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The present study is aimed at understanding the effect of a vertically aligned crack, present in the elastic
half space on the propagation of attenuated waves. These waves are incident at a point on the interface
between the porous half space and the cracked elastic half space. The analysis is based on Snell’s law for
reflection and refraction of an incident wave at the interface. A loose bonding at the interface between the
porous half space and the cracked elastic half space has been considered and represented here as the
tangential slip. The proposed model is solved for the propagation of harmonic plane waves. The final
equations are in the form of Christoffel equations from which we find four reflected waves (three
longitudinal body waves and one transverse body wave) and two refracted waves (one longitudinal body
wave and one transverse body wave). The expression of reflection–refraction coefficients and energy
share of each reflected and refracted waves for a given incident wave is obtained in closed form and
computed numerically in the present study. Numerical examples are considered for the partition of
the incident energy in which we have studied the effect of aspect ratio, crack density and loose bonding
parameter.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction studied the presence of three longitudinal body waves and one
Poroelasticity theory is an important theory for the study of the
mechanical behavior of porous solids in different fields, some of
which are soil dynamics, oil exploration, earthquake engineering,
geomechanics and reservoir engineering. The study of wave prop-
agation in a porous solid saturated with a single fluid was started
by Biot who has published some important research work related
to wave propagation in porous media, Biot (1956a,b, 1962a,b)
and Biot and Willis (1957). From his studies Biot has found two
longitudinal body waves and one transverse body wave.

Biot’s theory has been extended as mixture theory in which the
porous medium is saturated by more than one fluid. Brutsaert
(1964) first found the presence of a third longitudinal body wave
in an unsaturated granular medium. Based on this study, Bedford
and Drumheller (1983) have developed theories of immiscible
and structured mixtures. Garg and Nayfeh (1986) have discussed
the third compressional wave in their study. For low frequency
elastic waves, Tuncay and Corapcioglu (1997) have successfully
transverse body wave in a porous solid saturated with two immis-
cible fluids for which they had used a volume averaging technique.
They found that the first two longitudinal body waves are the same
as Biot (1956b) while the third longitudinal body wave is due to
the presence of the third fluid. Using this theory, many develop-
ments have been carried out by researchers; e.g. Yew and Jogi
(1976), Tomar and Arora (2006) and Sharma and Saini (2012).

Deresiewicz (1962) has studied the effect of the boundaries of
the liquid filled porous solid on the propagation of a wave that
changes the wave pattern of the elastic wave. Deresiewicz and
Skalak (1963) have successfully applied Neumann’s uniqueness
theorem of elasticity to a porous medium for defining the bound-
ary conditions. Based on the previous study, Sharma (2009) has
given different cases for the boundary conditions for the porous
solid. A study of the reflection and transmission from the interface
between two media have been carried out by some researchers e.g.
Ainslie and Burns (1995), Borcherdt (1982), Berryman (2007),
Denneman et al. (2002), Sharma and Gogna (1991), Sharma
(2008a) and Vashisth et al. (1991).

The earth’s crust normally has a lot of aligned cracks or
micro-cracks which contain fluids or sometimes voids. O’Connell
and Budiansky (1974) calculated the effect of cracks on the elastic
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properties of an isotropic solid. Most of the cracks are developed
due to small earthquakes that have been described in Crampin
(1978, 1985, 1987) who found some important aspects related to
wave propagation through these cracks. These small earthquakes
may result due to the accumulation of stresses in the particular
region. The study of cracks inside the earth’s crust can give
important information related to the oils/water/minerals depos-
ited in these cracks. Fluid flow from a porous medium to the
cracked elastic medium can be controlled by some boundary
conditions at the interface, those may be fully opened or closed
or partially open-closed, as given in Sharma and Gogna (1991),
Sharma (1999, 2008a, 2009) and Vashisth et al. (1991). The pres-
ence of the attenuation plays an important role in wave propaga-
tion through aligned cracks and this phenomena has been shown
in Chatterjee et al. (1980) and Xu and King (1990). Currently,
Nandan and Saini (2012) have studied the effect of an aligned crack
on the reflection and transmission of elastic waves through the
interface between the poroelastic solid with one fluid and cracked
elastic solid.

For the study of wave propagation, we summarize the previous
work in Table 1 based on appropriate criteria. In the present study,
we consider an isotropic homogeneous poroelastic medium
saturated with a mixture of two immiscible fluids lying over the
cracked elastic half space. We assume that the two media are
loosely connected to each other and the connected coefficient or
bonding parameter is represented here by w. The interface between
these two media is assumed at x3 ¼ 0. We solve the dynamical
equation with the help of the assumed harmonic solution. The
obtained results are in the form of Christoffel equations and these
results provide four inhomogeneous waves in a porous medium, of
which three are longitudinal body waves and one is a transverse
body wave. The reflection coefficients and energy share have been
solved for given boundary conditions at a loosely bonded interface.
The energy matrix defines the distribution of the incident energy to
the four reflected waves, two refracted waves and some energy is
spent at the interface and is defined as dissipation energy. The final
results related to energy share satisfy the conservation law of
energy. We graphically demonstrate the results of energy share
with respect to the incident angle h for the effect of aspect ratio
c=a (where c is the crack thickness and a is the radius of circular
crack), crack density g and bonding parameter w. We have also
conducted a comparative study between the presence and absence
of vertical aligned cracks with respect to the crack density and the
Table 1
Classification of related references by type of systems and chronological order.

Solid Porous media
� Biot and Willis (1957)
� Achenbach (1973)
� O’Connell and Budiansky (1974)
� Crampin (1978, 1985, 1987)
� Xu and King (1990)
� Ainslie and Burns (1995)
� Sharma (1999)

� Biot (1956a,b, 1962b,a)
� Vashisth et al. (1991)
� Tuncay and Corapcioglu (1997)
� Denneman et al. (2002)
� Tomar and Arora (2006)
� Nandan and Saini (2012)
� Sharma and Saini (2012)

Ideal fluids Viscous fluids
� Sharma (2008a)
� Nandan and Saini (2012)

� Chatterjee et al. (1980)
� Tomar and Arora (2006)
� Sharma and Saini (2012)

Perfect interface Imperfect interface
� Ainslie and Burns (1995)
� Denneman et al. (2002)
� Tomar and Arora (2006)
� Sharma and Saini (2012)

� Vashisth et al. (1991)
� Nandan and Saini (2012)

Isotropic Anisotropic
� Tuncay and Corapcioglu (1997)
� Tomar and Arora (2006)
� Nandan and Saini (2012)
� Sharma and Saini (2012)

� Biot and Willis (1957)
� Sharma and Gogna (1991)
� Vashisth et al. (1991)
� Sharma (2008b)
crack thickness in the elastic half space. For the numerical valida-
tion of the present study, we assume that the first medium is water
and CO2 saturated sandstone and second medium is basaltic rock.

2. Basic theoretical framework

2.1. Poroelastic solid with two immiscible fluids

The balance equation in the absence of body forces for the low
frequency vibration in a tri phase solid–air–water mixture can be
expressed as Tuncay and Corapcioglu (1997),

hssiij;j ¼ hqsi
@2ui

@t2
� dg

@

@t
v i � uið Þ � dl

@

@t
wi � uið Þ

hsgiij;j ¼ hqgi
@2v i

@t2
þ dg

@

@t
v i � uið Þ

hsliij;j ¼ hqli
@2wi

@t2
þ dl

@

@t
wi � uið Þ ð1Þ

where the subscripts s; g; l define solid, gas and liquid phases,
respectively. For phase kð¼ s; g; lÞ; hski’s and hqki’s signify the aver-
age stresses and average partial density over the solid–gas–liquid
aggregate. ui;v i and wi represent the displacement components of
solid, gas and liquid particles. Here, the coefficients dg and dl define
the presence of dissipation related to gas and liquid particles in the
porous medium (according to Darcy’s law) and these coefficients
can be defined here as:

dk ¼ lka2
k

##k
; ðk ¼ g; lÞ ð2Þ

where the symbol’s lk; #k, and ak represent the viscosity, relative
permeability and volume fractions for each fluid and # represents
the intrinsic permeability of the porous medium. The stresses in
the porous solid and the fluid pressures in the pores can be given as:

hssiij ¼ a11uk;k þ a12vk;k þ a13wk;k

� �
dij þ a10 ui;j þ uj;i

� �
hsgiij ¼ a21uk;k þ a22vk;k þ a23wk;k

� �
dij

hsliij ¼ a31uk;k þ a32vk;k þ a33wk;k
� �

dij ð3Þ
where dij is the Kronecker symbol. a10 and aijði; j ¼ x; y; zÞ are said to
be elasticity constants with property aij ¼ aji, and can be written as:

a10 ¼ Gfr; a11 ¼ Kfr � 2
3
Gfr; a12 ¼ a21 ¼ KgSgas Kl þ cð Þ=K;

a13 ¼ a31 ¼ Klas 1� Sg
� �

Kg þ c
� �

=K; a22 ¼ Kgag KlSg þ c
� �

=K;

a23 ¼ a32 ¼ KgKlSgal=K; a33 ¼ Klal Kg 1� Sg
� �þ c

� �
=K

K ¼ Kg 1� Sg
� �þ KlSg þ c; c ¼ 1� Sg

� �
Kcap

where Kcap is called the macroscopic capillary pressure, Garg
and Nayfeh (1986). Kfr ;Kg and Kl are said to be the bulk
modulus of the porous frame, gas phase and liquid phase, respec-
tively. Gfr denotes the shear modulus for the porous solid.
Si ¼ ai= 1� asð Þ i ¼ g; lð Þ with Sg þ Sl ¼ 1 are the gas saturation and
liquid saturation for the porous solid.

In terms of the displacement components, the equations of
motion are expressed using Eq. (3) in Eq. (1):

a10 þ a11ð Þuj;ij þ a12v j;ij þ a13wj;ij þ a10ui;jj

¼ hqsi
@2ui

@t2
� dg

@

@t
v i � uið Þ � dl

@

@t
wi � uið Þ

a21uj;ij þ a22v j;ij þ a23wj;ij ¼ hqgi
@2v i

@t2
þ dg

@

@t
v i � uið Þ

a31uj;ij þ a32v j;ij þ a33wj;ij ¼ hqli
@2wi

@t2
þ dl

@

@t
wi � uið Þ ð4Þ

For solving Eq. (4) harmonically, we assume the displacements
component as
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uj;v j;wj
� � ¼ Hj; Jj; Lj

� �
eix p1x1þp2x2þp3x3�tð Þ ð5Þ

where, x is the angular frequency and pkðk ¼ 1;2;3Þ is the
component of the slowness vector p. The vectors H ¼
Hx1 ;Hx2 ;Hx3

� �T
; J ¼ Jx1 ; Jx2 ; Jx3

� �T
and L ¼ Lx1 ; Lx2 ; Lx3

� �T define the

polarizations for the motions of solid, gas and liquid particles in
porous medium. Substituting Eq. (5) in Eq. (4) then we get

a10 þ a11ð ÞpTpþ a10ppT � b11
� 	� �

Hþ a12pTpþ b12
� �

J

þ a13pTpþ b13
� �

L ¼ 0 ð6Þ
a12pTpþ b12
� �

Hþ a22pTp� b22
� �

Jþ a23pTpL ¼ 0 ð7Þ
a13pTpþ b13
� �

Hþ a23pTpJþ a33pTp� b33
� �

L ¼ 0 ð8Þ
bij

� 	
are given by

b11 ¼ hqsi þ
i
x

d1 þ d2ð Þ; b12 ¼ i
x

d1; b13 ¼ i
x

d2;

b22 ¼ hqgi þ
i
x

d1; b33 ¼ hqli þ
i
x

d2

where, I is the identity matrix of order three and pT denotes the
conjugate transpose of the slowness vector p. For simplification of
Eqs. (6)–(8), we relate the polarization vectors of fluids in the form
of the polarization vector of the solid with the help of Eqs. (7) and
(8) as

J ¼ AH; A ¼ �A3

A6
Iþ AA1kþ AA0

A4k
2 þ A5kþ A6

pTp; k ¼ ppT ð9Þ

L ¼ BH; B ¼ B3

A6
I� BB1kþ BB0

A4k
2 þ A5kþ A6

pTp ð10Þ

Eqs. (9) and (10) show the displacement relations for liquid and
gas particles with solid particles. On applying Eqs. (9) and (10) in
Eq. (6), we find a system of three equations, which are

CH ¼ 0; C ¼ c1p
Tpþ c2 kI� pTp

� � ð11Þ
Eq. (11) describes propagation phenomena in the medium and
these equations are said to be Christoffel equations for elastic wave
propagation in porous media. The coefficients used in the various
relations, are

c1 ¼ a10 þ f 10ð Þkþ g1k
2 þ g2kþ g3

A4k
2 þ A5kþ A6

k� f 11; c2 ¼ a10k� f 11ð Þ;

g1 ¼ a12AA1 � a13BB1; g2 ¼ a12AA0 þ b12AA1 � a13BB0 � b13BB1;

g3 ¼ b12AA0 � b13BB0; f 10 ¼ a11 þ B3a13 � A3a12
A6

;

f 11 ¼ b11 þ A3b12 � B3b13

A6
;

AA0 ¼ A3A5 � A2A6

A6
; AA1 ¼ A3A4 � A1A6

A6
; BB0 ¼ B3A5 � B2A6

A6
;

BB1 ¼ B3A4 � B1A6

A6
; A1 ¼ a12a33 � a13a23;

A2 ¼ b12a33 � b33a12 � b13a23;

A3 ¼ �b12b33; A4 ¼ a22a33 � a223; A5 ¼ �b22a33 � b33a22;

A6 ¼ b22b33; B1 ¼ a12a23 � a13a22;

B2 ¼ b12a23 � b13a22 þ a13b22; B3 ¼ b13b22;

The slowness vector is defined in terms of velocity V as p ¼ N
V

such that NNT ¼ 1 and k ¼ 1
V2. The complex vector N represents

the directions of propagation and attenuation of a wave in the por-
ous medium and NT is its conjugate transpose. In terms of N and V,
the Christoffel Eq. (11) are expressed as

c1N
TNþ c2ðI� NTNÞ

h i
H ¼ 0 ð12Þ
For non-trivial solutions for Eq. (12), the determinant ð¼ c1c22Þ must
be zero. This provides us with two conditions

The first one (i.e. c1 ¼ 0) gives

f 11A6V
6 þ f 11A5 � g3 � A6 a10 þ f 10ð Þf gV4

þ f 11A4 � g2 � A5 a10 þ f 10ð Þf gV2 � g1 þ A4 a10 þ f 10ð Þf g ¼ 0 ð13Þ
From the solution of Eq. (13), we get three complex velocities

(Vj; j ¼ 1;2;3) for the three attenuating waves that propagate in
the porous medium. In the present case, for any of these three
waves, the polarization vector ðHx1 ;Hx2 ;Hx3 Þ is found to be parallel
to N and hence these three waves are identified as longitudinal
body waves. These three waves with velocities RðV1Þ;RðV2Þ, and
RðV3Þ (where, RðV1Þ > RðV2Þ > RðV3Þ) are identified as Ps; Pl, and
Pg , respectively. The third wave is identified for the presence of
the second fluid phase in pores.

The second one (i.e. c2 ¼ 0) gives

f 11V
2 � a10 ¼ 0 ð14Þ

From the solution of Eq. (14), we get a complex velocity V4 ¼
ffiffiffiffiffi
a10
f 11

q
for the single dispersive wave. The corresponding polarization
vector ðHx1 ;Hx2 ;Hx3 Þ is parallel to any of the column (or, row)

vectors of the singular matrix ðI�NTNÞ. This indicates the propaga-
tion of a single transverse (S) body wave in a porous medium with
velocity V4.

The polarizations of the gas and liquid particles can be calcu-
lated from Eqs. (9) and (10) for a given polarization vector of solid
particles.

2.2. Cracked elastic solid

Wave anisotropy in the medium is caused by the presence of
vertically aligned parallel cracks. The anisotropic parameters
e; c; dð Þ can be represented in terms of crack density ðgÞ and crack
porosity ðucÞ of the parallel cracks present in the elastic solid,
Thomsen (1995). These relations can be given as:

e ¼
E
E
� 1

2 1� m2ð Þ ; c ¼ 1
2

l
l
� 1

� �
; d ¼ D

2 1� mð Þ 1� Dð Þ ð15Þ

with

D ¼ l
l

E

E
� 1

� �
1� mð Þ
1þ mð Þ þ

l
l� 1

� �
1� 2mð Þ ð16Þ

where the coefficients E and l represent the Young’s modulus and
rigidity constant for the elastic solid in the absence of cracks. m is
the Poisson’s ratio for the solid grains. Also, E and l represent the
Yong’s modulus and rigidity constant for presence of cracks in elas-
tic medium. With the help of Eqs. (15) and (16), the effect of cracks
on the elastic constants is defined as

E

E
¼ 1þ g

16
3

1� Kf

Ks

� �
1� m2
� �

Dc;
l
l
¼ 1þ g

16
3

1� mð Þ
2� mð Þ ð17Þ

where, Dc ¼ 1� Kf

Ks
1� 16

9
g
uc

1�m2ð Þ
1�2mð Þ

� �
 ��1

is called the influence fac-

tor. Ks and Kf denote the bulk modulus of the solid and fluid, respec-
tively. The crack porosity can be written asuc ¼ 4

3pg
c
a. Where, g and

c
a

� �
represent the crack density and the aspect ratio of radius a and

thickness c of the circular cracks. Anisotropic parameters are related
to the elastic constants as

e ¼ 1
2

C11

C33
� 1

� �
; c ¼ 1

2
C66

C44
� 1

� �
; d ¼ C13 þ C44ð Þ2

C33 C33 � C44ð Þ þ
C44

C33
� 1

ð18Þ
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Where C11;C13;C33; C44 and C66 are the elastic constants for
the transversely isotropic elastic solid. Transverse isotropy can
be reduced to the isotropy with the following relations:
C33 ¼ C13 þ 2C66 and C44 ¼ C66. The transversely isotropic behaviour
of the cracked elastic solid can be represented by the values of elas-
tic parameters C33;C44;Ks;Kf ; m;g and uc

2.3. Propagation and attenuation

From the previous section, we find four attenuated waves,
propagating in an immiscible fluid saturated porous medium. Of
these three are longitudinal body waves and the other is a trans-
verse body wave. The propagation of an attenuated wave in a dissi-
pative porous medium is defined through a complex slowness
vector and its real and imaginary parts represent the propagation
and the attenuation vector. The difference between the direction
of propagation and the attenuation vector is said to be the inhomo-
geneity of a plane attenuated wave and this wave in a dissipative
medium is known as an inhomogeneous wave, Borcherdt (1982).

For the representation of these waves, Sharma (2008b) has used
a non dimensional parameter ðdÞ called the inhomogeneity param-
eter. The complex slowness vector p of an inhomogeneous wave in
terms of ðdÞ can be written as:

p ¼ 1
v

bn þ ibbn þ idcm� � ð19Þ

where, cm is said to be the orthogonal unit vector of the propagation
direction bn. The vector ðb=vÞbn is said to be the attenuation along
the propagation of the attenuated plane waves. Hence, the first
two terms of Eq. (19) represent the propagation of a homogeneous
wave and its homogeneous attenuation. The third term of Eq. (19)
represents the propagation of an inhomogeneous wave. The total
attenuation for an inhomogeneous wave is defined by the magni-

tudes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2 þ d2Þ

q
=v . For d ¼ 0, the attenuated wave is conceived

to propagate as a homogeneous wave. For the propagation of the
inhomogeneous attenuated wave d – 0. For our study, we need to
determine the value of the attenuation coefficient b and the phase
velocity v by using the given values of bn;cm and d� ½0;1Þ.

Eq. (19) can be written as with the help of p ¼ N
V and NNT ¼ 1.

v2 ¼ �2b
jhj2
IðhÞ ; b ¼ RðhÞ

IðhÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðhÞ
IðhÞ

� �2

þ 1� d2

s
;

N ¼ ð1þ ibÞbn þ idcmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2 � d2 þ 2ib

q ð20Þ

where, h ¼ V2. The relation between the attenuation coefficient a
and wave inhomogeneity (d) can be given as

a ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ d2

q
=v ð21Þ
3. Formulation of the problem

The aim of the present study is to understand the effect of
vertical aligned cracks present in the elastic half space on the
energy share of the incident wave by four reflected waves and
two refracted waves at the loosely bonded interface between the
cracked elastic half space and partially saturated porous half space.
This study provides a mathematical model to analyze the continu-
ous accumulation of the stress around the focal region of possible
failure. The expansion of cracks is the most direct effect of accumu-
lation of stress before an earthquake. On increasing the stress, the
shape of the cracks change through changes in orientation, density
and thickness of the solid. In the crust, changes in cracks may be
responsible for an impending earthquake. We consider the possible
changes in reflection or refraction coefficients for the incident
wave as precursors, during the period of an earthquake. For the
present study, we assume one of the medium is a partially satu-
rated porous half space and the other one is a transversely isotro-
pic cracked elastic half space. The transverse isotropy in the elastic
medium is possible only on the presence of vertically aligned
micro-cracks (Crampin, 1985). The change in crack shapes due to
stress accumulation are shown here as changes in elastic
anisotropy.

3.1. Definition of the problem

We consider a Cartesian coordinate system ðx1; x2; x3Þ to repre-
sent a 3-D space. Here, the interface between these two media can
be represented by x3 ¼ 0, see Fig. 1. An attenuated wave with
velocity V0 travels through the medium-I (i.e. x3 > 0) and is inci-
dent at a point on the interface making an angle h0 with the normal
to the interface. For the study of propagation and attenuation of
elastic waves, the problem has been considered for the x1–x3 plane.
So, a unit vector n ¼ ðsin h;0;� cos hÞ represents the propagation
direction of the incident wave and m ¼ ðcos h; 0; sin hÞ represents
its orthogonal direction. The geometry of the present problem clar-
ifies that the incident angle (h) varies from 0� to 90�. The slowness
vector for an incident wave is given by p ¼ ðsin h0; 0;� cos h0Þ=V0,
where V0 is the complex velocity of the incident wave. The incident
wave results in four reflected waves ðPp; Pl; Pg and SVÞ and two
refracted waves ðqP and qSVÞ. According to Snell’s law
ðp1 ¼ sin h0

V0
¼ sin h1

V1
¼ . . .Þ, horizontal slowness will be same for

incident, reflected and refracted waves. Therefore, the slowness
vectors for reflected and refracted waves can be written as

ðp1;0; qkÞ; ðk ¼ 1 to 6Þ, where qk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=V2

k � p2
1

q
.

The displacement for solid particles in a porous medium is
given by

uj ¼ H0
j e

ixðp1x1þq0x3�tÞ þ
X4
k¼1

f kH
k
j e

ixðp1x1þqkx3�tÞ; ðj ¼ x1; x3Þ ð22Þ

where, f k is the excitation factor for reflected waves ðk ¼ 1� 4Þ.
Based on the propagation direction of the incident wave, we must
have Rðq0Þ < 0. The corresponding displacement of gas and liquid
particles can be calculated from Eq. (5) by using the matrices J
and L.

The particle motion in a cracked elastic solid (medium-II,
i.e. x3 < 0) is represented by the quasi-longitudinal ðqPÞ wave
and quasi transverse ðqSVÞ wave. The displacement components
ðUx1 ;0;Ux3 Þ in the cracked elastic solid half space are given as

Ux1 ¼
X6
k¼5

f ke
ixðp1x1þqkx3�tÞ; Ux3 ¼

X6
k¼5

Rkf ke
ixðp1x1þqkx3�tÞ ð23Þ

where, f k is the excitation factor for refracted waves ðk ¼ 5;6Þ. The
coupling constants Rk are given by Sharma (1999).

Rk ¼ �ðC11p2
1 þ C44q2

k � qÞ
ðC13 þ C44Þp1qk

; ðk ¼ 5;6Þ ð24Þ

The vertical slowness vector can be found from Sharma (1999)

C33C44q4 þ C11C33 � C2
13 � 2C13C44

� �
p2
1 � q C33 þ C44ð Þ

h i
q2

þ C11C44p4
1 � q C11 þ C44ð Þp2

1 þ q2 ¼ 0 ð25Þ

From Eq. (25), we get two complex quantities for vertical slowness
q2. For numerical verification of the model, the values for q5 and q6

must satisfy the condition that is RðqÞ < 0. The stress components



Fig. 1. Geometry of the problem.

S. Shekhar, I.A. Parvez / International Journal of Solids and Structures 75–76 (2015) 299–308 303
on the x1–x3 plane with the normal along the x3-direction are given
by

hrix1x3 ¼ C44
@Ux1

@x3
þ @Ux3

@x1

� �
; hrix3x3 ¼ C13

@Ux1

@x1
þ C33

@Ux3

@x3
ð26Þ
4. Boundary conditions

The boundary conditions at the interface between two layers
are defined as the continuity of displacement components and
stress components, Deresiewicz and Skalak (1963). Here, the
restriction of fluid flow from the porous solid to the cracked elastic
solid is considered. If at the interface, the surface of the pores is not
fully sealed then the pore fluid can pass through the interface and
come into contact with the elastic solid. This is possible only in the
presence of the liquid in the porous skeleton. This type of condition
is said to be loosely contacted between the porous solid and the
elastic solid, Vashisth et al. (1991). For mathematical representa-
tion of the loose bonding, they proposed that the tangential stress
at the interface is proportional to the tangential slip. So, the appro-
priate boundary conditions for loosely bonded interface at x3 ¼ 0
are.

(i) hssix3x3 þ hsgix3x3 þ hslix3x3 ¼ hrix3x3 ,
(ii) hssix3x1 ¼ hrix3x1 ,
(iii) _vx3 � _ux3 ¼ 0,
(iv) _wx3 � _ux3 ¼ 0,
(v) asux3 þ a1vx3 þ a2wx3 ¼ Ux3 ,

(vi) whssix3x1 ¼ 1� wð ÞZ _ux1 � _Ux1

� �
where, the parameter w is said to be the bonding constant
and its range is 0 6 w 6 1. w ¼ 1 represents a smooth interface
and w ¼ 0 represents a welded interface at x3 ¼ 0. The finite
constant Z is said to be the surface flow impedance for the fluid
phase, Denneman et al. (2002). For the present study, we assume
that the bonding constant has its value in between 0 and 1
(0 < w < 1). With the help of Eqs. (22) and (23), the above bound-
ary conditions are satisfied by a system of six linear equations in
f 1; f 2; f 3; f 4; f 5, and f 6. This system of equations can be written in
combined form asX4
k¼1

Likf k �
X6
k¼5

Mikf k ¼ �Li0; ði ¼ 1;2; . . . ;6Þ ð27Þ
where, the coefficients Lik, (i = 1, 2, . . ., 6, k = 0, 1, . . ., 4) and Mik,
(i = 1, 2, . . ., 6, k = 5, 6) can be expressed as

L1k ¼ ðXðkÞ
11 þ Y ðkÞ

11 þ ZðkÞ
11 Þp1S

ðkÞ
1 þ ð2a10 þ XðkÞ

33 þ Y ðkÞ
33 þ ZðkÞ

33 ÞqkS
ðkÞ
3

þ D1A
ðkÞ
31 þ D2B

ðkÞ
31

� �
qkS

ðkÞ
1 þ p1S

ðkÞ
3

� �
;

L2k ¼ a10ðSðkÞ1 qk þ p1S
ðkÞ
3 Þ; L3k ¼ ðAðkÞ

31S
ðkÞ
1 þ ðAðkÞ

33 � 1ÞSðkÞ3 Þ;
L4k ¼ ðBðkÞ

31S
ðkÞ
1 þ ðBðkÞ

33 � 1ÞSðkÞ3 Þ;
L5k ¼ asS

ðkÞ
3 þ a1ðAðkÞ

31S
ðkÞ
1 þ AðkÞ

33S
ðkÞ
3 Þ þ a2ðBðkÞ

31S
ðkÞ
1 þ BðkÞ

33S
ðkÞ
3 Þ;

L6k ¼ wa10ðqkS
ðkÞ
1 þ p1S

ðkÞ
3 Þ þ ð1� wÞZSðkÞ1 ; ðk ¼ 0;1;2;3;4Þ

M1k ¼ ðC13p1 þ C33RkqkÞ; M2k ¼ C44ðqk þ Rkp1Þ;
M3k ¼ M4k ¼ 0; M5k ¼ Rk; M6k ¼ ð1� wÞZ; ðk ¼ 5;6Þ
where, D1 ¼ a12 þ a22 þ a23; D2 ¼ a13 þ a23 þ a33:

The matrices used in the previous equation can be defined as

XðkÞ ¼ a11 � 2a10

3

� �
Iþ a12A

ðkÞ þ a13B
ðkÞ;

YðkÞ ¼ a12Iþ a22A
ðkÞ þ a23B

ðkÞ; ZðkÞ ¼ a13Iþ a23A
ðkÞ þ a33B

ðkÞ

where, the matrices AðkÞ and BðkÞ are evaluated for each slowness
vector p of the corresponding incident wave or reflected waves
(k = 0, 1, . . ., 4).

To find the values of the excitation factor f i, we solve Eq. (27)
numerically with the help of the Gauss elimination method. The
obtained values of f iði ¼ 1;2; . . . ;6Þ represent the amplitude ratios
of the four reflected waves (Pp; Pl; Pg and SV) and the two refracted
waves (qP and qSV) to the amplitude of the incident wave.

5. Energy ratios

In this section, we discuss the distribution of incident energy
among the four reflected waves and the two refracted waves across
a surface of unit area at the plane interface x3 ¼ 0. Following
Achenbach (1973), the rate of energy transmission per unit surface
area is given by the scalar product of the surface traction and the
respective particle velocity represented by P�. The average energy
flux of the waves in the porous media, for a given surface with a
normal along the x3-direction is represented as

hP�
iji ¼ R hssiðiÞx3x1 _uðjÞ

x1
þ hssiðiÞx3x3 _uðjÞ

x3
þ hs1iðiÞx3x3 _v ðjÞ

x3
þ hs2iðiÞx3x3 _wðjÞ

x3

h i
;

ði; j ¼ 0;1; . . . ;4Þ ð28Þ
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The average energy flux of the refracted waves in the cracked
elastic medium is defined as

hQ�
iji ¼ R hriðiÞx3x1 _UðjÞ

x1
þ hriðiÞx3x3 _UðjÞ

x3

h i
; ði; j ¼ 5;6Þ ð29Þ

The expression in the form of the matrix for the distribution of the
incident energy among the four reflected waves is given by

Eij ¼ �RðFijf i�f jÞ
RðF00Þ ; ði; j ¼ 0;1;2;3;4Þ ð30Þ

and the two refracted waves

Eij ¼ �RðGijf i�f jÞ
RðF00Þ ; ði; j ¼ 5;6Þ ð31Þ

Here, the bar over a variable represents its complex conjugate. The
matrix F and G can be given as

Fij¼ Y ðiÞ
11
�AðjÞ
31þZðiÞ

11
�BðjÞ
31

� �
p1þ a10þ a22A

ðiÞ
31þa23B

ðiÞ
31

� �
�AðjÞ
31

nh
þ a23A

ðiÞ
31þa33B

ðiÞ
31

� �
�BðjÞ
31

o
qi

i
SðiÞ1

�SðjÞ1

þ Y ðiÞ
33
�AðjÞ
31þZðiÞ

33
�BðjÞ
31

� �
qiþ a10þ a22A

ðiÞ
31þa23B

ðiÞ
31

� �
�AðjÞ
31

nh
þ a23A

ðiÞ
31þa33B

ðiÞ
31

� �
�BðjÞ
31

o
p1

i
SðiÞ3

�SðjÞ1 þ XðiÞ
11þY ðiÞ

11
�AðjÞ
33þZðiÞ

11
�BðjÞ
33

� �
p1

h
þ a12A

ðiÞ
31þa13B

ðiÞ
31

� �
þ a22A

ðiÞ
31þa23B

ðiÞ
31

� �
�AðjÞ
33

n
þ a23A

ðiÞ
31þa33B

ðiÞ
31

� �
�BðjÞ
33

o
qi

i
SðiÞ1

�SðjÞ3 2a10þXðiÞ
33þY ðiÞ

33
�AðjÞ
33þZðiÞ

33
�BðjÞ
33

� �
qi

h
þ a12A

ðiÞ
31þa13B

ðiÞ
31

� �
þ a22A

ðiÞ
31þa23B

ðiÞ
31

� �
�AðjÞ
33

n
þ a23A

ðiÞ
31þa33B

ðiÞ
31

� �
�BðjÞ
33

o
p1

i
SðiÞ3

�SðjÞ3

Gij ¼ ðqiC44 þ C44Rip1Þ þ ðC13p1 þ C33RiqiÞRj

The energy matrix Eij defines the energy partition of the incident
wave at the interface x3 ¼ 0. Further, the diagonal entries
E11; E22; E33; E44; E55 and E66 denote the energy shares of the four
reflected Pp; Pl; Pg and SV waves and the two refracted qP and qSV
waves. Due to the presence of the loose bonding between the given
two media, tangential slip is allowed at the interface and this slip
absorbs some of the incident energy. Because of loose bonding at
the interface, the sum of the energy shares by reflected and
refracted waves falls short that of the incident wave and this
remaining energy share is said to be dissipated energy. The conser-
vation of the total energy of the incident wave at the interface can
be given by E11 þ E22 þ E33 þ E44 þ E55 þ E66 þ Edissipated ¼ 1.

6. Numerical results and discussion

For numerical verification of the proposed model, we have
considered medium-I as a water and CO2 saturated sandstone, in
loose contact with basaltic rock (medium-II) containing uniformly
distributed vertical aligned circular cracks. The material constants
for each medium can be given as.

� Medium-I: water and CO2 saturated sandstone: The material
constants has been taken from Garg and Nayfeh (1986), are
porosity u ¼ 0:2; Kfr ¼ 12 GPa, Gfr ¼ 9 GPa as ¼ 0:8; hqsi ¼
2120 kg m�3, Kg ¼ 3:7 MPa, hqgi ¼ 103Sgð1� asÞ kg m�3, Kl ¼
2:7 GPa, hqli ¼ 990ð1� SgÞð1� asÞ kg m�3, Kcap ¼ 0:1 MPa. The
values of dissipation coefficients are taken from Sharma and
Saini (2012), dg ¼ 0:04 MPa�s�m�2 and dl ¼ 1 MPa�s�m�2.

� Medium-II: basaltic rockwith vertical aligned cracks: the elas-
tic constants C33 and C44 are given by C33 ¼ v2

1q and C44 ¼ v2
2q.

Where, v1 and v2 are the velocities of P and S waves and q is
the density of the elastic medium. The values of velocities and
densities are taken from Nandan and Saini (2012), are
v1 ¼ 5 km/s, v2 ¼ 2:75 km/s, and qc ¼ 2700 kg/m3. The other

parameters are: Kf

Ks
¼ 0:053; m ¼ 0:28 and Z ¼ 1 MPa�s/m.

The above numerical values have been used for the study of the
distribution of energy share of the incident wave into the four
reflected waves and two refracted waves from the loosely con-
nected interface x3 ¼ 0. For the numerical analysis of the proposed
model, we consider that the Pp and SV waves are incident on the
interface x3 ¼ 0. The incident waves depend on the angle of the
incidence (h) which varies from 0� to 90�. The frequency for the
present study of the energy shares of the incident wave is
1000 Hz. The variation of the energy ratios (E11; E22; E33; E44; E1; E2

and Edissipated) with angle of incidence (h) for presence and absence
of vertically aligned cracks with respect to different values of
aspect ratio ðc=aÞ, crack density ðgÞ and bonding constant ðwÞ are
shown in Figs. 2–4 (for the incident Pp wave) and in Figs. 5–7
(for the incident SV wave).

For given incident Pp wave, Fig. 2 shows the variation in energy
ratios with respect to angle of incident ðhÞwave for different values
of the bonding constant ðwÞ. We have given a comparative study
for presence (g– 0) and absence (g ¼ 10�15 � 0) of cracks and
found that in the study of wave propagation of elastic waves for
the imperfectly connected interface has significant effect of the
presence of cracks. Based on the values of bonding constant ðwÞ,
we get a significant effect of w on the energy ratios. On changing
the interface property from welded ðw ¼ 0Þ to smooth ðw ¼ 1Þ,
we note that in the presence of cracks, the reflected ðPl and PgÞ
waves and the refracted ðqSVÞ wave propagate slowly in their
respective media but reflected SV wave and refracted qP wave
become stronger. At normal incidence, the dissipative energy
become stronger in comparison to the other energy shares that
shows the larger slip at loosely bonded interface.

As per the requirement of the present problem, the effect of
aspect ratio ðc=aÞ for circular crackswithfixed radius (a) but change-
able crack thickness (c) on the energy ratios has been presented in
Fig. 3. It is clear from Fig. 3 that on increase of the aspect ratio, the
critical angle decreases in each figure of Fig. 3. All of the energy
shares affect significantly close to the critical angle of the incidence.
For postcritical incident of fast Pp wave, reflected Pg ; Pl and SVwaves
reflect stronglywith respect to the aspect ratio. At grazing incidence,
most of the energy shares have been found in between reflected Pp

and refracted qSV waves. Near the postcritical incidence, change in
crack thickness has positive impact on the refracted qP wave but
negative impact has been found on refracted qSVwaves. Dissipated
energy has negligible impact of the aspect ratio ðc=aÞ.

Fig. 4 presents the change in energy share of the incident waves
by reflected and refracted waves at the loosely bonded interface
x3 ¼ 0 for three different values of the crack density g. In which,
we have given comparison between the presence (g – 0) and
absence (g ¼ 10�15 � 0) of cracks in basaltic rock. The critical angle
for incident wave is found around 40� for each of the reflected and
refracted waves except for the refracted qSV wave. It decreases
with increase of crack density ðgÞ. Dissipated energy increases with
respect to angle of incidence ðhÞ meaning more energy is absorbed
at the loose interface with respect to the incident angle. After post
critical incidence, we found that slow ðPl; PgÞ and fast SV waves
reflect strongly with increase of the crack density ðgÞ. For normal
incidence of the Pp wave results there is no refracted qSV wave in
the elastic medium. The effect of a change in crack density has
been found to be very little on the fast reflected Pp wave, refracted
qSV wave and on dissipated energy but for critical incidence, we
see some strengthening in fast Pp wave. These results follow the
conservation law of energy.



0 20 40 60 80
0

0.5

En
er

gy
 (P

p)

0 20 40 60 80
1

2

3
x 10−4

En
er

gy
 (P

l)

0 20 40 60 80

5

10

15
x 10−6

En
er

gy
 (P

g)

0 20 40 60 80
0

0.04

0.08

En
er

gy
 (S

V)

0 20 40 60 80
0

0.15

0.3

En
er

gy
 (q

P)

0 20 40 60 80
0

0.5

1

En
er

gy
 (q

SV
)

0 20 40 60 80
0

0.45

0.9

Incident angle (θ)

En
er

gy
 (D

is
s.

)

c/a=0.0
c/a=0.005
c/a=0.015

Fig. 3. Energy shares of incident Pp wave by the reflected ðPp; Pl; Pg ; SVÞ waves, refracted ðqP; qSVÞ waves and energy dissipation at the interface x3 ¼ 0 with incidence
direction ðhÞ for different values of the aspect ratio ðc=aÞ for given Sg ¼ 0:5; d ¼ 0:02; w ¼ 0:5 and g ¼ 0:2.
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Fig. 2. Energy shares of incident Pp wave by the reflected ðPp; Pl; Pg ; SVÞ waves, refracted ðqP; qSVÞ waves and energy dissipation at the interface x3 ¼ 0 with incidence
direction ðhÞ for different values of the bonding parameter ðwÞ in the presence and absence of the vertically aligned cracks for given Sg ¼ 0:5; d ¼ 0:02 and c=a ¼ 0:01.
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The change in energy shares with incident angle ðhÞ for different
values of the bonding parameter w with respect to presence and
absence of cracks in basaltic rocks is shown in Fig. 5. Significant
effect of loose bonding has been found on all of the reflected waves,
refracted waves and on dissipated energy. For the fixed value of
bonding parameter, we find that the reflected Pp; Pl; Pg and
refracted qP; qSV waves gain some strength in the absence of
cracks but we find weaker dissipated energy. At grazing incidence,
most of the energy share has been found among the refracted qP
wave and the dissipated energy and for normal incidence, it is in
the reflected SV wave. For the presence of aligned cracks in the
elastic medium, we see a sudden change in energy share of the
refracted qSV wave for a given incident angle in the range
42� < h < 48�. This change shows that the refracted qSV wave will
move towards the loosely bonded interface because of the negative
sign of energy share. In the absence of cracks, we get weaker
dissipated energy.

The effect of aspect ratio ðc=aÞ on energy share at a loosely
bonded interface is shown in Fig. 6. Very little impact of crack
thickness ðcÞ has been found on the refracted waves. Near the
critical angle (around 48�), we get negative energy share of the
refracted qSV wave that may give strength to the dissipative
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Fig. 4. Energy shares of incident Pp wave by the reflected ðPp; Pl; Pg ; SVÞ waves, refracted ðqP; qSVÞ waves and energy dissipation at the interface x3 ¼ 0 with incidence
direction ðhÞ for different values of the crack density ðgÞ for given Sg ¼ 0:5; d ¼ 0:02; w ¼ 0:5 and c=a ¼ 0:01.
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Fig. 5. Energy shares of incident SV wave by the reflected ðPp; Pl ; Pg ; SVÞ waves, refracted ðqP; qSVÞ waves and energy dissipation at the interface x3 ¼ 0 with incidence
direction ðhÞ for different values of the bonding parameter ðwÞ in the presence and absence of the vertically aligned cracks for given Sg ¼ 0:5; d ¼ 0:02 and c=a ¼ 0:01.
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energy. The change in crack thickness has positive impact on the
reflected Pp; Pl and Pg waves but has negative impact on reflected
SV wave. At grazing incidence, most of the energy share of the
incident SV wave has been distributed in between reflected SV
wave and dissipated energy. At the grazing and normal incidence,
no sign of refracted qSV wave is indicated through Fig. 6.

For the incidence of the SVwave, the effect of crack density g on
the energy share is shown in Fig. 7. In the absence g ¼ 10�15 � 0 of
aligned cracks, we find that most of the incident energy distributes
in between reflected and refracted waves and very less energy is
dissipated at the interface. The critical angle for each wave except
the fast Pp wave is found around 45� in presence g– 0 of aligned
cracks but in the absence of aligned cracks, the critical angle is
found around 50�. We get stronger reflected and refracted waves
in absence of cracks in the elastic medium except for the reflected
SVwave. The effect of the crack density has been found in refracted
qP and qSVwaves for the post critical incident angle. A sudden drop
in energy share has been shown for the refracted qSV wave around
the critical angle for the presence of aligned cracks. After postcrit-
ical incidence with reduction in the values of crack density, we see
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Fig. 6. Energy shares of incident SV wave by the reflected ðPp; Pl; Pg ; SVÞ waves, refracted ðqP; qSVÞ waves and energy dissipation at the interface x3 ¼ 0 with incidence
direction ðhÞ for different values of the aspect ratio ðc=aÞ for given Sg ¼ 0:5; d ¼ 0:02; w ¼ 0:5 and g ¼ 0:2.
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Fig. 7. Energy shares of incident SV wave by the reflected ðPp; Pl; Pg ; SVÞ waves, refracted ðqP; qSVÞ waves and energy dissipation at the interface x3 ¼ 0 with incidence
direction ðhÞ for different values of the crack density ðgÞ for given Sg ¼ 0:5; d ¼ 0:02; w ¼ 0:1 and c=a ¼ 0:01.
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stronger reflected Pp; Pl and Pg waves and refracted qP and qSV
waves but weaker dissipated energy. At grazing incidence, energy
shares of reflected Pp; Pl and Pg waves are almost zero.

7. Conclusion

The effect of aspect ratio, crack density, and loose bonding
parameteron inhomogeneous wave propagation along the inter-
face between porous solid saturated by two immiscible fluids
and cracked elastic half space has been studied. We have also given
a comparative study with and without aligned cracks in the elastic
half space. It is assumed that the vertical aligned cracks present in
the elastic half space can be represented by the crack density and
aspect ratio. It is also believed that both the media are loosely con-
nected to each other assuming the tangential slip present at the
interface, Vashisth et al. (1991). This slip absorbs part of the inci-
dent wave energy that results in weakening the reflected and
refracted waves and is evident as dissipated energy. An analysis
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of the effect of aspect ratio, crack density and bonding parameter
on energy share is confirmed by a numerical example and we draw
the following conclusions:

1. For a given incident Pp or SV wave, the vertically aligned cracks
in the elastic half space give significant difference in the energy
share of the incident wave by reflected and refracted waves. In
the absence of the cracks for given incident SVwave, less energy
will be absorbed at the loosely bonded interface in the form of
dissipated energy.

2. We see significant change in the energy ratios with respect to
changes in the bonding constant from welded to smooth inter-
face that shows the importance of the type of interface between
two media in wave propagation analysis. Our results success-
fully fulfill the claim that in the presence of loose boundary,
the sum of energy shares of all scattered waves at the interface
is short of unity. Overall it is clear that the assumption of
loosely bonded interface for the present study in place of
welded ðw ¼ 0Þ or smooth ðw ¼ 1Þ interface affects significantly
the reflection–refraction phenomena. In the presence and
absence of cracks, considerable change has been found for given
values of bonding parameter.

3. In the presence of cracks for a given incident SV wave, a sudden
energy drop has been found in case of refracted qSV wave for
the given incident angle in the range of 42� < h < 48�. It shows
that the refracted qSV wave moves towards the loosely bonded
interface because of the negative value of the energy share.

4. Change in crack density g or thickness (c) of the cracks (for the
fixed radius) can directly affect the porosity uc ¼ 4

3pg
c
a

� �
of the

cracked elastic half space. In the presence of cracks, the change
in crack thickness and crack density do not affect the refracted
qP and qSV waves much but some changes have been found
around the critical incidence for a given incident SV wave.

5. The energy shares of the reflected slow Pl and Pg waves of the
incident wave are very small in comparison to the other energy
shares.

6. We found that at grazing incidence of the SV wave, most of the
incident energy is dissipated at the interface but in the case of
the incident Pp wave very little or all most zero energy is dissi-
pated around the interface.

7. Our results satisfy the conservation of the energy at the loosely
bonded interface between the porous half space and the
cracked elastic half space.

The effect of the presence of vertical aligned cracks in the elastic
half space and tangential slip at loosely bonded interface on the
energy share of the incident wave by the reflected and refracted
waves may help to understand the reflection and refraction phe-
nomena that are used in exploration seismology. Also, this study
can be helpful for understanding the wave pattern of elastic waves
from the loosely bonded interface. These cracks are mainly depen-
dent on the crack density and thickness of the cracks and may
directly be the cause of the accumulation of stresses before an
earthquake. Such behaviour of these cracks in a particular region
may be the indication of a precursor to an earthquake.

We know that most part of the earth’s crust is basically rock,
which may possibly be a heterogeneous, porous and cracked elastic
solid. These rocks can contain oil, gas, water or some other miner-
als. This study may help us in obtaining information of the charac-
teristics of fluid flow through sedimentary rock in the crust by
using the process of the wave propagation in a realistic mathemat-
ical model that can be beneficial in petrolatum industries, seismic
exploration, reservoir monitoring and geophysical studies of the
earth’s crust.
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