψκ �B= , *
1

*)2(
11 ψκ �B=  ,   *****

12 sinψψ +−= �� uve ,   

  0
*)1(

12 B�=κ   ,  1
*)2(

12 B�=κ       .                                                                                                                       (40)                                                                   

Due to the incompressibility condition, 
*
22E  is not independent from 

*
11E . Therefore; substituting      

Eqs.(19-21)  into Eq.(27) and equating the like powers of ε , the perturbation terms of *
22E  can be obtained in 

terms of the  perturbation terms of *
11E  as 

 
* * 1
22 11(1 ) 1e e −= + −    ,   

2*
11

*)1(
11

*)1(
22 )1( −+−= eκκ  ,   ])1[()1( *)2(

11
2*)1(

11
1*

11
2*

11
*)2(

22 κκκ −++= −− ee .      (41)                                                

  

6. Constitutive Equations 

   The three-dimensional constitutive equations are 

ijσ Φ= ∂ /
ij

E∂                                                                                                                                              (42)                     

(Reissner, 1975;  Taber, 1988) where ijσ  are the components of  the first Piola-Kirchhoff stress tensor (or  

pseudo stress tensor) (Eringen, 1962; Eringen, 1980; Malvern, 1969; Piola, 1833) and Φ  is the three-

dimensional strain energy density function depending on   1211 EE , and   22E , which are the only nonzero  

pseudo strain components,  with an important note that   22E  is a function of 11E  through the  incompressibility 
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condition,  Eq.(27)2 (or Eqs.(41) in terms of the perturbations). Stress and moment resultant vectors acting on the 

reference line Γ  of the undeformed rod with unit width can be defined as 

N ∫
−

=
2/

2/

11
h

h

dξσ    ,     ∫
−

=
2/

2/

11
h

h

dM ξξσ     ,    ∫
−

=
2/

2/

12
h

h

dQ ξσ                                                                           (43) 

or in nondimensional form as  

1
* 11* *

1

1

2
N dσ ξ

−

= ∫  ,   ∫
−

=
1

1

***11*

4

1 ξξσ dM  ,   

1
* 12* *

1

1

2
Q dσ ξ

−

= ∫                                                     (44)  

where 

C
ijij /* σσ =  ,   ),)(/1(),( *

QNhCQN =∗
 ,    

2* / hCMM =                                                        (45) 

by additionally using Eqs. (28). C  is a material constant. The constitutive equations can, also,  be checked to be 

written in terms of one-dimensional strain energy density function φ  as   

*
*

*
11

N
e

φ∂
=

∂
   ,   

*
11

*
*

2

1

κ
φ

ε ∂
∂

=M    ,      
*

*

*
12

Q
e

φ∂
=

∂
                                                                                (46) 

where 

 ∫
−

==
1

1

***

2

1 ξΦφφ d
hC

   ,          
C

ΦΦ =*
                                                                                                     (47) 

via Eqs. (19-21,28,43-45). Only the conventional stress-resultants are concerned in the present study.  

 

7. Equations of Equilibrium and Natural Boundary Conditions  

 The virtual strain energy Sδ of the rod with unit width can be expressed as 

∫=
L

sdS
0

δφδ                                                                                                                                                   (48) 

where  

                                                
2 If the incompressibility condition had not been enforced a priori in the strain energy density function Φ, 
through Eq.( 27), the  strain energy density function should have been modified as 

µΦΦ pm +=  

where p is a Lagrange multiplier (hydrostatic pressure) and µ is the incompressibility constraint, obtained from 

Eq.(27) as  

1)1()1( 22 −++= 2211 EEµ     . 

In that case, there would be an additional term in Eq.(42), as well (See e.g. pages 120-121 of  (Hildebrand, 1965) 
for the mathematical background of the problem. ). 
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∫
−

=
2/

2/

h

h

ij

ij
dE ξδσδφ                                                                                                                                            (49) 

(Wang et al., 2000) or in nondimensional form as 

1
* * * *

1

1

2
ij

ijE dδφ σ δ ξ
−

= ∫                                                                                                                                      (50) 

using Eqs.(19-21, ), 11 4528 . Neglecting the contributions of 22*σ  on the strain energy and using Eqs.(19,21,42, 

45-47) in Eq.(50), 

*
12*

12

*
*)1(

11*
11

*
*
11*

11

*
*

e
e

e
e

δφδκ
κ
φδφδφ

∂
∂

+
∂
∂

+
∂
∂

=                                                                                             (51) 

 and 

*
12

**)1(
11

**
11

** 2 eQMeN δδκεδδφ ++=                                                                                                  (52) 

can be obtained. It can be noted that no higher order stress-resultant is considered, and, therefore, there is no 

work conjugate of *)2(
11κ , *)1(

12κ and *)2(
12κ . If, alternatively, *δφ  is expressed in the following form 

*δφ = *
0U uδ +

*
1U uδ � +

*
0V vδ +

*
1V vδ � +

*
0δψΨ +

*
1δψΨ �         ;                                                           (53) 

considering the variations of *
11e , *

12e  and *)1(
11κ  through Eqs.(40) in Eq.(52) and equating the multipliers of 

*
uδ , 

*
uδ � ,  

*
vδ , 

*
vδ � ,  

*δψ  and 
*δψ� , 

)( 2**
0 εψ OQU +−= � , )(2 2*2

0
**

1 εψε OMBNU +−= �  , )(2 2*2
0

2***
0 εψεψ OMBNV +−= �� , 

)( 2*
1 εOQV += , )(cossin)2( 2****2

0
**

0 εψψψε OQMBN +++−=Ψ � ,

)()1(2 2***
00

****
1 εψε OMvBBuQvN +−+−=Ψ �                                                                           (54)                                                                             

can be obtained. Using Green’s theorem (Hildebrand, 1965) in Eq.(53), the nondimensional virtual strain energy  

)/(*
LhCSS δδ = (Wang et al., 2000) can be expressed as 

**
10

*
10

*
1

1

0

0
* ])()()[( sdvVVuUUS δψδδδ Ψ−Ψ+−+−= ∫ ��� + 1

0
*

1
*

1
*

1 ][ δψδδ Ψ++ vVuU    .              (55)                                          

 The virtual potential energy of loads )/(*
LhCΛδΛδ =  is  

1
* * * * * * * *

0

( )u vp u p v l dsδΛ δ δ δψ= − + +∫                                                                                                 (56) 
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where the external force and moment vectors per unit length of Γ  of the undeformed rod with unit width are 

*p = *
up 1A + *

vp 2A  , *
l=*l k  ,                                                                                                            (57) 

respectively, where 

hC

Lp
p u

u =*
 , 

hC

Lp
p v

v =*
, 

hC

l
l =*

   .                                                                                                   (58) 

For a rod in equilibrium, the total virtual potential energy )/(*
LhCWW δδ =  is equal to zero: 

* * * 0W Sδ δ δΛ= + =                                                                                                                          (59) 

or using Eqs. (55,56,59), 

***
0

**
0

**
1

0

0
* ])()()[( sdlRvpRVupRUW MvQuN δψδδδ −−Ψ+−−+−−= ∫ ��� + 

1
0

*** ][ δψδδ MQN RvRuR ++ =0                                                                                              (60)                

where 1U , 1V  and 1Ψ  are re-denoted as  NR , QR  and MR , respectively, in Eq.(60): 

1URN =    ,   1VRQ =   ,    1Ψ=MR                                                                                                   (61) 

due to their physical meanings. NR , QR  and MR  are nondimensional effective normal force, effective shear 

force and effective bending moment, respectively. Accordingly; the equations of equilibrium, Euler’s equations 

(Hildebrand, 1965), are 

0*
0 =−− uN pRU �   ,      0*

0 =−− vQ pRV �   ,       0*
0 =−−Ψ lRM
�    ,                                             (62) 

and the natural boundary conditions are  

 0=NR   or  * 0u =    ,     0=QR  or * 0v =   ,      0=MR  or * 0ψ =    .                                         (63) 

For the natural boundary conditions;   *
u or NR , *

v or QR  and *ψ or MR  should be defined.  

 

8. Satisfaction of the Zero-Traction Conditions 

 In addition to the natural boundary conditions; if the vanishing of the traction (stress) vector on the top 

and bottom free surfaces of the rod is desired to be satisfied, then 

0
1

*
* =

= αξ

αβσ n
∓

                                                                                                                                               (64) 
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should be satisfied in the problem, with the note that 033 == ll σσ  (l=1,2,3)3. n is the unit outward normal 

vector of the top free surface of the rod in the material state and is equal to 2e  which can be expressed in terms 

of αA  as 

212 AAen ψψ cossin +−==                                                                                                                        (65) 

by using Eqs.(9). The unit outward normal vector belonging to the bottom free surface of the undeformed rod  

can be noted to be equal to n- . Recalling that 
*22σ is neglected and 

*21σ is always vanishing due to not being 

included of  21E  in the metric tensor of the deformed rod, Eqs.(26) (and, therefore, in the strain energy of any 

rubber-like material (Alexander, 1968; Demiray and Vito; 1976; Makowski and Stumpf, 1988)), considered in 

the present theory, Eq.(64) can be rewritten as  

0sin *

1

*11
* =

=
ψσ

ξ ∓
  ,   0sin *

1

*12
* =

=
ψσ

ξ ∓
                                                                                     (66) 

by using Eqs.(32,65). Eqs. (66) can be noted to be satisfied (i) if  the strains or rotations are vanishing, (ii) 

approximately if the strains and rotations are infinitesimally small.  

 

9. Illusrative Problem 

9.1. Flexural Buckling of a Mooney-Rivlin straight rod subjected to axial compressive loads 

The buckling of a Mooney-Rivlin straight rod, 
* 0ϕ = , subjected to an axial compressive force P, 

as shown in Fig.3, is concerned. The forces P are considered to be applied through rigid plates which are well-

lubricated and constrained such that they remain perpendicular to the axis of  the rod during the deformation 

 

 

 

Fig. 3. A Mooney-Rivlin rod with movable clamped edges under axial compressive forces 

                                                
3 For the physical meaning and derivation of  Eq.(64), pages 108-110 of  (Eringen, 1962) or pages 113-115 of  
(Eringen, 1980) or pages 220-223 of  (Malvern, 1969) can be referred.  
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(Makowski and Stumpf, 1988). The rod ends can slide in the vertical direction. Referring to the corresponding 

natural boundary conditions (63); 

0* =ψ   ,   0=QR   ,   
*

PRN −=                                                                                                                   (67) 

at   0* =s   and 1* =s   where 

hCPP /* =     .                                                                                                                                     (68) 

  

9.2. One-dimensional constitutive equations  

 For the Mooney-Rivlin material, the three-dimensional  strain energy density function Φ is expressed as  

   )2( −= ICΦ                                                                                                                                           (69) 

(Makowski and Stumpf, 1988) where 

αβ
αβ

ggI =   .                                                                                                                                         (70) 

Substituting Eqs.(70,13,26) into Eq.(69), the three-dimensional  strain energy density function can be expressed 

in terms of the strain components as 

]2)1()()1[( 222 −++++= 221211 EEECΦ        .                                                                                        (71)   

 Using Eqs.( )71,47,461 , the constitutive equation for *
N can expessed as 

 ∫
− ∂

∂
++

∂
∂

+=
1

1

*
*
11

*
22*

22*
11

*
11*

11
* ])1()1[( ξd

e

E
E

e

E
EN   .                                                                                  (72) 

Using Eqs. (19,20,41), additionally, 

                                                                               

)(]3/)1(2[)1(2])1()1[(2 41*
11

2*)1(
11

*)2(
11

4*
11

23*
11

*
11

* εκκε OeeeeN ++−+++−+= −−−   .                     (73)                                     

Following similar procedures,  

∫
− ∂

∂
++

∂
∂

+=
1

1

*

*)1(
11

*
22*

22*)1(
11

*
11*

11
* ])1()1[(

2

1 ξ
κκε

d
E

E
E

EM       

        )(5/])1[()1(6])1(
3

1
[ 4*)2(

11
2*)1(

11
1*

11
*)1(

11
5*

11
34*

11
*)1(

11 εκκκεεκ Oeee +−+++++= −−− , 

)(
3

2 4*)2(
12

2*
12

1

1

**
12

* εκεξ OedEQ ++== ∫
−

                                                                                        (74) 

can be obtained via Eqs. (46,47,19-21,41). 
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 In case of the infinitesimally small deformations, it is possible to check  two of  the one-dimensional 

constitutive equations, namely Eq.(73) and the first of Eqs.(74), with those corresponding to the linear beam 

theory (see e.g. Case et al., 1999 or Hearn, 2000) for the linearly elastic material and straight rods, 
* 0ϕ = , of 

rectangular section with unit width. Neglecting the nonlinear terms in Eq.(73) and using Eq.( )245 ,    

11
~2

~
ehCN =                                                                                                                                                    (75) 

can be written. Here and henceforth, the suffix )(
~

is used to denote that the related parameter belongs to the 

infinitesimally small strains. In the linear beam theory, the normal force can be noted to be expressed as  

ehN ~~ Ξ=                                                                                                                                                            (76) 

where Ξ  is the modulus of elasticity and e~ is the linear longitudinal strain. Since 

ee ~~
11 =                                                                                                                                                        (77) 

in the case of  the infinitesimally small deformations,  

2/Ξ=C                                                                                                                                                        (78) 

via Eqs. (75-77). Neglecting the nonlinear terms in Eq.( )174  and the effect of 22E , and using Eqs.( 

)78,28,22,32,36,31,40,45 2123 , 

sd

dh
M

ψ~

12

~ 3Ξ
=                                                                                                                                        (79) 

can be obtained. Eq.(79) can be noted  to coincide with the corresponding expression for the bending moment in 

the linear beam theory.  

 

9.3. Buckling equations 

Let ),,( ψ��� vu  and )ˆ,ˆ,ˆ( ψvu be two adjacent equilibrium configurations (Brush and Almroth, 1975) such that 

uuu ˆ+= �   ,   vvv ˆ+= �   ,   ψψψ ˆ+= �                                                                                                    (80) 

where ),,( ψ��� vu are considered to belong to the prebuckling state and )ˆ,ˆ,ˆ( ψvu are arbitrarily small incremental 

buckling displacements to ),,( ψ��� vu . Correspondingly,  

             NNN ˆ+=
�

  ,   QQQ ˆ+=
�

   ,  MMM ˆ+=
�

                                                                                             (81) 
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where  N̂ , Q̂ , M̂ can be obtained by dropping the quadratic and higher order terms of the displacements with 

the subscript )(̂ in the constitutive equations (73,74).  

 In the prebuckling equlibrum configuration, the rod is considered to remain straight  and 

LL /=λ
�

 , == γ�
�

1B 0***)2(
12

*)1(
12

*
12

*)2(
11

*)1(
11 ======== MRMve

�������� κκκκ  ,  
1

0
−= λ
��

B  , 

 =−== 1**
11 λ

�
���
ue  constant,   =−=−== − *3* )(2 PNRN λλ

����
constant ,  0** === ψ�

��

QRQ             (82)                                                                                    

can be checked to be valid. L  is the length of the deformed rod. From Eq.( )482
4
 and due to the symmetry of 

the deformation, 

 0)2/1(* =u
�

 ,       2/)1()1( ** λλ
��� −+−= su                                                                             (83) 

can easily be obtained. 

 Using Eqs.(80-83,40,73,74) and neglecting the quadratic and higher order small incremental terms, 

expressions pertaining to the buckling state can be obtained as 

**
11 ˆˆ ue �=  ,  λψκ

�
� /ˆˆ **)1(

11 =  ,  0ˆ *)2(
11 =κ ,

*2
0 ˆˆ uB �

�−−= λ , )2/(ˆˆ 3
1 λψ

�
�−=B ,   *****

12
ˆˆˆˆ ψψ +−= ��� uve   , 

2**)1(
12 /ˆˆ λκ

�
��u−=      ,  )2/(ˆˆ 3**)2(

12 λψκ
�

��−= ,   )
3

1
(ˆˆ 41** += −− λλψε
��

�M  , 

***** ˆ2ˆ2ˆ2ˆˆ ψψ +−== uvQRQ

��� )3/(ˆ 3*2 λψε
�

��−   ,    ** ˆ2ˆˆ uNRN
�== .                                                              (84)                                                                                        

 

9.4. Solutions for various alternatives 

Substituting Eqs.(80-82,84) into the equations of equilibrium (62), 

2 4 * *ˆ ˆ2 / 3 2 0u uε λ − − =
�
���� ��  , 0ˆ)(ˆ2 *3* =−− −

Q�
��

� λλψ  , 0)ˆˆ2ˆ(ˆˆ ***
0

***** =−+−− �����
QuMBvNNQ εψ   (85) 

can be obtained via Eqs.(61,54).  

 In order to satisfy the last of the natural boundary conditions (67); 
*

û should be taken to be equal to a 

constant, recalling Eqs.( )5111 82,81,84 . Therefore, for the concerning problem  

== 0
*
11

ˆˆ Be =*)1(
12κ̂ 0ˆˆ * == NRN                                                                                                               (86) 

by using Eqs.( 11741 84,84,84,84 ). Correspondingly, Eq.( 185 ) is automaticly satisfied. 

                                                
4 The subscripts in the equation numbers are used in the series of equations with common equation numbers. The 
concerning equations are considered to be seperated by commas and numbered accordingly. 
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In order to see the effects of some of the perturbation terms in the expansions of the strain components, 

given in Eqs.(19,21), the solutions corresponding to several combinations of the perturbation terms are presented 

below:  

(a) Keeping all of the aforementioned perturbation terms (the second order analysis), if *ψ̂ is chosen  

as the fundamental variable, 

0ˆ]
)3/5(

)1(2
[ˆ *

42

4
* =

+
−+ ψ

λε
λψ �

�

��                                                                                                                   (87)    

can be obtained from Eqs.( )3,210 8585,86,84 . The solution of the differential equation (87), satisfying 

0)1(ˆ)0(ˆ ** ==ψψ  which allow the satisfaction of the first of the natural boundary conditions (67) together 

with Eq.( 380 ) and the last equation of Eqs.(82), yields 

)1(2

)3/5(

22

1
4

4

λ
λπ

ε
�

�

−
+==

h

L
                  .                                                                                               (88) 

Alternatively; if *
Q̂ is chosen as the fundamental variable, the same result can be obtained, satisfying 

0)1(ˆ)0(ˆ ** == QQ  or equivalently 0)1(ˆ)0(ˆ == QQ RR  which allow the satisfaction of the second of the 

natural boundary conditions (67) together with Eqs.( 6,2 8281 ). 

(b) If *)2(
12κ in the expansion of *

12E  is neglected, then the constitutive equation for 
*

M̂ is same as 

Eq.( 984 ) but the constitutive equation for *
Q̂ is changed as  

*****
12

* ˆ2ˆ2ˆ22ˆ ψψ +−== uveQ
���      .                                                                                                       (89) 

Following the same procedure mentioned above, 

)1(

)3/1(

2 4

4

λ
λπ
�

�

−
+

=
h

L
                                                                                                                           (90) 

can be obtained. 

(c ) If all of the second order terms in the expansions of  the pseudo normal strains, namely 
*)2(

11κ and  

*)2(
22κ , are neglected, then the constitutive equation for *

Q̂ is same as Eq.( 1084 ) but the constitutive equation for 

*
M̂ is changed as  
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3/)1(ˆˆ 41** += −− λλψε
��

�M    .                                                                                                                 (91) 

Following the same procedure mentioned above, 

)1(6

)31(

2 4

4

λ
λπ
�

�

−
+

=
h

L
                                                                                                                              (92) 

can be obtained. 

(d) If  all of  the second order terms in the expansions of the pseudo normal strains and the pseudo 

transverse shear strain, namely 
*)2(

11κ , 
*)2(

22κ  and  
*)2(

12κ , are neglected, then the constitutive equation for 
*

Q̂ is 

same as Eq.(89) and the constitutive equation for 
*

M̂ is same as Eq.(91). Following the same procedure 

mentioned above, 

)1(3

)1(

2 4

4

λ
λπ
�

�

−
+

=
h

L
                                                                                                                               (93) 

can be obtained. This analysis using Eqs.(19-21) with )( 2εO  will be named as ‘first order analysis’. 

 For the cases (b) and (d) where 
*)2(

12κ is neglected commonly; since 
*)1(

12κ has been noted to be vanishing 

as well for the concerning problem, Eq.(86), the distribution of the pseudo transverse shear strain ( *
12E ) is 

constant (= *
12e ) through the thickness, Eq.(21)5. Therefore;  the cases (b) and (d) will be considered as the cases 

where the pseudo transverse shear strain is assumed to be constant through the thickness in the second order 

analysis and the first order analysis, respectively. 

 Considering the finite strains and rotations in the concerning problem, the satisfaction of  the stress-free 

boundary conditions on the top and bottom free surfaces of the rod is impossible, as mentioned in Section 8 (see 

Eqs.(66)).   

 The values of λ
�

satisfying Eqs.(88,90,92,93) are the critical values of λ
�

 for the given values of  

hL / and will be denoted as 
c

λ . The 
c

λ versus hL / curves corresponding to the (a) second order analysis 

considering all of the perturbation terms, given in Eqs.(19-21), (b) neglition of *)2(
12κ in the second order analysis 

(c) neglition of *)2(
11κ and *)2(

22κ , (d) first order analysis (neglition of *)2(
12κ , *)2(

11κ and *)2(
22κ ), (e) results 

                                                
5 In other words, plane sections remain  plane during the deformation but not necessarily perpendicular to the 

reference line Γ .  The angle  γ  is the shear angle in that case. 
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corresponding to (Makowski and Stumpf, 1988)6, and (f) results corresponding to the three dimensional elasticity 

solution (Nowinski, 1969)7 are drawn and shown in Fig.4. Due to the importance of the results, the detailed 

numerical values of hL /  versus cλ  for the aforementioned approaches are tabulated and shown in Table 1, as 

well. Results corresponding to (e) and (b) are seen to be almost equal to each other (Results corresponding to (b) 

are somewhat nearer to the results of (f).). The results corresponding to (e) and (b) are departing from those of (f) 

as hL /  is decreased, especially for 0.2)/( ≤hL . The results corresponding to  (a) are almost coinciding 

with those of  (f), especially for 5.2)/( ≥hL , and are much better than those corresponding (e) and (b). The 

results corresponding to  (c) and (d) are quite far from those of  (f). 

 

                                                
6 The numerical results corresponding to the rod theory proposed by Makowski and Stumpf (1988) are obtained 
by using Eqs.(12,13) of (Makowski and Stumpf, 1988) for n=1. 
7 The numerical results corresponding to the three dimensional elasticity solution of  Nowinski (1969) are 
obtained by adapting the general solution of (Nowinski,1969), Eqs.(1.18,1.19) of (Nowinski,1969), to the 
Mooney-Rivlin material for asymmetric buckling.  
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cλ  (f) 
 

(a) (b) (e) (c) (d) 

0.98 
0.97 
0.96 
0.95 
0.94 
0.93 
0.92 
0.91 
0.90 
0.89 
0.88 
0.87 
0.86       
0.85 
0.84 
0.83 
0.82 
0.81 
0.80 
0.79 
0.78 
0.77 
0.76 
0.75 
0.74 
0.73 
0.72 
0.71 
0.70 
0.69 
0.68 
0.67 
0.66 
0.65 
0.64 
0.63 
0.62 
0.61 
 

6.4200   
5.2454   
4.5454   
4.0679   
3.7150   
3.4420   
3.2208   
3.0385   
2.8831   
2.7504   
2.6337   
2.5305   
2.4386   
2.3556   
2.2793   
2.2093   
2.1464   
2.0860   
2.0308   
1.9781   
1.9286   
1.8810   
1.8360   
1.7914   
1.7499   
1.7074   
1.6674   
1.6270   
1.5864   
1.5467   
1.5053   
1.4645   
1.4220   
1.3782   
1.3329   
1.2849   
1.2344   
1.1802  

6.4144 
5.2390 
4.5391 
4.0623 
3.7110 
3.4386  
3.2197 
3.0390 
2.8866 
2.7561 
2.6429 
2.5434 
2.4554 
2.3768 
2.3061 
2.2423 
2.1843 
2.1314 
2.0829 
2.0384 
1.9974 
1.9595 
1.9244 
1.8918 
1.8615      
1.8333 
1.8070 
1.7824 
1.7594 
1.7379 
1.7178 
1.6989 
1.6812 
1.6646 
1.6491 
1.6344 
1.6207 
1.6078 
 

6.4463   
5.2781  
4.5842  
4.1126  
3.7660  
3.4979  
3.2829  
3.1059  
2.9570  
2.8298  
2.7195  
2.6230  
2.5377  
2.4617  
2.3936  
2.3322  
2.2765  
2.2258  
2.1794  
2.1369  
2.0978  
2.0618  
2.0284  
1.9975  
1.9689  
1.9422  
1.9174  
1.8943  
1.8727  
1.8525  
1.8336  
1.8159  
1.7994  
1.7839  
1.7694  
1.7557  
1.7429  
1.7309  
 

6.4496 
5.2821 
4.5888  
4.1178  
3.7717  
3.5041  
3.2896  
3.1130  
2.9646  
2.8377  
2.7279  
2.6317  
2.5468  
2.4711  
2.4033  
2.3422  
2.2868  
2.2364  
2.1903  
2.1481  
2.1093  
2.0735  
2.0404  
2.0098  
1.9813  
1.9549  
1.9303  
1.9074  
1.8860  
1.8660  
1.8473  
1.8298  
1.8135  
1.7981  
1.7837  
1.7703  
1.7576  
1.7457  

4.4671 
3.6203 
3.1121 
2.7630 
2.5038 
2.3011 
2.1369 
2.0002 
1.8840 
1.7836 
1.6957 
1.6179 
1.5484 
1.4858 
1.4291 
1.3773 
1.3299 
1.2863 
1.2460 
1.2086 
1.1739 
1.1415 
1.1112 
1.0829 
1.0563 
1.0313 
1.0078 
0.9857 
0.9649 
0.9452 
0.9266 
0.9090 
0.8924 
0.8767 
0.8619 
0.8478 
0.8345 
0.8219 

4.5129 
3.6767 
3.1775 
2.8364 
2.5846 
2.3888 
2.2310 
2.1005 
1.9902 
1.8954 
1.8129 
1.7404 
1.6759 
1.6183 
1.5664 
1.5193 
1.4764 
1.4373 
1.4013 
1.3682 
1.3376 
1.3093 
1.2830 
1.2585 
1.2357 
1.2144 
1.1946 
1.1760 
1.1585 
1.1422 
1.1269 
1.1125 
1.0989 
1.0862 
1.0743 
1.0630 
1.0525 
1.0425 
 

 

Table 1. Values of  
h

L
 for the given values of cλ .  

 

10. Concluding Remarks 

A shear deformable model for rubber-like rods undergoing finite strains and rotations including the 

pseudo transverse normal strain and pseudo transverse shear strain is presented. The pseudo transverse normal 

stress is assumed to be negligible. Main emphasis is given to the perturbation terms in the asymptotic expansions 

of  the strain components. The expressions for the satisfaction of  the stress-free boundary conditions on the top 

and bottom free surfaces of the rubber-like rods are derived and it is concluded that the zero-traction conditions 
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can be satisfied (i) if  the strains or rotations are vanishing, (ii) approximately if the strains and rotations are 

infinitesimally small. The proposed theory is applied to the flexural buckling problem of  the Mooney-Rivlin 

rods with movable clamped edges. Unavoidably disregarding the mentioned zero-traction conditions, the exact 

solutions for the various alternatives about the aforementioned perturbation terms of  the strains are obtained and 

compared with those corresponding to a previously established rod theory and the theory of elasticity. Basing on 

the solution obtained by the theory of elasticity, the following deductions are made: 

(i) The second order analysis yields excellent results especially for thin and quite thick rods. 

(ii) The term (2)*
12κ has a remarkable contribution to the accuracy of the results. 

(iii) The assumption of  the constant pseudo transverse shear strain through the thickness in the second order  

         analysis yields a solution very near to the solution obtained by Makowski and Stumpf (1988).  

(iv)  Neglition of  *)2(
11κ and *)2(

22κ yields incorrect results. 

 

The paper is restricted with the straight rods where ϕ is constant. It can be extended to the curved rods 

by considering ϕ as a function of  s in a later study. 
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                                   FIGURE  CAPTIONS 

 

Figure 1. Undeformed and deformed geometries 
 
Figure 2. The angle of rotation 

 

Figure 3. A Mooney-Rivlin rod with movable clamped edges under axial    
compressive forces 
 

Figure 4. Comparison of  the results 
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                                   TABLE CAPTIONS 

 

Table 1. Values  of  
h

L
  for the  given values of  cλ . 
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cλ  (f) 
 

(a) (b) (e) (c) (d) 

0.98 
0.97 
0.96 
0.95 
0.94 
0.93 
0.92 
0.91 
0.90 
0.89 
0.88 
0.87 
0.86       
0.85 
0.84 
0.83 
0.82 
0.81 
0.80 
0.79 
0.78 
0.77 
0.76 
0.75 
0.74 
0.73 
0.72 
0.71 
0.70 
0.69 
0.68 
0.67 
0.66 
0.65 
0.64 
0.63 
0.62 
0.61 
 

6.4200   
5.2454   
4.5454   
4.0679   
3.7150   
3.4420   
3.2208   
3.0385   
2.8831   
2.7504   
2.6337   
2.5305   
2.4386   
2.3556   
2.2793   
2.2093   
2.1464   
2.0860   
2.0308   
1.9781   
1.9286   
1.8810   
1.8360   
1.7914   
1.7499   
1.7074   
1.6674   
1.6270   
1.5864   
1.5467   
1.5053   
1.4645   
1.4220   
1.3782   
1.3329   
1.2849   
1.2344   
1.1802  

6.4144 
5.2390 
4.5391 
4.0623 
3.7110 
3.4386  
3.2197 
3.0390 
2.8866 
2.7561 
2.6429 
2.5434 
2.4554 
2.3768 
2.3061 
2.2423 
2.1843 
2.1314 
2.0829 
2.0384 
1.9974 
1.9595 
1.9244 
1.8918 
1.8615      
1.8333 
1.8070 
1.7824 
1.7594 
1.7379 
1.7178 
1.6989 
1.6812 
1.6646 
1.6491 
1.6344 
1.6207 
1.6078 
 

6.4463   
5.2781  
4.5842  
4.1126  
3.7660  
3.4979  
3.2829  
3.1059  
2.9570  
2.8298  
2.7195  
2.6230  
2.5377  
2.4617  
2.3936  
2.3322  
2.2765  
2.2258  
2.1794  
2.1369  
2.0978  
2.0618  
2.0284  
1.9975  
1.9689  
1.9422  
1.9174  
1.8943  
1.8727  
1.8525  
1.8336  
1.8159  
1.7994  
1.7839  
1.7694  
1.7557  
1.7429  
1.7309  
 

6.4496 
5.2821 
4.5888  
4.1178  
3.7717  
3.5041  
3.2896  
3.1130  
2.9646  
2.8377  
2.7279  
2.6317  
2.5468  
2.4711  
2.4033  
2.3422  
2.2868  
2.2364  
2.1903  
2.1481  
2.1093  
2.0735  
2.0404  
2.0098  
1.9813  
1.9549  
1.9303  
1.9074  
1.8860  
1.8660  
1.8473  
1.8298  
1.8135  
1.7981  
1.7837  
1.7703  
1.7576  
1.7457  

4.4671 
3.6203 
3.1121 
2.7630 
2.5038 
2.3011 
2.1369 
2.0002 
1.8840 
1.7836 
1.6957 
1.6179 
1.5484 
1.4858 
1.4291 
1.3773 
1.3299 
1.2863 
1.2460 
1.2086 
1.1739 
1.1415 
1.1112 
1.0829 
1.0563 
1.0313 
1.0078 
0.9857 
0.9649 
0.9452 
0.9266 
0.9090 
0.8924 
0.8767 
0.8619 
0.8478 
0.8345 
0.8219 

4.5129 
3.6767 
3.1775 
2.8364 
2.5846 
2.3888 
2.2310 
2.1005 
1.9902 
1.8954 
1.8129 
1.7404 
1.6759 
1.6183 
1.5664 
1.5193 
1.4764 
1.4373 
1.4013 
1.3682 
1.3376 
1.3093 
1.2830 
1.2585 
1.2357 
1.2144 
1.1946 
1.1760 
1.1585 
1.1422 
1.1269 
1.1125 
1.0989 
1.0862 
1.0743 
1.0630 
1.0525 
1.0425 
 

Table 1. Values of  
h

L
 for the given values of cλ . 
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                                            HIGHLIGHTS 

• A theory for rubber-like rods undergoing finite strains and rotations is presented. 

• The pseudo strains are expanded asymptotically for the transverse coordinate. 

• Flexural buckling problem of Mooney-Rivlin rods under compressive loads is considered. 

• Basing on three dimensional elasticity solution, very appealing results are obtained.  

 

 


