Accepted Manuscript

INTERNATIONAL JOURNAL OF

A computational model for large deformations of composites with a 2D soft SO I_ | DS A N D

matrix and 1D anticracks S'l' R U CT U R ES
Ettore Barbieri, Nicola Maria Pugno m

PII: S0020-7683(15)00363-7

DOI: http://dx.doi.org/10.1016/j.ijsolstr.2015.08.015
Reference: SAS 8880

To appear in: International Journal of Solids and Structures
Received Date: 18 August 2014

Revised Date: 15 August 2015

Please cite this article as: Barbieri, E., Pugno, N.M., A computational model for large deformations of composites
with a 2D soft matrix and 1D anticracks, International Journal of Solids and Structures (2015), doi: http://dx.doi.org/
10.1016/j.ijsolstr.2015.08.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.ijsolstr.2015.08.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijsolstr.2015.08.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijsolstr.2015.08.015

A computational model for large deformations of composites with a 2D soft
matrix and 1D anticracks

Ettore Barbieri®*, Nicola Maria Pugnoa"”C

“Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of
Trento, Via Mesiano 77, I-38123 Trento, Italy
bCentre for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Povo (Trento), Italy
¢School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS, London, UK

Abstract

Anticracks (also known as Rigid Line Inclusions) occur frequently in a variety of natural and engineered composites
as very stiff and extremely sharp (almost zero-thickness) fibres or lamellae embedded in a softer matrix.

In the linear elastic regime, similarly to cracks, anticracks generate a singularity in the stress distribution around the
tip. Because of this similarity, existing analytical techniques and solutions (for simple cases) can be easily translated
to anticracks. However, despite their importance in many biological and engineering composites, there has been
surprisingly little development of numerical methods that would account simultaneously for the presence of multiple
fibres or lamellae, arbitrary loadings and nonlinear behaviour of the matrix.

This paper presents the first numerical‘approach for rigid line inclusions, based on a meshfree scheme recently
developed for multiple crack growth in elastic media. The inclusion of zero thickness is created as a crack, and a rigid
motion (rotation and translation) is enforced at the anticrack faces. The equations of motion are solved according to a
Total Lagrangian framework, and the matrix supposed hyperelastic.

Contrarily to available analytical solutions, the degrees of freedom of the rigid motion are determined a posteriori
as a consequence of the (discretized) elastic equilibrium, expressed in a variational approach.

Results show that the proposed approach match well the analytical solutions and provides accurate Stress Intensity
Factors (SIFs) for relatively little computational cost. Moreover, the method can reproduce some peculiar features of
the anticracks: unlike cracks, singularities also appear under compressive and parallel loads; moreover, for a certain
combination of biaxial load, stress concentrations disappear.

Finally, the paper presents examples drawn from biological and engineering composites: the reorientation of
one or more fibres under large strains, resulting in a smart stiffening and strengthening mechanism. Reorienting
towards the direction of applied load has structural importance since reinforcements can have the most effectiveness
in withstanding loads. If the matrix is compliant, the reorientation is eased.
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1. Introduction

A Rigid Line Inclusion (RLI) is a mathematical abstraction of an extremely thin stiff inclusion dispersed within a
matrix. The definition assumes the inclusion as infinitely rigid and zero-thickness. Kinematically, this model consists
in a surface of discontinuity (a crack) where a rigid motion is imposed on all the material points belonging to the
upper and lower faces of the inclusion. For this reason, some authors (Hurtado et al., 1996) refer to this model as an
anticrack. However, in geology this terminology indicates something different: a classical Mode I crack displacement
solution with a reversed sign (Fletcher and Pollard, 1981), which in classical fracture mechanics means a violation of
the non-penetrability of the crack faces. However, the justification is the dissolution and removal of material when the
anticrack surfaces move toward each other, which is useful to explain triggering mechanism for snow slab avalanches
(Heierli et al., 2008) or shallow earthquakes (Green et al., 1990; Burnley and Green, 1989). In RLI instead, the
impenetrability is automatically imposed by a rigid motion common to both faces.

RLIs are useful to model the effects on the matrix of thin reinforcements in form of fibres, platelets, needles or
rods of characteristic sizes much smaller than that of the embedding matrix. These reinforcements appear in many bi-
ological systems and engineered nanocomposites. For example, in biological systems (Pingle et al., 2008) like bones,
teeth or nacre, the reinforcement is usually in mineralized crystal form arranged in a staggered disposition within a
protein matrix. In calcified tissues, (Landis, 1995), these fibres influence their strength, and the overall effect is a
tough nanocomposite (Ji and Gao, 2004) produced from very poor materials (Fratzl and Guille, 2011). In engineered
nanocomposites, RLIs appear as needle-like reinforcements (Bilotti et al., 2008, 2009, 2010), nanowhiskers (Eichhorn
et al., 2010), nanoplatelets (Porwal et al., 2013b,a,c) and carbon nanotubes (Nishimura and Liu, 2004).

Many theoretical papers are available in the literature for the RLI problem, often encountered with different ter-
minology, such as line stiffener or anticrack, owed to its resemblance with a crack. Most likely, this abundance is due
to the application to RLI of already well-known techniques at that time for 2D problems: for instance, the Mushkel-
ishvili solutions in terms.of complex variable, and the Wiener-Hopf technique, previously applied for crack problems
(Muskhelishyili, 1953).

Probably the first paper on RLI appeared in 1973 (Atkinson, 1973), with the term ribbon instead of rigid line
inclusion. The scope of this paper was to study the response of a metallic strain measuring device in a rubber matrix.
This paper presented firstly the solution for stresses in an elastic linear matrix due to a single isolated rigid ribbon,
and secondly the solution for the elastic ribbon. The crack analogy is then exploited to obtain the solution for two
collinear rigid inclusions, and finally, the interaction of a RLI with a free boundary. Later, (Brussat and Westmann,
1975) proved the correspondence between the Westergaard stress function for cracks and a stress function for RLI,
and subsequently, the relation between their Stress Intensity Factors (SIFs). (Hasebe et al., 1984) instead proposed a

rational mapping function (again taken from the elasticity of cracks) to analyse the stress state near a the tip of a crack
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initiated from the tip of a RLI. (Wang et al., 1985) obtained the asymptotic expansion near the tip of a RLI (reported
in section 2.2 of this paper) for both stress and and strain fields. (Chen, 1986) and later (Stagni, 1989) proved the
path-independence of the J-integral around the tip of a RLI, and found that the J-integral for an anticrack is negative,
rather than positive like in cracks. (Dundurs and Markenscoff, 1989) and (Ballarini, 1987) reported a full-field solution
for the stresses in the matrix due to a RLI, respectively using a weight function technique and an integral equation
approach, and later for a RLI at the interface of two dissimilar materials (Ballarini, 1990). (Hurtado et al., 1996)
introduced the term anticrack for RLI and quasicracks for elastic line inclusion: they obtained similar solutions to
(Atkinson, 1973) starting from the Eshelby’s ellipsoidal equivalent inclusion, for the limit to zero of the ratio between
the axes.

Despite the great amount of theoretical work produced over the years, there was noattention to investigate experi-
mentally the stress distribution near a line stiffener, until 2008, when (Dal Corso et al., 2008; Bigoni et al., 2008), and
later (Dal Corso and Bigoni, 2009), (Noselli et al., 2010) interestingly disclosed, with photo-elasticity, the full-field
stress state of an extremely thin and stiff inclusion made of steel embedded in a transparent epoxy matrix. They vali-
dated with their experiments some intriguing aspects of the RLI problem, already known from the analytical solutions:
for instance, the appearance of a square root singularity also for tensile loading parallel to the stiffener.

With the field of nanocomposites in rapid growth, it becomes of paramount importance to develop numerical meth-
ods that implement RLI models that could be used by materials scientists and engineers to investigate the toughness
properties of both natural and man-made composites, or to imitate artificially the hierarchical structures present in
nature. This topic seems to have been overlooked by researchers in numerical methods, with almost absent literature
in this field. It is worth to acknowledge the significant contributions of (Radtke et al., 2010, 2011) where they employ
a Partition of Unity Finite Element Method (PUFEM) to introduce short thin fibres in a cementitious matrix as a
tunnelling crack with a finite very short thickness, not zero. The tunnel is introduced as a two-dimensional Heaviside
enrichment (1 inside the fibre, O otherwise) over the span of the fibre. Instead, we introduce an exactly zero thickness.
Moreover, in these works it is not reported any connections with a negative J-integral, nor comparisons with exist-
ing analytical solutions, whereas instead we make use of the relation in (Chen, 1986) and a numerically computed
J-integral tovalidate our results in terms of Stress Intensity Factors.

Exploiting the strong relation with cracks, we used an idea recently developed (Barbieri et al., 2012; Barbieri and
Petrinic, 2013b,a) for fracture in a meshfree context: the aim is to create a crack where the RLI is positioned, and then
impose a rigid motion at the (anti)cracks surfaces. The orientation of the inclusion can be arbitrary inside the matrix,
without restrictions imposed by the underlying discretization of the matrix.

The structure of the paper is the following: section 2 summarizes the analytical solutions available in the literature,
alongside with the formulas for the extraction of the SIFs; section 3 describes the governing equations in strong and
weak form and the ones arising from their discretization; section 4 presents the examples for the validation of the
method, comparison with analytical solutions (full field and SIFs) and reorientation of fibres under a tensile loading;

finally, conclusions 5 are drawn.



2. Analytical solutions, J-integral and Stress Intensity Factors

2.1. Analytical solution
(Atkinson, 1973) derived an analytical solution for an horizontal rigid line inclusion problem in an infinite isotropic
elastic matrix under uniform remote biaxial loading o and . In the following, the orthogonal reference has axis x

aligned with the inclusion with the origin in its middle point. The rigid line inclusion has length 2a:

RS
— ro
- =
O — X — o
D 2a —

I

Figure 1: Reference frame and loading for the analytical solution (Atkinson, 1973)

Under uniform biaxial tension, and without the inclusion, the matrix strains uniformly, with a displacements field

given by
'x (o] (o)
no(xny) = g (k+ Doy + (k= 3)o) (1)
vo(xy) = 2 ((k=3)0T + (c+ Do) )
8u * 7
where « is
3-4y plane strain
K= (3)
3= plane stress

and y is the shear modulus and v is the Poisson ratio. The component €, of the strain tensor given by
o)) = o (4 Do + (k= B 4
8u

The line inclusion can only move rigidly. Hence, with the rigid line inclusion now inserted in the matrix, and for the
symmetry of the problem, the motion is only translational in the horizontal direction and with no rotation. For the
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compatibility of the displacements, this translation must be equal to the displacement g (1) at its tips (x = +a, y = 0).
In deriving the analytical solution, (Atkinson, 1973) conveniently subtracted out the uniform strain of the matrix to
obtain zero stresses at infinity. Hence,

u(x,0) = —ug x| < a
(5)
v(x,0)=0 Vx

and, for the equilibrium, 7, = O|x| > a . Additionally, all stresses tend to zero at infinity.. With these boundary

conditions, the stress tensor at y = 0 (1) has components

oy = —(K+3)A(1 —L) x| > a (6)

X2 _ (12

_ |x]

oy=k-DA[l - —— |x| > a @)

2 — &2

1
Th= 2" _Ax  J<a ®)
2 — 2
where A is
1

A= g ((+ DaTt (k- 3)07) 9)

2.2. Asymptotic near-tip solution

(Wang et al., 1985) derived a near-tip expansion of the stress fields that resembles the asymptotic crack-tip solution,

namely
[ 6 (k+3 s 0 i 30)]
COS 3 (—2 — Sin 3 sin 7)
o
H;
_ 0 (1=k | i 0 i 30
oyl = cos—(— + sin £ sin —) (10)
) P 2\ 2 2
Ty
-0 [ l+k 0 30
| S1n 2 (T + COS 3 COS 7)

where r and @ 'is a polar coordinate system (figure 1) with r << a. The parameter H; is not an equivalent Stress
Intensity Factor (SIF): however, it can be related to the remote loading conditions and to the value of the J-integral, as
it will be shown next.

It easy to realize that the Mode I SIF K; is then

1—-«

K = >

H; (11)
Moreover, according to equation (11), K; and H; might be of a different sign.

2.3. Relation between SIF and analytical solution

From equation (7) and assuming r << a, withr = x — a

r+a a (1-KA va
~ (1 -xA ~ (1 -xA = —_— 12
oy 10 \/r2+a2+2ra—a2) (=% (V2ra) V2 W (12
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Comparing with the second of (10)

H; = 2A\na (13)
and, for (11)
K; = (1 - KAma (14)

2.4. Relation between the SIF and the J-integral

As reported in (Chen, 1986), the J-integral for anticracks is negative. Using an integral domain method (Walters

et al., 2005), the J-integral on line inclusions can be computed as follows

ou

sza'a—qudA—fWa—qu— t' —ds (15)
A Bx A (9x S+US- X

where A is a domain enclosing the crack tip. In equation (15) an additional term appears that takes into account the
presence of non-zero tractions t on the line inclusion, and S* U S~ are the two sides of the anticrack. Furthermore, ¢
is a virtual displacements scalar weight function, and W is the strain energy density. More details can be found in the

appendix Appendix A.

Chen proved that
1
=KD (16)
8u
Hence, the numerical SIF can be extracted from equation (16) after having computed J from equation (15)
8u
H"" = [|-J 17
! k(k+1) an

3. Governing equations

3.1. Strong form

Justified by the assumption of soft and deformable matrix, common in biological tissues, the kinematics in this
paper is one of a finite deformation. In addition, finite deformation of the matrix allows to demonstrate the effective-
ness of the numerical method for large rotations of the RLI. The continuum formulation is Total Lagrangian (TL),
with Qg being the reference configuration, and Q the deformed configuration. In the following, X denote the material
coordinates and x the deformation. We will also consider static problems, and for ease of readability, this section
treats only one anticrack. However, the equations extend easily to multiple anticracks, as showed in section 3.5.

In a discrete meshfree setting, the anticracks can be explicitly introduced by the intrinsic enrichment presented
in (Barbieri et al., 2012; Barbieri and Petrinic, 2013b,a), which is based only on geometry (distance fields) therefore
completely independent from the particular constitutive model.

The Boundary Value Problem (BVP) is the following: find the displacement fields u : Q) ¢ R? — R3 such that it

satisfies the following equilibrium equations in a Lagrangian description, in absence of body forces:



Vo-P=0 X e
IIQ'PZtQ XEF? (18)

Xel?

[=1]

u=
where P is the First Piola-Kirchhoff stress, ng is the normal unity vector (in the reference configuration) of the
boundary T? where the traction t, is prescribed, and T is the boundary where the displacement wis prescribed. The
symbol V denotes the gradient with respect to the material coordinates.
In addition, a rigid motion must be imposed on the surfaces of the inclusion: calling S * the top side of the inclusion

and S~ the bottom side
ut—u;, =0 XeSt
(19)
u—-u =0 XeS™
where u, is the rigid motion of the inclusion, which can be decomposed in a rotation and a translation. In a TL

framework, the undeformed configuration X; can me mapped into the current configuration of the inclusion x;,
x, =c+ RX, (20)
where c is the deformation of the center of rotation (which may not belong to the RLI), R is a rotation matrix (in 2D)

cosd —sinf
R= 21
sind cos@

Thus, the displacement u;, of the inclusion in equation (19) is given by
uszL—XL=c+(R—I)XL (22)

or, in an expanded form

ur =cy+(cos@—1) Xy —sin@ Yy
(23)
vp =c¢y+sinf Xy +(cosf—1) ¥
From equations (23) emerges that there are 3 additional unknowns (c, ¢y, #) for each rigid inclusion. Such motion is

not imposed a priori, but is a a consequence of the equilibrium.

3.2. Weak form

Using the displacement u as a test function for equations (18), the variational form can be written as
f OE : SdQ, — f su’ty drf + a/f Su—1)’ (u-u) dri+
Q Iy ¥

+af St —u) (ut —uy)dS* + af S —u) (u —u)dS™ =0 (24)
+ S-
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where E is the Green-Lagrange strain, S is the Second Piola-Kirchhoff stress, « is a penalty parameter (usually a large
number of the same order of magnitude of the elastic properties) used to enforce the essential boundary conditions.
The Green Lagrange strain is defined as

E= % (F'F-1) (25)

with F being the deformation gradient. The Second Piola-Kirchhoff stress is related to P and to the Cauchy stress o
with the following relations:

S=F'P o-:éFSFT (26)

with J being the Jacobian of the deformation gradient. The variations in (24) can be expanded as follows:

st —uy)" = su” - sul 27)
where
0
sutl = 6d” ¢ (28)
0 ¢,

where ¢, are the shape functions of the discretization nodes on S *and d the global vector of the nodal unknowns.
From equation (23)

sul =se’ +60 [_ sin@ X, —cos@Y, cosf X, —sind YL] (29)

Therefore, the penalty term of the rigid line inclusion in equation (24) for S* can be written as

+ _ S
aade ) T aéch (=10 g5+
ST, (v —vp) st (vp =v")
aé@f (sinf X; +cos@ Yy) (u" —ug) +(—cos@ Xy +sinf Y;) (v' —vy)dS* (30)
r.

and similarly for S7.

3.3. Discretized equations of motion

The approximation u” of the field variable u(X) in equation (18) is an expansion

N
u'(X) = )" ¢:(X)d; 31
1

where N is the number of discretization points, ¢; : Q — R is the /—th shape function and Uj is the nodal value related
to the position X;. The expressions for the shape functions in equation (31) depend on the method employed for the
discretization: in this paper we use the Reproducing Kernel Particle Method (RKPM) (Liu et al., 1995) because it
allows a fast introduction of crack surfaces without remeshing (Barbieri and Meo, 2012; Barbieri et al., 2012; Barbieri

and Petrinic, 2013a,b). On these crack surfaces, a rigid motion (22) is enforced.



Following Belytschko et al. (2000), using equation (31), the discretized variation of the deformation gradient

becomes
oF" = 5d B]
with
8T a 6 ¢T a ¢T a ¢T
) = | — =
0X aY 0z
and the following holds

O0F:P=6E:S
Replacing (31) into (18) and considering equation (30), the following equilibrium equations are obtained
FO(d) — F© + F;(d,c,0) +F,;(d,¢c,6)=0
Fi(d,c,0)+F.(d,c,0) =0

F}(d,c,0) + F;(d, c,6)

Fj = f ¢; todl,
Ty

F} (and similarly F) is the coupling between the matrix and the inclusion

Fg(d,c,e)zaf P )] g
St (v —vr)

where F(© is the external forces vector

F} (and similarly F)

F:(d,c,e)zaf [(”L_” )}ds+
s (v =vh)

F; (and similarly Fp)

F7(d,c,0) = (sin0Xg + cos 8Yr) (u* — uy) + (—cos OXy + sin@Y) (v —vp)dS™
S+

and finally, F” is the internal forces vector that depends on the constitutive model of the material

d
& Pu@+ 90 Pu@
sd’FO(d) = f SE" : 8" dQy = f SF" : P" dQy = 6d” f dQy
Qo Qo Qo | O o
28 Po(@ + 55 Pri@)

3.4. Tangent stiffness matrix

(32)

(33)

(34)

(35)

(36)

37

(38)

(39)

(40)

Equation (35) is nonlinear in (d, ¢, #). For n inclusions, the total number of unknowns is then 2N + 3n in two

dimensions. Therefore, solving (35) requires an iterative numerical scheme (for instance Newton - Raphson). For



each iteration, it is necessary to compute the the tangent stiffness matrix (or the Jaobian) Kr that is the gradient of the

left-hand side of equation (35) with respect to the unknowns (d, ¢, 8). This gradient has the following form:

[oF® OFY  OF; oFt  OF; oFt  OF ]
P L] a a a9
od od od dc dc 00 00
oF; OF; oF; OoF; OF; OF;
K- = c c 4 c C C 41
! ad " od g T ae a6 ' o @D
Oy OFOF OF, O OF;
od od dc ac 06 06 |
We will show in the following that the matrix in (41) is symmetric. Indeed, the entries are
oF T o0
T f l"’+¢+ T] as* “2)
10 ¢4
OF" - 0 oF+T
adzf [ ¢ ]ds+= MC (43)
C +1 0 _¢+
oF; f ¢, (sin6Xp+cosoyy) | . OF;" )
96 S+ |¢, (—cosOX, +sin0Yy) ad
oF}
< = f ds*1 435)
dc +
where I is the identity matrix,
oF* — (sin X[, + cos 6Y, oF: T
¢ =f (sin 6X: D gse = (46)
90 Js+ |~ (= cos 0X, +sin0Y,) de
OFy , 2 v 2
50 = (sin 80X + cos 0Y;)” + (cos 80Xy — sin8Y;)*dS+ “7
S+
It can'be shown that " o o
oF" oF" OF"
= (= ) £= (48)
od od ), \od ],
where subscript (-), stands for geometric part, which takes into account geometrical nonlinearities
OF® BIS(d)B
(_)zf 0S(@%o a0 (49)
ad J,  Jo, BI'S(d)B,
whilst (-),, stands for the material part, which takes into account material nonlinearities
OF " T SE
— = B’ (d) C°*(d) B(d) dQ, (50)
ad m QO
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where

opT opT
Flla_?; lea—?;
o’ o’
B(d) = Flza—Y F226‘_Y (5D
ap” o’ g’ o’
_Flla_Y +F128_X F216—Y +F228_X |

and C5% is the Second Elasticity Tensor in Voigt form, defined, in tensorial form, as

oS
CF = — 52
IE (52)
3.5. Multiple rigid line inclusions
For multiple anticracks, equation (24) modifies as
f OE : SdQ, — f su’ty drf + cxf su-a) (u-1a) dri+

Qo Iy Iy
+ Z af St —u.) (ut —ug) ds; + af S —u.) (w —ug) ds; =0 (53)

i=1 7 7

with n, being the number of anticracks. With similar steps as in section 3.1 and 3.2, the discretized equations of

motion are
FOd) - F€ + 3% Fi(d,c;,6) +F;(d,c,6) =0

F:](d,(:be]) + Fc_l(d,c1,91) = 0

F. (d,¢,60,) +F_(d,c2,6:) =0

F: (d,¢,.0,)+F; (d,¢,,6,)=0 (54)
Fg(d,c1,01) + Fy(d,¢1,6) =0

F} (d.c2,6) + Fy;(d,¢3,6)) = 0

anu (d9 Cnys 911(,) + ngm (d’ Cuy» Gnl,) =0

where the terms are analogous to equations (37), (38) and (39). Similarly, the tangent stiffness matrix is given by:

[oF @ oF}  OF; T
- a4 _a KT KT
oa T ga toa Kae Ka
KT = ch ch ng (55)
K Ko K]

where

11



oF: OF; OF: OF; oF*  OF;
T d d d d d d
=|l—+— —+— .. + 56
de [acl de;  Ocy ey acy, 6cna] (56)
OF: OF; OF% OF; ) ) o
T d d d d d d
==Ly —4 L 57
o [601 T 96, 96, ' 6 36, aena] ©7)
[OF;  OF
00, 96,
oF;, OF,
+
K. = 00, 00, (58)
OFG,~ OF,
a6, = o6, |
[OF;  OF_
+ —_—
601 801
) )
+ -
K. = o oe (59)
oF;, 0¥,
ocy, " dc,, |
(0F;  OF,
b N + —_—
96, 06,
OF}, OF,
Ko = 9, % (60)
oFg,, 9F,,
86, 6, |

where the entries in these matrices are analogous to equations (42), (43), (44), (45), (46) and (47).

4. Numerical examples

4.1. Comparisons of SIFs with analytical solutions

For ease of comparison with the analytical solutions (6), (7), (8) and (10), the finite deformation in this section
is linearized to reconcile with the analytical results in section 2. The matrix is then an isotropic linear elastic body,

defined by shear modulus ¢ and Poisson ratio v, both in plane stress and plane strain. Nonetheless the approach is
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general, and applicable to non-linear constitutive models, as in section 4.7. The nodal spacing (or mesh size) will be
indicated in the following with A. The radius for the numerical computation of the J-integral (see appendix Appendix
A) in all cases was varied from 0.4 a to 0.7 a to verify the path independence of the J-integral. The values are 0.5 a

are reported in the following tables.

L — L —
<« e
y — y —
— —
L B x or — L > X — Oy
2a — 2a .
— —
<« E—
— —
R
(a) Vertical loading (b) Horizontal loading

Figure 2: Mode I anticrack. Thin black line: rigid line inclusion

4.2. Mode I under vertical tensile loading

In this section we will consider a central horizontal line inclusion embedded in a rectangular matrix subjected to a
vertical tensile loading (figure 2a). Figure 3 shows the distribution of the stress tensor and the Von Mises stress inside
the matrix: the stress concentrations at the tips of a relatively short inclusion (0.15 L) are clearly visible. These con-
centrations aresingular for r = 0, as in equations (8), (6) and (7). The functional space of the approximation (31) does
not contain singular functions, the singularity cannot appear in the computed stresses: however, as visible in figures
4, the 'numerical solution can capture with great accuracy the analytical solution near the tips. Most importantly,
the method does capture stress intensities. Indeed, a significant comparison is reported in tables 1, 2 and 3 where
the numerical values of the J-integrals (equations (16) and (17)) for different mesh sizes are compared to the value
H; (equation (13)), which is connected to the theoretical Stress Intensity Factor K; (equation (14)). Tables 1, 2 and
3 show rapid convergence to the analytical value of Hj, for a relatively short inclusions (close to the hypothesis of
infinite matrix, see section 2.1). Table 3 shows that even with a small number of nodes per half-length (5) it is possible
to obtain the analytical answer with a small error (around 5%). It is interesting to notice that for the cases in tables
2 and 3 the values of H; are negative. However, this does not mean a reversed stress singularity: using v = 0.3 and

Young modulus E = 50 GPa, and applying equation (11), it is obtained a K; = 0.0324 Pa+/m for @ = 0.075 L and
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K; = 0.0264 Pa+/m for a = 0.05 L. The sign of K; determines the sign of the singularity (see equation (10)), and it is

found consistently to be positive.

0.498 1.159
0.364 1.129
0.230 1.099

‘£0.096 £1.068

£-0.038 N/’ 1.038

f— P

£-0.172 g N 1.007
-0.306 0.977
-0.440 0.947
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Figure 3: Mode I under vertical loading: stress tensor normalized to o°, L = 1 m and a = 0.075L

4.3. Mode I under vertical compressive loading

Nonetheless, conversely to cracks, rigid line inclusion can have negative Mode I stress intensity factors, because
the rigid motion of the inclusion always prevents a negative displacement jump. This case is the one in section 4.2
(@ = 0.05 L) with a reversed load, for which the computed stress intensity factor is K; = —0.0264 Pa y/m. In this test,

5 nodes per half length were employed.

4.4. Mode I under horizontal tensile loading

Another difference from cracks, is the presence of a stress singularity for loading parallel to the inclusion. The
value of K; needs to be computed with a different formula than (14): indeed, applying (14) witha = 0.075 L, v = 0.3,
E = 50 GPa and 0" > 0, 0 = 0 leads to H; = 0.1888 Pa+v/m and K; = —0.0755Pa +/m, which is negative and
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Figure 4: Numerical (continuous line) and analytical (dashed line) solutions (Atkinson, 1973) according to equations

(6), (7) and (8) for the vertical tensile loading (figure 2a)
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h/a a/h H;numerical [Pay/m] Error %

0.100 10 0.0960 2.78
0.067 15 0.0950 1.71
0.050 20 0.0945 1.18

Table 1: Convergence analysis for the test in figure 2a in plane strain with a =0.01 L: H; = 0.0934 Paym

hla a/h  Hpnumerical [Pay/m] Error %

0.133  7.50 0.0856 5.81
0.089 11.25 0.0846 4.57
0.067 15.00 0.0840 3.83

Table 2: Convergence analysis for the test in figure 2a in plane strain with a = 0.075 L: H; = —0.0809 Pavm

hja  a/h  H;numerical [Paym] Error %

0.200 5.00 0.0696 5.30
0.133  7.50 0.0678 2.57
0.100 10.0 0.0658 0.46

Table 3: Convergence analysis for the test in figure 2a in plane strain with a = 5% L: H; = —0.0661 Pav/m
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counter-intuitive. In fact, figure 5a shows a positive singularity in the o, plot. The negative value so calculated
corresponds to the o, distribution (figure 5b). To get a consistent K; for figure 5a, let us consider equation (10): the

expression for o, for 8 = 0 is

6 07 o
5 1§
] 054
4]
s )
2 ] L]
b 3 S
231 -1.59
1] L\‘\
-————— R e [ [ —— .
0 1 2 3 4 5 6 0 0.5 1 1.5 2
r/a r/a
(@) ox () oy

Figure 5: Numerical (continuous line)-and analytical (dashed line) solutions (Atkinson, 1973) according to equations

(6), (7) for the horizontal tensile loading (figure 2b)

_ _ H; K+3
oy (r,0 = 0) = \/ﬁ( : ) 61)

hence, the correct expression for K; under loading parallel to the anticrack is
K; = (k+3)Avna (62)

Substituting the values in equation (62) leads to K; = 0.4530 Pa v/m, which is correctly positive. Comparing the H;
values for different loading conditions is therefore more convenient than comparing K;, because the expression for H;
is independent from the relative position between loading and inclusion.

Tables 4, 5 and 6 show that good convergence is obtained also for the inclusion under parallel loading.

4.5. Mode I under horizontal compressive loading

Analogously to the vertical compressive loading in section 4.3, there is a singularity in the stress also for horizontal

compressive loading, as showed in figure 6, captured quite accurately by the proposed numerical scheme.
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h/a a/h H;numerical [Pay/m] Error %

0.100 10 0.2221 1.88
0.067 15 0.2215 1.61
0.050 20 0.2200 0.92

Table 4: Convergence analysis for the test in figure 2b in plane strain with @ =0.10 L: H; = 0.2180 Pa+/m

hla a/h  Hpnumerical [Pay/m] Error %

0.133  7.50 0.1974 4.56
0.089 11.25 0.1958 3.71
0.067 15.00 0.1947 3.13

Table 5: Convergence analysis for the test in figure 2b in plane strain with @ = 0.075 L: H; = 0.1888 Pa+y/m

hja  a/h  H;numerical [Paym] Error %

0.200 5.00 0.1618 5.00
0.133  7.50 0.1583 2.73
0.100 10.0 0.1577 2.34

Table 6: Convergence analysis for the test in figure 2b in plane strain with a = 0.05 L: H; = 0.1577 Pa+y/m
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Figure 6: Numerical (continuous line) and analytical (dashed line) solutions (Atkinson, 1973) according to equation

(6) for horizontal compressive loading

4.6. Mode I under biaxial loading

From the previous section, it emerged that an anticrack creates a singularity in the stress under any arbitrary
biaxial loading, both tensile and compressive. However, this is true except in some circumstances. For instance, in
plane strain for incompressible materials (equation (14)), for which x = 1. For a compressible solid, K; is null if
H; = 0, and, for equation (13), when A = 0. Hence, for equation (9), A = 0 for the following ratio between the
loadings

oy k+1
(// =—==-— (63)
fogs k-3

Figures 7 show that for this ratio there is no singularity, and that the inclusion is transparent to the applied load:

the stress state in the matrix is uniform.

4.7. Inclined multiple rigid line inclusions in a soft matrix

To test the numerical method for large rotations of the RLI, the following examples assume an initially inclined
anticrack within a very deformable matrix. The domain is stretched uni-axially. The matrix follows a compressible
hyperelastic Neo-Hookean model. The choice of a compressible model stands in avoiding numerical issues related to
incompressibility. There is quite a literature on the treatment of the incompressibility constraint in meshfree methods.
However, the incompressibility issue is outside the scopes of the paper. This section wants to show that, under the

assumption of finite deformation, the fibres rotate (and translate) in an evident manner. These results prove that the
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method can capture the physical intuition. For example, it can reproduce the reorientation of inclined fibres towards
the direction of loading, phenomenon important in many biological systems (Tower et al., 2002). The alignment of
the fibres with the loading has structural importance since, in this manner, reinforcements can be the most effective
in withstanding loads. The reorientation is facilitated if the matrix is compliant. The strain energy function W of the
hyperelastic model is

1 1
W = Spo (1 = 3) + Ao (log I = uolog J (64)

where Ly is the initial shear modulus, Ay the initial bulk modulus, I; is the first invariant of the Right Cauchy Green
tensor

C=F'F (65)

The corresponding Second Piola-Kirchhoff Stress is
S = poX — (uo — Ap log J).C! (66)
The second elasticity tensor (in index notation) is
(Csp)iju = 2C;;' Ciy + (o = Aolog J) (Ct?cl Ci' +Cy IC/;/'I) 67

In the following examples, unless differently specified, uy = 0.4 MPa, with initial Poisson ratio of v = 0.3. The
domain of study is the same as the previous sections (unit square of L = 1 m) under uniaxial stretch A in the Y

direction. The midpoint of the RLI is in the middle of the square.

4.7.1. One inclined anticrack: influence of large strains

The first series of results show the reorientation of the RLI under large values of A. The length of the anticrack 2a
is set to L/ 10, inclined with an angle 5. The sample is discretized with a regular grid of 100 x 100 nodes, where the top
and the bottom edges are clamped, and the top one free to move in the Y direction. The test is under displacements-
controlled conditions, applied with an interval A1 = 0.02. Figures in block 9 show the angle 6 as a (non-linear)
function of A, and all the consequent deformations (translation and rotation) of a RLI with a slight initial inclination
(8 = 15°). Under a large finite strain of 400%, the RLI rotates of 55°. At A = 5 the simulation halted for excessive
localized deformation near the RLI, which brought J to be negative. As expected, the midpoint of the RLI (which is

different from the center of rotation c) translates only vertically.

4.7.2. One inclined anticrack: influence of the initial angle

Figures in block 10 show the reorientation of RLIs with different initial inclination. As expected, under tension,
the reorientation is less for RLIs with high initial inclination, while the reverse verifies for compressive loadings. In
fact, for compressive strains of 30%, the anticrack at 8 = 75°,60°,45°,30° reorientate of nearly —15°. Some with a
nonlinear variation (8 = 75°, 60°), whilst the remaining with almost a linear law. Instead, the anticrack with § = 15°
reorientates of —6°.
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Figure 8: Anticrack in mixed-mode loading under a large uniaxial stretch

4.7.3. One inclined anticrack: influence of the initial stiffness

Figure 11 shows the influence of the stiffness of the matrix on the reorientation of the anticrack, as obtained from
the numerical results. As intuitively expected, the same load can reorientate the RLI of a larger amount than a stiffer
matrix: for example, for a load of 2 MPa, a 10 times stiffer matrix reorientates of 5°, instead of more than 20°. From
a different point of view, a stiffer matrix requires a higher stress than a more compliant matrix to reorientate of the
same quantity. A 10 times stiffer matrix requires a 10 times higher stress. This is justifiable also from a theoretical

perspective, where under uniaxial stress, the Cauchy stress along the direction of loading is given by

_ Mo (2 J
Uzz—ﬁ(ﬂ —z) (68)

where J is obtained by solving the following nonlinear equation

o (18/3 B 15/3) + 1 (i _ ’1_2) =0 (69)
30 3

Equations (68) and (69) are valid in absence of anticracks, or, for relatively small ones, far from them. It is evident
from equation (69) that under uniaxial stress, different uo (and hence 1) give the same J. Therefore, for equation (68)

, 0, is linearly proportional to the shear modulus.

4.7.4. One inclined anticrack: influence of the initial length
Figure 12 shows the effect of the length of the anticrack on the deformation of the matrix. The initial angle is

B = 15°, with three different lengths, from relatively small, to the extreme case of an anticrack along the entire width.
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Figure 12 is a zoom of the position of the anticrack and the deformation of the edges for 4 = 5. There is no influence
of the length on the final rotation and position of the anticrack. However, as the length augments, the RLI increasingly

strains the matrix. In the extreme case, the edges deform by creating a kink.

4.7.5. Two inclined anticracks

This section examines the mutual influence of the inclined anticracks as depicted in figures 13. The centres of
the two RLIs are separated by a distance’ b = L/3, with 2a = L/10. Figure 14 shows the results of two different
configurations: one with anticracks with equal inclination, and one with opposite. The colors of the curves are the
same of the RLIs in figure 14. In both cases, for this value of b there is no influence on the rotation, and the two line
inclusions deform as they were isolated, as reported in figure 10b (blue curve). To seek evidence for an interaction
of the RLIs, the offset length b was reduced to half the length of the anticrack (a). Figure 15 displays only a slight
difference in 6 compared to figure 14a, and at large strains. The influence is the same also for RLIs inclined in an
opposite direction (not reported). For anticracks, the local stress state near the tips does not seem to hinder significantly

their reorientation.

4.7.6. Multiple RLIs

The last example considers a large number of randomly oriented anticracks. This case proves the power of the
method, especially in handling multiple couplings between the matrix and the inclusions. It is useful to recall that no
remeshing is necessary, and neither a mesh conforming to the anticrack lines: the distribution of nodes is a regularly
arranged grid of 100 X 100 points. The test in figure 16 shows the reorientation of 49 anticracks. Their centers
are regularly distributed, but their lengths and initial orientation are randomly chosen. The lengths are drawn from
a uniform probability distribution function within an interval of L/20 and L/15; the initial angles instead from an

interval of /4 and 3/4x. Once again, figures 16 and 17 show the realignment of the anticracks towards the direction
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of loading (7/2).
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Figure 17: Deformed configuration of an hyperelastic matrix with 49 randomly oriented anticracks

4.8. Remarks on the nonlinear solution

Owing to the strong diagonal dominance of the tangent stiffness matrix in equation (55), the method converges
rather quickly even for numerous anticracks. For the loads increments of 64 = 0.02, the solutions converged to a
relative residual norm of 0.1% in only a couple of iterations. Even if a sophisticated nonlinear solver, like a line
search, was available, this option was never activated, and a standard Newton-Rahpson solver sufficed. However, it is

advisable to keep the increments short: for large increments, the solver might fail due to negative Jacobian.
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5. Conclusions

This paper presented a numerical implementation of the rigid line inclusion model. A rigid line inclusion, also
known as anticrack, line stiffener, lamellar inhomogeneity or rigid ribbon, is a kinematic model of a very thin and
infinitely stiff reinforcement in an elastic matrix. Using numerical meshfree techniques for crack modelling, we
presented a straightforward generalization that could prove to be useful for modelling engineered nanocomposites and
hierarchical nano and microstructures occurring in natural systems. Linear elastic matrices were considered for ease of
validation with existing analytical solutions; results showed rapid convergence to analytical stress intensity factors, for
relatively coarse mesh sizes, and very good agreement (apart from the stress singularities) with the theoretical solutions
given by (Atkinson, 1973). Differently from cracks, stress singularities appear also for compressive loadings normal
to the inclusion, and for both tensile and compressive loadings parallel to the inclusion: instead, it is transparent
for a certain combination of biaxial loadings, whose ratio can be predicted from the theory (Atkinson, 1973). The
presented method is able to reproduce successfully all these peculiar characteristics of an anticrack. The method
is extended easily to both nonlinear elasticity and to multiple anticracks. Both these cases are difficult to treat with
analytical solutions and for general geometries. In fact, this paper presented results of one anticrack embedded in a soft
matrix, modelled with an isotropic Neo-Hookean constitutive law. As an example, we considered a fibre-reorientation
problem under large strains, common in many biological systems, and reported the orientation of the inclusion with
respect to length, initial inclination and the stiffness of the matrix. Furthermore, we discussed the influence of two
anticracks, and found that there is only slight influence (less than 1 degree) on the reorientation for very close RLIs.
Finally, to prove the power of the approach, we presented an example with 49 anticracks, randomly oriented, and

proved that such a complicated system requires no advanced meshing techniques for its treatment.
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Appendix A. Numerical computation of the J-integral

Following (Li et al., 1985), the J-integral (Rice, 1968) for single mode loading and a crack that grows straight
ahead can be re-formulated as in equation (15), where A is the domain enclosed by a closed curve I oriented anti-
clockwise that surrounds the crack tip X, ¢ is a weight function that is zero on I" and 1 on x. (Fig. A’18), W is the
strain energy density that for a linear elastic material can be written as

1

W:E(rze (A.1)

The chosen weight function (Fig. A.18 ) is an asymmetric hat function given by

w(x,y) = we(X)wy(y)
x+d ~x+d.

=+ [H(x) — H(x - dY)]

wal(x) = [H(x + d) = H()]

dy dy
y+d Tyt
W) = [HO + ) = HO— + [H) - HO - d)] —— (A2)
y y
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l 1 r
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Figure A.18: Domain and weight function w for the J-integral
Acknowledgements

NMP is supported by the European Research Council (ERC StG Ideas 2011 BIHSNAM n. 279985 on Bio-
Inspired hierarchical super-nanomaterials, ERC PoC 2013-1 REPLICA2 n. 619448 on Large-area replication of
biological anti-adhesive nanosurfaces, ERC PoC 2013-2 KNOTOUGH n. 632277 on Super-tough knotted fibres), by
the European Commission under the Graphene Flagship (WP10 ”Nanocomposites”, n. 604391) and by the Provincia

29



ACCEPTED MANUSCRIPT

Autonoma di Trento ("Graphene Nanocomposites”, n. S116/2012-242637 and reg.delib. n. 2266). EB is supported
by the Queen Mary University of London Start-up grant for new academics. i

30



References

Atkinson, C., 1973. Some ribbon-like inclusion problems. International Journal of Engineering Science 11 (2), 243-266.

Ballarini, R., 1987. An integral equation approach for rigid line inhomogeneity problems. International Journal of Fracture 33 (2), R23-R26.

Ballarini, R., 1990. A rigid line inclusion at a bimaterial interface. Engineering Fracture Mechanics 37 (1), 1-5.

Barbieri, E., Meo, M., 2012. A fast object-oriented matlab implementation of the reproducing kernel particle method. Computational Mechanics
49 (5), 581-602.

Barbieri, E., Petrinic, N., 2013a. Multiple crack growth and coalescence in meshfree methods with a distance function-based enriched kernel. In:
Key Engineering Materials - Advances in Crack Growth Modeling. TransTech Publications, p. 170.

Barbieri, E., Petrinic, N., 2013b. Three-dimensional crack propagation with distance-based discontinuous kernels in meshfree methods. Computa-
tional Mechanics, 1-18.

Barbieri, E., Petrinic, N., Meo, M., Tagarielli, V., 2012. A new weight-function enrichment in meshless methods for multiple cracks in linear
elasticity. International Journal for Numerical Methods in Engineering 90 (2), 177-195.

Belytschko, T., Liu, W. K., Moran, B., 2000. Nonlinear finite elements for continua and structures. John Wiley & Sons.

Bigoni, D., Dal Corso, F., Gei, M., 2008. The stress concentration near a rigid line inclusion in a prestressed, elastic material. part ii.: Implications
on shear band nucleation, growth and energy release rate. Journal of the Mechanics and Physics of Solids 56 (3), 839-857.

Bilotti, E., Deng, H., Zhang, R., Lu, D., Bras, W., Fischer, H. R., Peijs, T., 2010. Synergistic reinforcement of highly oriented poly (propylene)
tapes by sepiolite nanoclay. Macromolecular Materials and Engineering 295 (1), 37-47.

Bilotti, E., Fischer, H., Peijs, T., 2008. Polymer nanocomposites based on needle-like sepiolite clays: Effect of functionalized polymers on the
dispersion of nanofiller, crystallinity, and mechanical properties. Journal of Applied Polymer Science 107 (2), 1116-1123.

Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H., Peijs, T., 2009. Sepiolite needle-like clay for pa6 nanocomposites: An alternative to layered
silicates? Composites Science and Technology 69 (15-16), 2587-2595.

Brussat, T., Westmann, R., 1975. A westergaard-type stress function for line inclusion problems. International Journal of Solids and Structures
11 (6), 665-6717.

Burnley, P., Green, H., 1989. Stress dependence of the mechanism of the olivine-spinel transformation. Nature 338, 753-756.

Chen, Y., 1986. Singular behaviour at fixed rigid line tip in plane elasticity. Engineering fracture mechanics 25 (1), 11-16.

Dal Corso, F., Bigoni, D., 2009. The interactions between shear bands and rigid lamellar inclusions in a ductile metal matrix. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Science 465 (2101), 143-163.

Dal Corso, F., Bigoni, D., Gei, M., 2008. The stress concentration near a rigid line inclusion in a prestressed, elastic material. part i.: Full-field
solution and asymptotics. Journal of the Mechanics and Physics of Solids 56 (3), 815-838.

Dundurs, J., Markenscoff, X., 1989. A green’s function formulation of anticracks and their interaction with load-induced singularities. Journal of
applied mechanics 56 (3), 550-555.

Eichhorn, S., Dufresne, A., Aranguren, M., Marcovich, N., Capadona, J., Rowan, S., Weder, C., Thielemans, W., Roman, M., Renneckar, S., et al.,
2010. Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science 45 (1), 1-33.

Fletcher, R. C., Pollard, D. D., 1981. Anticrack model for pressure solution surfaces. Geology 9 (9), 419-424.

Fratzl, P., Guille, M. M. G., 2011. Hierarchy in natural materials. Hierarchically Structured Porous Materials.

Green, H. W., Young, T. E., Walker, D., Scholz, C. H., 1990. Anticrack-associated faulting at very high pressure in natural olivine. Nature
348 (6303), 720-722.

Hasebe, N., Keer, L., Nemat-Nasser, S., 1984. Stress analysis of a kinked crack initiating from a rigid line inclusion. part 1: Formulation. Mechanics
of Materials 3 (2), 131-145.

Heierli, J., Gumbsch, P., Zaiser, M., 2008. Anticrack nucleation as triggering mechanism for snow slab avalanches. Science 321 (5886), 240-243.

Hurtado, J., Dundurs, J., Mura, T., 1996. Lamellar inhomogeneities in a uniform stress field. Journal of the Mechanics and Physics of Solids 44 (1),
1-21.

31



Ji, B., Gao, H., 2004. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids 52 (9),
1963-1990.

Landis, W., 1995. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals
in their organic matrix. Bone 16 (5), 533-544.

Li, F., Shih, C., Needleman, A., 1985. A comparison of methods for calculating energy release rates. Engineering Fracture Mechanics 21 (2),
405-421.

Liu, W,, Jun, S., Zhang, Y., 1995. Reproducing kernel particle methods. International journal for numerical methods in fluids 20 (8-9), 1081-1106.

Muskhelishvili, N. I., 1953. Some basic problems of the mathematical theory of elasticity. Vol. 15. Cambridge Univ Press:

Nishimura, N., Liu, Y., 2004. Thermal analysis of carbon-nanotube composites using a rigid-line inclusion model by the boundary integral equation
method. Computational Mechanics 35 (1), 1-10.

Noselli, G., Dal Corso, F., Bigoni, D., 2010. The stress intensity near a stiffener disclosed by photoelasticity. International journal of fracture
166 (1-2), 91-103.

Pingle, P., Sherwood, J., Gorbatikh, L., 2008. Properties of rigid-line inclusions as building blocks of naturally occurring composites. Composites
science and technology 68 (10), 2267-2272.

Porwal, H., Grasso, S., Reece, M., 2013a. Review of graphene-ceramic matrix composites. Advances in Applied Ceramics 112 (8), 443-454.

Porwal, H., Tatarko, P., Grasso, S., Hu, C., Boccaccini, A. R., Dlouhy, I., Reece, M. J., 2013b. Toughened and machinable glass matrix composites
reinforced with graphene and graphene-oxide nano platelets. Science and Technology of Advanced Materials 14 (5), 055007.

Porwal, H., Tatarko, P., Grasso, S., Khaliq, J., Dlouhy, 1., Reece, M. J., 2013c. Graphene reinforced alumina nano-composites. Carbon 64, 359-369.

Radtke, F., Simone, A., Sluys, L., 2010. A partition of unity finite element method for obtaining elastic properties of continua with embedded thin
fibres. International Journal for Numerical Methods in Engineering 84 (6), 708—732.

Radtke, F., Simone, A., Sluys, L., 2011. A partition of unity finite element method for simulating non-linear debonding and matrix failure in thin
fibre composites. International Journal for Numerical Methods in Engineering 86 (4-5), 453-476.

Rice, J. R., 1968. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied
Mechanics 35, 379-386.

Stagni, L., 1989. Line singularity near the tip of a crack and of a fixed rigid line: unified treatment. Engineering fracture mechanics 33 (5), 679-684.

Tower, T. T., Neidert, M. R., Tranquillo, R. T., 2002. Fiber alignment imaging during mechanical testing of soft tissues. Annals of biomedical
engineering 30 (10), 1221-1233.

Walters, M. C., Paulino, G. H., Dodds, R. H., 2005. Interaction integral procedures for 3-d curved cracks including surface tractions. Engineering
fracture mechanics 72 (11), 1635-1663.

Wang, Z., Zhang, H., Chou, Y., 1985. Characteristics of the elastic field of a rigid line inhomogeneity. Journal of applied mechanics 52 (4), 818-822.

32



For the first time, it is presented a numerical method that couples 2D
matrices with exactly 1D (line, zero-thickness) inclusions, also named
anticracks

The method matches available analytical solutions for simple cases, and
in the linear elastic approximation.

The paper, in addition, presents an extension to soft matrices, modelled
with hyperelastic laws, and with multiple line inclusions

The results show that the method capture the phenomenon of fibre
reorientation towards the direction of loading



